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D14. Vbl x =. Vee xv (3y)(3z)(Vee y. AcString z. Cxyi). 

A variable is a vee or the result of concatenating a vee with a string of accents. 
A quantifier will be simply a variable in parentheses. But it is more useful 

to define a string of (one or more) quantifiers directly. A method for doing this 
becomes evident when we reflect that any inscription will be a string of quanti­
fiers if it begins and ends with facing parentheses and is such that every pair of 
facing parentheses within it frames an inscription that is either a variable or con­
tains parentheses back to back. 

D15. QfrString x = (3y)(3z){LPar y. RPar z. (3w)Cxywz. (s)(t)(u)(k) 
[LPar t. RPar k. Cstuk. Seg sx .=>. Vbl u v (3p)(3q)(3r)(RPar q. LPar r. 
Cpqr. Seg pu)Jl. 

Then let us call x a quantification of y if x consists of a string of quantifiers 
followed by y. 

D16. Qfn xy = (3z)(QfrString z. Cxzy). 

8. Formulas. An atomic formula of the object language consists of two 
variables with an epsilon between them. 

D17. AtFmlax = (3w)(3y)(3z)(Vblw.Epy. Vblz. Cxwyz). 

We are supposing that the class logic to be developed in the object language will 
use one or another of the alternatives to the theory of types, so that epsilons may 
grammatically occur between any variables without restriction. 

The non-atomic formulas of the object language are constructed from the 
atomic formulas by quantification and alternative denial. In order to define an 
alternative denial we first need to be able to say that a given inscription x con­
tains exactly as many left as right parentheses. This will be the case if x lacks 
parentheses altogether; and it will be the case also if the inscription which con­
sists of all the left parentheses in x and the inscription which consists of all the 
right parentheses in x are equally long in the sense of Dll. In symbols: 

D18. EqPar x =. (u)(LPar u v RPar u .::> "-'Seg ux) v (3y)(3z){EqLng 
yz. (w)(Char w ::>: LPar w. Seg wx ,= Seg wy : RPar w. Seg wx ,= Seg wz)). 

Now for an inscription x to be the alternative denial of y and zit is necessary that 
x consist of a left parenthesis followed by y, then a stroke, then z, and finally a 
right parenthesis. But this is not enough. We must make sure that the begin­
ning and ending parentheses are "mates"-that is, that they are paired with 
each other and not with other parentheses that occur between them. Also we 
must make sure that the stroke between y and z is the main connective in x. 
We can accomplish all this by requiring that y contain an equal number of left 
and right parentheses, and similarly for z, but that this be true of no initial seg­
ment of x (except x itself). 

D19. ADxyz =. EqPar y. EqPar z. (r)(s)(Cxrs ::>. ,.._,EqPar r). (3t)(3u)(3w) 
(LPar t. Str u. RPar w. Cxtyuzw). 

The formulas of the object language comprise the atomic formulas and every 
inscription constructed from them by means of quantification and alternative 
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denial. Some ways in which one might naturally seek to reduce this to a formal 
definition are not feasible in a nominalistic syntax.14 Our method is to begin by 
defining a quasi-formul,a as anything which is an atomic formula, an alternative 
denial, or a quantification of an atomic formula or alternative denial. 

D20. QuasiFmla x = (3y)(x = y .v Qfn xy : AtFmla y v (3w)(3z)ADywz). 

A quasi-formula will not necessarily be a formula, since the components of the 
alternative denial are not required to be formulas. But in terms of this notion 
of quasi-formula we can now easily define formula: 

D21. Fmla x =. QuasiFmla x. (w)(y)(z)(ADwyz • Seg wx .::). QuasiFmla 
y • QuasiFmla z). 

In other words, a formula is a quasi-formula such that every alternative denial 
in it is an alternative denial of quasi-formulas. 

By requiring_ even the shortest alternative denials in a formula x to be alterna­
tive denials of quasi-formulas, the definition requires them to be alternative 
denials of atomic formulas or of quantifications of atomic formulas, and this 
makes them genuine formulas in the intuitively intended sense of the word. 
Accordingly, by requiring also the next more complex alternative denials in x 
to be alternative denials of quasi-formulas, the definition guarantees that these 
also will be formulas in the intuitively intended sense; and so on, to x itself. 

9. Axioms and rules. Now that we have specified the characters and for­
mulas of the object language within our nominalistic syntax language, the next 
problem is to describe the sorts of notational operations which pass for logical 
proof among the users of that object language. A full solution of this problem 
would consist in the formulation, in our syntax language, of a condition which is 
necessary and sufficient in order that an inscription x be a theorem of the object 
logic. 

The theorems are those formulas of the object language which follow from 
certain axioms by certain rules of inference. The axioms should be so chosen 
that we can obtain from them, by the rules of inference, every formula which is 
valid according to the logic of alternative denial and quantification and, in addi-

14 Using essentially the method of Frege's definition of the ancestral of a relation, we 
might say that x is a formula if it belongs to every class which contains all atomic formulas 
and all quantifications and alternative denials of its members. But this definition is 
unallowable because of its use of quantification over classes; cf. §4.-There is indeed a 
completely general method, in syntax, of deriving ancestrals and kindred constructions 
without appeal to classes of expressions. This is the method of "framed ingredients" 
which appears in Quine, Mathematical logic, §56. The method consists essentially of 
these two steps: (1) the Frege form of definition is so revised that the classes to which 
it appeals can be limited to finite classes without impairing the result; (2) finite classes 
of expressions are then identified with individual expressions wherein the "member" -
expressions occur merely as parts marked off in certain recognizable ways. However, 
when as nominalists we conceive of expressions strictly as concrete inscriptions, we find 
the method of framed ingredients unsatisfactory, because its success depends too much 
on what inscriptions happer.. to exist in the world. Actually, though, the nominalistic 
definition of proof in the present paper will be simpler than that in terms of framed ingre­
dients; for it will not require the lines of a proof to be concatenated, nor to be marked off 
by intervening signs. 
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tion, a goodly array of formulas whose alleged validity is supposed to proceed 
from special properties of class-membership. We cannot aspire to completeness 
in this last regard, in view of Godel's result. 

There are many essentially equivalent sets of axioms suitable to the above 
purposes. The axioms which we shall adopt fall under three heads: axioms of 
alt,ernative denial, axioms of quantification, and axioms of membership. In settin~ 
them forth let us understand ',.._, · · · ' as short for ' ( · · · I · · · ) '. 

Axioms of alternative denial: All formulas of the form: 

((PI (Q IR)) I ((SI ,.._,S) I ((SI Q) I ,.._,(p I S)))),16 

like letters being replaced by like formulas. 

Axioms of quantification: All formulas of the forms: 

(1) ((v)(P I "'Q) I "'((v)P I "'(v)Q)), 

(2) (R I ,.._,(v)R) (where 'v' is not free in 'R'), 

(3) ((v)P I ,.._,S) (where 'S' is the result of substituting some variable for 
'v' in 'P'). 

If the reader reflects that the sign-combination ' I ,.._,, amounts to '::::>', he 
will recognize in the forms (I) - (3) a familiar set of axiom-schemata for quanti­
fication theory.16 Like capitals in (I) - (3) are of course to be understood as 
replaced by like formulas, and the vees by like variables. The two brief 
provisos appended to (2) and (3), above, may be stated more precisely as fol­
lows: (i) the formulas supplanting the 'R's contain no free variables like the 
variables supplanting the vees, and (ii) the formula supplanting the 'S' is like 
the formula supplanting the 'P' except perhaps for containing other free vari­
ables, like one another, in place of all free variables like the variable supplanting 
the vee. 

Axioms of membership: Here it happens that a limited list of specific expressions 
is adequate; e.g., Hailperin's.17 Let us suppose such a list put over into the 
primitive notation of our object language and set down here; then our axioms 
of membership are all inscriptions like those in the list. 

In addition to the axioms, we need two rules of inference: 
(I) From any formula, together with the result of putting a formula like it 

for 'P' and any formulas for 'Q' and 'R' in '(PI (QI R))', infer any formula like 
the one which was put for 'Q'.18 

11 This is Lukasiewicz's simplification of Nicod's axiom schema. See Jan Lukasiewicz, 
Uwagi o aksyomacie Nicod'a i o "dedukcyi' uogolniajqcej", Ksifga pamiqtkowa Polskiego 
Towarzystwa Filozojicznego we Lwowie, 1931, pp.2-7; also Jean Nicod, A reduction in the 
number of primitive propositions of logic, Proceedings of the Cambridge Philosophical 
Society, vol. 19 (1917-20), pp. 32-41. 

16 They answer to 4.4.4, 4.4.5, a.nd 4.4.6 of F. B. Fitch, The consistency of the ramified 
Principia, this JOURNAL, vol. 3 (1938), pp. 140-149; also to *102-*104 of W. V. Quine, 
Mathematical logic, p. 88. 

n Theodore Ha.ilperin, A set of axioms for logic, this JOURNAL, vol. 9 (1944), pp. 1-19. 
1a This is Nicod's generalization of modus ponens; see footnote 15. 
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(2) From any formula infer any quantification thereof. 
To reach a definition of 'Axiom' we must first be able to define what it means 

to be an axiom of any given one of the five kinds above described. A simple 
auxiliary definition will be useful: 

D22. Dxy = (3z)(Like yz. ADxyz); 

i.e., that x is a denial of y means that x is the alternative denial of y and some 
other inscription exactly like y. 

Definition of 'AADx', meaning that x is an axiom of alternative denial, is 
achieved by stating formally what we can observe from the general schema al­
ready given: that every axiom of alternative denial is an alternative denial of 
two formulas; one of these two main components is an alternative denial of 
formulas of which one is an alternative denial of formulas; the other of the two 
main components is an alternative denial of formulas of which one is an alter­
native denial of a formula with a formula like the denial of that formula, while 
the other is ... etc., etc. In symbols: 

D23. AADx = (3f)(3g)(3h)(3i)(3j)(3k)(3l)(3m)(3n)(3p)(3q)(3r)(3s)(3t) 
(3u)(3w)(3y)(3z)(Fmla f. Fmla g. Fmla h. Fmla i. Like ki. Like lg. Like 
mf. Like ni • ADpgh • ADqfp • Dri • ADsir • ADtkl • ADumn • Dwu • · ADytw • 
ADzsy • ADxqz). 

Formulation of 'AQl x', meaning that x is an axiom of quantification of kind 
(1), proceeds in the same way; we shall omit the definition. 

Formulation of 'AQ2 x' offers the one additional difficulty that in order to 
express stipulation (i), appearing in the above description of the axioms of 
quantification, we must have a definition of free variable. A variable x is a free 
variable in an inscription y if x is a segment of y not followed by any additional 
accents in y, and if furthermore xis not a segment of any segment of y that con­
sists of a formula preceded by a quantifier consisting of a variable like x framed 
in parentheses. 

D24. Free xy =. Vbl x • Seg xy • (z)(w)(Ac w • Czxw • "'Seg zy) • 
(q)(r)(s)(t)(u)(LPar q. Like rx. RPar s. Fmla t. Cuqrst. Seg uy. :::> "-'Seg xu). 

The definition of 'AQ2 x' is then quite straightforward and may be omitted here. 
Formulation of 'AQ3 x' offers a further complication for nominalistic syntax. 

The problem lies in the notion of substitution, involved in stipulation (ii). Let 
z and w be the respective formulas supplanting the 'P' and 'S' of (3), let y be the 
variable supplanting the 'v', and let x be like the free variables which are to 
appear in win place of the free variables like yin z. We have to find a way 
within nominalistic syntax of defining 'Subst wxyz,' meaning that the formula w 
is like the formula z except for having free variables like x wherever z contains free 
variables like y. Our method of definition depends upon the fact that the condi­
tion in the foregoing italics is equivalent to the following one: What remains when 
all free variables like y are omitted from the f ormul,a z is like what remains when 
some free variables like x are omitted from the formul,a w. The formal definition 
is as follows: 
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D26. Subst wxyz =. Fmla w. Fmla z. (3t)(3u) (Like tu. (s)[Char s :::): 

(r)(Like ry. Free rz .::) "-'Seg sr). Seg sz .= Seg su: (r)(Like rx. Free rw .::) 

"-'Seg sr) • ::). Seg sw = Seg st]}. 

It was largely for the purpose of this definition that we so defined likeness of 
inscriptions as to allow their characters to be differently spaced. 

Now that this definition is accomplished, the definition of 'AQ3 x' offers no 
further difficulty (and is omitted here). 

Definition of axioms of the fifth and final kind-the axioms of membership, 
"AM"-presents no problem; we can specify them in our syntax simply by spell­

ing them out explicitly with the help of our primitive predicates. 
We are then ready for a general definition of what it means for x to be an axiom 

of our object language. It means simply that x is an axiom of one of the five 

kinds specified. 

D26. Axiom x =. AADx v AQl xv AQ2 xv AQ3 xv AMx. 

An inscription xis called an immediate consequence of inscriptions y and z just 

in case x follows from y and z by one application of rule of inference (1), or from y 

by rule of inference (2). 

D27. ICxyz =. (3u)(3w)(ADuxw. ADyzu v ADzyu) v Qfn xy. 

10. Proofs and theorems. An inscription is a theorem if it has a proof; and 

a proof is constructed by a series of steps of immediate consequence, starting 

from axioms. Roughly, a proof is describable as composed of one or more lines 

such that each is either an axiom or an immediate consequence of preceding lines. 

Actually we need not require that the so-called "lines" of a proof be at different 
levels on a page, or be segregated from one another by any other device. They 

could even he written end to end without intervening punctuation, and we could 

still single them out uniquely as separate "lines." For, the grammar of the 

object language is such that the result of directly concatenating two formulas 

z and w will never he a segment of a larger formula, nor will it contain as segments 
any formulas other than those which arc segments of z alone or w alone. Accord­

ingly it will he convenient in general to speak of x as a line of y (where y may or 

may not he a proof) if x is a formula which is part of y but not part of any other 

formula in y. 

D28. Line xy = (z) (Fmla z. Part xz. Part zy . =. z = :i:). 

If a theorem is to he defined as a formula for which a proof exists, it is impor­

tant not to demand that all lines of the proof be assembled in proper order in 
any one place and time. Accordingly we shall so define a proof as to allow it to 
consist of lines wherever they may he-perhaps scattered at random throughout 
the universe, and perhaps not even all existing at any one moment or within 

any one century. 
According to the rough characterization of proof proposed two paragraphs 

back, each line must be either an axiom or an immediate consequence of pre­

ceding lines. The reason for the word 'preceding' here is to rule out cases where 



This content downloaded from 
����������132.174.255.116 on Tue, 18 Jul 2023 20:21:36 +00:00����������� 

All use subject to https://about.jstor.org/terms

120 NELSON GOODMAN AND W. V. QUINE 

every line is deducible from other lines, in circular fashion, while not all lines are 
deducible ultimately from axioms. However, we must now resort to some other 
expedient for excluding such circularity; for we have chosen to dispense with 
the ordering of lines of a proof, and this deprives us of the notion of a "pre­
ceding" lin-e: 

An expedient which )Vill be shown to meet the requirements is this: We stipu­
late that if any individual y contains as parts some lines of a proof x but none 
which are axioms, then some line of x which lies in y must be an immediate conse­
quence of lines of x which lie outside y. The following, then, is our definition: 

D29. Proof x = (y) { (3z)(Line zx • Part zy) • (w)(Axiom w • Line wx .::::> 
"'Part wy) .::::> (3s)(3t)(3u)(Line sx. Part sy. Line tx. "'Part ty. Line ux. 
"'Part uy • ICstu)). 

In order to establish that this definition is adequate to our purposes, we shall 
now show (1) that if x is a "proof" in the sense of D29, then we can specify an 
order of "precedence" among the lines of x such that every line is either an axiom 
or an immediate consequence of "earlier" lines; and we shall also show conversely 
that (2) if x is such that an order of precedence of the above kind can be specified 
among its lines, then xis a "proof" in the sense of D29. 

(1) is established as follows. Suppose x is a "proof" in the sense of D~9. 
We can begin our specification of an order of precedence among the lines of x 

by picking out, in an arbitrary order Li, L2, · · · , Lk, all those lines of x which 
are axioms. Next, from among the remaining lines of x, we pick one, call it 
Lk+i , which is an immediate consequence of lines from among Li , L2 , · · · , Lk . 
(There will be such a line; for, by D29, that individual y which consists of all 
lines of x except Li , L2 , · · · , Lk must contain a line which is an immediate 
consequence of lines of x outside y.) Next, from among the remaining lines of x, 
we pick one-call it Lk+2-whirb. is an immediate consequence of lines from 
among Li , L2 , · · · , Lk+i . (There will be such a one, for the same reason as 
before.) Continuing thus, we eventually specify an order of precedence of the 
required kind. 

(2) is established as follows. Suppose the lines of x can be counted off in 
some order such that each line is an axiom or an immediate consequence of 
earlier lines. Now consider anything y which contains some lines of x but none 
which are axioms. From among those lines of x which are parts of y, pick out 
the one which is earliest according to the assumed order. It must be either an 
axiom or an immediate consequence of earlier lines of x. But it is not an axiom, 
for y contains none oj the lines of x which are axioms. Hence it is an immediate 
consequence of earlier lines of x; and those earlier lines are not in y. We see 
therefore that y contains a line of x which is an immediate consequence of lines 
of x outside y. Since y 'Vas taken as any individual containing some lines of x 
but none which are axioms, it follows that x is a proof in the sense of D29. 

So it is now clear that D29, without stipulating any order among lines, gives 
us an adequate version of 'proof.' 

Note incidentally that D29 abstains even from any requirement that a proof 
consist wholly of formulas; the "lines" of a proof x are indeed formulas, but x 
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may contain also any manner of additional debris without ill effect. Proofs are 
not in general "inscriptions," in the sense of D5. 

If a theorem is any inscription for which there is a proof, then an inscription 
is a theorem if and only if it is a line of some proof. But this formulation is a 
little too narrow. Given any inscription y for which a proof x exists, it will be 
true that for each inscription z that is like y, and that lies outside of x, a proof 
will also exist, consisting for example of z together with those lines of x that are 
not identical with y. Hence if y is a theorem all such inscriptions like it will also 
be theorems. But suppose that some inscription w which is like y lies embedded 
within some line tin the proof x, and suppose that no other line like t exists; in 
this case there may be no proof for w, so that some inscriptions like the theorem y 
may not be theorems. To prevent this anomaly, we construct our definition so 
that an inscription will be a theorem if and only if it is like some line of some proof. 
('Like' has of course been so defined as to be reflexive.) 

D30. Thm x = (3y)(3z)(Proof y. Line zy. Like xz). 

With the definition so constructed, it follows that all immediate consequences 
of theorems are theorems. But some formulas may still fail to qualify as theo­
rems solely because no inscription exists anywhere at any time to stand as a 
needed intermediate line in an otherwise valid proof. Such limitations would 
prove awkward if we had to depend upon the accidental existence of inscriptions 
that are perceptibly marked out against a contrasting background. But we 
may rather, as suggested earlier (§2), construe inscriptions as all appropriately 
shaped portions of matter. Then the only syntactical descriptions that will fail 
to have actual inscriptions answering to them will be those that describe inscrip­
tions too long to fit into the whole spatio-temporally extended universe. This 
limitation is hardly likely to prove embarrassing. (If we ever should be handi­
capped by gaps in the proof of an inscription wanted as a theorem, however, we 
can strengthen our rules of inference to bridge such gaps; for, the number of 
steps required in a proof depends upon the rules, and the rules we have adopted 
can be altered or supplemented considerably without violation of nominalistic 
standards.) 

It may be interesting to observe in passing that the theoretical limitations just 
considered obtain under platonistic syntax as well, if that syntax construes ex­
pressions as shape-dasses of inscriptions; for, shapes having no inscriptions as 
instances reduce to the null class and are thus identical. 19 The platonist may 
indeed escape the limitations of concrete reality by hypostatizing an infinite 
realm of abstract entities-the series of numbers-and then arithmetizing his 
syntax; the nominalist, on the other hand, holds that any recourse to platonism 
is both intolerable and unnecessary. 

11. Conclusion. In our earlier sections we studied the µ"."oblem of translating 

19 According to the classical principles of syntax, any two expressions z and y have 
concatenate z-y; and moreover z-y is always distinct from z-w, unless the characters occur­
ring in z and in y are successively the same as those in z and in w. This combination of 
principles is as untenable from the point of view of a platonistic syntax of shape-classes 
as from the point of view of nominalism. 
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into nominalistic language certain nonsyntactical sentences which had appeared 
to be explicable only in platonistic terms. In §§5-10 we have been concerned 
with giving such a translation for syntax. This syntax enables us to describe 
and deal with many formulas (of the object language) for which we have no 
direct nominalistic translation. For example, the formula which is the full 
expansion in our object language of '(n)(n + n = 2n)' will contain variables 
calling for abstract entities as values; and if it cannot be translated into nomi­
nalistic language, it will in one sense be meaningless for us. But,, taking that 
formula as a string of marks, we can determine whether it is indeed a proper 
formula of our object language, and what consequence-relationships it has to 
other formulas. We can thus handle much of classical logic and mathematics 
without in any further sense understanding, or granting the truth of, the formulas 
we are dealing with. 

The gains which seem to have accrued to natural science from the use of mathe­
matical formulas do not imply that those formulas are true statements. No one, 
not even the hardiest pragmatist, is likely to regard the beads of an abacus as 
true; and our position is that the formulas of platonistic mathematics are, like 
the beads of an abacus, convenient computational aids which need involve no 
question of truth. What is meaningful and true in the case of platonistic mathe­
matics as in the case of the abacus is not the apparatus itself, but only the descrip­
tion of it: the rules by which it is constructed and run. These rules we do under­
stand, in the strict sense that we can express them in purely nominalistic lan­
guage. The idea that classical mathematics can be regarded as mere apparatus 
is not a novel one among nominalistically minded thinkers; but it can be main­
tained only if one can produce, as we have attempted to above, a syntax which is 
itself free from platonistic commitments. 

At the same time, every advance we can make in finding direct translations 
for familiar strings of marks will increase the range of the meaningful language 
at our command. 

UNIVERSITY OF PENNSYLVANIA 

HARVARD UNIVERSITY 
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