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Abstract

Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative
diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein
expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein
oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory
focused particular attention on studying oxidative damage of proteins and how their chemical modifications
induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations,
and clinical presentations of Alzheimer’s disease. This comprehensive article outlines basic knowledge of oxi-
dative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also
involve recent advances of mass spectrometry technology, and its application to selected age-related neurode-
generative diseases. Redox proteomics results obtained in different diseases and animal models thereof may
provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-
stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that
has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well
as to identify potential targets for drug therapy. Considering the importance of a better understanding of the
cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this
article provides an overview of the intrinsic power of the redox proteomics approach together with the most
significant results obtained by our laboratory and others during almost 10 years of research on neurodegener-
ative disorders since we initiated the field of redox proteomics. Antioxid. Redox Signal. 00, 000–000.
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I. Introduction

Redox proteomics is the subset of proteomics in which
oxidatively or nitrosatively modified proteins are iden-

tified (115). Our laboratory was among the first that used
redox proteomics to identify oxidatively modified brain pro-
teins (91, 92, 233). Others first used redox proteomics to identify
oxidized thiols (34, 88, 157, 250). Redox proteomics has been
applied to numerous disorders known to be associated with
oxidative stress (OS) (115). This comprehensive article focuses
on applications and results of redox proteomics that provide
insights into selected neurodegenerative disorders.

II. Protein (/Lipid) Oxidation and Protein Dysfunction

OS induced by free radicals plays an important role in the
pathophysiology of a wide variety of diseases including

neurodegenerative disorders (63, 180). Free radicals are
generated in vivo from various sources, one of the major
sources being the leakage of superoxide radical from the
mitochondria (Fig. 1). Under physiological conditions, levels
of superoxide anion radicals (O2

.2) are maintained in the cell
by the antioxidant enzyme, superoxide dismutase (SOD),
which disproportionates O2

.2 to hydrogen peroxide (H2O2)
and oxygen (Fig. 1). Further, the H2O2 formed is converted
to water and oxygen by the enzymes catalase, peroxidase, or
glutathione peroxidase (GPx). GPx uses reduced glutathione
(GSH) to carry out its functions, and the levels of reduced
GSH are maintained by the enzyme glutathione reductase
(GR), which converts oxidized glutathione (GSSG) to GSH
using NADPH for reducing equivalents. In the brain, the
levels of catalase are greater than those for GPx. The
importance of these enzymes in relation to neurodegenera-
tion will be discussed in further detail next. During
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neurodegeneration, the balance just described for the regu-
lation of free radical levels is lost, leading to increased pro-
duction of free radicals, and also the generation of other
types of reactive oxygen species (ROS) and reactive nitrogen
species (RNS). When the levels of hydrogen peroxide in-
crease in the cells and if redox transition metal ions such as
Fe + 2 or Cu + are available nearby, Fenton reactions will oc-
cur, resulting in the formation of hydroxyl radicals, which
are highly reactive and can damage biomolecules, including
protein, lipids, carbohydrates, and nucleic acids (79). In
neurodegenerative disorders, this imbalance in metal ion
homeostasis can induce OS. If the levels of superoxide
radicals are high and if there is an increased availability of
nitric oxide, radical-radical recombination results in the
formation of peroxynitrite, a highly reactive product with a
half life of < 1 s that can lead to nitration of biomolecules,
proteins, and lipids (38). Hence, markers of OS, levels of
antioxidant enzymes, and elevation of cellular stress re-
sponse proteins reflect the level of oxidative damage in, and
fate of, the cell.

Proteins constitute one of the major targets of ROS/RNS,
which can elicit a variety of modifications in amino-acid res-
idues, including cysteine (Fig. 2), methionine, tryptophan,
arginine, lysine, proline, and histidine (63, 79, 384) among
others. Among various types of modifications by ROS/RNS
are the formation of protein carbonyls (PCO), 3-nitrotyrosine

(3-NT) and protein-bound 4-hydroxy-2-trans-nonenal (HNE),
the latter being a reactive product of lipid peroxidation.

A. Protein carbonyls

PCO result from several sources, among which are peptide
backbone fragmentation, hydrogen atom abstraction at pep-
tide alpha carbons, attack on several amino-acid side chains
(see above), and by the formation of Michael adducts between
Lys, His, or Cys residues and a- and b-unsaturated aldehydes
formed during the peroxidation of polyunsaturated fatty ac-
ids (384). PCO are also formed by the secondary reactions of
amino groups of lysine residues with reducing sugars or their
oxidation production (glycation/glycoxidation reactions)
(114, 352). Hence, protein carbonylation leads to oxidation of
side-chains, backbone fragmentation, formation of new reac-
tive species (peroxides, DOPA), release of further radicals,
and occurrence of chain reactions. Most oxidative protein
damage is irreversible; however, there are certain enzymes
in vivo that can either repair or clear the damaged proteins (see
below). PCO are stable products of protein oxidation com-
pared with the other products of OS, for example, F2 iso-
prostanes, which are readily generated during sample
storage, processing, and analysis. Consequently, PCO are a
general and widely used index to determine the extent of
oxidative modification in both in vivo and in vitro conditions
(40, 79, 114, 352, 360, 401). Several sensitive assays were

FIG. 1. Free radicals are generated by various mechanisms. One way by which free radicals are generated is via release of
superoxide anion from the mitochondria, leading to increased formation of reactive oxygen and reactive nitrogen species and,
consequently, damaging the biomolecules. (To see this illustration in color the reader is referred to the web version of this
article at www.liebertonline.com/ars).
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developed for detection of oxidatively modified proteins (114,
247), the most often used of which is the detection of the
protein hydrazone derivative of the carbonyl group with 2,4-
dinitrophenylhydrazine (DNPH). These protein hydrazones
can be detected spectrophotometrically at 375 nm, but in so-
lution samples, homogeneity or uniformity is one of the po-
tentially confounding issues. Another means for detection of
protein hydrazones is immunochemical detection using an
anti-DNP-protein antibody that can give a clear indication of
the amount of total PCO in a given sample. The latter method
has been widely employed to detect PCO in biological sam-
ples (Fig. 3). Other methods for PCO analysis include use of
biotin hydrazide coupled to fluorescein isothiocyanate
(FITC)-labeled streptavidin (374).

B. Protein nitration

Protein nitration is a formal protein oxidation, resulting
from an RNS reaction. In conjunction with the enzyme nitric
oxide synthase (NOS), arginine produces nitric oxide (NO.)
and L-citrulline. Nitric oxide can react with superoxide to
form the strong oxidant, peroxynitrite (Fig. 4). Peroxynitrite
has been shown to affect mictrotubule assembly and ATPases
(237) via specific amino-acid residue oxidation. Peroxynitrite
can also modify protein thiols as observed in cysteine and
methionine oxidation (11) as well as tyrosine and tryptophan
to promote protein nitration. Peroxynitrite can exist as an
anion (ONOO - ) or, rarely, the protonated peroxynitrous acid
(ONOOH). Peroxynitrous acid undergoes homolysis to pro-
duce damaging hydroxyl radicals (OH�) and nitrogen dioxide
radical. Formation of the acid form of peroxynitrite is CO2

dependent. A nitrosoperoxyl intermediate is formed from the
combination of peroxynitrite and carbon dioxide, which re-
arranges to form nitrocarbonate. This species can be cleaved
homolytically to form carbonate and NO2 radicals (Fig. 5),
which react with a tyrosyl free radical to form 3-NT (Fig. 6).

Nitric oxide is multifunctional, as it is involved in signal
transduction by activating guanylate cyclase and increasing
intracellular cGMP. NO also plays a role in vasodilation,
neurotransmission, cardiac function, and inflammation (82).
Nitric oxide is constitutively produced by endothelial and
neuronal NOS (eNOS, nNOS, respectively) and induced by
inducible NOS (iNOS). NO has been associated with neuro-
degenerative diseases by acting as a neurotoxin when exces-
sively produced; however, recent studies suggest that NO
may have neuroprotective properties as well, that is, NO acts
as a Janus molecule (82). As noted, there are three forms of
NOS: neuronal (nNOS or Type I), inducible (iNOS or Type II),
and endothelial (eNOS or Type III). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) acts as an NO sensor
(71, 183). Nitric oxide is permeable to the plasma membrane
and can bind to guanyl cyclase (204). This modification affects
the synthesis of cyclic GMP, which alters several key GMP-
related proteins, including cGMP phosphodiesterases (4),
cGMP ion gated channels, and cGMP protein kinases. Type I
NOS is a calcium-dependent enzyme, as it is stimulated by an
increase in Ca2 + leading to excitoxicity and mitochondrial
dysfunction. nNOS regulates cerebral blood flow, skeletal
muscle contraction, and athleroscleorsis. nNOS also regulates
iNOS expression through NF kappa B regulation. iNOS binds
to calmodulin, a calcium-binding regulatory protein(138,
385). Although the primary function of Type III NOS is

FIG. 2. Cysteine oxidation
at neutral pH. Cysteine plays
an important role in the reg-
ulation of protein function.
Cysteine is vulnerable to at-
tack by reactive oxygen spe-
cies, which can lead to the
formation of cysteine sufinic
acid and eventually to the
cysteine sulfonic acid. Mea-
surement of the sulfonic acid
on a protein is another maker
for the detection of oxidative
stress.

4 BUTTERFIELD ET AL.



FIG. 3. Derivatization of
protein carbonyl using
2,4-dinitrophenylhydrazine
(DNPH). The carbonyl group
reacts with the DHPH to
form a protein-DNPH hy-
drazone at acidic pH. This
product is stable at neutral
pH. The DNPH-protein hy-
drazone measures are used
for the determination of the
amount of oxidative damage
to the protein in biological
samples. (To see this illustra-
tion in color the reader is re-
ferred to the web version of
this article at www.liebert
online.com/ars).

FIG. 4. Formation of peroxynitrite. During the conversion of L-arginine to L-Citrulline, nitric oxide is formed as one of the
products. Nitric oxide can react with the superoxide anion, resulting in the formation of a highly reactive product, perox-
ynitrite.
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vasodilation, this enzyme still plays a role in mitochondrial
dysfunction and smooth muscle contraction. This specific iso-
form has been found to interact with b-actin, vascular endo-
thelial growth factor, and caveolin 1 (231, 323), which bolsters
the role of eNOS in muscle contraction, cell proliferation, and
apoptosis. Most recently, eNOS has been associated with heat
shock proteins (HSPs) 70 and 90, which act as molecular
chaperones by guiding damaged proteins to the proteasome
for protein degradation. Nitric oxide can also bind to glutamate
channels and indirectly to calcium and potassium channels
(141). Glutamate, an excitatory neurotransmitter in neurons,

binds to the N-methyl D-aspartic acid (NMDA) and a-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) recep-
tors and leads to Ca2 + entrance to neurons, which if excessive,
causes a disruption of calcium homeostasis. This disruption
can eventually lead to cell death, thereby providing additional
support for the role of nitric oxide in apoptosis.

1. Peroxynitrite (ONOO - ). Peroxynitrite can react with
tau (389), cytochrome c, (90), manganese superoxide dis-
mutase (MnSOD) (261), Cu/ZnSOD (402), creatine kinase
(218), and GAPDH (375) among many other proteins of

FIG. 5. The reaction of peroxynitrite and carbon dioxide results in the formation of nitrosoperoxylcarbonate, which
undergoes rearrangement to form nitrocarbonate. Nitrocarbonate can undergo homolysis, resulting in the formation of
nitrite radical and carbonate anion.

FIG. 6. Formation of 3-NT
from a tyrosine. The nitrite
radical produced by the re-
action of nitric oxide with
carbon dioxide reacts with
the tyrosine reside at meta-
position, resulting in the
formation of 3-NT. 3-NT, 3-
nitrotyrosine.
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importance to neuronal functions. Tau acts as a stabilizing
protein for microtubules. Elevated oxidative and nitrosative
stress are associated with hyperphosphorylation of tau. Once
hyperphosphorylated, tau can no longer sustain microtubule
assembly, causing its disintegration and eventual neuronal
apoptosis. Cytochrome c is a mitochondrial protein that plays
a pivotal role in cell death. As a mobile electron carrier in the
electron transport chain (ETC) of mitochondria, cytochrome c
transfers one electron from Complex III to Complex IV.
Cytochrome c is highly soluble and can be released into the
cytoplasm if the mitochondrial outer membrane is opened.
Once released, cytochrome c stimulates cellular apoptosis by
binding to apoptotic protease activating factor 1, which, in
turn, binds to other apoptotic effectors to form the apopto-
some. The apoptosome can then activate several caspases that
subsequently trigger apoptosis. The inactivation of SOD re-
sults in an excess of superoxide and an overall increase in ROS
production and OS. Inactivation of ONOO - targets, creatine
kinase, and GAPDH results in lowered ATP production, in-
efficient energy metabolism, and dysfunction of other key
cellular processes (71).

2. Nitrogen dioxide (NO2). Nitrogen dioxide can increase
protein nitration, which results in protein dysfunction. NO2

serves as an oxidant in inflammation mediated by the per-
oxidases, eosinophil peroxidase and myeloperoxidase (142).
Nitrogen dioxide exposure increases the levels of nitrosative
stress that can lower antioxidant levels. Lipoic acid, an en-
dogenous mitochondrial complex cofactor and antioxidant,
undergoes oxidation by nitrogen dioxide and can lead to in-
creased tyrosine dimerization (382). This gas can oxidize the
antioxidant, GSH, and increase activity of GR and GPx (354).
The depletion of GSH shifts the cellular redox balance to ox-
idative and nitrosative stress. Nitrogen dioxide radicals can
also be formed by the oxidation of peroxynitrite. As discussed
next in Section 4, the levels of protein nitration are elevated in
Alzheimer’s disease (AD)/Parkinson disease (PD)/amyo-
trophic lateral sclerosis (ALS) and Huntington disease (HD)
consistent with a role of NO2 in neurodegeneration.

C. HNE adduction to proteins

Lipids within the central nervous system (CNS) are ex-
ceptionally susceptible to oxidation due to the fact that
polyunsaturated fatty acids are rich in the brain, and the
concentration of oxygen in the lipid bilayer is high, whereas
the antioxidant levels are relatively low. Lipid peroxidation,
leading to numerous products, including a,b-unsaturated al-
dehydydes, is highly evident in neurodegenerative diseases
(5). As a whole, lipid-peroxidation-derived reactive electro-
philic aldehydes are capable of facile covalent attachment to
proteins by forming stable adducts with cysteine, lysine, and
histidine (Fig. 7) through Michael addition (66, 139). Lipid
peroxidation occurs through continuous free radical chain
reactions until termination occurs (Fig. 8). Lipid-resident free
radicals attack an allylic hydrogen atom on acyl chains of
lipids to form a carbon centered radical (step 1). This radical
reacts with paramagnetic oxygen (O2) to produce peroxyl
radicals (step 2). These peroxyl radicals can react with adja-
cent allylic H atoms on acyl chains of lipids forming a lipid
hydroperoxide and a C-centered radical, thus propagating the
chain reactions (step 3). Depending on a number of factors,

including acyl chain length and degree of unsaturation, the
lipid hydroperoxide can decompose to produce multiple re-
active products such as acrolein, iso- and neuroprostanes,
malondialdehyde, and HNE, all of which are significantly
elevated in several neurodegenerative diseases, including
AD, PD, ALS, and HD or models thereof (17, 56, 66, 144).
Lipid peroxidation can be terminated by two radicals reacting
and forming a nonradical and oxygen (step 4). a-tocopherol
(vitamin E) is a ‘‘chain breaking’’ antioxidant and can termi-
nate the propagation steps of lipid peroxidation. When the
phenoxyl H of vitamin E is abstracted by radicals, an a-
tocopherol radical forms that can be reverted back to vitamin
E by vitamin C or GSH. An example of the steps I–IV in lipid
peroxidation is shown in Figure 8.

HNE is an a, b-unsaturated alkenal product of omega-6
fatty acid oxidation (Fig. 9). Increased levels of HNE cause
disruption of Ca2 + homeostasis, glutamate transport im-
pairment, and membrane damage, leading to cell death (66,
139). GSH prevents HNE damage in cells (79, 312). Similar to
Figure 9, polyunsaturated fatty acids such as arachidonic acid
and linoleic acid (337) undergo free radical mediated mech-
anisms by which a lipid peroxyl radical is formed. Ultimately,
the resulting peroxyl radical is converted to an allylic carbo-
cation via b-scission. The peroxyl radical is further oxidized to
a lipid peroxide. Through hydration, the C-O bond breaks,
resulting in 4-hydroxy-2-nonenal. As noted, once formed,
HNE can covalently attach to proteins by Michael addition,
which alters protein structure (361) and causes a loss of pro-
tein function and activity (139).

D. Importance of clearance and detoxification systems

1. The proteasome, parkin, ubiquitin carboxy-terminal
hydrolase-L1, and HSPs. The function of the proteasome is
to degrade damaged, aggregated proteins. The 26S protea-
some is a structure composed of two major subunits, the
regulatory 19S cap and 20S catalytic core. These components
combine through ATP binding to form the complete 26S
proteasome. Oxidized proteins are degraded by the 20S pro-
teasome in an ubiquitin-independent manner (118).

Both parkin and ubiquitin carboxy-terminal hydrolase-L1
(UCH-L1) are essential to the proper function of the protea-
some. Parkin acts as an E3 ligase whose sole responsibility is
to attach ubiquitin molecules to damaged proteins. Genetic
mutations in parkin have been shown to be associated with
familial PD (400). Although the role of parkin is still under
investigation, it has been recently studied as a therapeutic for
Parkinson’s disease, as it is reportedly neuroprotective
(1, 102). UCH-L1 removes ubiquitin molecule from the C-
terminal end of the poly ubiquitin polymer after attachment
of the protein to the proteasome. If ubiquitin units are not
removed, the protein cannot be properly degraded, and
ubiquitin molecules will not be recycled for future use. Levels
of damaged proteins thereby increase, causing possible pro-
teasomal overload. Oxidation modification of UCH-L1 has
been observed in AD hippocampus (91, 103) and PD (179).
Mutations in this protein support the concept of impaired
protein degradation, mitochondrial dysfunction, and pro-
teasomal overload associated with many neurodegenerative
disorders (181).

HSPs act as chaperone proteins that aid in restoring
misfolded or aggregated proteins, or in directing misfolded
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proteins to the proteasome. HSPs are involved in combating
stress by protecting proteins from denaturation (83). HSPs 70
and 90 interact with eNOS, which is possibly a compensatory
regulatory mechanism used to repair oxidative damage
characteristic of neurodegenerative disease.

2. Superoxide dismutase. Maintenance of SOD is critical
to achieving oxidative balance; otherwise, the cell would be in
a constant state of OS. There are four different forms of SOD,
including Cu/ZnSOD (SOD1), MnSOD (SOD2), NiSOD, and
FeSOD. Mutations in SOD1 have been shown to cause familial
ALS, and overexpression of SOD1 has been known to be as-
sociated with Down syndrome (DS) (177). These data are in-
terconnected, because the SOD1 gene resides on chromosome

21, the locus of the trisomy for DS, the same chromosomal
location for amyloid precursor protein (APP), the precursor of
the toxic, AD-relevant peptide, amyloid beta-peptide (Ab) (1–
42). This is equally important, because SOD1 knockout mice
have a normal lifespan and do not develop motor neuron
disease (319), but SOD2 knockout mice die shortly after birth
due to increased OS. This observation demonstrates the im-
portance of mitochondrial resident MnSOD. Based on its lo-
cation, modification of this protein can lead to greatly
impaired proteasome function, causing an oxidized protein
‘‘overload’’ with the inability to correctly degrade oxidized
proteins. This notion is further supported by research show-
ing that specific nitration of Tyr9, Tyr11, and Tyr34 by per-
oxynitrite in MnSOD inactivates the enzyme (373).

FIG. 7. One of the products of lipid peroxidation is HNE that can react with cysteine, lysine, and histine via Michael
addition. Protein-bound HNE levels are used as an index of lipid peroxidation. HNE, 4-hydroxy-2-trans-nonenal.
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3. Catalase. Catalase is reported to decrease lipid per-
oxidation products (87) Under OS conditions, as demon-
strated in AD, PD, and ALS (25), catalase activity is lowered
significantly, thereby reducing antioxidant potential (104).

4. Peroxiredoxins. Peroxiredoxins (Prxs) are functionally
similar to catalase in that they detoxify free radicals in the cell
by reducing H2O2. There are six forms of peroxiredoxin: Prx1,
Prx2, Prx3, Prx4, Prx5, and Prx6. Prx1–Prx5 use thioredoxin
(Trx) as an electron donor, while Prx6 uses GSH. There are
two classes of Prxs: 1-Cys and 2-Cys. Peroxiredoxin VI (PRX
VI) is the only 1-Cys Prx, while the other five isoforms are 2-
Cys Prxs. The two classes differ by the number of active cys-
teine residues involved in catalysis (324). In AD brain, the
levels of Prx-1 and Prx-2 were found to be increased, while the
level of Prx-3 was significantly decreased, suggesting a role of
ROS especially from mitochondria as a key player in the
pathogenesis of AD (227). Redox proteomics studies from our
laboratory led to the identification of Prx2 as a nitrated protein
in early AD (EAD) brain, suggesting impaired regulation of
RNS such as peroxynitrite lead to increase nitration of selec-
tive target proteins (321). In PD brain, the level of Prx2 was
found to be significantly increased compared with age-
matched controls (31).

5. Trx and Trx reductase. The Trx are a family of pro-
teins that act as oxidoreductases. The dithiol center contrib-
utes to the protein’s catalytic activity. Trx can reversibly
reduce disulfide bonds. By removing hydrogen peroxide,
Trx helps to reduce levels of cellular OS, thereby enhancing
antioxidant ability. Although its antioxidant properties are
important, especially its role in recycling oxidized Prxs (see
above), Trx is a multifunctional protein involved in DNA
synthesis, protein folding, bacterial and viral infections,
transcriptional regulation, immune response, and cellular
communication (249). Trx reductase, a selenoenzyme, re-
duces Trx by the cofactor, NADPH. There are two forms of
Trx reductase, cytsolic (Trx reductase-1) and mitochondrial
(Trx reductase-2). Another function of Trx reductase is its
function in proper brain development. Alterations and loss
of function of Trx reductase have been well documented in
both AD and PD (237, 257). The well-established relationship
of Trx and Trx reductase in maintaining redox balance at-

tests to their importance in neurodegenerative disorders,
specifically AD and PD.

The activity of Trx is regulated by a protein called Trx-
binding protein-2 (TBP-2), also known as vitamin D3 upre-
gulated protein 1 (VDUP1) or Trx-interacting protein. TBP-2/
VDUP1/Txip interact directly with the redox-active domain
of Trx via two cysteine residues (287). The interaction of TBP-2
with Trx will prevent the interaction of Trx with other mole-
cules such as apoptosis signal-regulating kinase 1 and pro-
liferation associated gene (292), thereby making cells more
susceptible to oxidative damage and apoptotic cell death.
Further, increasing evidence showed that TBP-2 also regulates
important biological functions, such as the regulation of glu-
cose and lipid metabolism (338). Upregulation of TBP-2/
VDUP1 enhances paraquat-induced OS (212). Hence, an in-
crease in the levels of TBP-2/VDUP1 might lead to an increase
in OS, by suppression of Trx activity. In cancerous cells, the
level of TBP-2 expression has been reported to be decreased,
suggesting that this protein plays a role in cancer. Recent
studies are focusing on silencing of TBP-2 to prevent cancer
growth (411). Moreover, TBP-2 deficiency induces lipid dys-
function, and this might be critical in the aging process. Thus,
Trx and TBP-2 play important roles in the pathophysiology of
cancer and metabolic syndrome by direct interaction or by
independent mechanisms.

6. Glutathione reductase. GSH, a tripeptide composed of
glutamate, cysteine, and glycine, is synthesized by two en-
zymes: glutamate-cysteine ligase and GSH synthase. Cysteine
is the limiting amino acid in GSH biosynthesis, (micromolar
levels in the brain, while glutamate and glycine are in milli-
molar concentrations) (220). Free GSH is used to maintain the
reduction potential of many cell types. Since pro-oxidants are
readily available in the brain, two GSH molecules can form a
disulfide bridge and be converted to GSSG via GPx. GR is an
antioxidant enzyme that catalyzes the reduction of GSSG to
GSH using NADPH, thus maintaining free GSH levels and
increasing overall antioxidant ability. GR activity is decreased
in AD (23, 87).

7. Vitamins in neurodegeneration. Plasma and cerebro-
spinal fluid (CSF) from AD patients show reduced levels of
ascorbate compared with the control (62, 326), which might
hinder the reduction of a-tocopherol radical back to a-
tocopherol (155), thereby leading to increased oxidative
damage. In addition, dietary vitamin E intake significantly
reduced risk of PD (410), but similar studies with vitamin C
are lacking. In ALS, the use of vitamin E did not show any
significant protection. The studies conducted so far using vi-
tamins suggest that more clinical trials are needed with vita-
mins C and E in patients with AD/PD/HD and ALS to
explain preclinical promise of these antioxidants (216). The
lack of protective effects in clinical trials of vitamins could be
explained based on the fact that the reducing agents required
for recycling of oxidants to its active forms were not included
in the studies nor were the basal redox states of subjects de-
termined.

8. Involvement of iron in neurodegeneration. Living or-
ganisms require iron to correctly function and perform their
most essential metabolic processes. Iron is required to support
the brain’s high respiratory rate as well as for correct

FIG. 8. Lipid peroxidation reaction summary. The process
of lipid peroxidation involves an initiation process that be-
gins with the hydrogen atom abstraction from an unsatu-
rated fatty acid, resulting in the formation of lipid radical,
which can then react with molecular oxygen, resulting in the
formation of lipid peroxyl radicals. The lipid peroxyl radical
can then abstract a H-atom from the other unsaturated fatty
acid; this is referred to as a chain propagation reaction. When
two lipid peroxyl radicals react, this will result in the ter-
mination of the lipid peroxidation process.
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myelination, neurotransmitter synthesis, and gene/protein
expression.

Fe homeostasis is frequently altered in neurodegenerative
disorders (39), and iron progressively accumulates in the
brain with age. In addition, during brain aging, iron is par-
tially converted from its stable and soluble form (ferritin) into
hemosiderin and other derivatives that contain iron at higher
reactivity (109). Thus, the pathogenic role of iron in brain
aging results not only from its accumulation but also from its
increased reactivity. Under certain conditions, iron is a pow-
erful pro-oxidant due to its high availability; the fascile elec-

tron chemistry that is fundamental for its functions may also
be a source of OS-induced toxicity. Iron metabolism in hu-
mans is conservative: 1–2 mg of iron is absorbed per day, and
the same amount is excreted. When an excess of iron is not
efficiently removed by detoxification systems, it may, espe-
cially in the ferrous state (Fe + 2), promote the conversion of
H2O2 to$OH via the Fenton reaction and, in turn, lead to a
greater turnover in the Haber-Weiss cycle. In addition, OS
itself may increase the levels of free iron. This effect occurs
through the release of iron from ferritin by superoxide anion,
from heme proteins such as hemoglobin and cytochrome c by

FIG. 9. Formation of HNE from arachidonic acid. Oxidation of unsaturated fatty acids results in the formation of HNE.
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peroxides, and from iron-sulfur proteins by ONOO$ - . All
these phenomena lead to amplification of OS, and the exces-
sive production of ROS is responsible for damage to proteins,
DNA, and phospholipids leading to structural and functional
alterations of neuronal cells.

Interestingly, the brain is endowed with a peculiar iron
metabolism compared with other organs. First, the blood–
brain barrier limits brain access to plasma iron. There is a
highly specific transport mechanism that moves iron across
the endothelial cells of the BBB into brain. However, little is
known about the mechanism of iron release into the brain or
the regulation of the transport mechanism. Insights into this
transport mechanism could be crucial for understanding how
excess iron can accumulate in the brain observed in many
neurodegenerative diseases. Second, the concentration of iron
varies widely in different brain regions. For example, those
brain areas associated with motor functions (e.g., extrapyra-
midal regions) tend to have more iron than nonmotor-related
regions (230), which might contribute to the observation that
movement disorders are commonly associated with iron im-
balance.

E. Role of iron in neurodegeneration

1. Fe homeostasis in AD. Several studies showed alter-
ation of iron hemostasis in AD brain. T1 and T2 magnetic
resonance relaxation times analysis in transgenic mice model
of AD showed the presence of iron in amyloid deposits, and
the T1 results were negatively correlated with age. Further, T2
in the subiculum of adult APP/PS1 animals was lower than in
PS1 mice, suggesting a relationship between amyloid and iron
loads in this region (137). AD patients who were carriers of the
HFE mutation showed higher levels of iron, lower levels of
transferrin (TF) and ceruloplasmin (CP), and higher CP/TF
ratios, suggesting a link between HFE mutations and iron
abnormalities, and OS in AD (167). Further, the iron transport
protein TF functions were also reported to be disrupted in AD
(108). AD hippocampus showed a moderate positive corre-
lation with mini-mental state examination (MMSE) scores, and
a negative correlation with the duration of the disease for iron
using phase imaging (127). A recent study showed that APP
protein possesses ferroxidase activity, can catalytically oxidize
Fe(2 + ), and has a major interaction with ferroportin. Alterations
in APP have been shown to lead to iron retention, and increased
OS in HEK293T cells, primary neurons, and APP mice model of
AD. The regulation of iron levels in AD has been linked to zinc
based on the fact that zinc is a component of senile plaque (SP)
and regulates ferroxidase activity (133). Further detailed inves-
tigation of the excessive accumulation of iron in the AD affected
regions may lead to better understanding of AD.

2. Fe homeostasis in PD. PD brain has increased depo-
sition of iron in microglia, astrocytes, oligodendrocytes, and
dopaminergic neurons of the substantia nigra pars compacta
(325). In addition, the levels of iron also were reportedly in-
creased in the SN in both subchronic 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)- and 6-OHDA-induced
PD animal models (211, 295). Studies with human BE-M17
neuroblastoma cells overexpressing wild-type, A53T, or A30P
a-synuclein showed that iron together with dopamine or
H2O2 stimulates the production of intracellular aggregates
and induce toxicity. Further, the ratio of Fe(II) and Fe(III) (224)

is altered in PD. For the synthesis of dopamine, Fe(II) is used
as a co-factor by the enzyme tyrosine hydroxylase. Further,
Fe(III) is capable of inducing OS by its interaction with neu-
romelanin (96) and may also be involved in the formation of a-
synuclein oligomers (192, 396). In a recent study, Davies et al.
(119) showed that a-synucluein acts as a cellular ferrir-
eductase, and thereby helps in reducing iron (III) to
bio-available iron (II). Further, PD patients also showed an
increased level of divalent metal transporter-1 (DMT-1) in the
same area where PD pathology and iron deposition accu-
mulate, suggesting that increased levels of iron and DMT-1
might be involved in PD pathogenesis. The iron storage pro-
tein ferritin was found to be increased in postmortem PD
brain (325), which might be a response to the increased iron
content reported in PD. In contrast some studies showed a
significant decrease of SN ferritin levels in PD (143).

3. Fe homeostasis in ALS. Lower and upper motor
neurons degenerate in ALS, resulting in progressive paralysis
and death. Increased levels of iron were reported in the spinal
cord from ALS subjects (206) and may possibly correlate with
increased levels of oxidative damage through the induction of
Fenton chemistry. Fe accumulation may be due to its in-
creased uptake by its specific transporter, lactoferrin, which is
reportedly increased in ALS-affected motor neurons (246).
Increased Fe deposition conceivably could be due to increased
levels of ferritin, as this iron-binding protein was found in
SOD1-G93A mice just before end-stage disease. Moreover, in
ALS patients, CSF iron reducing ability is decreased, while the
content of oxidized proteins is increased in both CSF and
plasma (347). In order to better understand the role of iron in
ALS, the expression of proteins associated with iron homeo-
stasis (DMT, TF receptor, the iron exporter Fpn, and CP) has
been studied in a transgenic mice model of ALS. mRNA levels
of these proteins were higher in rostral compared with caudal
spinal cord regions, and this finding correlates with the
caudal-to-rostral progression of the disease in SOD1-G37R
transgenic mice (210).

Other evidence supporting the involvement of Fe in this
disorder is the prevalence of a HFE (hemochromatosis gene)
mutation in ALS patients as the second most frequent muta-
tion in this disease (397). HFE interacts with the TF receptor,
and HFE mutations are associated with decreased expression
of SOD1, a-tubulin, and b-actin. Thus, HFE polymorphisms in
ALS could contribute to altered Fe homeostasis and, conse-
quently, to increased oxidative damage in this disease (380).

4. Fe homeostasis in HD. Iron and ferritin accumulation
has been detected in the putamen, caudate nucleus, and glo-
bus pallidus by MRI and postmortem investigations in HD
brain, the same regions in which extensive pathological
damage is observed (122).

Iron levels have been found to be higher early in the disease
process and have therefore been considered as a putative risk
factor. Indeed, iron-rich areas, like the caudate nucleus and the
putamen, that receive major excitatory input from the cortex,
are particularly affected in HD compared with other iron-rich
regions with less excitatory transmission or areas with dense
NMDA receptors but lower iron concentrations. This finding
has led to the hypothesis of an enhancing adverse effect of iron
and excitatory transmission. However, the cause of the in-
creased iron levels in HD still remains unknown. Mutation of
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huntingtin (Htt), with a CAG trinucleotide expansion ( > 38
repeats), is the genetic cause of HD; however, Htt is essential
both for proper regulation of the iron pathway and iron re-
sponse protein. Mutant Htt also is involved in the stimulation
of autophagy and proteosome systems that, under normal
conditions, degrade ferritin after its Fe-mediated oxidation.
Ferritin plays an important role in Fe homeostasis by seques-
tering this metal; in turn, Fe levels regulate ferritin expression,
which increases with Fe accumulation. Simmons et al. (349)
analyzed the specific localization of ferritin in the brain from
transgenic R6/2 mice and HD patients and found that ferritin
was predominantly increased in microglia. Those cells ap-
peared dystrophic, suggesting that they may be dysfunctional
and contribute to HD progression. Moreover, low serum fer-
ritin level and slightly elevated CP levels in the HD brain in-
dicate a more generalized dysregulation of iron metabolism.
Further studies are needed to determine the exact interactions
and role of iron in the pathogenesis of HD. Iron metabolism has
been shown to be altered in the animal models of HD; in ad-
dition, in vitro studies showed that the oxidation by mutant htt
is dependent on iron. Alterations in Fe signaling and increased
expression of the TfR protein were reported in a model of HD
(STHdhQ111/Q111) compared with wild-type cells (STHdhQ7/Q7)
(381). Further, the expression of HTT was found to be elevated
in response to increasing Fe levels (191).

F. Some known consequences of protein oxidation

Oxidation of proteins often makes the protein dysfunc-
tional or nonfunctional; therefore, protein oxidation has both
physiological and pathological consequences (72, 159). Fur-
ther, the oxidation of proteins could lead to the alteration in
the secondary and tertiary structure of proteins. For example,
during secondary structure formation of proteins the hydro-
phobic amino acid domains are usually buried inside the
proteins; oxidation of the proteins induces a conformation
change of the proteins, thereby leading to exposure of the
hydrophobic amino-acid residues to an aqueous environ-
ment, promoting protein aggregation and accumulation of the
oxidized proteins as cytoplasmic inclusions (79), as observed
in AD (40).

Oxidation of proteins may also prevent the subunit associ-
ation of proteins contributing to the loss of tertiary structure of
a protein and consequently affecting its function. Hence, it is
recommended that identification of oxidatively modified pro-
teins by redox proteomics should be followed by functional
assessment of the identified proteins. These functional studies
may identify metabolic or structural consequences caused
by oxidative modification (302, 376). A number of previous
studies showed that oxidation of proteins could lead to alter-
ations in protein expression and gene regulation, protein
turnover, modulation of cell signaling, induction of apoptosis,
necrosis, etc., eventually leading to loss of cells and function
(72). Further, oxidation of proteins increases the susceptibility
of a protein to degradation by the 20S proteasomes and, con-
sequently, decreased levels of the proteins in general. How-
ever, in certain diseases, oxidation of proteasome components
renders the proteasome inactive, consequently leading to ac-
cumulation of damaged proteins within the cells.

Redox proteomics (see next) analyses were used to identify
specific oxidatively modified brain proteins in neurodegen-
erative diseases.

III. Overview of Redox Proteomics

Two-dimensional (2D) proteomics was first introduced by
O’Farrell (289) and by Klose (228), enabling the greater sepa-
ration of proteins based on isoelectric point and relative mo-
bility. Redox proteomics approaches makes use of this method
that is discussed next to identify oxidatively modified proteins
in various biological samples. While immunochemical tech-
niques just discussed are useful for identifying overall oxi-
dative modification levels, they do not provide specific
information regarding individual proteins that have been
modified. Additionally, it becomes important to identify the
specific amino-acid sites of oxidative modification in order to
better understand effects on protein structure and function.
These topics are the field of redox proteomics. Note that in the
context of this article, we use the term redox proteomics to refer
to proteomics techniques that are used to identify oxidatively
modified proteins, specifically PCO, - 3-NT-, and HNE-
modified proteins. Traditional, and still the most often used,
redox proteomics approaches that identify oxidatively modi-
fied proteins rely on 2D polyacrylamide gel electrophoresis
(2D-PAGE), Western blot analyses, and mass spectrometry
(MS) (Fig. 10). Redox proteomics can be applied to the identi-
fication of several oxidative modifications such as PCO, 3-NT,
HNE, and glutathionylation (157). Other nongel-based ap-
proaches that utilize liquid chromatography (LC) or affinity
chromatography in combination with MS also have been de-
veloped for identification of oxidized proteins. This section of
the article is intended to familiarize the reader with some of the
current proteomics techniques available for the identification,
quantification, and enrichment of PCO, 3-NT-, and HNE-
modified proteins that are applicable to neurodegenerative
diseases such as AD, PD, HD, and ALS, as well as other
disorders (68, 115). Data obtained from any of the redox pro-
teomics approaches next require further analyses (e.g., enzy-
matic activity studies, computational simulations, etc.) in order
to completely understand the effects of oxidative modification
on protein structure and function and the relevance to neuro-
degenerative diseases or redox biology. Insights into pathol-
ogy, biochemistry, and consequent clinical presentation of
neurodegenerative disease resulting from redox proteomics are
discussed in Section 4 next for each disorder.

A. Global, gel-based approaches

Success in redox proteomics with 2D-PAGE has been pos-
sible due to the availability of primary antibodies that are
specific for particular oxidative modifications. For instance, as
just noted for the detection of PCO-modified proteins, pro-
teins are commonly derivatized with a reagent such as DNPH
using Schiff base chemistry. The resulting protein with a DNP
hydrazone adduct is separated using 2D-PAGE, which sepa-
rates proteins based on isoelectric point (pI) and migration
rate. The proteins on the 2D gel are transferred onto a nitro-
cellulose or polyvinylidene fluoride membrane and probed
with an anti-DNPH antibody. A number of secondary anti-
bodies linked to enzymes (e.g., alkaline phosphatase, horse-
radish peroxidase) can be used to visualize PCO-modified
protein spots based on chemiluminescence, fluorescence, or
colorimeteric assays. Other modifications such as HNE, 3-NT,
and glutathionylation can be identified using this overall
approach; however, no sample derivatization is required, and
the antibodies are accordingly adjusted (366).
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Software algorithms such as PDQuest or Dymension Del-
ta2D etc., which compare spot-to-spot pixel density between
or among samples, can be used to determine specific protein
spots that change in an oxidative level after normalization of
spots on the 2D blot to the corresponding spot on a 2D gel
(concurrently run on a separate aliquot of the same sample).
Individual spots of interest are excised from the 2D gel and
undergo in-gel digestion with trypsin. Tryptic peptides are
either analyzed with matrix-assisted lazer desorption ioniza-
tion (MALDI)-MS or electrospray ionization (ESI)-tandem MS
(MS/MS). MALDI-MS analyses rely on peptide mass finger-
printing (PMF) that identify the oxidized protein. Masses of
tryptic peptides are measured in the MS and are searched
against the appropriate species database using MASCOT, a
probability-based scoring algorithm (68). In some cases,
modified peptides may be identified, as the precursor masses
are shifted by the mass of the modification (e.g., 3-NT is a 45
Da shift).

While earlier proteomics studies often employed MALDI
and PMF that identify proteins, newer and more precise ESI-
MS/MS methods are now commonly employed. In ESI-MS/
MS experiments, intact peptide masses are measured, and
several precursor peptide ions are isolated in the MS and
fragmented using collision-induced dissociation (CID). The
energy introduced to ions during CID causes fragmentation
along the peptide backbone, such that b- and y-type fragment

ions are generated. The intact precursor mass and list of b- and
y-fragment masses are used to determine the amino-acid se-
quence of the peptide and subsequent identification of the
protein with MASCOT or SEQUEST database searching al-
gorithms. When setting up the database searching criteria,
users can include dynamic modifications on specific residues
(e.g., oxidation of methionine, etc.). In this manner, it is pos-
sible to identify specific sites of modification; however, iden-
tifications can be limited by the low abundance and ionization
efficiency of oxidatively modified peptides.

Other 2D-gel-based approaches rely on derivatization
strategies that introduce fluorescent tags into the modified
protein. For example, Yoo and Regnier utilized biotin hy-
drazide to derivatize PCO groups in yeast cells exposed to
hydrogen peroxide (406). Biotin-tagged samples were sepa-
rated with 2D-PAGE, and an avidin-FITC probe was used to
visualize PCO-modified proteins in the gel. This approach
was recently applied for the identification of PCO-modified
proteins that vary with age in serum of neonatal and fetal pigs
(86). The 2D-PAGE-based approach using FITC detected as
little as 0.64 pmol of PCO-modified proteins (406). One of the
limitations with this and the aforementioned 2D-PAGE ap-
proaches is that they require additional starting material, as a
second 2D gel has to be run in parallel for protein identifica-
tion. Additionally, other limitations of 2D-PAGE include poor
resolution and sensitivity to highly acidic/basic proteins,

FIG. 10. Outline of redox proteomics approach. The identification of oxidatively modified protein involves first the
separation of proteins by isoelectric point (IEF) followed by the separation of proteins based on relative mobility (Mr). The
separation of the proteins is followed by transferring the proteins onto nitrocellulose or polyvinylidene fluoride membrane,
probing with the antibody of interest, and determination of oxidatively modified protein by image analysis. Once a protein is
identified as oxidatively modified, the protein spot will be excised from the gel, digested with trypsin, and subjected to mass
spectrometry for correct identification of the proteins. (To see this illustration in color the reader is referred to the web version
of this article at www.liebertonline.com/ars).
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hydrophobic proteins, very small/very large proteins, and
limited dynamic range.

B. Targeted, gel-free approach

1. Enrichment of PCO modified proteins. Nongel based
strategies for the enrichment of PCO-modified proteins have
been developed. A summary of these methods is provided in
Figure 11 and has been recently reviewed (263). Most of these
methods are based on the Schiff base chemistry that is possible
with the carbonyl group. The most traditional Schiff base
method relied on the 2D Western analysis of DNPH-
derivatized carbonyl proteins (283) and had early applications
in the identification of oxidized proteins in AD brain (74).
Using shotgun proteomics methods, tryptic peptides are
separated with strong cation exchange (SCX) and/or reverse-
phase (RP) LC and detected by MS. Through the incorpora-
tion of a heavy isotope (13C6) version of DNPH, this method
also can be applied to the quantitation of PCO-modified
proteins between two samples (383). To date, this has only
been tested on simple protein mixtures.

As just noted, investigators have made use of biotin
functionalized probes, such as biotin hydrazide and biocytin
hydrazide, to isolate PCO-modified proteins. Biotin probes
are useful due to the strong binding affinity of biotin with
avidin (125). In this approach, as shown in Figure 11, for an
illustrative tripeptide containing an oxidized threonine res-
idue, carbonyl groups on modified proteins react with biotin
through formation of hydrazone or oxime groups. Biotin-
tagged proteins are isolated using immobilized avidin or
streptavidin columns, often after the Schiff base has been
reduced with sodium cyanoborohydride. This affinity chro-
matography approach has been applied to the analysis
of metal-catalyzed oxidized human albumin (377), and
complex mixtures from yeast (259), rats exposed to 2-
nitropropane (275), rat plasma (274), human plasma (263),
and cardiac mitochondrial proteins (97). In all these studies,
amino-acid sites of modification can be determined in the
MS due to the mass shift associated with the biotin tag. An
advantage of this approach is that it allows the identification
of carbonylated proteins that arise due to direct oxidation of
side chains (e.g., threonine, arginine, lysine, and proline), or

FIG. 11. Summary of methods for the derivatization and enrichment of carbonylated proteins are shown using an
example tripeptide that contains an oxidized threonine residue. We note that other commonly carbonylated residues
include Pro, Arg, Lys, His, and Trp, among others. (To see this illustration in color the reader is referred to the web version of
this article at www.liebertonline.com/ars).
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modification by lipid peroxidation products such as HNE
and advanced glycation endproducts (AGEs) (263). It is often
the case that other oxidative modifications such as oxidation
of histidine, methionine, and tryptophan residues are also
identified with these approaches. An MS study of HNE-
modified creatine kinase has taken advantage of newer in-
strumentation (138).

Due to the limitations in ESI ionization efficiency of bioti-
nylated peptides, the Girard’s P reagent, which contains a
quaternary amine group, has also been applied to enrich and
detect PCO-modified proteins (276). The quaternary amine
group is used to isolate PCO-modified tryptic peptides with
an SCX resin at pH 6.0. Peptides are separated and detected
with RP LC-MS/MS. The quaternary amine group helps in-
crease ionization efficiency of PCO-modified peptides during
ESI. In order to better facilitate database searching and im-
prove confidence in peptide identification specific to PCO-
modified peptides, a heavy isotope (2H5) version of Girard’s P
reagent was developed and successfully applied to oxidized
TF protein spiked into a matrix of yeast lysate (276).

A different type of reagent, oxidation-dependent element
coded affinity tags (O-ECAT), has been used to enrich for
PCO-modified proteins by employing rare earth metals such
as Tb or Ho (241). The structure of the O-ECAT tag is shown in
Figure 11, whereby the aminooxy group forms an oxime with
aldehydes or ketones and the 1,4,7,10-tetraazacyclododecane,
N, N¢, N¢¢, N¢¢¢-tetraacetic acid (DOTA) serves as the metal
chelator group. Two samples can be coded with the different
metals and mixed before tryptic digestion and affinity puri-
fication based on an antibody against the DOTA moiety. Due
to the different mass shift caused by the metals [i.e., Tb (158.92
Da), Ho (164.93 Da)] in the reagent tags, the relative heights of
the doublet pairs that arise in the MS spectrum can be used for
assessing relative quantitation levels of oxidized proteins in
the different samples. This method was demonstrated in re-
combinant human serum albumin, whereby a number of
oxidation sites were mapped (241). O-ECAT pairs co-elute in
the RP separation, making data analysis more straightfor-
ward. An exciting advantage of this approach is that the
multiplexing capabilities can be increased with the introduc-
tion of a wide range of metals.

The last approach shown in Figure 11 for the redox pro-
teomics identification of PCO-modified proteins is a label-free
method that relies on 18O labeling of carbonyl groups (242,
327). The amount of 18O that is incorporated into carbonyl
groups is titrated in a controlled manner such that the pre-
pared ratio of 18O: 16O introduces an isotopic signature specific
to carbonylated peptides. The isotopic cluster associated with
carbonylated peptides shows an 18O:16O ratio that matches
with the prepared experimental conditions. Using a software
algorithm, peaks displaying a specific isotopic cluster pattern
can be readily sorted from other noncarbonylated peaks.
While this approach does not require multiple steps of chro-
matographic separation that can result in sample loss, there are
limitations in the number of modification sites identified.

2. Enrichment of HNE-modified proteins. Several of the
approaches for the chemical enrichment of PCO-modified
proteins can be applied for the identification of HNE modifi-
cations, such as biotin functionalized probes (98, 275, 392).
For example, the biotin functionalized probe N¢aminoox-
ymethylcarbonylhydrazino-D-biotin, also known as aldehyde-

reactive probe, has been applied to identify HNE-modified
proteins in human monocyte cell lines before and after ascorbic
acid treatment (97). Solid-phase hydrazide approaches have
been used to enrich HNE-modified peptides (242, 318).
This enrichment strategy has been coupled with electron
capture dissociation (ECD) of peptides whereby neutral loss
of HNE (158 Da) from CID MS/MS triggers MS3 analysis
to identify the sequence of the HNE-modified peptide (318). The
use of ECD in combination with CID increases the number of
identified HNE-modified peptides in comparison to CID alone.

3. Enrichment of 3-NT modified proteins. Helman and
Givol developed an anti-3-NT antibody immobilized on a se-
pharose affinity column to capture nitrated peptides from ly-
sozyme (188). The recovery rate of 3-NT-containing peptides
was *55% as measured with UV-Vis detection. Recovery rate
was increased by varying incubation time on the column
and incorporating more washes (35). Immunopurification
strategies have been recently employed for the characteriza-
tion of 3-NT-modified proteins in CSF of human patients
to better understand HIV-associated neurocognitive disor-
ders (37).

MacMillan-Crow and Cruthirds were the first who suc-
cessfully developed a method for the immunoprecipitation of
3-NT-proteins (262) followed by 2D Western analysis. The
1A6 monoclonal antibody is widely used and has been em-
ployed to understand OS during renal ischemia/reperfusion
(110), effects of in vivo nitroglycerin treatment on 3-NT-
modifications of prostacyclin synthase in rats (193), the inhi-
bition of MnSOD with 3-NT modification (262), effects of ni-
tration on Ca + 2-ATPase activity in aged adult hearts (229),
and other applications (393). This antibody has fewer issues
with nonspecific binding relative to polyclonal antibodies (22)
and anti-3-NT agarose conjugates (124). A common problem
with immunoprecipitation, in general, is the difficulty in
identification of low-abundance proteins, and this limitation
is not specific to 3-NT-modified proteins (171, 217).

The number of redox proteomic strategies that have been
developed for the isolation and detection of 3-NT-modified
proteins is steadily rising. Initial enrichment approaches suf-
fered due to the limited reactivity of the nitro group of 3-NT.
To this end, chemical modification steps that convert 3-NT to
the more reactive 3-aminotyrosine (3AT) have been em-
ployed. Figure 12 provides a summary of various strategies
for the enrichment and detection of 3-NT-modified proteins.
Next, we provide a brief description of these methods.

Similar to PCO-modified proteins, affinity chromatogra-
phy methods based on biotin/avidin interactions are em-
ployed for 3-NT-modified proteins (4, 199, 286, 332). The
incorporation of the biotin tag has been shown to be more
effective after blocking of N-termini (e-amines) and e-lysine (e-
amines) residues followed by reduction of 3-NT to 3AT (286).
Blocking strategies, as shown in Figure 12, have employed
various chemical reagents that introduce acetyl groups to
primary e-amines (4) or dimethyl groups (199). After blocking
N-termini and lysine residues, 3-NT is reduced to 3AT with
either sodium dithionite (199, 286, 332) or dithiol threitol
(DTT) and hemin (4). The next step is the incorporation of a
biotin tag to 3AT. Several biotin tags have been shown to be
effective such as NHS-biotin (4), sulfo-NHS-SS-biotin (282,
286, 332), or biotin (199). The enrichment of the biotin-tagged
peptides then occurs using an avidin (4) or a streptavidin (286)
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FIG. 12. Summary of strategies for the enrichment of 3-NT-modified proteins. In nongel based methods, 3-NT modified
proteins were detected by blocking N-termini and amines of lysine residues. See text for references. (To see this illustration in
color the reader is referred to the web version of this article at www.liebertonline.com/ars).
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column. Overall, this particular chemical tagging strategy
has been useful for identifying 3-NT-sites in in vitro nitrated
bovine serum albumin (BSA) (286) and other small protein
mixtures (199). However, its use for complex protein prac-
tices, such as the brain, may be problematic, which presently
limits the utility of this approach.

Recently, the isobaric tag for relative and absolute quanti-
tation (iTRAQ) reagent has been used to tag 3AT groups as
opposed to biotin (101, 195). Due to the multiplexing cap-
abilities of iTRAQ, up to eight different samples can be pooled
together to search for 3-NT modifications in 3-NT-modified
proteins. The iTRAQ tag relies on gas-phase fragmentation
chemistry that generates reporter ions that show up at low
mass-to-charge (m/z) values (i.e., 113, 114, 115, 116, etc.). Using
software programming, ‘‘enrichment’’ of 3-NT-modified pep-
tides can take place postanalysis. This approach has been
demonstrated in simple mixtures from 3-NT-Angiotensin II
and 3-NT-bovine BSA (101, 195). As just noted, translation of
this powerful method for simple systems may be more difficult
in complex samples such as brain homogenates.

Another approach uses a different chemical approach for
isolating 3-NT-modified proteins based on Ni2 + -nitrotyrosine
affinity (NTA) column magnetic agarose beads (112). Similar
to the strategies just mentioned, shown in Figure 12a, b, N-
termini, and lysine residues are initially blocked through
reaction with sulfo-NHS-acetate, and 3-NT are converted to
3AT. A Schiff base is formed by reacting 3AT with pyridine-2-
carboxyaldehyde, resulting in a metal-chelating motif that can
be captured using an NTA column with a magnetic separator
to sort non-nitrated and 3-NT-peptides (112). An enrichment
procedure based on the solvophobic properties of fluorinated
carbonated groups and their preference to be localized in a
fluorine-rich environment has been manipulated for the
identification of 3-NT-Angiotensin II and 3-NT-bovine serum
albumin spiked into HeLa cell lysate digests (23). Fluorinated
carbon-tagged peptides are captured by solid phase extrac-
tion with fluorinated carbon-linked silica beads, a chemistry
based on fluorine-fluorine interactions. Using this new ap-
proach, 28 nitrated peptides from human hepatoma cell line,
Huh7, have been identified (23).

IV. Application of Redox Proteomics to Selected
Neurodegenerative Disorders

A. Alzheimer’s disease

AD is the most common form of dementia in the elderly
population. In the United States, more than five million peo-
ple are diagnosed with AD, which is clinically characterized
by progressive memory loss, cognitive impairment, loss of
language and motor skills, and changes in behavior not due to
any other cause. The definitive diagnosis of AD is obtained at
autopsy by the presence of three characteristic hallmarks of
AD, that is, synapse loss, extracellular SPs, and intracellular
neurofibrillary tangles (NFTs). The major component of SP is
Ab, a 40–42 amino acid peptide that is derived from proteo-
lytic cleavage of an integral membrane protein (APP) by the
action of beta- and gamma-secretases. NFT are largely com-
posed of hyperphosphorylated tau protein (135, 176).

Ab(1–42) has been considered to play a causal role in the
development and progression of AD (340). The putative role
of Ab(1–42) in AD pathogenesis is further supported by a
number of in vitro and in vivo studies. The Ab peptide exists in

different aggregation states, and a number of studies suggest
that the small oligomers of Ab are the actual toxic species of
this peptide rather than Ab fibrils (131, 170). In addition,
studies of familial AD and individuals with DS, who develop
AD-like dementia at late ages, further provided a strong as-
sociation of the role of Ab in AD pathogenesis and progres-
sion (255). The trisomy of DS is on chromosome 21, the
chromosome that is also the locus for APP.

A number of studies from our laboratory and others
showed that the single methionine residue at position 35 in Ab
(1–42) play a critical role in inducing OS associated with this
neurotoxic peptide (67, 70, 105). In other reactions involving
oxidation of the Met35 formation of methionine sulfoxide
(MetO) occurs, which can be reduced back to methionine by
MetO reductase. The activity of MetO reductase is reduced in
AD brain (161).

AD brain, CSF, and plasma demonstrate increased levels of
OS in AD (27, 69, 75, 278). In AD brain, increased OS has been
well documented with markers for protein, DNA, and RNA
oxidation as well as lipid peroxidation (7, 72, 74). Protein ox-
idation is indexed in the AD brain by an increase in carbony-
lated, protein-bound HNE, and 3-NT-modified proteins (74,
368). However, the initiating event leading to AD pathogen-
esis has not been determined, though it has become evident
that OS is implicated in the development of AD (7, 69, 75).

1. PCO in AD. PCO levels were reported to be elevated
in AD brain (69, 74, 114, 190, 310, 352). We showed (190) 42%
and 37% increased PCO content in the Alzheimer’s hippo-
campus and inferior parietal lobule (IPL), respectively, rela-
tive to these brain regions in control and to AD cerebellum
(CB), whereas carbonyl content in controls was comparable in
these three brain regions. Others found that brain carbonyl
levels were increased with age (352). Smith and collaborators
(353) observed a strong PCO signal in NFTs, neuronal cell
bodies, and apical dendrites as well as neuronal and glial
nuclei in hippocampal sections of AD brains. In the frontal
cortex of subjects with the Swedish APP670/671 FAD muta-
tion, increased levels of PCO, diene conjugates, and lipid
peroxides compared with sporadic AD were found (43).
Further, the levels of carbonyl reductase (CR) protein are in-
creased in brain of AD and DS subjects (26), suggesting en-
zyme induction due to increased levels of PCO. The authors
suggested a possible role of Ab in this induction. However,
this group did neither measure the activity of CR nor identify
the mechanism by which the increased CR levels occur. We
speculate that, in addition to induction of CR, oxidative
modification of this protein or oxidative dysfunction of the
20S proteasome might lead to increased accumulation of
protein oxidation. The levels of PCO were found to be sig-
nificantly increased in synaptic and nonsynaptic mitochon-
dria in the frontal cortex of AD (18). A recent study from our
laboratory showed increased levels of PCO in the mitochon-
dria isolated from AD lymphocytes (367).

A number of oxidatively modified proteins have been de-
tected in AD brain and plasma. By using redox proteomics,
our laboratory first identified the specific targets of carbon-
ylation in AD IPL (91, 92). After this study, a number of other
targets of oxidation have been reported from our laboratory in
different brain regions, and these studies also showed that
oxidatively modified proteins are prone to inactivation (80,
368, 369). Brain from subjects with amnestic mild cognitive
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impairment (MCI) showed increased levels of PCO compared
with the age-matched controls (10, 65, 76, 222). Further, global
OS measurements revealed significantly higher levels of PCO
in the MCI IPL relative to preclinical AD (PCAD) (and con-
trols), despite equal levels of neuropathology (10).

2. Identification of carbonylated proteins in brain
of subjects with AD

a. Sample: the brain. Human postmortem brain tissue is of
high importance for the study of human diseases of the CNS.
However, several factors may interfere with tissue and mo-
lecular preservation of brain samples obtained from brain
banks. Some factors are related with premortem events such
as prolonged agonal state, hypoxia, acidosis, fever, and sei-
zures. Others are related with long postmortem delay be-
tween death and sample processing for storage or fixation,
temperature, characteristics of the fixative solutions, and
processing of frozen material. Finally, a third group of factors
seems unpredictable and concerns unexpected variations
from case to case or from region to region from the same brain,
despite similar premortem and postmortem conditions.

All these factors are of major concern, because they may
interfere with molecular studies and lead to erroneous con-
clusions and special care should be taken to consider these
circumstances when dealing with human postmortem brain
tissue for research. In particular, brain protein preservation
largely depends on the postmortem interval (PMI) and the
postmortem temperature of storage.

The Alzheimer’s Disease Center Brain Bank at the Uni-
versity of Kentucky has prolonged and robust experience and
operates under detailed guidelines that conform to the Na-
tional Institute on Aging/National Institutes of Health
‘‘Biospecimen Best Practice Guidelines for Alzheimer’s Dis-
ease Centers.’’ All brain samples used for most of the studies
from our laboratory reported in this article were obtained
with low PMI ( < 4 h), thus ensuring proper protein preser-
vation for redox proteomics studies. Due to loss of structural
and biochemical integrity and increased likelihood of oxida-
tion, any time longer than 4 h PMI almost surely will cause
confounds in interpretation of redox proteomics results.

Using a redox proteomics approach, we reported specific
carbonylation of the following brain proteins in subjects with
AD: alpha-enolase (Eno1), UCH-L1, dihydropyrimidinase-
related protein 2 (DRP2, also designated collapsin response
mediator protein 2 [CRMP2]), heat shock cognate 71, creatine
kinase BB (CK), peptidyl prolyl cis-trans isomerase 1 (Pin1),
phosphoglycerate mutase 1 (PGM1), glutamine synthetase
(GS), triosephosphate isomerase (TPI), ATP synthase alpha
chain (a-ATP synthase), gamma-soluble N-ethylmaleimide
sensitive factor (NSF) attachment proteins (c-SNAP), and
carbonic anhydrase 2 (68, 74, 77). These data support the no-
tion that protein carbonylation perturbs energy metabolism,
pH regulation, Ab production, tau hyperphosphorylation,
and mitochondrial functions. These proteins and their func-
tions are discussed in detail next.

b. Energy dysfunction. Decreased ATP production could
eventually lead to cellular impairment. Using a redox pro-
teomics approach, we identified, compared with control
brain, CK, Eno1, TPI, PGM1, and a-ATP synthase as carbo-
nylated energy-related proteins. All these proteins are in-
volved directly or indirectly in the production of ATP in

brains (74), and the oxidative modification of glycolytic en-
zymes likely leads to their inactivation. For example, CK,
enolase, PGM1, GAPDH, and ATPase activities are reportedly
diminished in AD brain (198, 270, 363). Glucose is the primary
source of energy for the brain, which, though having a rela-
tively small mass as a percentage of body mass, accounts for
20% of glucose metabolism and more than 30% of oxygen
consumption. Glucose metabolism is essential for proper
brain function; a minimum interruption of glucose metabo-
lism causes brain dysfunction and memory loss (270). PET
scanning shows a consistent pattern of reduced cerebral glu-
cose utilization in AD brain (198).

Eno1 catalyzes the penultimate step of glycolysis by con-
verting 2-phosphoglycerate to phosphoenolpyruvate. This
glycolytic enzymes demonstrates increased oxidation in AD
and models of AD (50, 74, 77). Lowered enzymatic activity of
enolase has been previously established in the brain of sub-
jects with MCI (76) and subjects with AD (271, 363). Carbo-
nylation of this protein supports the hypothesis of altered
energy metabolism as a common theme in neurodegenerative
disease. ATP, the cell’s energy currency, is extremely impor-
tant at nerve terminals for normal neurotransmission. De-
creased levels of cellular ATP at nerve terminals may lead to
loss of synapses and synaptic function, both of which can
affect propagation of action potentials and contribute to
memory loss in exhibited by AD and MCI patients.

Although the main function of enolase is its role in gly-
colysis, it has also been shown to play a role in plasminogen
regulation and activation of the MEK/extracellular regulated
kinases (ERK) pro-survival pathways (73, 358). Plasminogen
undergoes proteolysis by tissue-type plasminogen activator
(TPA) and converted to its active form, plasmin. TPA is brain
specific, and plasmin enhances the degradation of Ab; how-
ever, if TPA is not regulated by oxidatively inhibited enolase,
Ab degradation is lessened (73, 240). Ab aggregation is ob-
served primarily in SPs; therefore, plasminogen can influence
Ab degradation and enolase regulation. Protein modification
of Eno1 may disrupt neuronal energy metabolism and ion
homeostasis, thereby impairing ion-motive ATPases, signal
transduction, membrane asymmetry (23), and glucose and
glutamate transporters (238). Such metabolic and oxidative
compromise, known to exist in AD (219, 238, 269), may
thereby render neurons susceptible to excitotoxicity and ap-
optosis. The oxidative modification of energy-related proteins
correlates with the altered energy metabolism reported in
brain in MCI and AD, which can contribute to neurodegen-
eration (165, 272). These results support the notion that energy
metabolism is a key feature in the progression of AD patho-
genesis. Since glycolysis is the main source of ATP production
in brain, impairment of glycolysis may lead to shortage of
ATP in brains, thus to cellular dysfunction (74, 271). More-
over, decreased ATP shortage can also induce hypothermia,
causing abnormal tau phosphorylation through differential
inhibition of kinases and phosphatases (311).

CK catalyzes the conversion of creatine to phosphocreatine
at the expense of ATP, which is later used in the production of
high-energy phosphate used for generation of ATP. Im-
munochemical approaches in Alzheimer’s superior and me-
dial temporal gyri have previously identified CK as a
carbonylated protein. Further, using a redox proteomics ap-
proach, this protein was also found to be carbonylated in the
inferior parietal region of AD brain compared with that of the
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age-matched control (91). Moreover, CK activity is reported to
be diminished in AD brain (8). Loss of its activity in AD (117),
resulting from its oxidation (91), suggests decrease energetics
in neurons and synaptic elements, consequently in impaired
brain function in AD.

ATP synthase goes through a sequence of coordinated
conformational changes of its a and b subunits to produce
ATP. ATP synthase d subunit is located on the exterior column
of the enzyme. It is one component of the F0 subunit of ATP
synthase. With a sufficient proton gradient, the rotor of this
mitochondrial complex moves so that ADP and Pi bind in a
tight conformation and produce ATP. The rotor then moves
120� counterclockwise to the open position, thereby releasing
ATP into the cell. Reduced levels of ATP strengthen the ra-
tionale that energy metabolism is altered in AD (160). ATP
synthase has been previously shown to be oxidatively modi-
fied in late-stage AD (304). The oxidation of ATP synthase
leads to the inactivation of this mitochondrial complex. Fail-
ure of ATP synthase could contribute to a decrease in the
activity of the entire ETC and impaired ATP production, re-
sulting in possible electron leakage and increased ROS pro-
duction, suggesting an alternate rationale for the OS seen in
AD (10, 74). Altered expression of mitochondrial proteins,
functional deficits, and lowered activity in different com-
plexes of the ETC are observed in AD (184, 281). These
changes, coupled with the changes in complex I, III, and IV,
may cause electron leakage from the mitochondria to produce
ROS. This action may also affect the proton gradient and
overall mitochondrial function, which suggests a comple-
mentary mechanism for the acknowledged existence of OS in
AD (365).

TPI isomerizes dihydroxyacetonephosphate to glyceralde-
hyde-3-phosphate (G3P) in glycolysis. This reaction is im-
perative for the continuation of glycolysis and the overall
production of ATP. As just noted, ATP is essential in main-
taining ATPases, ion-motive pumps, and potential gradients.
In the AD brain, TPI is oxidatively modified as shown by our
group in late-stage AD (363), but there is no significant re-
duction in its activity in AD (271).

PGM1 is a glycolytic enzyme that catalyzes the intercon-
version of 3-phosphoglycerate to 2-phosphoglycerate. Due to
its involvement in glycolytic pathway, carbonylation, and
reported decreased expression and activity of PGM1 in the
AD brain compared with the age-matched controls are con-
sistent with the loss of total cellular energetics in AD (362).
Taken together, oxidative inactivation of these ATP-related
enzymes may be related to known metabolic defects in AD
detected by PET scanning (309, 317).

c. Excitotoxicity. Oxidative modification of GS led to
structural alteration of GS and a reduced activity (72). Since
GS catalyzes the rapid amination of glutamate to form glu-
tamine, oxidative modification of GS could lead to impair-
ment of the glutamate-glutamine cycle in AD brains, thereby
leading to elevated extracellular levels of glutamate (72). Im-
pairment of this important cycle may contribute to the glu-
tamate dysregulation in AD brains (44) followed by an influx
of Ca2 + and activation of NMDA and AMPA receptors that
cause neuronal excitotoxic death (266). Moreover, alteration
in GS activity have consequences on neuronal pH due to the
potential accumulation of ammonia, providing another pos-
sible mechanism for neuronal degeneration. Lastly, since GS

is essential for amino acid and nucleotide synthesis, oxidative
dysfunction of GS can lead to important negative sequelae for
brain metabolism.

d. Proteosomal dysfunction. UCH-L1 belongs to a family of
UCHL that play important roles in the ubiquitin–proteolytic
pathway involved in protein degradation of altered proteins
and has been implicated in many neurodegenerative diseases
(103, 186). UCH-L1 was found to be carbonylated protein in
AD brain or by Ab(1–42) (50, 91, 103). Loss of activity of UCH-
L1 in the AD brain is consistent with the observed increased
protein ubiquitinylation, decreased proteasome activity, and
accumulation of damaged proteins in AD brains (69). Loss of
UCH-L1 function causes neuroaxonal dystrophy (329), sig-
nificant protein oxidation, and accumulation of synuclein in
gracile axonal dystrophy mice (395). Thus, oxidative inacti-
vation of UCH-L1 possibly contributes to both protein ag-
gregation and OS observed in AD brain. Moreover, UCH-L1
oxidative dysfunction could affect activity of the 26S protea-
some, which is known to be altered in AD (221). Thus, these
pathophysiological observations in AD brain may be related
to oxidized UCH-L1: brain protein with excess ubiquitinyla-
tion, decreased activity of the 26S proteaome, and consequent
accumulation of aggregated, damaged proteins. Oxidative
damage of UCH-L1 was also identified in familial AD by re-
dox proteomics and accompanied by reduced enzyme activity
(368), further confirming that oxidative modification gener-
ally impairs protein functionality.

e. Neuritic abnormalities. DRP2, also known as CRMP2, is
critical to neuroplasticity for memory consolidation (236).
DRP2 plays an important role in maintaining microtubule
assembly, cellular migration, and cytoskeletal remodeling.
DRP2 also interacts with collapsin and regulates dendritic
length. DRP-2 has been reported to be associated with NFTs,
which may lead to decreased levels of cytosolic DRP-2. This,
in turn, would eventually lead to shortened neuritic and ax-
onal growth, thus accelerating neuronal degeneration in AD
(408), a classic hallmark of AD pathology. CRMP2 is a cal-
modulin binding protein, which on binding calmodulin, alters
the function of CRMP2 and stimulates calpain mediated
proteolysis. In addition to AD, decreased expression of
CRMP2 protein also was observed in fetal and adult DS
subjects (260, 399). Since memory and learning are associated
with synaptic remodeling, oxidative modification and sub-
sequent loss of function of this protein could conceivably be
involved in the observed cognitive impairments in MCI and
AD (74, 107, 260). Moreover, the decreased function of
CRMP2 could be responsible for shortened dendritic length
and synapse loss observed in AD (28, 107). Shortened den-
dritic length would likely lead to less neuronal communica-
tion with adjacent neurons that could contribute to memory
loss and cognitive decline associated with AD.

f. APP regulation, tau hyperphosphorylation, and cell-cycle
regulation. Pin1 is a regulatory protein that recognizes phos-
phorylated Ser-Pro or phosphorylated Thr-Pro motifs in tar-
get proteins. After binding to this motif on the target protein
by the WW domain of Pin1, the PPIase active site domain of
Pin1 alters the sterochemistry of the Pro residue of the target
protein from cis to trans and vice versa, thereby regulating the
activity of the target protein (65, 339). Pin1 plays an important
role in the cell growth and is required for proper progression
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through the cell cycle in dividing cells (252, 268). In addition,
Pin1 plays an important role in regulating the phosphorylation-
dephosphorylation of tau protein, APP, and other proteins
such as cyclin dependent kinase-5, etc. In AD brain, Pin1 is
found to be colocalized with phosphorylated tau and also
shows an inverse relationship to the expression of tau in AD
brains (196, 316). Further, Pin1 was also identified by redox
proteomics as oxidatively modified protein in AD hippocam-
pus (65, 363). Oxidation and decreased levels and activity of
this protein could favor the formation of NFTs, SP, and sub-
sequent synapse or cell loss due to cell arrest (20).

Decreased activity of Pin1 is consistent with increased
phosphorylation of Tau protein, which could destabilize the
microtubule assembly (59, 116), eventually leading to dis-
ruption of the axonal cytoskeleton. Consistent with this no-
tion, Lu and co-workers showed that Pin1 overexpression
could restore the function of Tau protein in an AD model
(412), suggesting oxidative alteration of Pin 1 could be one of
the initial events that trigger tangle formation and oxidative
damage in AD brains. Moreover, given that Pin1 regulates
APP, it is conceivable that oxidative dysfunction of Pin1 could
be associated with two major pathological hallmarks of AD:
plaques and NFT.

As just mentioned, Pin1 also regulates the activity of CDK5,
a protein that is important in keeping neurons from entering
the cell cycle. In postmitotic neurons, entrance into the cell
cycle leads to neurons becoming trapped, resulting in apo-
ptosis (65, 412). Hence, oxidative modification of Pin1, iden-
tified by redox proteomics (65, 363), could conceivably be
related to the observation of elevated cell-cycle protein in the
AD brain (282).

g. Synaptic abnormalities and LTP. The synaptosomal pro-
tein, c-SNAP, is a member of SNAPs that play an important
role in SNARE complexes for vesicular neurotransmitter
release, hormone secretion, and mitochondrial integrity. c-
SNAP’s important role in vesicle docking is key for the release
of neurotransmitters, which is necessary for proper neuronal
communication. The oxidation of c-SNAP could contribute to
the impaired learning and memory observed in AD, as well as
to the alteration of synaptic circuitry and AD pathogenesis
(267, 334). Loss of synaptic connections is found in many re-
gions of AD brain (334). The strongest correlation with cog-
nitive decline in AD is with the synaptic density (335).
Consequently, oxidative dysfuntion of c-SNAP would be
consistent with clinical, pathological, and biochemical chan-
ges in AD.

h. pH maintenance. CAII is a Zn2 + metallo-enzyme that
catalyzes reversible hydration of carbon dioxide to bicar-
bonate. CAII shares high (68%) similarity to the mitochondrial
counterpart carbonic anhydrase 5a (CA-5a) and 5b (CA-5b),
implicating the potential coupling or interaction with each
other to function in metabolic processes, cellular transport,
gluconeogenesis, and mitochondrial metabolism. CAII regu-
lates cellular pH, CO2, and HCO3

- transport, and maintains
H2O and electrolyte balance by reversible hydration of CO2.
CAII affects synaptic remodeling, consistent with the notion
that a deficiency of CAII leads to cognitive defects varying
from disabilities to severe mental retardation, suggesting the
importance of CAII in cognitive function (351). Though levels
of CAII are elevated, CAII activity is diminished in the AD
brain (271), likely caused by the oxidative modification of the

enzyme. Ab(1–42) leads to oxidative dysfunction of CAII,
which might lead to diminution of the major cellular buffering
system in brain, thereby promoting protein aggregation, ag-
gregation of Ab peptide, and subsequent neurodegeneration
(50, 77). A recent study reported elevated levels of CAII in AD
plasma (208).

i. Mitochondrial abnormalities. Dysfunction of mitochondria
has been reported to alter APP metabolism, enhancing the
intraneuronal accumulation of amyloid b-peptide and en-
hancing the neuronal vulnerability (61). Several other studies
indicate that Ab decreases the activity of mitochondrial re-
spiratory chain complexes (258, 277), and the activity of many
of the different mitochondrial enzymes appears to be reduced
in AD brain (48, 194). Thus, increasing evidence suggests an
important role of mitochondrial dysfunction in the patho-
genesis of AD. These altered enzymes could play an impor-
tant role in mitochondrial dysfunction and cell death. Further,
as just noted, the cytosolic accumulation of ATP synthase a-
chain with NFTs in AD has been reported (341). Moreover, the
identification of ATP synthase alpha as an excessively nitrated
protein suggests impaired function and also interactions
among the subunits. This, in turn, could lead to reduced ac-
tivity of F1F0-ATPase (ATP synthase, complex V) that could
compromise brain ATP synthesis and induce damaging ROS
production, and, if severe, could lead to neuronal death (197).

3. Carbonylated proteins in brain of subjects with am-
nestic MCI. In brain from subjects with amnestic MCI
compared with age-matched controls, CA II, Hsp70, mitogen-
activated protein kinase I (MAPKI), syntaxin binding protein
I (SBP1), Eno1, GS, pyruvate kinase M2, and Pin1 showed
significant increased carbonylation. CA II, Eno1, GS, and
Pin1were discussed just now in the context to AD pathology
or clinical presentation, and similar considerations apply to
amnestic MCI.

Hsp70 is neuroprotective against intracellular Ab; how-
ever, this protein is carbonylated in AD, thereby reducing its
cellular protection (264). Several other HSPs have been found
to be oxidatively modified in AD (74), including Hsp90 and
Hsp60 (123), while Hsp 27 and Hsp 32 levels are elevated in
amnestic MCI (123). Impairment of these proteins could
contribute to proteasomal overload and dysfunction, ob-
served in AD (221). Ab-treated synaptosomes show that HSPs
are oxidatively modified (50), further illustrating the vulner-
ability of HSPs to Ab-induced OS.

Pyruvate kinase catalyzes the final step in glycolysis,
the conversion of phosphoenolpyruvate to pyruvate with
the concurrent transfer of the phosphate group from phos-
phoenolpyruvate to ADP, thereby generating ATP. Under
aerobic conditions, pyruvate can be transported to the mi-
tochondria, where it is converted to acetyl coenzyme A, the
latter entering the tricarboxylic acid (TCA) cycle and further
metabolic processes that produce considerably more ATP
through oxidative phosphorylation. Anaerobically, pyru-
vate can be reduced to lactate. Additionally, enzymatic ac-
tivity is reduced, thus suggesting that oxidative modification
leads to loss of protein function. Considerations just given
for loss of ATP and altered PET scans in AD also apply to
MCI subjects.

SBP1 is a neuron-specific protein that binds strongly to
syntaxin 1 and is important for synaptic vesicle exocytosis and
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neurotransmitter release, a key process for neurotransmis-
sion. As just discussed, oxidation leads to loss of function of
SBP1, which could impair neurotransmission and subse-
quently might contribute to loss of neuronal function, even-
tually leading to loss of memory and cognition and
neurodegenerative processes involved in progression of MCI
to AD.

Recent studies suggested mitogen-activated protein ki-
nases (MAPKs) as key regulators of the formation of plaques
and tau hyperphosphorylation in AD (147). MAPKs path-
ways transduce intracellular signaling to increase expression
of different proteins; dysregulation of MAPK-dependent
pathways suggests a systematic disorder of protein transla-
tion regulation in MCI brains. ERK activation is present in
EAD astroglia, while in more advanced AD, it is associated
with neuronal cell bodies and dystrophic neurites around
plaques, suggesting that ERK activation in astroglia may be
an important early response to the onset of AD pathology
(169). More recently, abnormal phosphorylation of tau was
reported to correlate with increased activity of ERK1/2 in
postmortem AD brains (300). Oxidative modification of
MAPKs might make them more prone to phosphorylation or
may be an alternative mechanism of their activation, thus
initiating signaling cascades, ultimately leading to hyper-
phosphorylation of tau. Based on the existing literature, we
hypothesize that amyloid-induced oxidation of MAPK might
contribute to increased phosphorylation of tau in AD, leading
to cell death.

4. EAD carbonylated proteins. In EAD, a transitional
stage between MCI and AD, three proteins, that is, PGM1,
glial fibrillary acidic protein (GFAP), and fructose bispho-
sphate aldolase C (FBA-C), were identified by redox pro-
teomics as carbonylated brain proteins compared with control
(370).

GFAP is an intermediate filament protein that is highly
expressed in reactive astrocytes. Increased production of
GFAP is a hallmark of astrogliosis in neurodegenerative dis-
eases. GFAP is exclusively found in astrocytes and has been
shown to undergo activation in AD (280). The oxidation of
proteins in EAD is consistent with the idea that OS-associated
inflammation is a key mediator in the progression of AD.

FBA-C is a glycolytic enzyme that catalyzes the conversion
of fructose 1,6-bisphosphate into dihydroxyacetone phos-
phate (DHAP) and G3P. Previous studies showed that the
levels and activities of PGM1 and FBA-C are decreased in AD
brain (363) as just discussed, and could contribute to de-
creased brain energetics.

5. PCAD vs. amnestic MCI protein carbonylation in
brain. PCAD was just discussed. Eno1 and HSP90 were
identified by redox proteomics with increased carbonylation
in MCI IPL relative to that in PCAD (10). As just discussed,
Eno1 oxidative dysfunction contributes to loss of cellular en-
ergetics, loss of activation of pro-survival pathways, and loss
of Ab degradation (73). Given the oxidation of enolase in
amnestic MCI and late-stage AD, enolase conceivably might
be involved in the progression and pathogenesis of AD.
Further, redox proteomic analysis of MCI IPL relative to
PCAD IPL identified HSP90 with increased carbonylation. As
just discussed, HSPs serve as molecular chaperones and help
guide damaged proteins to the proteasome. HSP 90 is critical

to suppressing inflammation through degradation of hypox-
ic-inducing factor 1 alpha (285); oxidation of this protein may
contribute to the widespread inflammation in AD/MCI.
Lastly, since amnestic MCI patients have memory loss, while
PCAD patients have normal cognition, these two redox pro-
teomics-identified oxidatively modified proteins conceivably
could be involved in memory loss in amnestic MCI.

6. Protein-bound HNE in brain and progression of Alz-
heimer’s disease. As just discussed, HNE is a reactive
product of lipid peroxidation, and this a,b-unsaturated alke-
nal binds to Cys, His, or Lys residues of proteins, thereby
changing the conformation and function of proteins (66, 79,
139, 187, 361). In AD, HNE has been found to be significantly
elevated in AD brain, plasma, and CSF (187, 238, 297, 348).
PCAD subjects have clinically normal antemortem psycho-
metric scores but brain pathology that meets the neuropath-
ological criteria for AD and exhibit no significant brain cell
loss or neuronal atrophy (202). Although no alteration of
protein-bound HNE was found in PCAD IPL, increased levels
of total HNE and acrolein in hippocampus were reported (51).
This section of this comprehensive article deals specifically
with the HNE modifications observed in the other three
progressive stages of AD: MCI, EAD, and LAD.

In amnestic MCI, several proteins have been identified by
redox proteomics as HNE-conjugated in the hippocampus
and IPL brain regions. These proteins include Eno1, phos-
phoglycerate kinase, lactate dehydrogenase B, pyruvate ki-
nase, ATP synthase, neuropolypeptide h3, HSP70, CR1, b-
actin, initiation factor alpha, and elongation factor Tu (EF-Tu)
(320). Since altered energy metabolism and reduced cholin-
ergic activity are two well-documented hypotheses of AD, the
HNE modification of several cholinergic, glycolytic, and ATP
generating proteins support the notion of involvement of
these pathways in AD.

ATP synthase, Eno1, and pyruvate kinase have been just
discussed and also have been found to be oxidatively modi-
fied in AD brain. Another glycolytic enzyme that is found
to be HNE modified in MCI brain is phosphoglycerate kinase,
which catalyzes the dephosphorylation of 1,3-bisphospho-
glycerate to 3-phosphoglycerate. This reaction undergoes
substrate-level phosphorylation by phosphoryl transfer from
1,3-bisphosphoglycerate to ADP to produce one molecule of
ATP. Impairment of this glycolytic enzyme results in de-
creased energy production and irreversible downstream ef-
fects, such as multidrug resistance (132). This result could
conceivably be related to the identification of multidrug re-
sistant protein 1 (MRP1) as a protein with elevated HNE
binding in AD (364).

Lactate dehydrogenase B anaerobically reduces pyruvate
to lactate through lactic acid fermentation using NADH as a
cofactor. The NAD + generated in this process is used in gly-
colysis to oxidize G3P to 1, 3-bisphosphoglycerate, an im-
portant reason for this reaction. Lactate is a substrate for
gluconeogenesis and given that glucose is the major supplier
of energy to the brain, proper lactate production is crucial
(223). Lactate dehydrogenase enzymatic activity is signifi-
cantly reduced in MCI hippocampus (320), which provides
supplemental evidence for the correlation between protein
dysfunction and enzyme activity impairment. Dysfunction of
this enzyme could yield excess pyruvate and a reduction in
the production of glucose.
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Actin is a principal protein that plays a central role in
maintaining structural integrity, cell morphology, and struc-
ture of the plasma membrane. Actin microfilaments play a
role in the neuronal membrane cytoskeleton by maintaining
the distribution of membrane proteins, and segregating axo-
nal and dendritic proteins (33). In the CNS, actin is distributed
widely in neurons, astrocytes, and blood vessels. It is partic-
ularly concentrated in growth cones, dendritic spines, and
presynaptic terminals. HNE conjugation of actin can lead to
loss of membrane cytoskeletal structure, decreased mem-
brane fluidity, and trafficking of synaptic proteins and mito-
chondria. Moreover, actin is involved in the elongation of the
growth cone, and loss of function of actin could play a role in
the loss of synapse and neuronal communication documented
in AD (267).

CR is an enzyme that reduces carbonyl-containing com-
pounds to their resultant alcohols, thereby reducing the level of
PCO. Subsequent malfunction or downregulation of this en-
zyme would be consistent with increased PCO, which, because
of the polarity of the carbonyl moiety, could expose normally
buried hydrophobic amino acids to the protein surface, re-
sulting in a disruption of conformation. CR has been shown to
reduce the lipid peroxidation product, HNE (129). CR expres-
sion is altered in DS and AD patients (26). This enzyme was
found to be modified in persons with corticobasal degenera-
tion, a neurological disorder whose symptoms closely mirror
that of PD (100). The gene for CR is located in close proximity to
the gene for the antioxidant enzyme, Cu/ZnSOD (244). Inter-
estingly, the genes for SOD1, CR, and APP are located on
chromosome 21, which is a trisomy in DS patients (154, 232). A
potential link between DS and AD by irregular meiotic re-
combination in chromosome 21 (308) has been postulated.
Current research supports a possible relationship among CR,
DS, and Ab in neurodegeneration.

EF-Tu and eukaryotic initiation factor a (eIF-a) are inti-
mately involved in protein synthesis machinery. Human mi-
tochondrial EF-Tu is a nuclear-encoded protein and functions
in the translational apparatus of mitochondria. Mammalian
EF-Tu acts as a GTPase by hydrolyzing one molecule of GTP
for each A site amino-acylated tRNA of the ribosome. As just
discussed, mitochondria play pivotal roles in eukaryotic cells
in producing cellular energy and essential metabolites as well
as in controlling apoptosis by integrating various death sig-
nals (294). Mitochondrial protein synthesis inhibition, either
by deleting mtDNA or by blocking translation in the organ-
elle, is associated with the impairment of differentiation in
different cell types, including neurons (390). Loss of neuronal
differentiation can lead to an incomplete development of the
neuron, which would result in reduced neurotransmission.

eIF-a, which binds aminoacyl-tRNA to acceptor sites of ri-
bosomes in a GTP-dependent manner (306), is involved in
cytoskeletal organization by bundling and binding actin fil-
aments and microtubules. The expression level of eIF-a is
regulated in aging, transformation, and growth arrest. Due to
eIF-a regulation in differing states of cell life and its key po-
sition in protein synthesis and cytoskeletal organization, this
protein is an important determinant of cell proliferation and
senescence (379). Inhibition of eIF-a promotes apoptosis (306),
indicating that eIF-a activity is critical to normal cell function.

Taken together, increased levels of HNE-bound eIF-a and
EF-Tu suggest an impairment of protein synthesis machinery,
either in cytosol or mitochondria, associated with an impair-

ment of the rate and specificity of ribosome functions. Nu-
merous studies have provided indirect evidence that suggests
alterations in protein synthesis may occur in AD (128, 146,
330). The dysfunction of the protein synthesis apparatus,
mediated in part by redox proteomics identified oxidatively
dysfunctional EF-Tu and eIF-a, could compromise the ability
of brain cells to generate the countless factors needed to reg-
ulate cell homeostasis, thus contributing to impaired neuronal
function and to the development of neuropathology in AD.

Neuropolypeptide h3 is critical for modulation of choline
acetyltransferase, an enzyme essential in the synthesis of
acetylcholine. The loss of choline acetyltransferase leads to
reduced levels of acetylcholine, causing poor neurotransmis-
sion (291). NMDA receptors activate the production of this
enzyme, and modulation of the NMDA receptor mediates
cholinergic deficits (213). AD patients have considerable
cholinergic deficits, consistent with dysregulation of acetyl-
choline levels and loss of cholinergic neurons (328). The oxi-
dative modification of this protein further supports the
involvement of cholinergic neurons in AD, an early hypoth-
esis of this disorder (156). Neuropolypeptide h3 undergoes
HNE modification in MCI hippocampus and nitration in late-
stage AD (68). Neuropolypeptide h3 has several other names
including phosphatidylethanolamine binding protein (PEBP),
hippocampal cholinergic neurostimulating peptide, and Raf
kinase inhibitor protein (RKIP). As a PEBP, PEBP may be
important in phospholipid asymmetry. Apoptosis is initiated
when phosphatidylserine resides on the outer leaflet of the
membrane. Loss of function and changes in conformation of
PEBP conceivably could lead to loss of phospholipid asym-
metry, a signal for neuronal apoptosis, which further supports
the role of PEBP as a parapoptosis inhibitor (359). Loss of
PEBP may impact lipid asymmetry, as loss of activity is ob-
served in AD and MCI and mouse models of familial AD (23,
24, 166) and can potentially disrupt cellular homeostasis.
PEBP levels are decreased in AD, which promotes amyloid
beta accumulation in the Tg2576 transgenic mouse model of
AD (166). RAF kinases are serine/threonine protein kinases
involved in cell signaling in the mitogen-activated protein
cascade and NF-kappa B. RKIP disrupts this signaling path-
way by interacting with RAF1-MEK 1/2 and NF-kappa B
inducing kinase, causing the inhibition of NF-kappa B acti-
vation and regulating apoptosis. As demonstrated by the
various functions through its numerous monikers, neuropo-
lypeptide h3 is a highly important protein and oxidative
modification is likely detrimental to neurons.

EAD, as just mentioned, is thought to be a transitional stage
of AD in which patients exhibit progressive cognitive deficits
and display mild dementia on clinical evaluation. Redox
proteomics analysis identified two HNE-conjugated proteins
in this stage of AD that overlap those in the preceding stage of
AD, MCI. These proteins include Eno1 and ATP synthase,
which were just discussed. Additionally, triose phosphate
isomerase, malate dehydogenase, MnSOD, and DRP2
(CRMP2) undergo HNE conjugation in EAD brain as identi-
fied by redox proteomics (322).

Oxidative impairment of mitochondrial resident MnSOD is
likely a contributing factor to the mitochondrial dysfunction
associated with AD. Activity for MnSOD is significantly re-
duced in EAD brain and CSF compared with the age-matched
control, which is consistent with the concept of mitochondrial
dysfunction as a factor in the progression of AD. MnSOD was
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also found to be nitrated and subsequently inactivated in mice
by peroxynitrite (121, 149). Overexpression of SOD2 increases
Ab degradation, while partial deficiency promotes Ab depo-
sition, thereby likely contributing to cognitive decline ob-
served in a transgenic mouse model of AD (134).

Malate dehydrogenase (MDH) catalyzes the reversible
oxidation of malate to oxaloacetate by NAD + in the TCA
cycle. MDH links glycolysis to the ETC by transferring NADH
to NADH dehydrogenase (Complex I) through the malate-
aspartate shuttle resulting in the production of ATP. In con-
trast to elevated HNE binding to MDH, MDH levels were
increased in AD patients, but the level of protein oxidation of
MDH was not significant, which probably highlights a com-
pensatory mechanism in response to OS (234). Activity of
MDH increases during aging (58, 293), which further supports
the hypothesis of mitochondrial dysfunction in AD.

In late-stage AD, redox proteomics identified four HNE-
modified proteins that overlap EAD (Eno1, ATP synthase,
MnSOD, and CRMP2) (304, 322). Both Eno1 and ATP syn-
thase are consistently HNE modified in all transitional stages
of AD, providing evidence for the altered energy metabolism
and mitochondrial dysfunction hypotheses associated in the
progression of AD (66, 160, 175). Other HNE-modified brain
proteins in AD were identified by redox proteomics (304):
Aldolase (ALDO1) cleaves fructose 1,6-bisphosphate and
produces the two glycolytic intermediates, G3P and DHAP.
Fructose 1,6-bisphosphate is neuroprotective and preserves
GSH in cortical neurons during OS conditions (391). ALDO1
catalyzes a critical step, as it generates two substrates that are
used to eventually produce 2 molecules of ATP and more in
TCA and ETC chain. Consequently, HNE modification results
in decreased energy metabolism. Levels of ALDO1 are sig-
nificantly decreased in AD hippocampus (41) and PD (173).
Enzyme activity is reduced (41), and impairment can cause
increased levels of fructose 1,6-bisphosphate, inhibition of
complete glycolysis, and ATP depletion.

Aconitase catalyzes the isomerization of citrate to isocitrate
in the TCA cycle. As an iron-sulfur protein, its Fe-S cluster
participates in the hydration—dehydration reaction that oc-
curs. The three cysteine residues in the Fe-S core can undergo
Michael addition and form acrolein, HNE, and mal-
dondialdehyde conjugated adducts, thereby increasing lipid
peroxidation markers (248, 350). Enzymatic activity of this
enzyme is significantly reduced in AD, thereby yielding in
protein dysfunction (304). The TCA cycle takes place in the
mitochondria; therefore, aconitase impairment results in mi-
tochondrial dysfunction, a common theme of neurodegener-
ative diseases (405). As just noted, decreased ATP production
can lead to voltage-gated channel and ion-motive pump dis-
ruption as well as synapse loss, an early event in Alzheimer’s
disease pathology (335).

a-Tubulin is an isoform of tubulin that alternates with b-
tubulin to form a prominent cytoskeletal structure, the mi-
crotubule. Microtubules are used to transport cargo (i.e.,
vesicles and organelles) from the cell body to the periphery
and vice versa. On HNE modification, a-tubulin is structurally
altered and microtubules depolymerize (162). Therefore, car-
go cannot reach their destination and the cytoskeleton is al-
tered (284). This could contribute to the notion that synaptic
domains are the first to be damaged in AD neurons (235).

Prxs are a family of antioxidant enzymes that are pivotal in
antioxidant defense as just discussed. PRX VI is a 1-Cys Prx

that plays a role as a second messenger for growth factors and
cytokines. Prx VI, a GPx that exhibits Ca2 + -independent
phospholipase A2 activity (331), is cytosolic and is expressed in
astrocytes and in neurons at low levels (94). In addition, the
decrease in the activity of this enzyme may also lead to de-
creased phospholipase A2 activity. Phospholipase A2 is a target
for regulation by Pin1, which as just discussed, has been re-
ported to be downregulated and showed oxidative dysfunc-
tion in the AD brain (65, 363). PRX VI has been found to be
protective against mitochondrial dysfunction, a feature that
pinpoints its effectiveness as an antioxidant (136). PRX VI also
plays important roles in cell differentiation and apoptosis, and
HNE modification may lead to tau hyperphosphorylation and
NFT formation in addition to development of OS.

7. Protein-bound 3-NT in brain and progression of Alz-
heimer’s disease. In the AD brain compared with age-
matched controls, enolase, GAPDH, a-ATP synthase, beta
actin, CA II, voltage-dependent anion channel protein, TPI,
lactate dehydrogenase (LDH), and neuropolypeptide h3 were
identified by redox proteomics as nitrated proteins (93, 371).
Most of these proteins were also found to be targets of protein
carbonylation and HNE-modification (see above), and, hence,
not discussed in detail in this section.

GAPDH is known for its functional involvement in gly-
colysis and, consequently, in energy production; therefore,
this nitrated protein has altered activity with consequent de-
creased glucose metabolism (71). In addition, inhibition of
GADPH can lead to accumulation of trioses, with subsequent
nonenzymatic conversion to methyl glyoxal (MG), a highly
reactive alpha-ketoaldehyde that readily oxidizes proteins,
lipids, and other cellular components, leading to further cy-
totoxicity (172). Further, MG binds to Cys, Lys, and His resi-
dues by Michael addition at a faster kinetic rate than does
HNE. In addition, GAPDH is known to affect APP and Tau
(71). Consequently, this multifunctional protein could have
important biochemical, clinical, and pathological sequelae of
relevance to AD (71).

8. Nitrated brain proteins in MCI. Eno1, glucose-regu-
lated protein precursor, ALDO1, glutathione-S-transferases
(GST) Mu, multidrug resistant protein 3 (MRP3), 14-3-3 pro-
tein gamma, MDH, PR VI, DRP-2 (CRMP2), Fascin 1 (FSCN1),
and HSPA8 protein were identified as nitrated proteins in
MCI by redox proteomics (372). Most of these proteins also
were found to be oxidatively modified in AD, and have been
discussed pertaining to AD.

The brain proteins that are found nitrated in MCI but not in
AD includeGST Mu, MRP3, 14-3-3 protein gamma, and
FSCN1. One of the mechanisms for the removal of toxic me-
tabolites from cells is accomplished via GST and MRP pro-
teins. GST conjugates HNE to GSH, resulting in the formation
of GS-HNE adducts that are effluxed out of cells via MRP
efflux pumps. Hence, oxidation and functional impairment of
these proteins would lead to increased accumulation of HNE
in the cell and, consequently, in cell death. In the MCI brain,
increased levels of protein-bound HNE have been found (78).
In the AD brain, GST protein levels and activity were reported
to be decreased; in addition, GST was found to be oxidatively
modified by HNE (364).

14-3-3-protein gamma is a member of the 14-3-3 protein
family. These proteins are involved in a number of cellular
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functions including signal transduction, protein trafficking
and metabolism. In the AD brain (239), CSF (60), and ICV
animal model of AD (158), the levels of 14-3-3 proteins are
increased, which conceivably could lead to altered binding to
two of its normal binding partners, glycogen synthase kinase
3 and tau, and may promote tau phosphorylation and poly-
merization, conceivably contributing to the formation of
tangles and subsequent neurodegeneration in AD.

FSCN1, also known as p55, is a structural protein involved
in cell adhesion and cell motility (403). P55 protects cells from
OS and is used as a marker for dendritic functionality. FSCN1
was also shown to interact with protein kinase C (16), thereby
playing important rules in post-translational protein modifi-
cation. Impairment of this protein is conceivably related to
faulty neurotransmission from the affected dendritic projec-
tions, to altered intracellular signaling, and may contribute to
the progression of AD.

9. Nitrated proteins in EAD. Protein nitration is increased
in EAD subjects compared with age-matched controls (321).
In the EAD brain, redox proteomics analysis identified the
increased nitration of Prx2, TPI, glutamate dehydrogenase,
neuropolypeptide h3, PGM1, H-transporting ATPase, Eno1,
and ALDO1 (321). All these proteins were identified as either
the target of protein carbonylation or HNE modification and
have been just discussed.

In summary, redox proteomics analyses of brain proteins
throughout the spectrum of AD have identified proteins
whose oxidative dysfunction is consistent with the clinical
presentation, pathology, and/or biochemistry of this disor-

der, demonstrating the power and utility of this technique.
Oxidative dysfunction of proteins involved in ATP produc-
tion, excitotoxicity, detoxification, protein degradation, neu-
ritic abnormalities, and mitochondrial abnormalities are likely
involved in neurodegeneration at various stages of this de-
menting disorder. Taken together, the redox proteomics
studies in amnestic MCI, EAD, and late-stage AD identified
Eno1 as the common target of protein carbonylation, HNE
modification, and nitration between AD, EAD, and MCI,
consistent with the notion that this protein should be critical to
AD progression and pathogenesis. Figures 13, 14, and 15
show the common targets of protein carbonylation, HNE,
modification and nitration, respectively, among AD, MCI,
and EAD. The identification of these common targets of pro-
tein oxidative modification among different stages of disease
is consistent with the concept that losses of function of these
proteins are key in the progression and pathogenesis of AD.
Continued studies are in progress in our laboratory to un-
derstand the role of oxidatively modified proteins in AD
pathogenesis.

B. Parkinson disease

PD, the second most common age-related neurodegenera-
tive disorder and in its late stages, a significant contribution to
persons with dementia, is characterized by a decline in motor
function in the form of resting tremors, muscle rigidity, aki-
nesia, and bradykinesia. PD has two forms: familial and
sporadic, the latter being the more common form. Mutations
in a-synuclein, parkin, DJ-1, LRRK2, UCH-L1, and PINK1

FIG. 13. Venn diagram of
HNE-modified proteins iden-
tified during the progression
of AD. Alpha-enolase and
ATP synthase are the com-
mon targets of oxidative
modification between AD,
MCI, and EAD, and oxidative
modification of these proteins
might be key in the progres-
sion and pathogenesis of AD.
AD, Alzheimer disease; EAD,
early AD; MCI, mild cogni-
tive impairment. (To see this
illustration in color the reader
is referred to the web version
of this article at www.liebert
online.com/ars).
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contribute to early onset familial PD, while sporadic cases of
PD have been demonstrated in both familial and sporadic
cases (245). Parkin acts as an E3 ligase that attaches ubiquitin
to damaged proteins. The polyubiquitination of these proteins
cause them to be tagged for degradation by the proteosome. A
component of the E3 ligase-ubiquitin complex, SKP1-A has

been found to have substantially lowered levels in the sub-
stantia nigra in PD patients (150). SKP1-A deficiency prevents
proper cell-cycle propagation and triggers the development of
aggregates that can cause cellular apoptosis. Cells with suf-
ficient SKP1-A activity have increased cell survival and do-
pamine function, thereby establishing a new model to study

FIG. 14. Venn diagram of
excessively carbonylated pro-
teins throughout the patho-
genesis of AD. Enolase, ATP
synthase alpha, and UCH-L1
are the common targets of
oxidation between AD, MCI,
EAD, and PCAD. PCAD,
preclinical Alzheimer disease;
UCH-L1, ubiquitin carboxy-
terminal hydrolase-L1. (To
see this illustration in color
the reader is referred to the
web version of this article at
www.liebertonline.com/ars).

FIG. 15. Nitrated proteins
identified during the pro-
gression of AD in the hip-
pocampus1 and IPL2 regions.
DRP2 and aldolase are com-
mon targets of nitration be-
tween MCI and EAD. The
identification of a-enolase as
the only common target of
protein nitration in AD, MCI,
and EAD suggest that nitra-
tion of enolase might be crit-
ical to the progression and
pathogenesis of AD. DRP2,
dihydropyrimidinase-related
protein 2; IPL, inferior parie-
tal lobule. (To see this illus-
tration in color the reader is
referred to the web version of
this article at www.liebert
online.com/ars).
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sporadic PD (265). This neurodegenerative disorder is asso-
ciated with protein aggregates of a-synuclein, a protein whose
main functions involve mitochondria and synaptic vesicle
formation (46). These aggregates are the major component of
Lewy bodies located primarily in the putamen and substantia
nigra, brain regions closely associated with motor movement.
Recently, aggregates of oxidatively modified a-synuclein
have been exhibited in the substantia nigra of patients before
the appearance of PD (148). Consistent with increased ag-
gregation of oxidized proteins, recent studies suggest a-
synuclein exists as a tetramer in PD rather than as a monomer
or smaller aggregates in the normal state (30). The chief neu-
rotransmitter involved in motor function, dopamine, is dra-
matically lost in neurons, causing substantial neuronal death.
HNE was also found to alter dopamine transport (279), con-
tributing to dopamine loss, which is paramount to disease
pathogenesis. In addition, to the presence of Lewy bodies,
genetic mutations in the proteasome-relevant genes, parkin
and UCH-L1, may be associated with the disease. Oxidative
damage is well known in PD brains (9, 153, 407) and has been
associated with the overexpression of wild-type or mutant
(-synuclein (295). Increased oxidative damage in several
metabolic enzymes including glyceraldehyde 3-phosphate
dehydrogenase, ALDO1, Eno1, and SOD have been observed
in sporadic cases of PD, contributing to the hypothesis of re-
duced glucose metabolism in neurodegeneration(148). Simi-
larly, iron imbalance is exhibited in PD and may be a
consequence of the elevation of OS and changes in iron
binding proteins as just discussed (12). Moreover, OS in PD
has been linked to cell death in PD brains by mitochondrial
dysfunction, excitotoxicity, and the toxic effects of nitric
oxide (209).

1. Redox proteomics in PD. Although OS has been well
documented in PD, a few redox proteomics experiments in-
volving human subjects have been completed. However,
significant research using animal models of PD has been
completed and will be discussed in this section. By shifting
focus to the brain region most severely affected in this disease,
the substantia nigra, two classic proteins, a-enolase and
b-actin, were identified as being oxidatively modified in
a hemiparkinsonian animal model (120). Different animal
models of PD are known; however, redox poteomics studies
so far were conducted only in A30P (-synuclein transgenic
mice. These mice develop an age-dependent accumulation of
(-synuclein in neurons of the brain stem (168, 215), suggesting
(-synuclein aggregation-associated OS is involved in the pa-
thology in A30P (-synuclein transgenic mice.

Using redox proteomics, several significantly oxidatively
modified brain stem proteins were identified in symptomatic
mice with overexpression of a A30P mutation in (-synuclein
compared with the brain proteins from the nontransgenic
mice (313). These proteins were identified as carbonic an-
hydrase (CA-II), Eno1, and lactate dehydrogenase 2 (LDH2)
(313). The activities of these enzymes were also significantly
decreased in the A30P (-synuclein transgenic mice brains
when compared with the brain proteins from nontransgenic
control. This observation is consistent with the notion that
oxidative modification of proteins leads to loss of their ac-
tivities (72, 238).

Each of these proteins has been just discussed in the section
on AD. Oxidative inactivation of LDH may contribute to

mitochondrial dysfunction in PD patients. c-Enolase, one of
the subunits of functional enolase and neuronal-specific, was
identified in an intermembrane space/outer mitochondrial
membrane fraction. Hence, oxidative inactivation of enolase
may alter normal glycolysis and mitochondrial function in
brains, and may contribute to the alteration of energy me-
tabolism in PD. Consistent with this notion, LDH2, enolase,
and CA II are associated with mitochondrial function. In-
creasing data implicate mitochondrial dysfunction and oxi-
dation in PD (209, 333, 343). Furthermore, MPTP and rotenone
lead to complex I dysfunction with increased oxidative
modification of proteins and (-synuclein aggregation (343).
6-hydroxydopamine, a neurotoxin, deletes GSH, a potent
antioxidant, in brain striatum (305), causing striatal neuro-
degeneration in vivo (273). GAPDH, a critical enzyme in gly-
colysis and a protein with many other important functions
(71), is also oxidized in sporadic PD (185). Moreover, DJ-1,
PINK1, and parkin all appear to modulate mitochondrial
function (85, 298, 386). The observation that each of the redox
proteomics identified oxidatively modified brain proteins in
A30P mutant synuclein mice is associated with mitochondria
provides strong evidence of mitochondrial dysfunction and
aggregated synuclein as a key player in PD pathogenesis. This
implication suggests that OS-mediated mitochondrial dys-
function may be responsible, at least partially, for neurode-
generation in the brains of A30P (-synuclein transgenic mice.
However, a proteomic analysis showed that dopamine qui-
none, an oxidized and damaging form of dopamine, could
alter brain mitochondria, with implications for PD (388).

C. Amyotrophic lateral sclerosis

ALS is a progressive neurodegenerative disorder that af-
fects motor neurons of the cerebral cortex, brainstem, and the
anterior horn of the spinal cord (106). The majority of ALS
clinical presentations are sporadic (sALS), with fewer than
10% of ALS cases inherited in an autosomal dominant man-
ner, that is, familial ALS (fALS). Both sALS and fALS are
clinically indistinguishable and show similar features. The
molecular mechanisms responsible for disease pathogenesis
and progression are still unknown; however, studies have
shown that patients with fALS have mutations in copper/zinc
(Cu/Zn) superoxide dismutase (SOD1), a relevant component
of the antioxidant defense system (254). More than 100 SOD1
mutations have been identified in fALS patients (13), most
of which result from substitution of one single amino acid,
such as SOD1G85R, SOD1G37R, and SOD1G93A. It is now well
established that SOD1-mediated toxicity in ALS is due to a
‘‘gain’’ of toxic properties that are independent of SOD1 ac-
tivity (145, 178). To explain the toxicity of ALS mutant SOD1
(mSOD1) proteins, two hypotheses have been proposed. The
first hypothesis states that mSOD1 proteins are or become
misfolded and consequently oligomerize to form intracellular
aggregates (106, 387), which also include other essential pro-
teins that are, therefore, no longer available to perform their
correct function. The second—the oxidative damage hypoth-
esis—proposes that toxicity is caused by aberrant chemistry of
the active Cu/Zn sites of the misfolded enzyme (38), which
contributes to further exacerbate OS conditions by increasing
the levels of ROS within the cell (38, 251). This latter mecha-
nism can lead to misfolding of Cu, Zn SOD (315). Elevated
levels of ROS and the formation of insoluble protein
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complexes of mSOD1 protein have been shown in spinal
cords of the G93A transgenic mice and preceed motor neuron
degeneration (253). It is reasonable to assume that these two
phenomena (protein aggregation and OS) are linked, as oxi-
dative damage to the SOD1 was demonstrated in the G93A-
SOD1 transgenic mice. Interestingly, recent studies (47)
showed that misfolded/oxidized wild-type SOD-1 (wtSOD1)
gained toxic functions similar to mSOD1. After mild treat-
ment with hydrogen peroxide or another oxidizing reagent,
wtSOD1 becomes more susceptible to misfolding (47). The
aberrant chemistry after oxidant insult induces alteration of
wtSOD1 dimer conformation, which, in turn, may dispel the
Cu/Zn ions and dissociate into monomeric units. Further,
misfolded wtSOD1 showed many properties that were
thought to be characteristic of the mutant protein such as
ubiquitination, association with chaperones, insolubility, and
formation of protein aggregates. In addition, misfolded/oxi-
dized wtSOD1 may be released outside the cell where it can
induce other molecular pathways that lead to motor neurons
degeneration, as it does mSOD1 (47). Iron dysregulation has
been observed in both forms of ALS. Although modifications
in proteins associated with iron transport and cellular iron
sensing were demonstrated in a human SOD1 expressing
mouse, the mechanisms for the pathogenesis of ALS by iron
dysregulation remain unclear (210). All these data contribute
to further validate the hypothesis that oxidative damage, in-
cluding mSOD itself, plays a central role in the pathogenesis
and progression of ALS.

Multiple pathological studies have reported evidences of
increased OS in ALS postmortem tissue compared with con-
trol samples (29). Elevated PCO levels have been shown in the
spinal cord (342) and motor cortex (144) from sALS cases, and
increased 3-NT levels were found within spinal cord motor
neurons in both SOD1–fALS and fALS patients (2). Im-
munoreactivity to the brain and endothelial forms of NOS, but
not the inducible form, was also elevated in ALS motor neu-
rons relative to controls (3), suggesting alterations in RNS as
well as ROS. Markers for lipid peroxidation were detected in
spinal cord from sALS patients, but were absent in control
spinal cords (344), and levels of 8-hydroxy-2¢-deoxyguanosine
(8-OHdG), a marker of oxidized DNA, were elevated in whole
cervical spinal cord from ALS subjects (151) and were most
prominent within the ventral horn (144).

Other studies were performed in CSF from ALS patients to
measure OS markers. Elevated levels of 8-OHdG (205) and
HNE (355) were observed in CSF samples from ALS patients.
Transgenic mouse and cell culture models of ALS showed a
similar pattern of oxidation that was confirmed by the find-
ings of increased levels of oxidative damage to protein, lipid,
and DNA observed in the human disease (15, 145). An in-
crease in central nervous tissue PCO content have also been
reported in both fALS (49) and sALS (342) subjects.

1. Redox proteomics studies in ALS transgenic mice.
Studies from our laboratory and others applied redox pro-
teomics approaches to identify selective protein modifications
in the spinal cord of G93A-SOD1 transgenic mice in com-
parison with wild-type mice (302). Perluigi et al. (302) identi-
fied proteins that were significantly modified by HNE in the
spinal cord tissue of a model of fALS, G93A-SOD1 transgenic
mice, including DRP-2 (CRMP2), Hsp70, and, possibly, Eno1.
As previously noted in this article, CRMP2 is a member of the

DRP gene family involved in axonal outgrowth and path-
finding through the transmission and modulation of extra-
cellular signals (174). Immunoreactivity of human CRMP2
was shown in the NFTs of AD human brain, suggesting that
CRMP2 plays a role in neuritic degeneration characteristic of
AD (408). Dysfunction of the CRMP2-repairing activity in
brain indicates that depletion of CRMP2 may result in neu-
ronal abnormalities, thus accelerating the neuritic degenera-
tion in many neurodegenerative disorders. The finding of
increased oxidative modification of CRMP2 in G93A-SOD1
transgenic mice provided a potential link between oxidation-
mediated loss in protein function and neuritic regeneration
and plasticity known to be altered in ALS (182).

mSOD1 is aggregated with Hsp70, Hsp40, and a-crystallin
in transfected cells (345). As just noted, Hsp70 is a chaperone
protein that helps newly synthesized proteins to be folded
and transported across the membrane (84). Pathologically,
human SOD1-immunoreactive inclusions in the spinal cord of
ALS patients and of transgenic mice are frequently stained
with antibody against heat-shock cognate Hsc70 (398).
Moreover, overexpression of Hsp70 leads to reduction of
protein aggregates and enhanced viability of G93A-SOD1
overexpressed motor neurons (57). A recent study proposed a
potential anti-ALS drug candidate, which had the ability to
induce the heat shock response (225), suggesting that Hsp70
could play a role in the folding of SOD1 and prevent aggre-
gate formation. We suggested that diminished degradation of
mSOD1 is possibly due to inactivation of Hsp70, which is
impaired by covalent binding by HNE. These data suggest
that mechanisms regulating Hsp70 chaperone activity could
play a crucial role in the pathophysiology of motor neurons
disease, in particular in the context of mutations of SOD1.

By redox proteomics, our laboratory also identified the
proteins that showed increased carbonyl levels in the spinal
cord of G93A-SOD1 transgenic mice compared with those of
wild-type mice: SOD1, translationally controlled tumor pro-
tein (TCTP), UCH-L1, and aB-crystallin (314).

Researchers (15) previously identified immunochemically
SOD1 as one of the oxidatively modified proteins in G93A-
SOD1 transgenic mouse spinal cord. Although G93A-SOD1
showed dismutation activity identical to that of wtSOD1, the
activity of SOD1 in fALS patients with mutations reportedly is
decreased 50% in motor cortex, parietal cortex, and CB (54).
Moreover, free radical production in the G93A-SOD1 trans-
genic animals is induced by SOD1 mutation (15), alteration of
tumor necrosis factor a (TNF-a), and TNF-a-modulating cy-
tokines (189). Another oxidatively modified protein in trans-
genic mice identified by redox proteomics was TCTP. TCTP
possesses calcium-binding activity (44) and has a tubulin
binding region (226). TCTP levels are highly regulated in re-
sponse to various stress conditions and extracellular signals,
and similar to chaperones and other antiapoptotic protein
(378), may exert a cytoprotective function for cells. Once ox-
idatively modified, the putative cytoprotective function and
the calcium binding affinity of TCTP possibly are impaired in
G93A-SOD1 mice. Consistent with this notion, free cytosolic
calcium was increased in lymphocytes from ALS patients
(111).

UCH-L1 has been just discussed. This protein belongs to a
family of UCHL that play important roles in the ubiquitin–
proteolytic pathway involved in protein degradation (395).
Thus, oxidative inactivation of UCH-L1 possibly contributes
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to both protein aggregation and OS observed in G93A-SOD1
transgenic mice and ALS patients. Oxidative damage of UCH-
L1 was also accompanied by reduced enzyme activity, thus
further confirming that oxidative modification impairs pro-
tein functionality.

aB-Crystallin is a member of the small heat shock protein
(sHSP) family hat are synthesized under stress conditions
as well as normal conditions. The major function of sHSP is
to stabilize other proteins under stress conditions, whereas
the high-molecular-weight HSPs usually play roles in pro-
tein folding during biosynthesis (163). Moreover, a-crystal-
lins were recruited to aggregates when cells were treated
with a proteasome inhibitor, and the degradation of aB-
crystallin, along with ubiquitin conjugation, was decreased
in bovine lens epithelial cells when aB-crystallin was oxi-
dized (200). Consistent with this notion, inclusions in ALS
patients contain aB-crystallin, metallothionein, GS, and tu-
bulin immunoreactivities (3).

Casoni et al. (89) showed increased nitration of a- and c-
enolase, ATP synthase beta chain, and heat shock cognate 71-
kDa protein and actin in presymptomatic FALS mice using a
redox proteomics approach. Further, these researchers
showed that the nitration occurs at 16 sites in proteins oxi-
dized. One of the sites of Eno1 nitration at Tyr(43) is also a
target of phosphorylation, suggesting the nitration of the
protein may affect the function of the proteins as discussed
earlier. In addition, a study by Basso et al. (32) showed that
nitration of the proteins play an important role in the aggre-
gation of proteins, suggesting that oxidation/nitration has a
key role in aggregation. All these data together may indicate
that multiple oxidative modifications extensively and simul-
taneously affect certain proteins, inducing misfolding and fi-
nally aggregation. It appears that oxidation and protein
aggregation should not be considered separate events, but
they are both involved in the formation of insoluble, toxic
proteinaceous inclusions, which represent a characteristic
feature of ALS and many age-related neurodegenerative
diseases.

The oxidatively modified proteins identified by redox
proteomics from our laboratory (314) play a significant role in
protein aggregation processes in the spinal cords of G93A-
SOD1 transgenic mice. Indeed, ubiquitin protein epitopes and
aB-crystallin were found in fibrillar neuronal inclusions in the
cortex of sporadic ALS patients (21, 243). This article from our
laboratory led to several commentary papers, all of which
supported our hypothesis that aggregation and OS in ALS
should be viewed as a continuum and not as separate pro-
cesses (81, 113, 140, 314).

D. Huntington disease

HD is a progressive autosomal dominant disorder caused
by expansion of CAG trinucleotide repeats in exon 1 of the
huntingtin gene on chromosome 4 that encodes a stretch of
polyglutamines (poly(Q)) in the N-terminus of the Htt protein
(36, 356). Clinical symptoms of HD that typically manifest in
midlife generally include psychiatric abnormalities, most
commonly depression and mood disturbances, and involun-
tary choreiform movements and dementia that develop over a
period of 15–20 years. Neuropathologically, the disease is
characterized by bilateral striatal atrophy with marked neu-
ronal loss and astrogliosis within the caudate and putamen.

Htt is a widely expressed 350 kDa protein, and its specific role
is not completely elucidated; Htt is implicated in vesicle
trafficking in the endosome/lysosome pathway (42) and in
the regulation in cortical cells of the production of brain-
derived neurotrophic factor, a pro-survival factor for striatal
neurons (130, 307). Importantly, wild-type Htt is believed to
have a pro-survival role in the cell. The antiapoptotic function
of wtHtt has been demonstrated in several in vitro studies
(104, 409). These results demonstrated that expression of the
full-length protein protected conditionally immortalized
striatal-derived cells from a variety of apoptotic stimuli.
WtHtt appeared to act downstream of mitochondrial cyto-
chrome c release, preventing the formation of a functional
apoptosome complex and the consequent activation of
caspase-9.

Conversely, the N-terminal fragments of mutant Htt ac-
cumulate in the nuclei of affected neurons and form intra-
nuclear aggregates (126). Indeed, the formation of mHtt
aggregates is regarded as a hallmark of HD (336). Transgenic
mice expressing the N-terminal fragment of Htt with 82 CAG
repeats develop a progressive neurological disorder. In this
mouse model, the presence of pathological poly(Q) results in
the formation of both intranuclear and cytoplasmic ubiquiti-
nated aggregates containing the protease-resistant mutated
N-terminal Htt fragment in neurons of affected areas. mHtt is
targeted for proteolysis but is resistant to removal.

Several hypothesis have been proposed to explain the
pathogenesis of disease, including excitotoxicity (99), mito-
chondrial dysfunction (52), and impaired energy metabolism.
Numerous evidences suggest a role of oxidative damage in
HD brains (302, 342), and, consistent with this suggestion,
antioxidant supplementation appeared to slow the progres-
sion of animal models of the disease (14). Among different
mechanisms proposed, one of the most supported hypothesis
of neuronal loss is linked to mitochondria dysfunction (53).
mHtt-mediated mitochondrial alterations would be expected
to affect oxidative damage in cells, and, indeed, there is evi-
dence of elevated ROS generation and oxidative damage
markers in HD postmortem brain tissue, animal models, and
HD cell lines (53).

Emerging evidence points to the fact that mutant Htt may
directly interact with neuronal mitochondria, consequently
leading to their degeneration (189, 296). Functional changes in
mitochondria caused by mHtt have been recently confirmed
by the demonstration that poly(Q) can affect mitochondrial
calcium handling. Mitochondrial Ca2 + homeostasis is com-
promised in HD due to altered opening of the permeability
transition pore (299). Mitochondrial/energetic defects occur
as a primary event in HD. Reduced ATP production can result
in partial cell depolarization by making neurons more vul-
nerable to endogenous levels of glutamate (53). The con-
comitant increase of Ca + 2 influx into neurons may trigger
further free radical production, exacerbating oxidative dam-
age to cellular components. Iron dysregulation is evident in
HD brain. Ferritin, an iron binding protein, is significantly
lowered in HD patients, causing a reduction in iron binding
capacity and contributing to an imblance in iron homeostasis
(45). Consistent with severe mitochondrial defects and im-
paired energy metabolism, biochemical studies in HD post-
mortem tissue have revealed alterations in the activity of
several key enzymes of oxidative phosphorylation and the
TCA cycle in brain regions targeted in HD. Activities of
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complexes II, III, and IV of the ETC are markedly and selec-
tively reduced in caudate and putamen of advanced HD pa-
tients (55). One of the most profound defects detected in HD
to date is the dramatic reduction in activity of aconitase in
affected brain regions and muscle. The particular suscepti-
bility of mitochondrial aconitase to oxidative damage may be
related to the iron-sulfur cluster [4Fe-4S] in its active site (164).
Studies in vitro established that aconitase is particularly sen-
sitive to reaction with superoxide, which causes release of one
iron atom from the cluster (152). Inactivation of aconitase may
block normal electron flow to oxygen, leading to an accu-
mulation of reduced metabolites such as NADH.

1. Redox proteomics-transgenic mouse model of HD.
Our laboratory used proteomics to investigate the expression
of proteins and their oxidative modification in the striatum
from R6/2 transgenic mice, one of the most widely used
models of HD (303). The protein expression levels of Eno1,
dihydrolipoamide S-succinyltransferase, pyruvate dehydro-
genase, and aspartate aminotransferase were significantly
changed in 10-week-old transgenic mice compared either
with their age-matched control or with 4-week-old transgenic
mice. In addition, redox proteomics analysis showed that the
specific PCO levels of a- and c-enolase isoforms, aconitase,
CK, HSP90, and VDAC-1 were significantly increased in the
same sets of comparison. Our study indicated loss of activity
caused by oxidative modification of the enzymes involved in
glucose metabolism, such as a- and c-enolase, pyruvate de-
hydrogenase, and aconitase, and of CK might lead to a re-
duced ATP production, consistent with the observations in
the HD patients. In addition, loss of energy production by
mitochondria leads to decreased production of ATP and, thus,
disruption of cellular functions that depend on ATP, includ-
ing metabolic intermediate synthesis and maintaining of ionic
gradients as just noted. Taken together, these data point to the
fact that bioenergetic defects are a profound feature of HD
pathology. The finding of increased carbonyl levels and de-
creased activity of CK further determines which crucial en-
zymes are finely involved in energetic impairments in this
disorder. The CK system, consisting of a cytosolic and a mi-
tochondrial isoform (MtCK) together with their substrates
creatine and phosphocreatine, is one of the most important
immediate energy buffering and transport systems of the cell,
especially in muscle and neuronal tissue (394). CKs are prime
targets of oxidative damage (74), leading to inactivation of
both isoforms. Consistent with this notion, we showed that
oxidative modifications of CK decrease its activity during
aging and neurodegenerative diseases (6). Recent reports
have demonstrated that creatine therapy provides neuro-
protection and delays motor symptoms in the transgenic an-
imal model of HD (404), thus suggesting enhancement of
cerebral energy metabolism as a protective mechanism
against neurodegeneration.

Formation of neuronal inclusions with aggregated Htt is
associated with the progressive neuropathology in HD. Ac-
cumulation of misfolded proteins is one of the major causes of
neurodegenerative disorders like AD, ALS, and HD. Neuro-
nal cells recognize the aggregated Htt protein as abnormally
folded and, by recruiting molecular chaperones and protea-
somal components, try to disaggregate and/or degrade the
mutant protein. Conversely, the toxicity of mHtt may reduce
the availability of HSPs, thereby disrupting their normal

chaperone and anti-apoptotic functions and reducing their
cytoprotective effects. Consistent with this view, we found
increased carbonyl levels of HSP90 by redox proteomics in an
ALS mouse model (314). We proposed that diminished deg-
radation of mutant aggregated Htt is possibly related to in-
activation of HSP90, which once oxidatively modified is not
able to facilitate misfolded protein degradation by the pro-
teasome. As just reported, others (225) reported the efficacy of
a treatment with a co-inducer of HSPs to delay disease pro-
gression in a transgenic mouse model of ALS. Pharmacolo-
gical activation of the HSP response conceivably could be a
successful therapeutic approach for treating neurodegenera-
tive disorders.

The slow, progressive nature of neuronal injury in chronic
neurodegenerative disorders may be explained by cycling of
free radicals and mitochondrial dysfunction. Thus, the iden-
tification of target proteins that are oxidatively modified may
provide a crucial insight into the etiologic role of oxidative
damage in mechanisms of neuronal death in HD and other
neurodegenerative disorders. Loss of activity of these proteins
by oxidative modification or by altered expression may con-
tribute to abnormal metabolism and neurochemical changes
ultimately leading to neuronal death.

2. Proteomics of HD brain. In agreement with the find-
ings reported on transgenic mice, a proteomic analysis of
human brain postmortem samples obtained from striatum
and cortex of subjects with HD compared with samples of
age- and sex-matched controls was performed (357). Anti-
oxidant defense proteins that were strongly induced in stria-
tum, but also detectable in cortex, were identified as Prxs I, II,
and VI, as well as GPxs 1 and 6. The activities of other anti-
oxidant enzymes such as MnSOD and catalase were also in-
creased in HD. Aconitase showed decreased activities in
striatum of HD patients. PCO were increased in HD, and
GFAP, aconitase, c-enolase, and creatine kinase B were iden-
tified as the main oxidative targets. Taken together, these re-
sults indicate that OS and damage to specific macromolecules
would participate in the disease progression in human as well
as animal models of the disease.

Based on the evidence that bioenergetic metabolism is im-
plicated in the pathogenesis of HD, a previous multicenter,
randomized, double-blind, placebo-controlled trial of coen-
zyme Q10 (CoQ10), given alone or in combination with re-
macemide hydrochloride, demonstrated beneficial effects
(201). However, experimental results did not reach statistical
significance, which might reflect choices of dosage. In fact,
CoQ10 also has shown promise in other neurodegenerative
conditions, such as PD, but at higher dosages than were used
in HD trial (346). Therefore, current clinical trials to examine
the safety and tolerability of higher dosages of CoQ10 in HD
patients and healthy subjects are now in progress.

E. Down syndrome

DS, also called trisomy 21, is associated with neurodegen-
eration. After reaching 40–45 years of age DS patients develop
a form of dementia that has almost identical clinical and
neuropathologic characteristics of AD. There is considerable
literature supporting a major role of OS in DS clinical
phenotype (95, 203). Increased oxidative damage is demon-
strated by oxidative DNA damage (urinary 8-OHdG), lipid
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peroxidation, and isoprostane 8,12-iso-iPF2alpha-VI levels
(214), indicating a ‘‘pro-oxidant state,’’ which associated with
overwhelmed antioxidant defenses—both enzymatic and
nonenzymatic—constitute a clue to understanding the com-
plexity of the DS phenotype. Indeed, an abnormal expression
of genes located on chromosome 21, in association with re-
sponses to environmental stimuli, might alter the expression
of disomic genes as well. OS is known to occur in DS from
very early stages: already during embryonic development
mitochondrial dysfunction has been reported as a marker of
oxidative damage (19). Moreover, amniotic fluid from moth-
ers carrying a DS fetus has oxidatively modified proteins as
observed by redox proteomics (301).

The cause of DS is to be found in the genes expressed on
chromosome 21, which when present with an extra copy lead to
the overxpression of related protein products. Among these, the
excess activity of SOD-1 is due to a third copy of its gene. This
increased activity results in the accumulation of hydrogen per-
oxide that might reach toxic levels and might be related not only
to the neuronal death observed in DS but also involved in the
impairment of other functions. In addition, the overexpression of
the APP gene expressed on chromosome 21 is likely related to
the overproduction of Ab(1–42) peptide, the major protein in the
SPs, which is considered one of the important factors leading to
the development of the AD pathology in DS subjects. Ab(1–42)
peptide has been found in the brain of children with DS as
young as age 8 years, and the deposits increase with age. In-
terestingly, although are extensive deposits in the brain, there is
no linear relationship with AD. There is a gap between the
presence of abnormal brain pathology and the early signs of AD,
suggesting that other factors (genetic or environmental) may
play an important role in the development of AD.

Among these, accumulation of ROS causes abnormal lipid
peroxidation metabolism, which leads to structural damage to
membranes and the generation of more toxic products. ROS-
related activity also leads to DNA damage. All these findings
lead to the concept that OS might play an important role in the
development of AD in persons with DS; however, OS alone
does not explain the whole process. Elevated OS has been
demonstrated in the brains of DS patients, as indexed by in-
creased levels of TBARS, total PCO and AGEs in the cortex
from DS fetal brain compared with controls (290) and a
marked accumulation of 8-hydroxyguanosine (8OHG), oxi-
dized protein, NT, in the cytoplasm of cerebral neurons in DS
(288). Ishihara et al. (207) have recently demonstrated an in-
creased level of ROS and mitochondrial dysfunction in pri-
mary cultured astrocytes and neurons from DS transgenic
mice—Ts1Cje, suggesting that the gene-dosage hypothesis is
sufficient to explain, at least the major part, the OS phenom-
ena observed in this in vitro model of the disease.

1. Redox proteomics in DS transgenic mice. Ishihara
et al. (207) identified by a redox proteomics approach the pu-
tative target proteins that were modified by lipid-peroxidation-
derived products. ATP synthase mitochondrial F1 complex
b subunit, Eno1, and TPI1 were identified as proteins modified
by 3-hydroperoxy-9Z,11E-octadecadienoic acid. Neurofila-
ment light polypeptide, internexin neuronal intermediate
filamenta, neuron specific enolase, Prx6, phosphoglycerate
kinase 1, and TPI were shown to be HNE-modified proteins.
Dysfunction of these proteins impairs ATP generation, the
neuronal cytoskeleton system, and anti-oxidant enzyme

functionality. Some of these proteins have been previously
identified as target proteins for HNE-modification (303, 320).
Thus, these proteins appear to be common targets for lipid
peroxidation-derived products in senescence and various OS-
related disorders, and might play a central role in the degen-
erative process associated with oxidative damage in OS-related
disorders, including DS.

V. Conclusions and Future Directions

Redox proteomic analysis of oxidatively modified proteins
in AD, PD, HD, and ALS showed that the proteins involved in
glucose metabolism, mitochondrial function, structural, and
protein degradation are commonly affected in these neuro-
degenerative diseases (Fig. 16). These studies suggest that
there might be a common mechanism by which neurode-
generation occurrs in different diseases. One of the common
observations is the presence of OS and involvement of protein
aggregates. Further, studies are needed to tease out detailed
relationship of these observations.

With the increasing average life span of humans, age-re-
lated neurodegenerative disorders are expected to be a major
health concern in our society. Many groups have demon-
strated the role of OS in the pathogenesis and progression of
neurodegenerative diseases including AD, PD, ALS, HD, and
DS, among others. Proteins are one of the major targets of
oxidative damage, and it has now become clear that chemical
modifications induced by ROS affect both conformational and
functional integrity of target proteins and lead, in most cases,
to their dysfunction. In order to better understand the bio-
logical effects of such modifications, redox proteomics is an
emerging tool that can provide powerful insights which can
be used for further investigations. Data obtained from redox
proteomics studies highlighted a number of common proteins
and/or functional categories that are primarily affected in
different neurodegenerative disorders. These alterations in-
volve energy production, mitochondrial functions, neuritic
abnormalities, proteasome, detoxification, excitotoxicity, and
synapse function. Based on these findings, it is reasonable to
assume that neurodegeneration is driven, at least in part, by
the impairment of the pathways just mentioned. However
other mechanisms, apart from OS, may play a role and ex-
plain, for example, the selective vulnerability of neural sys-
tems and diversity of clinical manifestations in the different
neurodegenerative disease discussed.

New data need to be added to obtain a comprehensive OS
signature of brain disorders. In fact, some diseases have not
been fully investigated and as evidenced in the section related
to disease, there is a lack of redox proteomics data on both
human samples and animal models thereof. Further insight
also can be obtained, for example, through the characteriza-
tion of other oxidative modifications and advancement of
proteomics techniques. A consideration that emerges from
this comprehensive article of redox proteomics in some neu-
rodegenerative disorders is the need to identify additional
‘‘specific’’ markers to the list currently available that will have
the power to discriminate between different diseases, to better
understand the specific neurodegenerative mechanisms in-
volved, to identify therapeutic targets, and eventually be
useful for early diagnosis of each disorder separately.

Consequently, the search for important information on bio-
markers has centered on investigating CSF/blood composition
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in addition to what can be observed in the brain, because many
proteins are specific to neuronal cells and cannot be found sys-
temically. Currently, a definite diagnosis of AD can only be made
by postmortem neuropathological examination, but brain tissue
is inappropriate for early diagnosis of cognitive decline. Grow-
ing studies aim at identifying putative body fluid biomarkers
for early diagnosis and stage progression of AD with particular
attention to blood-derived markers. So far, CSF biomarkers re-
flecting the amyloid cascade hypothesis and cytoskeletal de-
generation (Ab, total tau, and phosphorylated-tau) have been
found to be promising and reliable biomarkers for AD. CSF
represents the most suitable biological fluid that studies neuro-
degenerative diseases, as it can reflect the biochemical changes
occurring in the brain, but its analysis is not always easily feasible
for large-scale screening, because of the costs involved, and be-
cause the invasive nature of lumbar puncture is uncomfortable
and not without risk. Recently, neuroimaging through the use of
MRI or PET is gaining high interest for the possibility to test
several promising markers, as suggested by the funding of the
Alzheimer’s Disease Neuroimaging Initiative project. Concerns
on the use of these diagnostic methods involve the cost and
availability of the instruments of analysis, which impede the
routine use of these techniques for the diagnosis of the asymp-
tomatic early stages of AD.

The application of redox proteins to AD/PD/ALS/HD/DS
revealed important targets of brain protein oxidation. The use
of animal models together with redox proteomics approaches
could provide potential insights into the mechanisms of
neurodegeneration in and could also be of value for the de-
velopment of therapeutic approaches to prevent or delay
these neurodegenerative disorders.

In terms of future MS approaches for redox proteomics: due
to the low-abundance nature of oxidative modifications, 2D-
gel, LC, and MS-based approaches will continue to be de-
veloped for the enrichment and detection of these modifica-
tions. Many of the methods just described can be applied for
the identification and quantitation of oxidatively modified
proteins in neurodegenerative diseases. In the near future, it
will become important to understand the nature of protein
isoforms that arise from variable oxidative modifications to
many residues and the contribution of a specific isoform to
improper protein function. These questions will rely on de-
velopments in top-down proteomics and their coupling to
bottom-up proteomics approaches as was recently demon-
strated for identification of oxidized calmodulin isoforms in
activated macrophages (256).

Very recently, new proteomics platforms have been devel-
oped that analyze body fluid and a number of medium/high
molecular abundant proteins emerged as potential candidates.
Assays are required for the validation of these candidates.
Multiple reaction monitoring (MRM)-based approaches are an
attractive alternative to ELISAs due to the sensitivity and se-
lectivity of the technique, the capacity to multiplex, and the
limited availability of antibodies. In addition, accuracy in the
quantitation of analytes by MRM can be improved by combin-
ing with tandem mass tags, as this allows the incorporation of an
internal reference into the analysis. This approach becomes of
high importance for the validation of candidate biomarkers from
discovery experiments. What is currently emerging in the field
of biomarker research is the fact that only a combination of
different markers could, most likely, offer a certain diagnosis
and be able to capture all aspects of the disease.

FIG. 16. Redoxproteomics
determined functional path-
ways in different neurode-
generative disorders. A
comparative analysis of the
functional pathways involved
in the redox proteomics-iden-
tified brain proteins from
AD, PD, HD, and ALS showed
that the proteins involved
in glucose metabolism, mito-
chondrial function, cellular
structure, and protein degra-
dation are affected in common
in these neurodenerative dis-
eases. HD, Huntington dis-
ease; PD, Parkinson disease.
(To see this illustration in color
the reader is referred to the
web version of this article at
www.liebertonline.com/ars).
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The future of redox proteomics to gain insights into
mechanisms, biomarkers, and therapeutic targets of neuro-
degenerative diseases is bright, and we believe redox pro-
teomics will continue to make valuable contributions to
eventual molecular-level understanding of neurodegenera-
tive disorders.

Acknowledgments

This work was supported, in part, by an NIH grant to
D.A.B. [AG-05119]. The authors thank past and current
postdoctoral scholars, graduate students, and visiting scien-
tists in the Butterfield laboratory and their collaborators for
their contributions to their redox proteomics studies in neu-
rodegenerative disorders.

References

1. Abboud K, Bassila JC, Ghali-Ghoul R, and Sabra R. Tem-
poral changes in vascular reactivity in early diabetes mel-
litus in rats: role of changes in endothelial factors and in
phosphodiesterase activity. Am J Physiol Heart Circ Physiol
297: H836–H845, 2009.

2. Abe K, Pan LH, Watanabe M, Kato T, and Itoyama Y. In-
duction of nitrotyrosine-like immunoreactivity in the lower
motor neuron of amyotrophic lateral sclerosis. Neurosci Lett
199: 152–154, 1995.

3. Abe K, Pan LH, Watanabe M, Konno H, Kato T, and
Itoyama Y. Upregulation of protein-tyrosine nitration in the
anterior horn cells of amyotrophic lateral sclerosis. Neurol
Res 19: 124–128, 1997.

4. Abello N, Barroso B, Kerstjens HA, Postma DS, and Bis-
choff R. Chemical labeling and enrichment of nitrotyrosine-
containing peptides. Talanta 80: 1503–1512, 2010.

5. Adibhatla RM and Hatcher JF. Lipid oxidation and per-
oxidation in CNS health and disease: from molecular
mechanisms to therapeutic opportunities. Antioxid Redox
Signal 12: 125–169, 2010.

6. Aksenov M, Aksenova M, Butterfield DA, and Markesbery
WR. Oxidative modification of creatine kinase BB in Alz-
heimer’s disease brain. J Neurochem 74: 2520–2527, 2000.

7. Aksenov MY, Tucker HM, Nair P, Aksenova MV, Butter-
field DA, Estus S, and Markesbery WR. The expression of
key oxidative stress-handling genes in different brain re-
gions in Alzheimer’s disease. J Mol Neurosci 11: 151–164,
1998.

8. Aksenova MV and Burbaeva G. [BB creatine kinase isoen-
zyme activity in the blood serum of patients with senile
dementia, Alzheimer’s disease and schizophrenia]. Zh
Nevropatol Psikhiatr Im S S Korsakova 89: 113–116, 1989.

9. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden
CD, Jenner P, and Halliwell B. Oxidative DNA damage in
the parkinsonian brain: an apparent selective increase in 8-
hydroxyguanine levels in substantia nigra. J Neurochem 69:
1196–1203, 1997.

10. Aluise CD, Robinson RA, Cai J, Pierce WM, Markesbery
WR, and Butterfield DA. Redox proteomics analysis of
brains from subjects with amnestic mild cognitive impair-
ment compared to brains from subjects with preclinical
Alzheimer’s disease: insights into memory loss in MCI. J
Alzheimers Dis 23: 257–269, 2011.

11. Alvarez B and Radi R. Peroxynitrite reactivity with amino
acids and proteins. Amino Acids 25: 295–311, 2003.

12. Andersen JK. Iron dysregulation and Parkinson’s disease. J
Alzheimers Dis 6: S47–S52, 2004.

13. Andersen PM. Genetic factors in the early diagnosis of ALS.
Amyotroph Lateral Scler Other Motor Neuron Disord 1 Suppl
1: S31–S42, 2000.

14. Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG,
Ferrante KL, Thomas M, Friedlich A, Browne SE, Schilling
G, Borchelt DR, Hersch SM, Ross CA, and Beal MF. Crea-
tine increase survival and delays motor symptoms in a
transgenic animal model of Huntington’s disease. Neurobiol
Dis 8: 479–491, 2001.

15. Andrus PK, Fleck TJ, Gurney ME, and Hall ED. Protein oxi-
dative damage in a transgenic mouse model of familial
amyotrophic lateral sclerosis. J Neurochem 71: 2041–2048, 1998.

16. Anilkumar N, Parsons M, Monk R, Ng T, and Adams JC.
Interaction of fascin and protein kinase C alpha: a novel
intersection in cell adhesion and motility. EMBO J 22: 5390–
5402, 2003.

17. Ansari MA, Joshi G, Huang Q, Opii WO, Abdul HM, Sul-
tana R, and Butterfield DA. In vivo administration of D609
leads to protection of subsequently isolated gerbil brain
mitochondria subjected to in vitro oxidative stress induced
by amyloid beta-peptide and other oxidative stressors:
relevance to Alzheimer’s disease and other oxidative stress-
related neurodegenerative disorders. Free Radic Biol Med 41:
1694–1703, 2006.

18. Ansari MA and Scheff SW. Oxidative stress in the pro-
gression of Alzheimer disease in the frontal cortex. J Neu-
ropathol Exp Neurol 69: 155–167, 2010.

19. Arbuzova S, Hutchin T, and Cuckle H. Mitochondrial
dysfunction and Down’s syndrome. Bioessays 24: 681–684,
2002.

20. Arendt T. Synaptic plasticity and cell cycle activation in
neurons are alternative effector pathways: the ‘‘Dr. Jekyll
and Mr. Hyde concept’’ of Alzheimer’s disease or the yin
and yang of neuroplasticity. Prog Neurobiol 71: 83–248,
2003.

21. Arima K, Ogawa M, Sunohara N, Nishio T, Shimomura Y,
Hirai S, and Eto K. Immunohistochemical and ultrastruc-
tural characterization of ubiquitinated eosinophilic fi-
brillary neuronal inclusions in sporadic amyotrophic lateral
sclerosis. Acta Neuropathol 96: 75–85, 1998.

22. Aulak KS, Koeck T, Crabb JW, and Stuehr DJ. Proteomic
method for identification of tyrosine-nitrated proteins.
Methods Mol Biol 279: 151–165, 2004.

23. Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana
R, Galli F, Memo M, and Butterfield DA. Loss of phos-
pholipid asymmetry and elevated brain apoptotic protein
levels in subjects with amnestic mild cognitive impairment
and Alzheimer disease. Neurobiol Dis 29: 456–464, 2008.

24. Bader Lange ML, St. Clair D, Markesbery WR, Studzinski
CM, Murphy MP, and Butterfield DA. Age-related loss of
phospholipid asymmetry in APP(NLh)/APP(NLh) x PS-
1(P264L)/PS-1(P264L) human double mutant knock-in
mice: relevance to Alzheimer disease. Neurobiol Dis 38: 104–
115, 2010.

25. Baillet A, Chanteperdrix V, Trocme C, Casez P, Garrel C,
and Besson G. The role of oxidative stress in amyotrophic
lateral sclerosis and Parkinson’s disease. Neurochem Res 35:
1530–1537, 2010.

26. Balcz B, Kirchner L, Cairns N, Fountoulakis M, and Lubec
G. Increased brain protein levels of carbonyl reductase and
alcohol dehydrogenase in Down syndrome and Alzhei-
mer’s disease. J Neural Transm Suppl (61): 193–201, 2001.

27. Baldeiras I, Santana I, Proenca MT, Garrucho MH, Pascoal
R, Rodrigues A, Duro D, and Oliveira CR. Peripheral

32 BUTTERFIELD ET AL.



oxidative damage in mild cognitive impairment and mild
Alzheimer’s disease. J Alzheimers Dis 15: 117–128, 2008.

28. Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Mano-
lides SL, and Manolides LS. Dendritic and spinal pathol-
ogy in the acoustic cortex in Alzheimer’s disease:
morphological and morphometric estimation by Golgi
technique and electron microscopy. Acta Otolaryngol 127:
351–354, 2007.

29. Barber SC and Shaw PJ. Oxidative stress in ALS: key role in
motor neuron injury and therapeutic target. Free Radic Biol
Med 48: 629–641, 2010.

30. Bartels T, Choi JG, and Selkoe DJ. Alpha-Synuclein occurs
physiologically as a helically folded tetramer that resists
aggregation. Nature 477: 107–110, 2011.

31. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L,
and Fasano M. Proteome analysis of human substantia ni-
gra in Parkinson’s disease. Proteomics 4: 3943–3952, 2004.

32. Basso M, Samengo G, Nardo G, Massignan T, D’Alessan-
dro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi
S, Giordana MT, Strong MJ, Estevez AG, Salmona M,
Bendotti C, and Bonetto V. Characterization of detergent-
insoluble proteins in ALS indicates a causal link between
nitrative stress and aggregation in pathogenesis. PLoS One
4: e8130, 2009.

33. Battaini F, Pascale A, Lucchi L, Pasinetti GM, and Govoni S.
Protein kinase C anchoring deficit in postmortem brains of
Alzheimer’s disease patients. Exp Neurol 159: 559–564, 1999.

34. Baty JW, Hampton MB, and Winterbourn CC. Detection of
oxidant sensitive thiol proteins by fluorescence labeling
and two-dimensional electrophoresis. Proteomics 2: 1261–
1266, 2002.

35. Bayir H, Kagan VE, Clark RS, Janesko-Feldman K, Rafikov
R, Huang Z, Zhang X, Vagni V, Billiar TR, and Kochanek
PM. Neuronal NOS-mediated nitration and inactivation of
manganese superoxide dismutase in brain after experi-
mental and human brain injury. J Neurochem 101: 168–181,
2007.

36. Beal MF and Ferrante RJ. Experimental therapeutics in
transgenic mouse models of Huntington’s disease. Nat Rev
Neurosci 5: 373–384, 2004.

37. Beasley A, Anderson C, McArthur J, Sacktor N, Nath A,
and Cotter JR. Characterization of nitrotyrosine-modified
proteins in cerebrospinal fluid. Clin Proteomics 6: 29–41,
2010.

38. Beckman JS, Chen J, Crow JP, and Ye YZ. Reactions of nitric
oxide, superoxide and peroxynitrite with superoxide dis-
mutase in neurodegeneration. Prog Brain Res 103: 371–380,
1994.

39. Berg D and Youdim MB. Role of iron in neurodegenerative
disorders. Top Magn Reson Imaging 17: 5–17, 2006.

40. Berlett BS and Stadtman ER. Protein oxidation in aging,
disease, and oxidative stress. J Biol Chem 272: 20313–20316,
1997.

41. Bigl M, Bruckner MK, Arendt T, Bigl V, and Eschrich K.
Activities of key glycolytic enzymes in the brains of pa-
tients with Alzheimer’s disease. J Neural Trans 106: 499–511,
1999.

42. Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ,
and Beal MF. Increased oxidative damage to DNA in a
transgenic mouse model of Huntington’s disease. J Neu-
rochem 79: 1246–1249, 2001.

43. Bogdanovic N, Zilmer M, Zilmer K, Rehema A, and Kar-
elson E. The Swedish APP670/671 Alzheimer’s disease
mutation: the first evidence for strikingly increased oxida-

tive injury in the temporal inferior cortex. Dement Geriatr
Cogn Disord 12: 364–370, 2001.

44. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW,
Russell P, Laing KG, Lee M, and Clemens MJ. The
mRNA of the translationally controlled tumor protein
P23/TCTP is a highly structured RNA, which activates
the dsRNA-dependent protein kinase PKR. RNA 8: 478–
496, 2002.

45. Bonilla E, Estevez J, Suarez H, Morales LM, Chacin de
Bonilla L, Villalobos R, and Davila JO. Serum ferritin de-
ficiency in Huntington’s disease patients. Neurosci Lett 129:
22–24, 1991.

46. Bonini NM and Giasson BI. Snaring the function of alpha-
synuclein. Cell 123: 359–361, 2005.

47. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis
F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N,
McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady
ST, and Brown RH, Jr. Wild-type and mutant SOD1 share
an aberrant conformation and a common pathogenic
pathway in ALS. Nat Neurosci 13: 1396–1403, 2010.

48. Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi
EA, Murri L, Rapoport SI, and Solaini G. Cytochrome c
oxidase and mitochondrial F1F0-ATPase (ATP synthase)
activities in platelets and brain from patients with Alzhei-
mer’s disease. Neurobiol Aging 23: 371–376, 2002.

49. Bowling AC, Schulz JB, Brown RH, Jr., and Beal MF. Su-
peroxide dismutase activity, oxidative damage, and mito-
chondrial energy metabolism in familial and sporadic
amyotrophic lateral sclerosis. J Neurochem 61: 2322–2325,
1993.

50. Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze
R, Lynn BC, Klein JB, and Butterfield DA. Proteomic
identification of proteins oxidized by Abeta(1–42) in syn-
aptosomes: implications for Alzheimer’s disease. Brain Res
1044: 206–215, 2005.

51. Bradley MA, Markesbery WR, and Lovell MA. Increased
levels of 4-hydroxynonenal and acrolein in the brain in
preclinical Alzheimer disease. Free Radic Biol Med 48: 1570–
1576, 2010.

52. Browne SE. Mitochondria and Huntington’s disease path-
ogenesis: insight from genetic and chemical models. Ann N
Y Acad Sci 1147: 358–382, 2008.

53. Browne SE and Beal MF. Oxidative damage in Hunting-
ton’s disease pathogenesis. Antioxid Redox Signal 8: 2061–
2073, 2006.

54. Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH,
Jr., and Beal MF. Metabolic dysfunction in familial, but not
sporadic, amyotrophic lateral sclerosis. J Neurochem 71:
281–287, 1998.

55. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger
SC, Muqit MM, Bird ED, and Beal MF. Oxidative damage
and metabolic dysfunction in Huntington’s disease: selec-
tive vulnerability of the basal ganglia. Ann Neurol 41: 646–
653, 1997.

56. Browne SE, Ferrante RJ, and Beal MF. Oxidative stress in
Huntington’s disease. Brain Pathol 9: 147–163, 1999.

57. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE,
and Durham HD. Up-regulation of protein chaperones pre-
serves viability of cells expressing toxic Cu/Zn-superoxide
dismutase mutants associated with amyotrophic lateral
sclerosis. J Neurochem 72: 693–699, 1999.

58. Bubber P, Haroutunian V, Fisch G, Blass JP, and Gibson
GE. Mitochondrial abnormalities in Alzheimer brain:
mechanistic implications. Ann Neurol 57: 695–703, 2005.

REDOX PROTEOMICS IN NEURODEGENERATIVE DISORDERS 33



59. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, and Hof
PR. Tau protein isoforms, phosphorylation and role in
neurodegenerative disorders. Brain Res Brain Res Rev 33:
95–130, 2000.

60. Burkhard PR, Sanchez JC, Landis T, and Hochstrasser DF.
CSF detection of the 14-3-3 protein in unselected patients
with dementia. Neurology 56: 1528–1533, 2001.

61. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori
H, and Yankner BA. Altered metabolism of the amyloid
beta precursor protein is associated with mitochondrial
dysfunction in Down’s syndrome. Neuron 33: 677–688,
2002.

62. Butterfield D, Castegna A, Pocernich C, Drake J, Scapagnini
G, and Calabrese V. Nutritional approaches to combat
oxidative stress in Alzheimer’s disease. J Nutr Biochem 13:
444, 2002.

63. Butterfield DA. beta-Amyloid-associated free radical oxi-
dative stress and neurotoxicity: implications for Alzhei-
mer’s disease. Chem Res Toxicol 10: 495–506, 1997.

64. Butterfield DA, Gnjec A, Poon HF, Castegna A, Pierce WM,
Klein JB, and Martins RN. Redox proteomics identification of
oxidatively modified brain proteins in inherited Alzheimer’s
disease: An initial assessment. J Alzheimers Dis 10: 391–
397, 2006.

65. Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G,
Ansari MA, and Sultana R. Pin1 in Alzheimer’s disease. J
Neurochem 98: 1697–1706, 2006.

66. Butterfield DA, Bader Lange ML, and Sultana R. Involve-
ments of the lipid peroxidation product, HNE, in the
pathogenesis and progression of Alzheimer’s disease. Bio-
chim Biophys Acta 1801: 924–929, 2010.

67. Butterfield DA and Boyd-Kimball D. The critical role of
methionine 35 in Alzheimer’s amyloid beta-peptide (1–42)-
induced oxidative stress and neurotoxicity. Biochim Biophys
Acta 1703: 149–156, 2005.

68. Butterfield DA and Castegna A. Proteomics for the identi-
fication of specifically oxidized proteins in brain: technol-
ogy and application to the study of neurodegenerative
disorders. Amino Acids 25: 419–425, 2003.

69. Butterfield DA, Drake J, Pocernich C, and Castegna A.
Evidence of oxidative damage in Alzheimer’s disease brain:
central role for amyloid beta-peptide. Trends Mol Med 7:
548–554, 2001.

70. Butterfield DA, Galvan V, Lange MB, Tang H, Sowell RA,
Spilman P, Fombonne J, Gorostiza O, Zhang J, Sultana R,
and Bredesen DE. In vivo oxidative stress in brain of Alz-
heimer disease transgenic mice: requirement for methio-
nine 35 in amyloid beta-peptide of APP. Free Radic Biol Med
48: 136–144, 2010.

71. Butterfield DA, Hardas SS, and Lange ML. Oxidatively
modified glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and Alzheimer’s disease: many pathways to
neurodegeneration. J Alzheimers Dis 20: 369–393, 2010.

72. Butterfield DA, Hensley K, Cole P, Subramaniam R, Ak-
senov M, Aksenova M, Bummer PM, Haley BE, and Carney
JM. Oxidatively induced structural alteration of glutamine
synthetase assessed by analysis of spin label incorporation
kinetics: relevance to Alzheimer’s disease. J Neurochem 68:
2451–2457, 1997.

73. Butterfield DA and Lange ML. Multifunctional roles of
enolase in Alzheimer’s disease brain: beyond altered glu-
cose metabolism. J Neurochem 111: 915–933, 2009.

74. Butterfield DA and Lauderback CM. Lipid peroxidation
and protein oxidation in Alzheimer’s disease brain: po-

tential causes and consequences involving amyloid beta-
peptide-associated free radical oxidative stress. Free Radic
Biol Med 32: 1050–1060, 2002.

75. Butterfield DA, Perluigi M, and Sultana R. Oxidative stress
in Alzheimer’s disease brain: new insights from redox
proteomics. Eur J Pharmacol 545: 39–50, 2006.

76. Butterfield DA, Poon HF, St. Clair D, Keller JN, Pierce
WM, Klein JB, and Markesbery WR. Redox proteomics
identification of oxidatively modified hippocampal pro-
teins in mild cognitive impairment: insights into the
development of Alzheimer’s disease. Neurobiol Dis 22:
223–232, 2006.

77. Butterfield DA, Reed T, Newman SF, and Sultana R. Roles
of amyloid beta-peptide-associated oxidative stress and
brain protein modifications in the pathogenesis of Alzhei-
mer’s disease and mild cognitive impairment. Free Radic
Biol Med 43: 658–677, 2007.

78. Butterfield DA, Reed T, Perluigi M, De Marco C, Coccia R,
Cini C, and Sultana R. Elevated protein-bound levels of the
lipid peroxidation product, 4-hydroxy-2-nonenal, in brain
from persons with mild cognitive impairment. Neurosci Lett
397: 170–173, 2006.

79. Butterfield DA and Stadtman ER. Protein oxidation pro-
cesses in aging brain. Adv Cell Aging Gerontol 2: 161–191,
1997.

80. Butterfield DA and Sultana R. Redox proteomics identifi-
cation of oxidatively modified brain proteins in Alzhei-
mer’s disease and mild cognitive impairment: insights into
the progression of this dementing disorder. J Alzheimers Dis
12: 61–72, 2007.

81. Calabrese V. Highlight Commentary on Redox proteomics
analysis of oxidatively modified proteins in G93A-SOD1
transgenic mice—a model of familial amyotrophic lateral
sclerosis. Free Radic Biol Med 43: 160–162, 2007.

82. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butter-
field DA, and Stella AM. Nitric oxide in the central nervous
system: neuroprotection versus neurotoxicity. Nat Rev
Neurosci 8: 766–775, 2007.

83. Calabrese V, Scapagnini G, Colombrita C, Ravagna A,
Pennisi G, Giuffrida Stella AM, Galli F, and Butterfield DA.
Redox regulation of heat shock protein expression in aging
and neurodegenerative disorders associated with oxidative
stress: a nutritional approach. Amino Acids 25: 437–444,
2003.

84. Calabrese V, Scapagnini G, Ravagna A, Colombrita C,
Spadaro F, Butterfield DA, and Giuffrida Stella AM. In-
creased expression of heat shock proteins in rat brain
during aging: relationship with mitochondrial function and
glutathione redox state. Mech Ageing Dev 125: 325–335,
2004.

85. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R,
McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D,
Petsko GA, and Cookson MR. The Parkinson’s disease
protein DJ-1 is neuroprotective due to cysteine-sulfinic
acid-driven mitochondrial localization. Proc Natl Acad Sci U
S A 101: 9103–9108, 2004.

86. Caperna TJ, Shannon AE, Blomberg le A, Garrett WM, and
Ramsay TG. Identification of protein carbonyls in serum of
the fetal and neonatal pig. Comp Biochem Physiol B Biochem
Mol Biol 156: 189–196, 2010.

87. Casado A, Encarnacion Lopez-Fernandez M, Concepcion
Casado M, and de La Torre R. Lipid peroxidation and
antioxidant enzyme activities in vascular and Alzheimer
dementias. Neurochem Res 33: 450–458, 2008.

34 BUTTERFIELD ET AL.



88. Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I,
Massignan T, Salmona M, Chang G, Holmgren A, and
Ghezzi P. Glutathionylation of human thioredoxin: a
possible crosstalk between the glutathione and thioredoxin
systems. Proc Natl Acad Sci U S A 99: 9745–9749, 2002.

89. Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C,
Salmona M, Bendotti C, and Bonetto V. Protein nitration in
a mouse model of familial amyotrophic lateral sclerosis:
possible multifunctional role in the pathogenesis. J Biol
Chem 280: 16295–16304, 2005.

90. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L,
Ischiropoulos H, Freeman BA, and Radi R. Cytochrome c
nitration by peroxynitrite. J Biol Chem 275: 21409–21415,
2000.

91. Castegna A, Aksenov M, Aksenova M, Thongboonkerd
V, Klein JB, Pierce WM, Booze R, Markesbery WR, and
Butterfield DA. Proteomic identification of oxidatively
modified proteins in Alzheimer’s disease brain. Part I:
creatine kinase BB, glutamine synthase, and ubiquitin
carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:
562–571, 2002.

92. Castegna A, Aksenov M, Thongboonkerd V, Klein JB,
Pierce WM, Booze R, Markesbery WR, and Butterfield DA.
Proteomic identification of oxidatively modified proteins in
Alzheimer’s disease brain. Part II: dihydropyrimidinase-
related protein 2, alpha-enolase and heat shock cognate 71.
J Neurochem 82: 1524–1532, 2002.

93. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Mar-
kesbery WR, and Butterfield DA. Proteomic identification
of nitrated proteins in Alzheimer’s disease brain. J Neu-
rochem 85: 1394–1401, 2003.

94. Caudle WM, Pan S, Shi M, Quinn T, Hoekstra J, Beyer RP,
Montine TJ, and Zhang J. Proteomic identification of pro-
teins in the human brain: towards a more comprehensive
understanding of neurodegenerative disease. Proteomics
Clin Appl 2: 1484–1497, 2008.

95. Cenini G, Dowling ALS, Beckett T, Barone E, Mancuso C,
Murphy MP, Levine III H, Schmitt FA, Butterfield DA,
and Head E. Association between frontal cortex oxidative
damage and beta-amyloid neuropathology as a function
of age in Down syndrome. Biochem Biophys Acta 1822: 130–
138, 2011.

96. Charkoudian LK and Franz KJ. Fe(III)-coordination prop-
erties of neuromelanin components: 5,6-dihydroxyindole
and 5,6-dihydroxyindole-2-carboxylic acid. Inorg Chem 45:
3657–3664, 2006.

97. Chavez J, Chung WG, Miranda CL, Singhal M, Stevens JF,
and Maier CS. Site-specific protein adducts of 4-hydroxy-
2(E)-nonenal in human THP-1 monocytic cells: protein
carbonylation is diminished by ascorbic acid. Chem Res
Toxicol 23: 37–47, 2010.

98. Chavez J, Wu J, Han B, Chung WG, and Maier CS. New
role for an old probe: affinity labeling of oxylipid protein
conjugates by N’-aminooxymethylcarbonylhydrazino d-
biotin. Anal Chem 78: 6847–6854, 2006.

99. Chen Q, Surmeier DJ, and Reiner A. NMDA and non-
NMDA receptor-mediated excitotoxicity are potentiated in
cultured striatal neurons by prior chronic depolarization.
Exp Neurol 159: 283–296, 1999.

100. Chen ZH, Saito Y, Yoshida Y, Sekine A, Noguchi N, and
Niki E. 4-Hydroxynonenal induces adaptive response and
enhances PC12 cell tolerance primarily through induction
of thioredoxin reductase 1 via activation of Nrf2. J Biol
Chem 280: 41921–41927, 2005.

101. Chiappetta G, Corbo C, Palmese A, Galli F, Piroddi M,
Marino G, and Amoresano A. Quantitative identification of
protein nitration sites. Proteomics 9: 1524–1537, 2009.

102. Choi DE, Jeong JY, Lim BJ, Chung S, Chang YK, Lee SJ, Na
KR, Kim SY, Shin YT, and Lee KW. Pretreatment of silde-
nafil attenuates ischemia-reperfusion renal injury in rats.
Am J Physiol Renal Physiol 297: F362–F370, 2009.

103. Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin
LS, and Li L. Oxidative modifications and down-regulation
of ubiquitin carboxyl-terminal hydrolase L1 associated
with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol
Chem 279: 13256–13264, 2004.

104. Cimini A, Moreno S, D’Amelio M, Cristiano L, D’Angelo B,
Falone S, Benedetti E, Carrara P, Fanelli F, Cecconi F,
Amicarelli F, and Ceru MP. Early biochemical and mor-
phological modifications in the brain of a transgenic mouse
model of Alzheimer’s disease: a role for peroxisomes. J
Alzheimers Dis 18: 935–952, 2009.

105. Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzo-
gori D, Grassi C, Giardina B, and Misiti F. Alzheimer’s
amyloid beta-peptide (1–42) induces cell death in human
neuroblastoma via bax/bcl-2 ratio increase: an intriguing
role for methionine 35. Biochem Biophys Res Commun 342:
206–213, 2006.

106. Cleveland DW and Rothstein JD. From Charcot to Lou
Gehrig: deciphering selective motor neuron death in ALS.
Nat Rev Neurosci 2: 806–819, 2001.

107. Coleman PD and Flood DG. Neuron numbers and den-
dritic extent in normal aging and Alzheimer’s disease.
Neurobiol Aging 8: 521–545, 1987.

108. Connor JR, Snyder BS, Beard JL, Fine RE, and Mufson EJ.
Regional distribution of iron and iron-regulatory proteins
in the brain in aging and Alzheimer’s disease. J Neurosci Res
31: 327–335, 1992.

109. Crichton RR and Pierre JL. Old iron, young copper: from
Mars to Venus. Biometals 14: 99–112, 2001.

110. Cruthirds DL, Novak L, Akhi KM, Sanders PW, Thompson
JA, and MacMillan-Crow LA. Mitochondrial targets of ox-
idative stress during renal ischemia/reperfusion. Arch
Biochem Biophys 412: 27–33, 2003.

111. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L,
Tosca P, Zerbi F, and Ceroni M. Amyotrophic lateral scle-
rosis: oxidative energy metabolism and calcium homeo-
stasis in peripheral blood lymphocytes. Neurology 47: 1060–
1064, 1996.

112. D’Alessandro A, Rinalducci S, and Zolla L. Redox proteomics
and drug development. J Proteomics 74: 2575–2595, 2011.

113. Dalle-Donne I. Familial amyotrophic lateral sclerosis
(FALS): Emerging hints from redox proteomics. Highlight
commentary on: ‘‘Redox proteomics analysis of oxidatively
modified proteins in G93A-SOD1 transgenic mice—a
model of familial amyotrophic lateral sclerosis’’. Free Radic
Biol Med 43: 157–159, 2007.

114. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, and
Milzani A. Protein carbonylation in human diseases. Trends
Mol Med 9: 169–176, 2003.

115. Dalle-Donne I, Scaloni A, and Butterfield DA. Redox Pro-
teomics: From Protein Modifications to Cellular Dysfunction and
Diseases. Hoboken, NJ: John Wiley and Sons, 2006.

116. Daly NL, Hoffmann R, Otvos L, Jr., and Craik DJ. Role of
phosphorylation in the conformation of tau peptides impli-
cated in Alzheimer’s disease. Biochemistry 39: 9039–9046, 2000.

117. David S, Shoemaker M, and Haley BE. Abnormal prop-
erties of creatine kinase in Alzheimer’s disease brain:

REDOX PROTEOMICS IN NEURODEGENERATIVE DISORDERS 35



correlation of reduced enzyme activity and active site
photolabeling with aberrant cytosol-membrane partition-
ing. Brain Res Mol Brain Res 54: 276–287, 1998.

118. Davies KJ and Shringarpure R. Preferential degradation of
oxidized proteins by the 20S proteasome may be inhibited
in aging and in inflammatory neuromuscular diseases.
Neurology 66: S93–S96, 2006.

119. Davies P, Moualla D, and Brown DR. Alpha-synuclein is a
cellular ferrireductase. PLoS One 6: e15814, 2011.

120. De Iuliis A, Grigoletto J, Recchia A, Giusti P, and Arslan
P. A proteomic approach in the study of an animal
model of Parkinson’s disease. Clin Chim Acta 357: 202–
209, 2005.

121. Demicheli V, Quijano C, Alvarez B, and Radi R. Inactiva-
tion and nitration of human superoxide dismutase (SOD)
by fluxes of nitric oxide and superoxide. Free Radic Biol Med
42: 1359–1368, 2007.

122. Dexter DT, Jenner P, Schapira AH, and Marsden CD. Al-
terations in levels of iron, ferritin, and other trace metals in
neurodegenerative diseases affecting the basal ganglia. The
Royal Kings and Queens Parkinson’s Disease Research
Group. Ann Neurol 32 Suppl: S94–S100, 1992.

123. Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M,
Cini C, and Butterfield DA. Protein levels of heat shock
proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic
mild cognitive impairment: an investigation on the role of
cellular stress response in the progression of Alzheimer
disease. Brain Res 1333: 72–81, 2010.

124. Di Stasi AM, Mallozzi C, Macchia G, Petrucci TC, and
Minetti M. Peroxynitrite induces tryosine nitration and
modulates tyrosine phosphorylation of synaptic proteins. J
Neurochem 73: 727–735, 1999.

125. Diamandis EP and Christopoulos TK. The biotin-
(strept)avidin system: principles and applications in bio-
technology. Clin Chem 37: 625–636, 1991.

126. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP,
Vonsattel JP, and Aronin N. Aggregation of huntingtin in
neuronal intranuclear inclusions and dystrophic neurites in
brain. Science 277: 1990–1993, 1997.

127. Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM,
Zhang H, Zhan Y, and Guan YJ. Correlation of iron in the
hippocampus with MMSE in patients with Alzheimer’s
disease. J Magn Reson Imaging 29: 793–798, 2009.

128. Ding Q, Markesbery WR, Cecarini V, and Keller JN. Decreased
RNA, and increased RNA oxidation, in ribosomes from early
Alzheimer’s disease. Neurochem Res 31: 705–710, 2006.

129. Doorn JA, Maser E, Blum A, Claffey DJ, and Petersen DR.
Human carbonyl reductase catalyzes reduction of 4-ox-
onon-2-enal. Biochemistry 43: 13106–13114, 2004.

130. Doorn JA and Petersen DR. Covalent adduction of nucle-
ophilic amino acids by 4-hydroxynonenal and 4-ox-
ononenal. Chem Biol Interact 143–144: 93–100, 2003.

131. Drake J, Link CD, and Butterfield DA. Oxidative stress
precedes fibrillar deposition of Alzheimer’s disease amy-
loid beta-peptide (1–42) in a transgenic Caenorhabditis ele-
gans model. Neurobiol Aging 24: 415–420, 2003.

132. Duan Z, Lamendola DE, Yusuf RZ, Penson RT, Preffer FI,
and Seiden MV. Overexpression of human phosphoglyc-
erate kinase 1 (PGK1) induces a multidrug resistance phe-
notype. Anticancer Res 22: 1933–1941, 2002.

133. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe
K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho
HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE,
Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, and Bush

AI. Iron-export ferroxidase activity of beta-amyloid pre-
cursor protein is inhibited by zinc in Alzheimer’s disease.
Cell 142: 857–867, 2010.

134. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, and
Lin MT. Reduction of oxidative stress, amyloid deposition,
and memory deficit by manganese superoxide dismutase
overexpression in a transgenic mouse model of Alzheimer’s
disease. FASEB J 23: 2459–2466, 2009.

135. Duyckaerts C, Delatour B, and Potier MC. Classification
and basic pathology of Alzheimer disease. Acta Neuropathol
118: 5–36, 2009.

136. Eismann T, Huber N, Shin T, Kuboki S, Galloway E, Wyder
M, Edwards MJ, Greis KD, Shertzer HG, Fisher AB, and
Lentsch AB. Peroxiredoxin-6 protects against mitochon-
drial dysfunction and liver injury during ischemia-
reperfusion in mice. Am J Physiol Gastrointest Liver Physiol
296: G266–G274, 2009.

137. El Tannir El Tayara N, Delatour B, Le Cudennec C, Guegan
M, Volk A, and Dhenain M. Age-related evolution of am-
yloid burden, iron load, and MR relaxation times in a
transgenic mouse model of Alzheimer’s disease. Neurobiol
Dis 22: 199–208, 2006.

138. Eliuk SM, Renfrow MB, Shonsey EM, Barnes S, and Kim H.
Active site modifications of the brain isoform of creatine
kinase by 4-hydroxy-2-nonenal correlate with reduced en-
zyme activity: mapping of modified sites by Fourier trans-
form-ion cyclotron resonance mass spectrometry. Chem Res
Toxicol 20: 1260–1268, 2007.

139. Esterbauer H, Schaur RJ, and Zollner H. Chemistry and
biochemistry of 4-hydroxynonenal, malonaldehyde and
related aldehydes. Free Radic Biol Med 11: 81–128, 1991.

140. Estevez AG. Good science shows the way. Highlight
Commentary on ‘‘Redox proteomics analysis of oxidatively
modified proteins in G93A-SOD1 transgenic mice—a
model of familial amyotrophic lateral sclerosis’’. Free Radic
Biol Med 43: 163–164, 2007.

141. Fagni L and Bockaert J. Effects of nitric oxide on glutamate-
gated channels and other ionic channels. J Chem Neuroanat
10: 231–240, 1996.

142. Fan Q, Yang XC, Cao XB, Wang SY, Yang SL, Liu XL, and
Gao F. Glutathione reverses peroxynitrite-mediated dele-
terious effects of nitroglycerin on ischemic rat hearts. J
Cardiovasc Pharmacol 47: 405–412, 2006.

143. Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ,
Agid Y, and Hirsch EC. Lack of up-regulation of ferritin is
associated with sustained iron regulatory protein-1 binding
activity in the substantia nigra of patients with Parkinson’s
disease. J Neurochem 83: 320–330, 2002.

144. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ,
MacGarvey U, Kowall NW, Brown RH, Jr., and Beal MF.
Evidence of increased oxidative damage in both sporadic
and familial amyotrophic lateral sclerosis. J Neurochem 69:
2064–2074, 1997.

145. Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas
CE, Kowall NW, Gurney ME, and Beal MF. Increased 3-
nitrotyrosine and oxidative damage in mice with a human
copper/zinc superoxide dismutase mutation. Ann Neurol
42: 326–334, 1997.

146. Ferrer I. Differential expression of phosphorylated transla-
tion initiation factor 2 alpha in Alzheimer’s disease and
Creutzfeldt-Jakob’s disease. Neuropathol Appl Neurobiol 28:
441–451, 2002.

147. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo
E, and Avila J. Current advances on different kinases

36 BUTTERFIELD ET AL.



involved in tau phosphorylation, and implications in
Alzheimer’s disease and tauopathies. Curr Alzheimer Res
2: 3–18, 2005.

148. Ferrer I, Martinez A, Blanco R, Dalfo E, and Carmona M.
Neuropathology of sporadic Parkinson disease before the
appearance of parkinsonism: preclinical Parkinson disease.
J Neural Transm 118: 821–839, 2011.

149. Filipovic MR, Stanic D, Raicevic S, Spasic M, and Niketic V.
Consequences of MnSOD interactions with nitric oxide:
nitric oxide dismutation and the generation of peroxynitrite
and hydrogen peroxide. Free Radic Res 41: 62–72, 2007.

150. Fishman-Jacob T, Reznichenko L, Youdim MB, and Mandel
SA. A sporadic Parkinson disease model via silencing of the
ubiquitin-proteasome/E3 ligase component SKP1A. J Biol
Chem 284: 32835–32845, 2009.

151. Fitzmaurice PS, Shaw IC, Kleiner HE, Miller RT, Monks TJ,
Lau SS, Mitchell JD, and Lynch PG. Evidence for DNA
damage in amyotrophic lateral sclerosis. Muscle Nerve 19:
797–798, 1996.

152. Flint DH, Tuminello JF, and Emptage MH. The inactivation
of Fe-S cluster containing hydro-lyases by superoxide. J Biol
Chem 268: 22369–22376, 1993.

153. Floor E and Wetzel MG. Increased protein oxidation in
human substantia nigra pars compacta in comparison with
basal ganglia and prefrontal cortex measured with an im-
proved dinitrophenylhydrazine assay. J Neurochem 70: 268–
275, 1998.

154. Forrest GL and Gonzalez B. Carbonyl reductase. Chem Biol
Interact 129: 21–40, 2000.

155. Foy CJ, Passmore AP, Vahidassr MD, Young IS, and
Lawson JT. Plasma chain-breaking antioxidants in Alzhei-
mer’s disease, vascular dementia and Parkinson’s disease.
QJM 92: 39–45, 1999.

156. Francis PT, Palmer AM, Snape M, and Wilcock GK. The
cholinergic hypothesis of Alzheimer’s disease: a review of
progress. J Neurol Neurosurg Psychiatry 66: 137–147, 1999.

157. Fratelli M, Demol H, Puype M, Casagrande S, Eberini I,
Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E,
Bachi A, Vandekerckhove J, Gianazza E, and Ghezzi P.
Identification by redox proteomics of glutathionylated
proteins in oxidatively stressed human T lymphocytes. Proc
Natl Acad Sci U S A 99: 3505–3510, 2002.

158. Frautschy SA, Baird A, and Cole GM. Effects of injected
Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad
Sci U S A 88: 8362–8366, 1991.

159. Fucci L, Oliver CN, Coon MJ, and Stadtman ER. Inactiva-
tion of key metabolic enzymes by mixed-function oxidation
reactions: possible implication in protein turnover and
ageing. Proc Natl Acad Sci U S A 80: 1521–1525, 1983.

160. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Ki-
mura J, Yonekura Y, and Konishi J. Altered cerebral energy
metabolism in Alzheimer’s disease: a PET study. J Nucl Med
35: 1–6, 1994.

161. Gabbita SP, Aksenov MY, Lovell MA, and Markesbery WR.
Decrease in peptide methionine sulfoxide reductase in
Alzheimer’s disease brain. J Neurochem 73: 1660–1666, 1999.

162. Gadoni E, Olivero A, Miglietta A, Bocca C, and Gabriel L.
Cytoskeletal modifications induced by 4-hydroxynonenal.
Cytotechnology 11 Suppl 1: S62–S64, 1993.

163. Ganea E. Chaperone-like activity of alpha-crystallin and
other small heat shock proteins. Curr Protein Pept Sci 2: 205–
225, 2001.

164. Gardner PR, Nguyen DD, and White CW. Aconitase is a
sensitive and critical target of oxygen poisoning in cultured

mammalian cells and in rat lungs. Proc Natl Acad Sci U S A
91: 12248–12252, 1994.

165. Geddes JW, Pang Z, and Wiley DH. Hippocampal damage
and cytoskeletal disruption resulting from impaired energy
metabolism. Implications for Alzheimer disease. Mol Chem
Neuropathol 28: 65–74, 1996.

166. George AJ, Holsinger RM, McLean CA, Tan SS, Scott HS,
Cardamone T, Cappai R, Masters CL, and Li QX. De-
creased phosphatidylethanolamine binding protein ex-
pression correlates with Abeta accumulation in the Tg2576
mouse model of Alzheimer’s disease. Neurobiol Aging 27:
614–623, 2006.

167. Giambattistelli F, Bucossi S, Salustri C, Panetta V, Mariani
S, Siotto M, Ventriglia M, Vernieri F, Dell’acqua ML, Cas-
setta E, Rossini PM, and Squitti R. Effects of hemochro-
matosis and transferrin gene mutations on iron
dyshomeostasis, liver dysfunction and on the risk of Alz-
heimer’s disease. Neurobiol Aging in press, 2011.

168. Giasson BI, Ischiropoulos H, Lee VM, and Trojanowski JQ.
The relationship between oxidative/nitrative stress and
pathological inclusions in Alzheimer’s and Parkinson’s
diseases. Free Radic Biol Med 32: 1264–1275, 2002.

169. Giovannini MG, Cerbai F, Bellucci A, Melani C, Grossi C,
Bartolozzi C, Nosi D, and Casamenti F. Differential acti-
vation of mitogen-activated protein kinase signalling
pathways in the hippocampus of CRND8 transgenic
mouse, a model of Alzheimer’s disease. Neuroscience 153:
618–633, 2008.

170. Glabe CG. Common mechanisms of amyloid oligomer
pathogenesis in degenerative disease. Neurobiol Aging 27:
570–575, 2006.

171. Gokulrangan G, Zaidi A, Michaelis ML, and Schoneich C.
Proteomic analysis of protein nitration in rat cerebellum:
effect of biological aging. J Neurochem 100: 1494–1504, 2007.

172. Golej J, Hoeger H, Radner W, Unfried G, and Lubec G. Oral
administration of methylglyoxal leads to kidney collagen
accumulation in the mouse. Life Sci 63: 801–807, 1998.

173. Gomez A and Ferrer I. Increased oxidation of certain gly-
colysis and energy metabolism enzymes in the frontal
cortex in Lewy body diseases. J Neurosci Res 87: 1002–1013,
2009.

174. Goshima Y, Nakamura F, Strittmatter P, and Strittmatter
SM. Collapsin-induced growth cone collapse mediated by
an intracellular protein related to Unc-33. Nature 376: 509–
514, 1995.

175. Gotz ME, Kunig G, Riederer P, and Youdim MB. Oxidative
stress: free radical production in neural degeneration.
Pharmacol Ther 63: 37–122, 1994.

176. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS,
and Wisniewski HM. Microtubule-associated protein tau.
A component of Alzheimer paired helical filaments. J Biol
Chem 261: 6084–6089, 1986.

177. Gulesserian T, Seidl R, Hardmeier R, Cairns N, and Lubec
G. Superoxide dismutase SOD1, encoded on chromosome
21, but not SOD2 is overexpressed in brains of patients with
Down syndrome. J Investig Med 49: 41–46, 2001.

178. Gurney ME. The use of transgenic mouse models of
amyotrophic lateral sclerosis in preclinical drug studies. J
Neurol Sci 152 Suppl 1: S67–S73, 1997.

179. Hague SM, Klaffke S, and Bandmann O. Neurodegenera-
tive disorders: Parkinson’s disease and Huntington’s dis-
ease. J Neurol Neurosurg Psychiatry 76: 1058–1063, 2005.

180. Halliwell B. Oxidative stress and neurodegeneration:
where are we now? J Neurochem 97: 1634–1658, 2006.

REDOX PROTEOMICS IN NEURODEGENERATIVE DISORDERS 37



181. Halliwell B. Proteasomal dysfunction: a common fea-
ture of neurodegenerative diseases? Implications for the
environmental origins of neurodegeneration. Antioxid
Redox Signal 8: 2007–2019, 2006.

182. Hand CK and Rouleau GA. Familial amyotrophic lateral
sclerosis. Muscle Nerve 25: 135–159, 2002.

183. Hara MR and Snyder SH. Nitric oxide-GAPDH-Siah: a
novel cell death cascade. Cell Mol Neurobiol 26: 527–538,
2006.

184. Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, and
Muller WE. Mitochondrial dysfunction in sporadic and
genetic Alzheimer’s disease. Exp Gerontol 41: 668–673, 2006.

185. Hayes JP and Tipton KF. Interactions of the neurotoxin 6-
hydroxydopamine with glyceraldehyde-3-phosphate de-
hydrogenase. Toxicol Lett 128: 197–206, 2002.

186. Healy DG, Abou-Sleiman PM, and Wood NW. Genetic
causes of Parkinson’s disease: UCHL-1. Cell Tissue Res 318:
189–194, 2004.

187. Hellberg K, Grimsrud PA, Kruse AC, Banaszak LJ, Oh-
lendorf DH, and Bernlohr DA. X-ray crystallographic
analysis of adipocyte fatty acid binding protein (aP2)
modified with 4-hydroxy-2-nonenal. Prot Sci 19: 1480–1489,
2010.

188. Helman M and Givol D. Isolation of nitrotyrosine-con-
taining peptides by using an insoluble-antibody column.
Biochem J 125: 971–974, 1971.

189. Hensley K, Fedynyshyn J, Ferrell S, Floyd RA, Gordon B,
Grammas P, Hamdheydari L, Mhatre M, Mou S, Pye QN,
Stewart C, West M, West S, and Williamson KS. Message
and protein-level elevation of tumor necrosis factor alpha
(TNF alpha) and TNF alpha-modulating cytokines in spinal
cords of the G93A-SOD1 mouse model for amyotrophic
lateral sclerosis. Neurobiol Dis 14: 74–80, 2003.

190. Hensley K, Hall N, Subramaniam R, Cole P, Harris M,
Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM,
et al. Brain regional correspondence between Alzheimer’s
disease histopathology and biomarkers of protein oxida-
tion. J Neurochem 65: 2146–2156, 1995.

191. Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A,
Persichetti F, and MacDonald ME. Huntingtin: an iron-
regulated protein essential for normal nuclear and peri-
nuclear organelles. Hum Mol Genet 9: 2789–2797, 2000.

192. Hillmer AS, Putcha P, Levin J, Hogen T, Hyman BT,
Kretzschmar H, McLean PJ, and Giese A. Converse mod-
ulation of toxic alpha-synuclein oligomers in living cells by
N’-benzylidene-benzohydrazide derivates and ferric iron.
Biochem Biophys Res Commun 391: 461–466, 2010.

193. Hink U, Oelze M, Kolb P, Bachschmid M, Zou MH, Daiber
A, Mollnau H, August M, Baldus S, Tsilimingas N, Walter
U, Ullrich V, and Munzel T. Role for peroxynitrite in the
inhibition of prostacyclin synthase in nitrate tolerance. J Am
Coll Cardiol 42: 1826–1834, 2003.

194. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL,
Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M,
Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK,
Petersen RB, Perry G, and Smith MA. Mitochondrial ab-
normalities in Alzheimer’s disease. J Neurosci 21: 3017–
3023, 2001.

195. Hirano M, Quinzii CM, Mitsumoto H, Hays AP, Kirk Ro-
berts J, Richard P, and Rowland LP. Senataxin mutations
and amyotrophic lateral sclerosis. Amyotroph Lateral Scler
12: 223–227, 2010.

196. Holzer M, Gartner U, Stobe A, Hartig W, Gruschka H,
Bruckner MK, and Arendt T. Inverse association of Pin1

and tau accumulation in Alzheimer’s disease hippocam-
pus. Acta Neuropathol 104: 471–481, 2002.

197. Hoyer S. Brain glucose and energy metabolism abnormal-
ities in sporadic Alzheimer disease. Causes and conse-
quences: an update. Exp Gerontol 35: 1363–1372, 2000.

198. Hoyer S. Glucose metabolism and insulin receptor signal
transduction in Alzheimer disease. Eur J Pharmacol 490:
115–125, 2004.

199. Hsu JL, Chen SH, Li DT, and Shi FK. Enhanced a1 frag-
mentation for dimethylated proteins and its applications
for N-terminal identification and comparative protein
quantitation. J Proteome Res 6: 2376–2383, 2007.

200. Huang LL, Shang F, Nowell TR, Jr., and Taylor A.
Degradation of differentially oxidized alpha-crystallins
in bovine lens epithelial cells. Exp Eye Res 61: 45–54,
1995.

201. Hyson HC, Kieburtz K, Shoulson I, McDermott M, Ravina
B, de Blieck EA, Cudkowicz ME, Ferrante RJ, Como P,
Frank S, Zimmerman C, Ferrante K, Newhall K, Jennings
D, Kelsey T, Walker F, Hunt V, Daigneault S, Goldstein M,
Weber J, Watts A, Beal MF, Browne SE, and Metakis LJ.
Safety and tolerability of high-dosage coenzyme Q10 in
Huntington’s disease and healthy subjects. Mov Disord 25:
1924–1928, 2010.

202. Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletni-
kova O, Rudow G, An Y, West MJ, Crain B, and Troncoso
JC. Neuronal hypertrophy in asymptomatic Alzheimer
disease. J Neuropathol Exp Neurol 67: 578–589, 2008.

203. Iannello RC, Crack PJ, de Haan JB, and Kola I. Oxidative
stress and neural dysfunction in Down syndrome. J Neural
Transm Suppl 57: 257–267, 1999.

204. Ignarro LJ. Nitric oxide. A novel signal transduction
mechanism for transcellular communication. Hypertension
16: 477–483, 1990.

205. Ihara Y, Nobukuni K, Takata H, and Hayabara T. Oxida-
tive stress and metal content in blood and cerebrospinal
fluid of amyotrophic lateral sclerosis patients with and
without a Cu, Zn-superoxide dismutase mutation. Neurol
Res 27: 105–108, 2005.

206. Ince PG, Shaw PJ, Candy JM, Mantle D, Tandon L, Ehmann
WD, and Markesbery WR. Iron, selenium and glutathione
peroxidase activity are elevated in sporadic motor neuron
disease. Neurosci Lett 182: 87–90, 1994.

207. Ishihara K, Amano K, Takaki E, Ebrahim AS, Shimohata A,
Shibazaki N, Inoue I, Takaki M, Ueda Y, Sago H, Epstein
CJ, and Yamakawa K. Increased lipid peroxidation in
Down’s syndrome mouse models. J Neurochem 110: 1965–
1976, 2009.

208. Jang BG, Yun SM, Ahn K, Song JH, Jo SA, Kim YY, Kim
DK, Park MH, Han C, and Koh YH. Plasma carbonic an-
hydrase II protein is elevated in Alzheimer’s disease. J
Alzheimers Dis JAD 21: 939–945, 2010.

209. Jenner P. Oxidative stress in Parkinson’s disease. Ann
Neurol 53 Suppl 3: S26–S36, 2003; discussion S36–S38.

210. Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, and
David S. Dysregulation of iron homeostasis in the CNS
contributes to disease progression in a mouse model of
amyotrophic lateral sclerosis. J Neurosci 29: 610–619, 2009.

211. Jiang H, Luan Z, Wang J, and Xie J. Neuroprotective effects
of iron chelator Desferal on dopaminergic neurons in the
substantia nigra of rats with iron-overload. Neurochem Int
49: 605–609, 2006.

212. Joguchi A, Otsuka I, Minagawa S, Suzuki T, Fujii M, and
Ayusawa D. Overexpression of VDUP1 mRNA sensitizes

38 BUTTERFIELD ET AL.



HeLa cells to paraquat. Biochem Biophys Res Commun 293:
293–297, 2002.

213. Jouvenceau A, Dutar P, and Billard JM. Alteration of
NMDA receptor-mediated synaptic responses in CA1 area
of the aged rat hippocampus: contribution of GABAergic
and cholinergic deficits. Hippocampus 8: 627–637, 1998.

214. Jovanovic SV, Clements D, and MacLeod K. Biomarkers of
oxidative stress are significantly elevated in Down syn-
drome. Free Radic Biol Med 25: 1044–1048, 1998.

215. Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S,
Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Ta-
kahashi H, Wakabayashi K, Bogdanovic N, Riederer P,
Kretzschmar HA, and Haass C. Selective insolubility of
alpha-synuclein in human Lewy body diseases is recapit-
ulated in a transgenic mouse model. Am J Pathol 159: 2215–
2225, 2001.

216. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN,
and Hensley K. Antioxidants in central nervous system
diseases: preclinical promise and translational challenges. J
Alzheimers Dis 15: 473–493, 2008.

217. Kanski J, Alterman MA, and Schoneich C. Proteomic
identification of age-dependent protein nitration in rat
skeletal muscle. Free Radic Biol Med 35: 1229–1239, 2003.

218. Kanski J, Hong SJ, and Schoneich C. Proteomic analysis of
protein nitration in aging skeletal muscle and identification
of nitrotyrosine-containing sequences in vivo by nanoelec-
trospray ionization tandem mass spectrometry. J Biol Chem
280: 24261–24266, 2005.

219. Kapogiannis D and Mattson MP. Disrupted energy me-
tabolism and neuronal circuit dysfunction in cognitive
impairment and Alzheimer’s disease. Lancet Neurol 10: 187–
198, 2011.

220. Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hir-
ano A, Nakano I, Asayama K, and Ohama E. Pathological
characterization of astrocytic hyaline inclusions in familial
amyotrophic lateral sclerosis. Am J Pathol 151: 611–620,
1997.

221. Keller JN, Hanni KB, and Markesbery WR. Impaired pro-
teasome function in Alzheimer’s disease. J Neurochem 75:
436–439, 2000.

222. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, But-
terfield DA, and Markesbery WR. Evidence of increased
oxidative damage in subjects with mild cognitive impair-
ment. Neurology 64: 1152–1156, 2005.

223. Kida K, Nishio T, Nagai K, Matsuda H, and Nakagawa H.
Gluconeogenesis in the kidney in vivo in fed rats. Circadian
change and substrate specificity. J Biochem (Tokyo) 91: 755–
760, 1982.

224. Kienzl E, Jellinger K, Stachelberger H, and Linert W. Iron as
catalyst for oxidative stress in the pathogenesis of Parkin-
son’s disease? Life Sci 65: 1973–1976, 1999.

225. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burn-
stock G, and Greensmith L. Treatment with arimoclomol, a
coinducer of heat shock proteins, delays disease progres-
sion in ALS mice. Nat Med 10: 402–405, 2004.

226. Kim M, Jung Y, Lee K, and Kim C. Identification of the
calcium binding sites in translationally controlled tumor
protein. Arch Pharm Res 23: 633–636, 2000.

227. Kim SH, Fountoulakis M, Cairns N, and Lubec G. Protein
levels of human peroxiredoxin subtypes in brains of pa-
tients with Alzheimer’s disease and Down syndrome. J
Neural Transm Suppl (61): 223–235, 2001.

228. Klose J. Protein mapping by combined isoelectric focusing
and electrophoresis of mouse tissues. A novel approach to

testing for induced point mutations in mammals. Human-
genetik 26: 231–243, 1975.

229. Knyushko TV, Sharov VS, Williams TD, Schoneich C, and
Bigelow DJ. 3-Nitrotyrosine modification of SERCA2a in
the aging heart: a distinct signature of the cellular redox
environment. Biochemistry 44: 13071–13081, 2005.

230. Koeppen AH. The history of iron in the brain. J Neurol Sci
134 Suppl: 1–9, 1995.

231. Kondrikov D, Elms S, Fulton D, and Su Y. eNOS-beta-actin
interaction contributes to increased peroxynitrite formation
during hyperoxia in pulmonary artery endothelial cells and
mouse lungs. J Biol Chem 285: 35479–35487, 2010.

232. Korenberg JR, Bradley C, and Disteche CM. Down syn-
drome: molecular mapping of the congenital heart disease
and duodenal stenosis. Am J Hum Genet 50: 294–302, 1992.

233. Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J,
and Pirttila T. Proteomic analysis of protein oxidation in
Alzheimer’s disease brain. Electrophoresis 23: 3428–3433,
2002.

234. Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I,
Koistinaho J, and Pirttila T. Oxidative modification of
proteins in the frontal cortex of Alzheimer’s disease brain.
Neurobiol Aging 27: 42–53, 2006.

235. LaFontaine MA, Mattson MP, and Butterfield DA. Oxidative
stress in synaptosomal proteins from mutant presenilin-1
knock-in mice: implications for familial Alzheimer’s disease.
Neurochem Res 27: 417–421, 2002.

236. Lamprecht R and LeDoux J. Structural plasticity and
memory. Nat Rev Neurosci 5: 45–54, 2004.

237. Landino LM, Skreslet TE, and Alston JA. Cysteine oxida-
tion of tau and microtubule-associated protein-2 by per-
oxynitrite: modulation of microtubule assembly kinetics by
the thioredoxin reductase system. J Biol Chem 279: 35101–
35105, 2004.

238. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda
LI, Markesbery WR, and Butterfield DA. The glial gluta-
mate transporter, GLT-1, is oxidatively modified by 4-hy-
droxy-2-nonenal in the Alzheimer’s disease brain: the role
of Abeta1-42. J Neurochem 78: 413–416, 2001.

239. Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, and
Mayer RJ. Neurofibrillary tangles of Alzheimer’s disease
brains contain 14-3-3 proteins. Neurosci Lett 209: 57–60,
1996.

240. Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De
Strooper B, and Dotti CG. Brain plasmin enhances APP
alpha-cleavage and Abeta degradation and is reduced in
Alzheimer’s disease brains. EMBO Rep 1: 530–535, 2000.

241. Lee S, Young NL, Whetstone PA, Cheal SM, Benner WH,
Lebrilla CB, and Meares CF. Method to site-specifically
identify and quantitate carbonyl end products of protein
oxidation using oxidation-dependent element coded affin-
ity tags (O-ECAT) and nanoliquid chromatography Fourier
transform mass spectrometry. J Prot Res 5: 539–547, 2006.

242. Lee SH, Takahashi R, Goto T, and Oe T. Mass spectrometric
characterization of modifications to angiotensin II by lipid
peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-
2(E)-nonenal. Chem Res Toxicol 23: 1771–1785, 2010.

243. Leigh PN, Whitwell H, Garofalo O, Buller J, Swash M,
Martin JE, Gallo JM, Weller RO, and Anderton BH. Ubi-
quitin-immunoreactive intraneuronal inclusions in amyo-
trophic lateral sclerosis. Morphology, distribution, and
specificity. Brain 114 (Pt 2): 775–788, 1991.

244. Lemieux N, Malfoy B, and Forrest GL. Human carbonyl
reductase (CBR) localized to band 21q22.1 by high-resolu-

REDOX PROTEOMICS IN NEURODEGENERATIVE DISORDERS 39



tion fluorescence in situ hybridization displays gene dosage
effects in trisomy 21 cells. Genomics 15: 169–172, 1993.

245. Lesage S, Janin S, Lohmann E, Leutenegger AL, Leclere L,
Viallet F, Pollak P, Durif F, Thobois S, Layet V, Vidailhet M,
Agid Y, Durr A, Brice A, Bonnet AM, Borg M, Broussolle E,
Damier P, Destee A, Martinez M, Penet C, Rasco O, Tison
F, Tranchan C, and Verin M. LRRK2 exon 41 mutations in
sporadic Parkinson disease in Europeans. Arch Neurol 64:
425–430, 2007.

246. Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, and Hof
PR. The iron-binding protein lactotransferrin is present in
pathologic lesions in a variety of neurodegenerative dis-
orders: a comparative immunohistochemical analysis. Brain
Res 650: 20–31, 1994.

247. Levine RL, Wehr N, Williams JA, Stadtman ER, and Shacter
E. Determination of carbonyl groups in oxidized proteins.
Methods Mol Biol 99: 15–24, 2000.

248. Li YF, Wang Y, Channon KM, Schultz HD, Zucker IH, and
Patel KP. Manipulation of neuronal nitric oxide synthase
within the paraventricular nucleus using adenovirus and
antisense technology. Methods Mol Med 112: 59–79, 2005.

249. Lillig CH and Holmgren A. Thioredoxin and related mol-
ecules—from biology to health and disease. Antioxid Redox
Signal 9: 25–47, 2007.

250. Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS,
Darley-Usmar V, Smith RA, and Murphy MP. Specific
modification of mitochondrial protein thiols in response to
oxidative stress: a proteomics approach. J Biol Chem 277:
17048–17056, 2002.

251. Liochev SI and Fridovich I. Copper- and zinc-containing
superoxide dismutase can act as a superoxide reductase
and a superoxide oxidase. J Biol Chem 275: 38482–38485,
2000.

252. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F,
Uchida T, Hunter T, and Lu KP. Loss of Pin1 function in the
mouse causes phenotypes resembling cyclin D1-null phe-
notypes. Proc Natl Acad Sci U S A 99: 1335–1340, 2002.

253. Liu D, Wen J, Liu J, and Li L. The roles of free radicals in
amyotrophic lateral sclerosis: reactive oxygen species and
elevated oxidation of protein, DNA, and membrane phos-
pholipids. FASEB J 13: 2318–2328, 1999.

254. Liu R, Althaus JS, Ellerbrock BR, Becker DA, and Gurney
ME. Enhanced oxygen radical production in a transgenic
mouse model of familial amyotrophic lateral sclerosis. Ann
Neurol 44: 763–770, 1998.

255. Lott IT, Head E, Doran E, and Busciglio J. Beta-amyloid,
oxidative stress and down syndrome. Curr Alzheimer Res 3:
521–528, 2006.

256. Lourette N, Smallwood H, Wu S, Robinson EW, Squier TC,
Smith RD, and Pasa-Tolic L. A top-down LC-FTICR MS-
based strategy for characterizing oxidized calmodulin in
activated macrophages. J Am Soc Mass Spectrom 21: 930–
939, 2010.

257. Lovell MA, Xie C, Gabbita SP, and Markesbery WR. De-
creased thioredoxin and increased thioredoxin reductase
levels in Alzheimer’s disease brain. Free Radic Biol Med 28:
418–427, 2000.

258. Lovell MA, Xiong S, Markesbery WR, and Lynn BC.
Quantitative proteomic analysis of mitochondria from pri-
mary neuron cultures treated with amyloid beta peptide.
Neurochem Res 30: 113–122, 2005.

259. Lu B, Motoyama A, Ruse C, Venable J, and Yates JR, 3rd.
Improving protein identification sensitivity by combining
MS and MS/MS information for shotgun proteomics using

LTQ-Orbitrap high mass accuracy data. Anal Chem 80:
2018–2025, 2008.

260. Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N,
and Fountoulakis M. Expression of the dihydropyr-
imidinase related protein 2 (DRP-2) in Down syndrome
and Alzheimer’s disease brain is downregulated at the
mRNA and dysregulated at the protein level. J Neural
Transm Suppl 57: 161–177, 1999.

261. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, and
Thompson JA. Nitration and inactivation of manganese
superoxide dismutase in chronic rejection of human renal
allografts. Proc Natl Acad Sci U S A 93: 11853–11858, 1996.

262. Macmillan-Crow LA and Cruthirds DL. Invited review:
manganese superoxide dismutase in disease. Free Radic Res
34: 325–336, 2001.

263. Madian AG and Regnier FE. Proteomic identification of
carbonylated proteins and their oxidation sites. J Proteome
Res 9: 3766–3780, 2010.

264. Magrane J, Smith RC, Walsh K, and Querfurth HW. Heat
shock protein 70 participates in the neuroprotective re-
sponse to intracellularly expressed beta-amyloid in neu-
rons. J Neurosci 24: 1700–1706, 2004.

265. Mandel SA, Fishman-Jacob T, and Youdim MB. Modeling
sporadic Parkinson’s disease by silencing the ubiquitin E3
ligase component, SKP1A. Parkinsonism Relat Disord 15
Suppl 3: S148–S151, 2009.

266. Masliah E, Alford M, DeTeresa R, Mallory M, and Hansen
L. Deficient glutamate transport is associated with neuro-
degeneration in Alzheimer’s disease. Ann Neurol 40: 759–
766, 1996.

267. Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M,
and Terry R. Synaptic and neuritic alterations during the
progression of Alzheimer’s disease. Neurosci Lett 174: 67–
72, 1994.

268. Matsuura I, Chiang KN, Lai CY, He D, Wang G, Ramku-
mar R, Uchida T, Ryo A, Lu K, and Liu F. Pin1 promotes
transforming growth factor-beta-induced migration and
invasion. J Biol Chem 285: 1754–1764, 2010.

269. Mattson MP, Pedersen WA, Duan W, Culmsee C, and
Camandola S. Cellular and molecular mechanisms under-
lying perturbed energy metabolism and neuronal degen-
eration in Alzheimer’s and Parkinson’s diseases. Ann N Y
Acad Sci 893: 154–175, 1999.

270. Meier-Ruge W, Bertoni-Freddari C, and Iwangoff P.
Changes in brain glucose metabolism as a key to the
pathogenesis of Alzheimer’s disease. Gerontology 40: 246–
252, 1994.

271. Meier-Ruge W, Iwangoff P, and Reichlmeier K. Neuro-
chemical enzyme changes in Alzheimer’s and Pick’s dis-
ease. Arch Gerontol Geriatr 3: 161–165, 1984.

272. Messier C and Gagnon M. Glucose regulation and cogni-
tive functions: relation to Alzheimer’s disease and diabetes.
Behav Brain Res 75: 1–11, 1996.

273. Mihm MJ, Schanbacher BL, Wallace BL, Wallace LJ, Ur-
etsky NJ, and Bauer JA. Free 3-nitrotyrosine causes striatal
neurodegeneration in vivo. J Neurosci 21: RC149, 2001.

274. Mirzaei H, Baena B, Barbas C, and Regnier F. Identification
of oxidized proteins in rat plasma using avidin chroma-
tography and tandem mass spectrometry. Proteomics 8:
1516–1527, 2008.

275. Mirzaei H and Regnier F. Affinity chromatographic selec-
tion of carbonylated proteins followed by identification of
oxidation sites using tandem mass spectrometry. Anal
Chem 77: 2386–2392, 2005.

40 BUTTERFIELD ET AL.



276. Mirzaei H and Regnier F. Identification and quantification
of protein carbonylation using light and heavy isotope
labeled Girard’s P reagent. J Chromatogr A 1134: 122–133,
2006.

277. Molina JA, de Bustos F, Jimenez-Jimenez FJ, Benito-Leon J,
Gasalla T, Orti-Pareja M, Vela L, Bermejo F, Martin MA,
Campos Y, and Arenas J. Respiratory chain enzyme activ-
ities in isolated mitochondria of lymphocytes from patients
with Alzheimer’s disease. Neurology 48: 636–638, 1997.

278. Montine TJ, Quinn JF, Montine KS, Kaye JA, and Breitner
JC. Quantitative in vivo biomarkers of oxidative damage
and their application to the diagnosis and management of
Alzheimer’s disease. J Alzheimers Dis 8: 359–367, 2005.

279. Morel P, Tallineau C, Pontcharraud R, Piriou A, and Hu-
guet F. Effects of 4-hydroxynonenal, a lipid peroxidation
product, on dopamine transport and Na + /K + ATPase in
rat striatal synaptosomes. Neurochem Int 33: 531–540, 1998.

280. Mouser PE, Head E, Ha KH, and Rohn TT. Caspase-me-
diated cleavage of glial fibrillary acidic protein within de-
generating astrocytes of the Alzheimer’s disease brain. Am J
Pathol 168: 936–946, 2006.

281. Muller WE, Eckert A, Kurz C, Eckert GP, and Leuner K.
Mitochondrial dysfunction: common final pathway in brain
aging and Alzheimer’s disease—therapeutic aspects. Mol
Neurobiol 41: 159–171, 2010.

282. Nagy Z, Esiri MM, Cato AM, and Smith AD. Cell cycle
markers in the hippocampus in Alzheimer’s disease. Acta
Neuropathol 94: 6–15, 1997.

283. Nakamura A and Goto S. Analysis of protein carbonyls
with 2,4-dinitrophenyl hydrazine and its antibodies by
immunoblot in two-dimensional gel electrophoresis. J Bio-
chem 119: 768–774, 1996.

284. Neely MD, Boutte A, Milatovic D, and Montine TJ. Me-
chanisms of 4-hydroxynonenal-induced neuronal microtu-
bule dysfunction. Brain Res 1037: 90–98, 2005.

285. Niatsetskaya Z, Basso M, Speer RE, McConoughey SJ,
Coppola G, Ma TC, and Ratan RR. HIF prolyl hydroxylase
inhibitors prevent neuronal death induced by mitochon-
drial toxins: therapeutic implications for Huntington’s
disease and Alzheimer’s disease. Antioxid Redox Signal 12:
435–443, 2010.

286. Nikov G, Bhat V, Wishnok JS, and Tannenbaum SR. Ana-
lysis of nitrated proteins by nitrotyrosine-specific affinity
probes and mass spectrometry. Anal Biochem 320: 214–222,
2003.

287. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H,
Nakamura H, Takagi Y, Sono H, Gon Y, and Yodoi J.
Identification of thioredoxin-binding protein-2/vitamin
D(3) up-regulated protein 1 as a negative regulator of
thioredoxin function and expression. J Biol Chem 274:
21645–21650, 1999.

288. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai
K, Chiba S, and Smith MA. Neuronal oxidative stress
precedes amyloid-beta deposition in Down syndrome. J
Neuropathol Exp Neurol 59: 1011–1017, 2000.

289. O’Farrell PH. High resolution two-dimensional electro-
phoresis of proteins. J Biol Chem 250: 4007–4021, 1975.

290. Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S,
Dagna-Bricarelli F, Piombo G, Perry G, Smith M, Traverso
N, and Tabaton M. Early glycoxidation damage in brains
from Down’s syndrome. Biochem Biophys Res Commun 243:
849–851, 1998.

291. Ojika K, Tsugu Y, Mitake S, Otsuka Y, and Katada E.
NMDA receptor activation enhances the release of a cho-

linergic differentiation peptide (HCNP) from hippocampal
neurons in vitro. Brain Res Dev Brain Res 106: 173–180, 1998.

292. Oka S, Masutani H, Liu W, Horita H, Wang D, Kizaka-
Kondoh S, and Yodoi J. Thioredoxin-binding protein-2-like
inducible membrane protein is a novel vitamin D3 and
peroxisome proliferator-activated receptor (PPAR)gamma
ligand target protein that regulates PPARgamma signaling.
Endocrinology 147: 733–743, 2006.

293. Op den Velde W and Stam FC. Some cerebral proteins and
enzyme systems in Alzheimer’s presenile and senile de-
mentia. J Am Geriatr Soc 24: 12–16, 1976.

294. Orrenius S, Burgess DH, Hampton MB, and Zhivotovsky B.
Mitochondria as the focus of apoptosis research. Cell Death
Differ 4: 427–428, 1997.

295. Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M,
and Wolozin B. The A53T alpha-synuclein mutation in-
creases iron-dependent aggregation and toxicity. J Neurosci
20: 6048–6054, 2000.

296. Ou J, Fontana JT, Ou Z, Jones DW, Ackerman AW, Oldham
KT, Yu J, Sessa WC, and Pritchard KA, Jr. Heat shock
protein 90 and tyrosine kinase regulate eNOS NO* gener-
ation but not NO* bioactivity. Am J Physiol Heart Circ
Physiol 286: H561–H569, 2004.

297. Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu
G, Banks WA, and Butterfield DA. Oxidative modification
to LDL receptor-related protein 1 in hippocampus from
subjects with Alzheimer disease: implications for Abeta
accumulation in AD brain. Free Radic Biol Med 49: 1798–
1803, 2010.

298. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C,
Wacker M, Klose J, and Shen J. Mitochondrial dysfunction
and oxidative damage in parkin-deficient mice. J Biol Chem
279: 18614–18622, 2004.

299. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke
JR, Strittmatter WJ, and Greenamyre JT. Early mitochon-
drial calcium defects in Huntington’s disease are a direct
effect of polyglutamines. Nat Neurosci 5: 731–736, 2002.

300. Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K,
and Grundke-Iqbal I. Up-regulation of mitogen-activated
protein kinases ERK1/2 and MEK1/2 is associated with the
progression of neurofibrillary degeneration in Alzheimer’s
disease. Brain Res Mol Brain Res 109: 45–55, 2002.

301. Perluigi M, di Domenico F, Fiorini A, Cocciolo A, Giorgi A,
Foppoli C, Butterfield DA, Giorlandino M, Giorlandino C,
Schinina ME, and Coccia R. Oxidative stress occurs early in
Down syndrome pregnancy: a redox proteomics analysis of
amniotic fluid. Prot Clin Appl 5: 167–178, 2011.

302. Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB,
Calabrese V, De Marco C, and Butterfield DA. Proteomic
analysis of 4-hydroxy-2-nonenal-modified proteins in
G93A-SOD1 transgenic mice—a model of familial amyo-
trophic lateral sclerosis. Free Radic Biol Med 38: 960–968,
2005.

303. Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB,
Calabrese V, Cini C, De Marco C, and Butterfield DA.
Proteomic analysis of protein expression and oxidative
modification in r6/2 transgenic mice: a model of Hun-
tington disease. Mol Cell Proteomics 4: 1849–1861, 2005.

304. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M,
Pierce WM, Coccia R, and Butterfield DA. Redox pro-
teomics identification of HNE-modified brain proteins in
Alzheimer’s disease: role of lipid peroxidation in Alzhei-
mer’s disease pathogenesis. Proteomics Clin Appl 3: 682–693,
2009.

REDOX PROTEOMICS IN NEURODEGENERATIVE DISORDERS 41



305. Perumal AS, Tordzro WK, Katz M, Jackson-Lewis V,
Cooper TB, Fahn S, and Cadet JL. Regional effects of
6-hydroxydopamine (6-OHDA) on free radical scavengers
in rat brain. Brain Res 504: 139–141, 1989.

306. Pestova TV and Hellen CU. The structure and function of
initiation factors in eukaryotic protein synthesis. Cell Mol
Life Sci 57: 651–674, 2000.

307. Petersen A, Hansson O, Puschban Z, Sapp E, Romero N,
Castilho RF, Sulzer D, Rice M, DiFiglia M, Przedborski S,
and Brundin P. Mice transgenic for exon 1 of the Hun-
tington’s disease gene display reduced striatal sensitivity to
neurotoxicity induced by dopamine and 6-hydro-
xydopamine. Eur J Neurosci 14: 1425–1435, 2001.

308. Petronis A. Alzheimer’s disease and down syndrome: from
meiosis to dementia. Exp Neurol 158: 403–413, 1999.

309. Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ,
and Muenz LR. Alterations of cerebral metabolism in
probable Alzheimer’s disease: a preliminary study. Neuro-
biol Aging 15: 117–132, 1994.

310. Picklo MJ, Montine TJ, Amarnath V, and Neely MD. Car-
bonyl toxicology and Alzheimer’s disease. Toxicol Appl
Pharmacol 184: 187–197, 2002.

311. Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K,
Sato S, Murayama O, Ishiguro K, Tatebayashi Y, and
Takashima A. Alterations in glucose metabolism induce
hypothermia leading to tau hyperphosphorylation through
differential inhibition of kinase and phosphatase activities:
implications for Alzheimer’s disease. J Neurosci 24: 2401–
2411, 2004.

312. Pocernich CB, Lange ML, Sultana R, and Butterfield DA.
Nutritional approaches to modulate oxidative stress
in Alzheimer’s disease. Curr Alzheimer Res 8: 452–469,
2011.

313. Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, and
Butterfield DA. Mitochondrial associated metabolic pro-
teins are selectively oxidized in A30P alpha-synuclein
transgenic mice—a model of familial Parkinson’s disease.
Neurobiol Dis 18: 492–498, 2005.

314. Poon HF, Hensley K, Thongboonkerd V, Merchant ML,
Lynn BC, Pierce WM, Klein JB, Calabrese V, and Butterfield
DA. Redox proteomics analysis of oxidatively modified
proteins in G93A-SOD1 transgenic mice—a model of fa-
milial amyotrophic lateral sclerosis. Free Radic Biol Med 39:
453–462, 2005.

315. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF,
Crow JP, Cashman NR, Kondejewski LH, and Chakra-
bartty A. Oxidation-induced misfolding and aggregation of
superoxide dismutase and its implications for amyotrophic
lateral sclerosis. J Biol Chem 277: 47551–47556, 2002.

316. Ramakrishnan P, Dickson DW, and Davies P. Pin1 colo-
calization with phosphorylated tau in Alzheimer’s disease
and other tauopathies. Neurobiol Dis 14: 251–264, 2003.

317. Rapoport SI. In vivo PET imaging and postmortem studies
suggest potentially reversible and irreversible stages of
brain metabolic failure in Alzheimer’s disease. Eur Arch
Psychiatry Clin Neurosci 249 Suppl 3: 46–55, 1999.

318. Rauniyar N and Prokai L. Detection and identification of 4-
hydroxy-2-nonenal Schiff-base adducts along with prod-
ucts of Michael addition using data-dependent neutral loss-
driven MS3 acquisition: method evaluation through an
in vitro study on cytochrome c oxidase modifications. Pro-
teomics 9: 5188–5193, 2009.

319. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante
RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH,

Jr., Scott RW, and Snider WD. Motor neurons in Cu/Zn
superoxide dismutase-deficient mice develop normally but
exhibit enhanced cell death after axonal injury. Nat Genet
13: 43–47, 1996.

320. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner
DM, Coccia R, Markesbery WR, and Butterfield DA. Redox
proteomic identification of 4-hydroxy-2-nonenal-modified
brain proteins in amnestic mild cognitive impairment: in-
sight into the role of lipid peroxidation in the progression
and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30:
107–120, 2008.

321. Reed TT, Pierce WM, Jr., Turner DM, Markesbery WR, and
Butterfield DA. Proteomic identification of nitrated brain
proteins in early Alzheimer’s disease inferior parietal lob-
ule. J Cell Mol Med 13: 2019–2029, 2009.

322. Reed TT, Pierce WM, Markesbery WR, and Butterfield DA.
Proteomic identification of HNE-bound proteins in early
Alzheimer disease: insights into the role of lipid peroxida-
tion in the progression of AD. Brain Res 1274: 66–76, 2009.

323. Reiner M, Bloch W, and Addicks K. Functional interaction
of caveolin-1 and eNOS in myocardial capillary endothe-
lium revealed by immunoelectron microscopy. J Histochem
Cytochem 49: 1605–1610, 2001.

324. Rhee SG, Chae HZ, and Kim K. Peroxiredoxins: a historical
overview and speculative preview of novel mechanisms
and emerging concepts in cell signaling. Free Radic Biol Med
38: 1543–1552, 2005.

325. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP,
Jellinger K, and Youdim MB. Transition metals, ferritin,
glutathione, and ascorbic acid in parkinsonian brains. J
Neurochem 52: 515–520, 1989.

326. Riviere S, Birlouez-Aragon I, Nourhashemi F, and Vellas B.
Low plasma vitamin C in Alzheimer patients despite an
adequate diet. Int J Geriatr Psychiatry 13: 749–754, 1998.

327. Roe MR, McGowan TF, Thompson LV, and Griffin TJ.
Targeted 18O-labeling for improved proteomic analysis of
carbonylated peptides by mass spectrometry. J Am Soc
Mass Spectrom 21: 1190–1203, 2010.

328. Rossor MN, Iversen LL, Johnson AJ, Mountjoy CQ, and
Roth M. Cholinergic deficit in frontal cerebral cortex in
Alzheimer’s disease is age dependent. Lancet 2: 1422, 1981.

329. Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa
H, Harada T, Ichihara N, Wakana S, Kikuchi T, and Wada K.
Intragenic deletion in the gene encoding ubiquitin carboxy-
terminal hydrolase in gad mice. Nat Genet 23: 47–51, 1999.

330. Sajdel-Sulkowska EM and Marotta CA. Alzheimer’s dis-
ease brain: alterations in RNA levels and in a ribonuclease-
inhibitor complex. Science 225: 947–949, 1984.

331. Salmon M, Dedessus Le Moutier J, Wenders F, Chiarizia S,
Eliaers F, Remacle J, Royer V, Pascal T, and Toussaint O.
Role of the PLA2-independent peroxiredoxin VI activity in
the survival of immortalized fibroblasts exposed to cyto-
toxic oxidative stress. FEBS Lett 557: 26–32, 2004.

332. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG,
and Smith MA. 4-Hydroxynonenal-derived advanced lipid
peroxidation end products are increased in Alzheimer’s
disease. J Neurochem 68: 2092–2097, 1997.

333. Schapira AH. Mitochondrial involvement in Parkinson’s
disease, Huntington’s disease, hereditary spastic paraple-
gia and Friedreich’s ataxia. Biochim Biophys Acta 1410: 159–
170, 1999.

334. Scheff SW and Price DA. Synaptic pathology in Alzhei-
mer’s disease: a review of ultrastructural studies. Neurobiol
Aging 24: 1029–1046, 2003.

42 BUTTERFIELD ET AL.



335. Scheff SW and Price DA. Alzheimer’s disease-related al-
terations in synaptic density: neocortex and hippocampus. J
Alzheimers Dis 9: 101–115, 2006.

336. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K,
Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA,
Copeland NG, Price DL, Ross CA, and Borchelt DR. In-
tranuclear inclusions and neuritic aggregates in transgenic
mice expressing a mutant N-terminal fragment of hun-
tingtin. Hum Mol Genet 8: 397–407, 1999.

337. Schneider C, Porter NA, and Brash AR. Autoxidative
transformation of chiral omega6 hydroxy linoleic and ara-
chidonic acids to chiral 4-hydroxy-2E-nonenal. Chem Res
Toxicol 17: 937–941, 2004.

338. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, and
Lee RT. Hyperglycemia promotes oxidative stress through
inhibition of thioredoxin function by thioredoxin-interact-
ing protein. J Biol Chem 279: 30369–30374, 2004.

339. Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U,
Rahfeld JU, Lu KP, and Fischer G. Role of phosphorylation
in determining the backbone dynamics of the serine/thre-
onine-proline motif and Pin1 substrate recognition. Bio-
chemistry 37: 5566–5575, 1998.

340. Selkoe DJ. Alzheimer’s disease: genes, proteins, and ther-
apy. Physiol Rev 81: 741–766, 2001.

341. Sergeant N, Wattez A, Galvan-valencia M, Ghestem A,
David JP, Lemoine J, Sautiere PE, Dachary J, Mazat JP,
Michalski JC, Velours J, Mena-Lopez R, and Delacourte A.
Association of ATP synthase alpha-chain with neurofibril-
lary degeneration in Alzheimer’s disease. Neurosci 117:
293–303, 2003.

342. Shaw PJ, Ince PG, Falkous G, and Mantle D. Oxidative
damage to protein in sporadic motor neuron disease spinal
cord. Ann Neurol 38: 691–695, 1995.

343. Sherer TB, Betarbet R, and Greenamyre JT. Environment,
mitochondria, and Parkinson’s disease. Neuroscientist 8:
192–197, 2002.

344. Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hir-
ano A, Kawaguchi M, Yamamoto T, Sasaki S, and Kobaya-
shi M. Morphological evidence for lipid peroxidation and
protein glycoxidation in spinal cords from sporadic amyo-
trophic lateral sclerosis patients. Brain Res 917: 97–104, 2001.

345. Shinder GA, Lacourse MC, Minotti S, and Durham HD.
Mutant Cu/Zn-superoxide dismutase proteins have altered
solubility and interact with heat shock/stress proteins in
models of amyotrophic lateral sclerosis. J Biol Chem 276:
12791–12796, 2001.

346. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb
S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K,
Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho
E, Harrison M, and Lew M. Effects of coenzyme Q10 in
early Parkinson disease: evidence of slowing of the func-
tional decline. Arch Neurol 59: 1541–1550, 2002.

347. Siciliano G, Piazza S, Carlesi C, Del Corona A, Franzini M,
Pompella A, Malvaldi G, Mancuso M, Paolicchi A, and
Murri L. Antioxidant capacity and protein oxidation in
cerebrospinal fluid of amyotrophic lateral sclerosis. J Neurol
254: 575–580, 2007.

348. Siems WG, Hapner SJ, and van Kuijk FJ. 4-hydroxynonenal
inhibits Na( + )-K( + )-ATPase. Free Radic Biol Med 20: 215–
223, 1996.

349. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, and
Lynch G. Ferritin accumulation in dystrophic microglia is
an early event in the development of Huntington’s disease.
Glia 55: 1074–1084, 2007.

350. Singh AK, Gupta S, and Jiang Y. Oxidative stress and
protein oxidation in the brain of water drinking and alcohol
drinking rats administered the HIV envelope protein,
gp120. J Neurochem 104: 1478–1493, 2008.

351. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, and Tashian
RE. Carbonic anhydrase II deficiency identified as the pri-
mary defect in the autosomal recessive syndrome of os-
teopetrosis with renal tubular acidosis and cerebral
calcification. Proc Natl Acad Sci U S A 80: 2752–2756, 1983.

352. Smith CD, Carney JM, Starkereed PE, Oliver CN, Stadtman
ER, Floyd RA, and Markesbery WR. Excess brain protein
oxidation and enzyme dysfunction in normal aging and in
Alzheimer-disease. Proc Natl Acad Sci U S A 88: 10540–
10543, 1991.

353. Smith MA, Sayre LM, Anderson VE, Harris PL, Beal MF,
Kowall N, and Perry G. Cytochemical demonstration of
oxidative damage in Alzheimer disease by immunochem-
ical enhancement of the carbonyl reaction with 2,4-
dinitrophenylhydrazine. J Histochem Cytochem 46: 731–735,
1998.

354. Smith PJ, Tappel AL, and Chow CK. Glutathione peroxi-
dase activity as a function of dietary selenomethionine.
Nature 247: 392–393, 1974.

355. Smith RG, Henry YK, Mattson MP, and Appel SH. Presence
of 4-hydroxynonenal in cerebrospinal fluid of patients with
sporadic amyotrophic lateral sclerosis. Ann Neurol 44: 696–
699, 1998.

356. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP,
Davies P, MacDonald ME, Gusella JF, Harper PS, and Shaw
DJ. Relationship between trinucleotide repeat expansion
and phenotypic variation in Huntington’s disease. Nat
Genet 4: 393–397, 1993.

357. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J,
and Cabiscol E. Proteomic and oxidative stress analysis in
human brain samples of Huntington disease. Free Radic Biol
Med 45: 667–678, 2008.

358. Sousa LP, Silva BM, Brasil BS, Nogueira SV, Ferreira PC,
Kroon EG, Kato K, and Bonjardim CA. Plasminogen/
plasmin regulates alpha-enolase expression through the
MEK/ERK pathway. Biochem Biophys Res Commun 337:
1065–1071, 2005.

359. Sperandio S, Poksay KS, Schilling B, Crippen D, Gibson
BW, and Bredesen DE. Identification of new modulators
and protein alterations in non-apoptotic programmed cell
death. J Cell Biochem 111: 1401–1412, 2010.

360. Stadtman ER and Levine RL. Free radical-mediated oxi-
dation of free amino acids and amino acid residues in
proteins. Amino Acids 25: 207–218, 2003.

361. Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller
JN, Waeg G, and Butterfield DA. The lipid peroxidation
product, 4-hydroxy-2-trans-nonenal, alters the conforma-
tion of cortical synaptosomal membrane proteins. J Neu-
rochem 69: 1161–1169, 1997.

362. Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB,
Merchant M, and Butterfield DA. Proteomics analysis of
the Alzheimer’s disease hippocampal proteome. J Alzhei-
mers Dis 11: 153–164, 2007.

363. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM,
Klein JB, Merchant M, Markesbery WR, and Butterfield
DA. Redox proteomics identification of oxidized proteins
in Alzheimer’s disease hippocampus and cerebellum: an
approach to understand pathological and biochem-
ical alterations in AD. Neurobiol Aging 27: 1564–1576,
2006.

REDOX PROTEOMICS IN NEURODEGENERATIVE DISORDERS 43



364. Sultana R and Butterfield DA. Oxidatively modified GST
and MRP1 in Alzheimer’s disease brain: implications for
accumulation of reactive lipid peroxidation products.
Neurochem Res 29: 2215–2220, 2004.

365. Sultana R and Butterfield DA. Oxidatively modified, mi-
tochondria-relevant brain proteins in subjects with Alz-
heimer disease and mild cognitive impairment. J Bioenerg
Biomembr 41: 441–446, 2009.

366. Sultana R and Butterfield DA. Identification of the oxida-
tive stress proteome in the brain. Free Radic Biol Med 50:
487–494, 2011.

367. Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni
M, and Butterfield DA. Increased protein and lipid oxida-
tive damage in mitochondria isolated from lymphocytes
from patients with Alzheimer’s disease: insights into the
role of oxidative stress in Alzheimer’s disease and initial
investigations into a potential biomarker for this dementing
disorder. J Alzheimers Dis 24: 77–84, 2011.

368. Sultana R, Perluigi M, and Butterfield DA. Protein oxida-
tion and lipid peroxidation in brain of subjects with Alz-
heimer’s disease: insights into mechanism of
neurodegeneration from redox proteomics. Antioxid Redox
Signal 8: 2021–2037, 2006.

369. Sultana R, Perluigi M, and Butterfield DA. Oxidatively
modified proteins in Alzheimer’s disease (AD), mild cog-
nitive impairment and animal models of AD: role of Abeta
in pathogenesis. Acta Neuropathol 118: 131–150, 2009.

370. Sultana R, Perluigi M, Newman SF, Pierce WM, Cini C,
Coccia R, and Butterfield DA. Redox proteomic analysis of
carbonylated brain proteins in mild cognitive impairment
and early Alzheimer’s disease. Antioxid Redox Signal 12:
327–336, 2010.

371. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein
JB, Markesbery WR, and Butterfield DA. Identification of
nitrated proteins in Alzheimer’s disease brain using a redox
proteomics approach. Neurobiol Dis 22: 76–87, 2006.

372. Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, and
Butterfield DA. Proteomic identification of nitrated brain
proteins in amnestic mild cognitive impairment: a regional
study. J Cell Mol Med 11: 839–851, 2007.

373. Surmeli NB, Litterman NK, Miller AF, and Groves JT. Perox-
ynitrite mediates active site tyrosine nitration in manganese
superoxide dismutase. Evidence of a role for the carbonate
radical anion. J Am Chem Soc 132: 17174–17185, 2010.

374. Suzuki YJ, Carini M, and Butterfield DA. Protein carbon-
ylation. Antioxid Redox Signal 12: 323–325, 2010.

375. Szabo C. Multiple pathways of peroxynitrite cytotoxicity.
Toxicol Lett 140–141: 105–112, 2003.

376. Tamarit J, Cabiscol E, and Ros J. Identification of the major
oxidatively damaged proteins in Escherichia coli cells ex-
posed to oxidative stress. J Biol Chem 273: 3027–3032, 1998.

377. Temple A, Yen TY, and Gronert S. Identification of specific
protein carbonylation sites in model oxidations of human
serum albumin. J Am Soc Mass Spectrom 17: 1172–1180, 2006.

378. Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, and
Craven CJ. Structure of TCTP reveals unexpected rela-
tionship with guanine nucleotide-free chaperones. Nat
Struct Biol 8: 701–704, 2001.

379. Thompson JE, Hopkins MT, Taylor C, and Wang TW.
Regulation of senescence by eukaryotic translation initia-
tion factor 5A: implications for plant growth and devel-
opment. Trends Plant Sci 9: 174–179, 2004.

380. Thompson KJ, Shoham S, and Connor JR. Iron and neu-
rodegenerative disorders. Brain Res Bull 55: 155–164, 2001.

381. Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC,
Sharp AH, Persichetti F, Cattaneo E, and MacDonald ME.
Dominant phenotypes produced by the HD mutation in
STHdh(Q111) striatal cells. Hum Mol Genet 9: 2799–2809,
2000.

382. Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B,
Wardman P, and Radi R. Peroxynitrite-derived carbonate
and nitrogen dioxide radicals readily react with lipoic and
dihydrolipoic acid. Free Radic Biol Med 39: 279–288, 2005.

383. Tsujimoto KH, Kawai T, Matsumoto H. Oxidized protein
quantitation method using isotope-substituted labeling re-
agent and mass spectrometry. pp 2007-JP55617 2007111193,
2020070320.

384. Uchida K and Stadtman ER. Covalent attachment of 4-
hydroxynonenal to glyceraldehyde-3-phosphate dehydro-
genase. A possible involvement of intra- and intermolecular
cross-linking reaction. J Biol Chem 268: 6388–6393, 1993.

385. Valencia CA, Ju W, and Liu R. Matrin 3 is a Ca2 + /cal-
modulin-binding protein cleaved by caspases. Biochem
Biophys Res Commun 361: 281–286, 2007.

386. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Ca-
puto V, Romito L, Albanese A, Dallapiccola B, and Benti-
voglio AR. PINK1 mutations are associated with sporadic
early-onset parkinsonism. Ann Neurol 56: 336–341, 2004.

387. Valentine JS. Do oxidatively modified proteins cause ALS?
Free Radic Biol Med 33: 1314–1320, 2002.

388. Van Laar VS, Dukes AA, Cascio M, and Hastings TG.
Proteomic analysis of rat brain mitochondria following
exposure to dopamine quinone: implications for Parkinson
disease. Neurobiol Dis 29: 477–489, 2008.

389. Vana L, Kanaan NM, Hakala K, Weintraub ST, and Binder
LI. Peroxynitrite-induced nitrative and oxidative modifi-
cations alter tau filament formation. Biochemistry 50: 1203–
1212, 2011.

390. Vayssiere JL, Cordeau-Lossouarn L, Larcher JC, Basseville
M, Gros F, and Croizat B. Participation of the mitochon-
drial genome in the differentiation of neuroblastoma cells.
In Vitro Cell Dev Biol 28A: 763–772, 1992.

391. Vexler ZS, Wong A, Francisco C, Manabat C, Christen S,
Tauber M, Ferriero DM, and Gregory G. Fructose-1,6-bi-
sphosphate preserves intracellular glutathione and protects
cortical neurons against oxidative stress. Brain Res 960: 90–
98, 2003.

392. Vila A, Tallman KA, Jacobs AT, Liebler DC, Porter NA, and
Marnett LJ. Identification of protein targets of 4-hydro-
xynonenal using click chemistry for ex vivo biotinylation of
azido and alkynyl derivatives. Chem Res Toxicol 21: 432–
444, 2008.

393. Viner RI, Ferrington DA, Williams TD, Bigelow DJ, and
Schoneich C. Protein modification during biological aging:
selective tyrosine nitration of the SERCA2a isoform of the
sarcoplasmic reticulum Ca2 + -ATPase in skeletal muscle.
Biochem J 340 (Pt 3): 657–669, 1999.

394. Wallimann T and Hemmer W. Creatine kinase in non-
muscle tissues and cells. Mol Cell Biochem 133–134: 193–220,
1994.

395. Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D,
Copeland NG, Jenkins NA, and Borchelt DR. Fibrillar in-
clusions and motor neuron degeneration in transgenic mice
expressing superoxide dismutase 1 with a disrupted cop-
per-binding site. Neurobiol Dis 10: 128–138, 2002.

396. Wang X, Moualla D, Wright JA, and Brown DR. Copper
binding regulates intracellular alpha-synuclein localisation,
aggregation and toxicity. J Neurochem 113: 704–714, 2010.

44 BUTTERFIELD ET AL.



397. Wang XS, Lee S, Simmons Z, Boyer P, Scott K, Liu W, and
Connor J. Increased incidence of the Hfe mutation in
amyotrophic lateral sclerosis and related cellular conse-
quences. J Neurol Sci 227: 27–33, 2004.

398. Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL,
Wong PC, and Rothstein JD. Histological evidence of pro-
tein aggregation in mutant SOD1 transgenic mice and in
amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8:
933–941, 2001.

399. Weitzdoerfer R, Fountoulakis M, and Lubec G. Aberrant
expression of dihydropyrimidinase related proteins-2,-3
and 4 in fetal Down syndrome brain. J Neural Transm Suppl
61:95–107, 2001.

400. Winklhofer KF. The parkin protein as a therapeutic target
in Parkinson’s disease. Expert Opin Ther Targets 11: 1543–
1552, 2007.

401. Winterbourn CC and Buss IH. Protein carbonyl measure-
ment by enzyme-linked immunosorbent assay. Methods
Enzymol 300: 106–111, 1999.

402. Yamakura F, Matsumoto T, Fujimura T, Taka H, Mur-
ayama K, Imai T, and Uchida K. Modification of a single
tryptophan residue in human Cu,Zn-superoxide dismutase
by peroxynitrite in the presence of bicarbonate. Biochim
Biophys Acta 1548: 38–46, 2001.

403. Yamashiro S, Yamakita Y, Ono S, and Matsumura F. Fas-
cin, an actin-bundling protein, induces membrane protru-
sions and increases cell motility of epithelial cells. Mol Biol
Cell 9: 993–1006, 1998.

404. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K,
Ferrante RJ, and Beal MF. Combination therapy with co-
enzyme Q10 and creatine produces additive neuroprotec-
tive effects in models of Parkinson’s and Huntington’s
diseases. J Neurochem 109: 1427–1439, 2009.

405. Yarian CS, Rebrin I, and SohalRS. Aconitase andATP synthase
are targets of malondialdehyde modification and undergo an
age-related decrease in activity in mouse heart mitochondria.
Biochem Biophys Res Commun 330: 151–156, 2005.

406. Yoo BS and Regnier FE. Proteomic analysis of carbonylated
proteins in two-dimensional gel electrophoresis using avi-
din-fluorescein affinity staining. Electrophoresis 25: 1334–
1341, 2004.

407. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER,
and Mizuno Y. Immunohistochemical detection of 4-hy-
droxynonenal protein adducts in Parkinson disease. Proc
Natl Acad Sci U S A 93: 2696–2701, 1996.

408. Yoshida H, Watanabe A, and Ihara Y. Collapsin response
mediator protein-2 is associated with neurofibrillary tangles
in Alzheimer’s disease. J Biol Chem 273: 9761–9768, 1998.

409. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, and Ef-
stratiadis A. Increased apoptosis and early embryonic le-
thality in mice nullizygous for the Huntington’s disease
gene homologue. Nat Genet 11: 155–163, 1995.

410. Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett
WC, and Ascherio A. Intakes of vitamins E and C, carot-
enoids, vitamin supplements, and PD risk. Neurology 59:
1161–1169, 2002.

411. Zhou J, Yu Q, and Chng WJ. TXNIP (VDUP-1, TBP-2): a
major redox regulator commonly suppressed in cancer by
epigenetic mechanisms. Int J Biochem Cell Biol 43: 1668–
1673, 2011.

412. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G,
Kullertz G, Stark M, Fischer G, and Lu KP. Pin1-dependent
prolyl isomerization regulates dephosphorylation of Cdc25C
and tau proteins. Mol Cell 6: 873–883, 2000.

Address correspondence to:
Prof. D. Allan Butterfield
Department of Chemistry

Center of Membrane Sciences
Sanders-Brown Center on Aging

University of Kentucky
Lexington, KY 40506

E-mail: dabcns@uky.edu

Date of first submission to ARS Central, June 13, 2011; date of
final revised submission, November 21, 2011; date of accep-
tance, November 23, 2011.

Abbreviations Used

a-ATP synthase¼ATP synthase alpha chain
c-SNAP¼ soluble N-ethylmaleimide sensitive

factor (NSF) attachment proteins
2D¼ two-dimensional

3AT¼ 3-aminotyrosine
3-NT¼ 3-nitrotyrosine

8-OHdG¼ 8-hydroxy-2¢-deoxyguanosine
AD¼Alzheimer disease

AGE¼ advanced glycation endproducts
ALDO1¼ aldolase

ALS¼ amyotrophic lateral sclerosis
AMPA¼ a-amino-3-hydroxy-5-methyl-4-isoxazole

propionic acid
APP¼ amyloid precursor protein

Ab¼ amyloid beta-peptide
BSA¼ bovine serum albumin

CB¼ cerebellum
CID¼ collision-induced dissociation
CK¼ creatine kinase BB

CNS¼ central nervous system
CP¼ ceruloplasmin
CR¼ carbonyl reductase

CSF¼ cerebrospinal fluid
Cu/ZnSOD¼ copper/zinc superoxide dismutase

DHAP¼dihydroxyacetone phosphate
DMT-1¼divalent metal transporter-1
DNPH¼ 2,4-dinitrophenylhydrazine
DOTA¼ 1,4,7,10-tetraazacyclododecane, N,

N¢, N¢¢, N¢¢¢-tetraacetic acid
DRP2/CRMP2¼dihydropyrimidinase-related protein

2/collapsin response mediator
protein 2

DS¼Down syndrome
EAD¼ early AD
ECD¼ electron capture dissociation

EF-Tu¼ elongation factor Tu
eIF-a¼ eukaryotic initiation factor a
Eno1¼ alpha-enolase

eNOS¼ endothelial nitric oxide synthase
ERK¼ extracellular regulated kinases

ESI¼ electrospray ionization
ETC¼ electron transport chain

fALS¼ familial ALS
FBA-C¼ fructose bisphosphate aldolase C
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Abbreviations Used (Cont.)

FITC¼fluorescein isothiocyanate
FSCN1¼ Fascin 1

G3P¼ glyceraldehyde-3-phosphate
GAPDH¼ glyceraldehyde-3-phosphate

dehydrogenase
GFAP¼ glial fibrillary acidic protein

GPx¼ glutathione peroxidase
GR¼ glutathione reductase
GS¼ glutamine synthetase

GSH¼ glutathione
GSSG¼ oxidized glutathione

GST¼ glutathione-S-transferase
HD¼Huntington disease

HNE¼ 4-hydroxy-2-trans-nonenal
HSP¼heat shock protein
Htt¼huntingtin
IEF¼ isoelectric point

iNOS¼ inducible nitric oxide synthase
IPL¼ inferior parietal lobule

iTRAQ¼ the isobaric tag for relative and
absolute quantitation

LC¼ liquid chromatography
LDH¼ lactate dehydrogenase

LDH2¼ lactate dehydrogenase 2
MALDI¼matrix assisted laser desorption

ionization
MAPK¼mitogen-activated protein kinases

MAPKI¼mitogen-activated protein kinase I
MCI¼mild cognitive impairment

MDH¼malate dehydrogenase
MetO¼methionine sulfoxide

MG¼methyl glyoxal
MnSOD¼manganese superoxide dismutase

MPTP¼ 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine

MRM¼multiple reaction monitoring
MRP1¼multidrug resistant protein 1
MRP3¼multidrug resistant protein 3

MS¼mass spectrometry
NFT¼neurofibrillary tangles

NMDA¼N-methyl D-aspartic acid

nNOS¼neuronal nitric oxide synthase
NOS¼nitric oxide synthase
NTA¼Ni2 + -nitrotyrosine affinity

O-ECAT¼ oxidation-dependent element coded
affinity tags

OS¼ oxidative stress
PAGE¼polyacrylamide gel electrophoresis
PCAD¼preclinical Alzheimer disease

PCO¼protein carbonyl
PD¼Parkinson disease

PEBP¼phosphatidylethanolamine binding
protein

PGM1¼phosphoglycerate mutase 1
Pin1¼peptidyl prolyl cis-trans isomerase 1
PMI¼postmortem interval
Prx¼peroxiredoxin

PRX VI¼peroxiredoxin VI
RKIP¼Raf kinase inhibitor protein
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

RP¼ reverse-phase
sALS¼ sporadic ALS
SBP1¼ syntaxin binding protein I
SCX¼ strong cation exchange

sHSP¼ small heat shock protein
SOD¼ superoxide dismutase

SOD1¼Cu/Zn superoxide dismutase
SOD2¼Mn superoxide dismutase

SP¼ senile plaque
TBP-2¼Trx-binding protein-2

TCA¼ tricarboxylic acid
TCTP¼ translationally controlled tumor

protein
TF¼ transferrin

TNF-a¼ tumor necrosis factor-a
TPA¼ tissue plasminogen activator
TPI¼ triosephosphate isomerase
Trx¼ thioredoxin

UCH-L1¼ubiquitin carboxy-terminal hydrolase 1
VDUP1¼vitamin D3 upregulated protein 1

wtSOD1¼wild-type SOD-1
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