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Abstract

Dynastic models common in macroeconomics use a single parameter to control the willingness
of individuals to substitute consumption both intertemporally, or across periods, and intergen-
erationally, or across parents and their children. This paper defines the concept of elasticity of
intergenerational substitution (EGS), and extends a standard dynastic model in order to disen-
tangle the EGS from the EIS, or elasticity of intertemporal substitution. A calibrated version of
the model lends strong support to the notion that the EGS is significantly larger than one. In
contrast, estimates of the EIS suggests that it is at most one. What disciplines the identification
is the need to match empirically plausible fertility rates for the US. We illustrate the potential
role of the EGS in macroeconomics.
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1 INTRODUCTION

The seminal contributions of Becker and Barro (1988) and Barro and Becker (1989) provided

macroeconomists with the endogenous population version of the neoclassical growth model. This

contribution was important because it strengthened the central role of the neoclassical growth

model in both the growth and business cycles literatures, allowing macroeconomists to study the

allocation of consumption and wealth across generations, as well as the dynamics of cohort size.

This was all possible while maintaining the infinite horizon representation of the neoclassical growth

model, now interpreted as representing a dynasty: a sequence of finitely lived individuals linked

by altruism. In this respect, the Barro-Becker model also became a natural framework to study

optimal population.
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An implication of the dynastic Barro-Becker model is that the intra-personal willingness to

substitute consumption across periods is the same as the inter-personal willingness to substitute

consumption across generations. More precisely, as we formalize below, the model implies that the

elasticity of intertemporal substitution (EIS) is identical to what we call the elasticity of intergener-

ational substitution (EGS). There is, however, no compelling theoretical or empirical reasons why

these two parameters, or margins, need to be identical. This paper generalizes the standard dy-

nastic model to include separate notions of intertemporal and intergenerational substitution. This

generalization allows the model to capture the strong intertemporal consumption smoothing motive

documented in the literature (Guvenen, 2006), while at the same time allowing for a different de-

gree of consumption smoothing across generations. In fact, our calibration exercises are consistent

with an EIS of at most one, and an EGS of at least two. In other words, while the data supports

a strong intertemporal consumption smoothing motive, there seems to be much less consumption

smoothing across generations.

Our generalized dynastic model aggregates the utility of different generations using a CES

representation. This CES representation includes the Barro-Becker model as a special case, one in

which the EIS coincides with the EGS. The CES dynastic utility we propose resembles Dixit and

Stiglitz’s (1977) preferences for varieties. While in their formulation individuals derive utility from

consuming a range of potential goods, in our framework parental utility depends on the utility from

own consumption and the (lifetime) utility of a number of potential children. In this context, the

EGS captures the substitution between parental consumption and children’s consumption.

A number of reasons motivate a separate role for the EIS and the EGS in dynastic models.

First, we show that the EGS plays a key role in determining the shadow price of a child, or the

economic value of a child, in dynamic models of fertility choice. When the optimal fertility choice is

an interior solution the economic value of a child equates the present value of all the costs of raising

the child. As we discuss below, the imputed value of a child in the United States can be estimated

to be $330,645 for the average low-income family, $458,351 for typical middle-income family and

$759,674 for a representative high-income family (see Table 1 in Section 3). We show that a large

EGS is needed in order to match this range of values of a child. The reason is that the option value

of having a child is larger the more inelastic is the willingness to substitute consumption between

the parent and the child. We find that if the EGS is lower than one, the inelastic case, then the

imputed value of child is much larger, even more than an order of magnitude larger, than what

is suggested by the present value cost computation. A similar finding is reported by Murphy and

Topel (2006) in a related literature that looks at the value of statistical life for adults. In their

case, implausibly large values are obtained when the EIS is lower than one. By separating the EGS

from the EIS, the generalized dynastic model can be consistent with both the economic value of a

child and the strong intertemporal consumption smoothing motive.

Second, disentangling the EGS from the EIS allows dynastic models to be consistent with

the negative fertility-income relationship documented extensively in the empirical literature.1 For

example, Jones and Tertilt (2008) estimate an income elasticity of fertility of about −0.38 using US

1See Jones and Tertilt (2008) and Jones, Schoonbroodt and Tertilt (2011) for a survey of the literature.
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Census data. In the standard dynastic model, non-homotheticity and a high EIS would be required

for the model to replicate a negative fertility-income relationship. As discussed in Cordoba and

Ripoll (2016), non-homotheticity is needed to induce a steady-state relationship between income

and fertility, and an EIS larger than one for that relationship to be negative. This is the case because

the EIS controls the degree of diminishing marginal utility to lifetime parental income. A low EIS

would mean that parents run into sharp diminishing marginal utility in their own consumption,

and therefore the option value of having a child is larger for richer parents because children provide

a way to avoid the decreasing marginal utility. Thus, parents with low EIS would tend to have

more children as their income increases. Since the evidence suggests a negative income-fertility

relationship, an EIS larger than one would be needed. By introducing the notion of EGS, our

generalized dynastic model resolves this tension: it allows for an EIS of at most one as supported

by the evidence, and it makes the model consistent with the income-fertility relationship by having

the EGS be larger than one.

Third, beyond fertility choice, disentangling the EIS from the EGS may be important to an-

alyze a number of other issues in modern macroeconomics. Since the EGS captures substitution

across generations, the study of longer-term issues such as inequality or any policies that involve

intergenerational transfers can be more properly analyzed thinking of the EGS instead of the EIS.

Models of long-term inequality typically assume that an individual lives for a finite number of years,

and that he is replaced by an individual who inherits his assets (Castañeda et al., 2003). This ef-

fectively amounts to assuming that the willingness to substitute consumption within the lifetime

is the same as across generations. But in this class of models, a strong consumption smoothing

motive induces high levels of precautionary savings, more than what it is observed at the left tale of

the wealth distribution. A high EGS introduces the possibility that in the long run wealth will be

more disperse because intergenerational transfers may not occur at lower levels of parental wealth.

The generalized dynastic model we propose seeks to strengthen the tools of analysis in macro-

economics. The flexibility introduced by the distinction between the EIS and EGS makes this

dynastic model consistent with additional stylized facts. While in this paper we mostly focus on

facts related to fertility choice, we also illustrate future research avenues in which this class of

dynastic models could play a role in modern macroeconomics.

Our benchmark model is a stylized three-period dynastic model of fertility choice. The model

features a single parameter, σ, that determines the EIS, and a different one, η, determining the

EGS. We calibrate the model to match facts of the income and fertility data across US states. A

key task is to provide identification of parameters that capture different aspects of how the utility

of the child enters into the utility of the parent. One of these is η, which governs the EGS. We

show that η can be identified by requiring the model to match the average US fertility rate. The

intuition for the connection between fertility and η is that η determines the economic value of a

child and therefore of the incentives to have children. Our benchmark calibration and a number of

robustness checks support a value of EGS = 1/η > 1 ≥ 1/σ = EIS.

We then show that the basic result, that EGS > EIS, is robust to major generalizations

of the benchmark model. For this purpose, we extend the model to include a more realistic life
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cycle of a family, with endogenous consumption, life cycle savings, leisure, labor and fertility. An

advantage of the extended richer model is that we are now able to calibrate σ within the model so

as to match certain life-cycle stylized facts. In contrast, parameter σ in the benchmark is set to

a standard value commonly used in the literature. In the extended model the EIS determines the

degree of consumption smoothing over the life cycle of the parents. In the calibration strategy we

exploit changes in time use over the life cycle, specifically leisure, in order to determine the EIS. In

particular, adults face important changes in leisure with the arrival of children, their departure from

the home, and retirement. The EIS is calibrated to match the observed consumption smoothing

over the life cycle in the presence of discrete changes in leisure. In contrast, the EGS directly

determines the value of a child, making it a key parameter in matching the fertility level. We find

that the introduction of leisure into the model makes the case for a separation between the EGS

and EIS even stronger. The reason is that leisure makes life even more valuable, and therefore

increases the value of a child and the economic incentives to have more children. A higher EGS

provides a counterbalancing force, one that makes parental consumption even more valuable.

The remainder of the paper is organized as follows. Section 2 introduces our generalized dynastic

preferences and formally defines the EGS as a distinct concept from the EIS. In Section 3 we solve

our benchmark (three-period) dynastic model of fertility and calibrate it. We then illustrate the

potential of our generalized framework in macroeconomics by extending it to a dynastic life cycle

model with leisure in Section 4. Section 5 discusses other potential applications of our framework

in modern macroeconomics. Section 6 concludes.

2 THE EGS

In this section we introduce our generalized dynastic preferences and formally define the EGS as a

separate concept from the EIS. The framework generalizes the dynastic model of Becker and Barro

(1988) and Barro and Becker (1989). Consider the problem of an individual who lives for T periods.

Assume the individual derives utility from own consumption and from the utility of his children, if

present. We define the lifetime consumption of an individual as a composite consumption C that

takes the form

C =


[

1
Ω

∑T
t=0 β

tc1−σ
t

] 1
1−σ

if σ > 0 and σ 6= 1

exp
[

1
Ω

∑T
a=0 β

a ln ca

]
if σ = 1

, (1)

where β ∈ (0, 1) is a discount factor, ct is consumption, and Ω ≡
∑T

a=0 β
a. Absent children, C is

the only source of utility for an individual. The function defining composite consumption is a CES

aggregator with elasticity of substitution 1/σ and weights βt. The standard EIS is given by 1/σ.

Notice that C ≥ 0 for all σ.

The lifetime utility of an individual, W , is described by CES preferences

W =

[
C1−η +

∫ n

0
ϕ(i)(W ′i )

1−ηdi

] 1
1−η

, (2)
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where n is the number of children, ϕ(i) ≥ 0 is the weight that the parent attaches to child i, and

W ′i is the utility of child i. Positive altruistic weights means that the parent acts as a social planner

at the family level, where the implicit weight of the parent is one. This utility representation is

non-separable and resembles the Dixit and Stiglitz’s (1977) preferences for varieties. While in their

representation there is a potential number of varieties consumers demand, here there is a potential

number of children parents may have. Parents have n children, each of whom enjoys utilityW ′i . The

utility of potential children who are not born is implicitly normalized to zero in (2).2 Children who

are not born resemble the varieties of goods that are not consumed under Dixit-Stiglitz. The key

new parameter is η ∈ (0, 1), which determines the willingness to substitute composite consumption

across generations. As we show below, 1/η is the elasticity of intergenerational substitution or

EGS. Restriction η ∈ (0, 1) is required to avoid that unborn children, or unconsumed goods in the

Dixit-Stiglitz case, drive parental utility to zero. In other words, this restriction guarantees children

are not essential.3

Assume ϕ(i) = α (1− ε) i−ε and consider the symmetric case with W ′i = W ′ for all i. Using

monotonic transformation V = W 1−η/(1− η), equation (2) can be rewritten as

V =
1

1− ηC
1−η + αn1−εV ′, (3)

which is our generalized version of Becker and Barro (1988) that allows for η 6= σ. The Barro-

Becker formulation can be obtained by setting η = σ. In this case, V = 1
1−σC

1−σ +αn1−εV ′, which

is the standard formulation with a single elasticity. Equation (3) also makes clear that restriction

η ∈ (0, 1) is required for V ≥ 0 and V ′ ≥ 0, as otherwise adding a positive mass of children would

be detrimental to parental utility.

An alternative way to describe preferences (3) is obtained by recursively substituting V ′. Under

the boundedness condition limt→∞αtN
1−ε
t C1−η

t /(1− η) = 0, it follows that

V =
∑∞

t=0
αtN1−ε

t

C1−η
t

1− η =
∑∞

t=0
αtN1−ε

t

[
1
Ω

∑T
s=0 β

sc1−σ
t,s

] 1−η
1−σ

1− η , (4)

where t is an index for cohorts, s is an index of the individual’s age, n0 = 1, and Nt =
∏t−1
v=0 nv is

the size of cohort t. Again, when η = σ the standard dynastic Barro-Becker model is obtained.

We now use equation (4) to formally define the EGS. We show that the EIS and the EGS are

equal to 1/σ and 1/η respectively. The marginal rate of substitution between consumption at age

2Utility in the unborn state may seem unusual to many, but it arises naturally in altruistic models with endogenous
population because of the need to fully describe the consumption space. An unborn state is analogous to a dead
state arising in models of longevity. See, for example, Rosen (1988), Becker, Philipson and Soares (2005), Murphy
and Topel (2006), Hall and Jones (2007), and Jones and Klenow (2016). The welfare of the unborn also arises in
normative models of endogenous population, as in Golosov, Jones and Tertilt (2007).

3Section 5 extends the model to allow for any η > 0.
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s and consumption at age v for an individual is defined as

MRS (cv, cs) ≡
∂V/∂cv
∂V/∂cs

=
∂C/∂cv
∂C/∂cs

C−ηCσβvc−σv
C−ηCσβsc−σs

= βv−s(cs/cv)
σ,

and therefore EIS = EIS (cv, cs) = 1/σ, as it is standard.

The EGS can be defined similarly to the EIS but it relates to the willingness to substitute

consumption across different generations rather than across different ages. The marginal rate of

substitution between composite consumption of generations s and v from the point of view of the

head of the dynasty is given by

MRS (Cv, Cs) =
∂V/∂Cv
∂V/∂Cs

,

and the corresponding EGS can be defined as

EGS (Cv, Cs) =
d ln(Cs/Cv)

d lnMRS(Cv, Cs)
. (5)

According to this definition, the EGS measures the willingness of the parent to substitute composite

consumption across generations s and v, s 6= v. Similarly to the EIS, the EGS could be in principle

defined only for adjacent generations but, as Proposition 1 below shows, EGS = 1/η for any s 6= v

when preferences are described by (4).4 An alternative definition of the EGS that does not involve

composite consumption but period consumptions for parents and children is

ẼGS
(
cv, c

′
s

)
=

∂ ln(c′s/cv)

∂ ln(MRS (cv, c′s))
, (6)

where cv is parental consumption at age v and c′s is children consumption at age s. The partial

derivative refers to a change in the c′s/cv ratio holding the other consumption ratios constant. This

definition includes as a special case the elasticity of substitution between parental and child’s con-

sumption in the same period. Specifically, if parents have children at age F , then ẼGS (cs+F , c
′
s) is

the within period elasticity of substitution between parental and children’s consumption. It turns

out that ẼGS (cv, c
′
s) = ẼGS = EGS = 1/η for any feasible v and s′.

Proposition 1. Suppose the lifetime utility of an individual is described by (4). Then EGS (Cv, Cs) =

ẼGS (cv, c
′
s) = EGS = 1/η.

Proof Using (4)

MRS (Cv, Cs) =
∂V/∂Cv
∂V/∂Cs

=
αvN1−ε

v C−ηv

αsN1−ε
s C−ηs

,

4The EGS is conceptually and quantitatively different from long term EIS. For example, Biederman and Goenner
(2008) allow the degree of intergenerational substitution to vary over the life cycle so that a short term and a long
term EIS emerge. They find that the EIS varies over the life cycle, and the EIS seems to be even smaller and below
one for longer time horizons. Conceptually, however, the long term EIS still refers to an intertemporal willigness to
substitute consumption across time for the same individuals, and therefore it is different from the EGS.
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and therefore

EGS (Cv, Cs) =
d ln(Cs/Cv)

d lnMRS(Cv, Cs)
= 1/η.

Moreover,

MRS
(
cv, c

′
s

)
=
∂V/∂cv
∂V/∂c′s

=
C−ηCσβvc−σv

αn1−ε (C ′)−η (C ′)σ βs (c′s)
−σ .

Since C is constant returns to scale, it can be written as C = cvĈv where Ĉv is homogeneous of

degree zero. As a result,

MRS
(
cv, c

′
s

)
=

c−ηv Ĉ−ηv cσv Ĉ
σ
v β

vc−σv

αn1−ε (c′s)
−η
(
Ĉ ′v

)−η
(c′s)

σ
(
Ĉ ′s

)σ
βs (c′s)

−σ
=

Ĉσ−ηv βv

αn1−ε
(
Ĉ ′s

)σ−η
βs

(
cv/c

′
s

)−η
.

Consider a change in cv/c′s holding all other consumption ratios constant. In that case

ẼGS
(
cv, c

′
s

)
=

∂ ln(c′s/cv)

∂ ln(MRS (cv, c′s))
= 1/η

as stated. ‖

3 BENCHMARK DYNASTIC MODEL

In this section we specify and calibrate a stylized three-period dynastic model with endogenous

fertility using the generalized dynastic preferences in (3). This stylized model illustrates the role of

the EGS in the context of fertility choice. We examine a more general life cycle model with leisure

in Section 4, and other potential applications of the EGS in Section 5.

3.1 Model

Consider an economy in which individuals live for three periods: child, young adult and old adult.

Young adults work and raise children, and old adults only consume. Parents decide the consumption

of their children. Let b be the total lifetime transfers from a parent to each of his adult children

(inter vivos transfers plus bequests). The problem of the young adult is given by

V (cc, b) = max
cy ,co,n,c′c,b

′

1

1− ηC (cc, cy, co)
1−η + αn1−εV (c′c, b

′), (7)

subject to

b+ w ≥ cy + co/R+ n
(
b′ + c′c + λw

)
, (8)

b′ ≥ 0, (9)
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n ≥ n ≥ 0, (10)

where cc, cy, and co are consumptions as child, young adult and old adult respectively, R is the

gross interest rate, w is wage income, and λ is the time cost of raising a child. Equation (8) is the

present value budget constraint of a young adult: transfers received from parents plus labor income

must cover consumption expenses plus the cost of raising children. The cost of a child includes the

time cost for the parent, λw, the consumption of the child, c′c , plus the amount of transfers per

child, b′.

Equation (9) is a constraint to intergenerational transfers: parents cannot transfer negative

amounts (debt) to their adult children. We also refer to this as the "bequest" constraint. This

credit constraint is natural, as it captures the legal and moral reasons precluding parents from

enforcing debt obligations on their own adult children. Last, equation (10) limits the number of

children to a maximum of n = 1/λ to guarantee a non-negative labor supply.

Composite consumption, C, is given by

C (cc, cy, co) =

{ [
1
Ω

(
c1−σ
c + βc1−σ

y + β2c1−σ
o

)] 1
1−σ + C if σ > 0 and σ 6= 1

exp
[

1
Ω

(
ln cc + β ln cy + β2 ln co

)]
+ C if σ = 1

,

where C > 0 is non-market consumption. As discussed in Cordoba and Ripoll (2016), a form of

non-homotheticity as well as constraints to intergenerational transfers, as in equation (9), allow

deterministic dynastic altruistic models to replicate the observed negative relationship between

fertility and income.

For simplicity we assume βR = 1 so that the model delivers cy = co —adults have a simple flat

consumption when young and old. Our results are robust to alternative assumptions that give rise

to a more realistic consumption profile over the life cycle (Section 4).

3.1.1 Optimal consumption and transfers

Let θ and µ be the Lagrange multipliers on the budget constraint (8), and the bequest constraint

(9) respectively. The first order conditions with respect to cy, co, c′c and b
′ are

C−η (C − C)σ βc−σy /Ω = θ, (11)

C−η (C − C)σ β2c−σo /Ω = θ/R, (12)

αn1−ε∂V (c′c, b
′)

∂c′c
= θn, and (13)

αn1−ε∂V (c′c, b
′)

∂b′
+ µ = θn/R. (14)
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The envelope conditions read

∂V (cc, b)

∂cc
= C−η (C − C)σ c−σc /Ω, (15)

Vb(b) = θ. (16)

Equations (11), (12) and the assumption βR = 1 imply that

cy = co. (17)

Moreover, equations (14) and (16) can be written as

θ ≥ Rαn−εθ′. (18)

This expression is an intergenerational version of the standard Euler equation, with θ being the

marginal utility of a young adult’s consumption and αn−ε an endogenous discount factor, in this

case the average degree of altruism which depends on the number of children.

In what follows we focus on a steady state situation. In this case (18) simplifies to 1 ≥ Rαn−ε. If
the bequest constraint does not bind (unconstrained case), this expression would hold with equality

and the steady state number of children would be n∗ = (Rα)1/ε. Fertility in this case is a function

of the interest rate but independent of any income or level variable such as C or wages, which is

inconsistent with the documented evidence of a negative relationship between fertility and income

(see Jones and Tertilt, 2008). For this reason, from now on we focus on the case in which the

bequest constraint binds, which is also the relevant case in the model’s calibration.5

When the bequest constraint binds, b = 0 and the strict inequality 1 > Rαn−ε holds. This

implies that steady state fertility is larger in the constrained than in the unconstrained case. Com-

bining (13) and (15) it follows that

αn1−εC ′−η
(
C ′ − C

)σ
c′−σc /Ω = θn.

In steady state this equation and (11) simplify to

cy = G(n)1/σcc, (19)

where G(n) ≡ nε/Rα ≥ 1 measures the "tightness" of the bequest constraint or the extent to which

consumption during childhood falls below that of the adult period, i.e., cc < cy. Furthermore, G(n)

5As we discuss later in the model’s calibration, inter vivos transfers and bequests to adult children do occur in
the United States, but only a relatively small fraction of adults receive them. In addition, when they occur, they
do in small amounts (Altonji et al., 1997). From this perspective, a binding bequest constraint (b′ = 0) would be a
reasonable characterization of the representative or average adult child in the United States.
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is increasing in the number of children meaning that in larger families the bequest constraint is

tighter due to the fact that the average degree of altruism per child decreases with n. This manifests

in the ratio of childhood to adult consumption, cc/cy, being lower in larger families. Therefore when

the bequest constraint binds the model captures a quality-quantity trade-off between the number

of children and the resources parents spend on them during childhood.6

Given n, steady state solutions can be obtained using (17), (19), (8) as

cy = co = c(n) ≡ G(n)1/σw (1− λn)

n+G(n)1/σ (1 + β)
, (20)

cc = cc(n) ≡ 1− λn
n+G(n)1/σ (1 + β)

w, (21)

cc + λw =
1 +G(n)1/σλ (1 + β)

n+G(n)1/σ (1 + β)
w. (22)

According to these expressions, the child’s consumption decreases with the number of children for

two reasons: additional children lower the net income of parents as they reduce parental labor

supply; and more children increase the discount per-child due to the decreasing degree of altruism.

Furthermore, the total cost of a child, cc+λw, decreases with the number of children because parents

reduce consumption per-child while the time cost per-child remains constant. Adult consumption,

on the other hand, may be decreasing or increasing in the number of children. A suffi cient condition

for adult consumption c(n) to be decreasing in the number of children is σ > ε, which turns out to

be the empirically relevant case.

Given solutions for consumptions, steady state C and V can be written as

C(n) =

[
1

Ω

(
G(n)1−1/σ + β + β2

)] 1
1−σ

c(n) + C and V (n) =
1

1− η
C(n)1−η

1− αn1−ε . (23)

Provided σ > ε, the utility the parent derives from own consumption, C(n), is also decreasing in n.

3.1.2 Optimal fertility

We now turn to the fertility choice. The optimality condition for fertility in an interior solution is

wλ+ c′c = (1− ε)αn−εV (c′c, b
′)

θ
. (24)

The left-hand side of this expression is the marginal cost of a child, which includes the value of

parental time cost plus child’s consumption. Notice that this also corresponds to the average cost

of raising a child, which we use below in the calibration. The right-hand side is the marginal benefit

6Notice that G(n) = 1 corresponds to the case in which the bequest constraint does not bind, implying cc = cy(=
co).
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of the n-th child. The term V (′) /θ is the welfare of the child measured in parental consumption

units, while (1− ε)αn−ε is the weight that parents attach to the n child.
It is intuitive to think of the marginal benefit of a child as the shadow price of a child, or the

economic value of a child, which is given by V C(n) ≡ (1− ε)αn−εV (′) /θ. The value of a child to

the parent is the welfare of the child measured in parental consumption units, properly weighted

by marginal altruism. It can be shown that it also corresponds to the marginal rate of substitution

between the number of children and parental consumption. Using (23), the steady-state V C(n)

can be written as

V C(n) =
1− ε
1− η

αn−ε

1− αn1−ε
C

(C − C)σβc(n)−σ/Ω
, (25)

which highlights the role of η in determining the value of a child. Everything else equal, the higher

the EGS (the lower the η), the lower the value of a child. By definition, a high EGS is a high

elasticity of substitution between parental and child consumption, but the expression above also

links a high EGS with a high marginal rate of substitution between number of children and parental

consumption. Interestingly, as η → 1 the value of a child becomes infinity, underscoring one of the

key role of disentangling the EIS from the EGS. If we consider the standard case with σ = η,

equation (25) implies that as σ → 1, the value of a child would become implausibly high. In this

case, as we show below in the calibration, the value of a child would be too high relative to the

marginal cost of raising a child in (24), making it impossible to match the observed fertility in

the data. Since σ = 1 is a common value in quantitative macroeconomics, and a lower bound for

available estimates of σ, disentangling η from σ makes it possible to link the value of a child to η

rather than to σ. It turns out that matching the observed fertility in the data requires η < 1.

It is interesting to notice the analogy between the value of a child in (25) and the value of

(statistical) life for adults in Murphy and Topel (2006). In their case, as σ → 1, the value of

life for adults becomes implausibly high relative to the estimates of the value of statistical life

in the data. The reason is that as σ → 1 the consumption smoothing motive becomes stronger,

making it more valuable to extend the life of an adult for additional periods. In our case, as

η → 1 parents’willingness to substitute consumption between the parent and the child becomes

more inelastic, making the option value of a child larger. By separating the EGS from the EIS, the

generalized dynastic model can be consistent with both the economic value of a child and the strong

intertemporal consumption smoothing motive documented in the quantitative macro literature.

Using (23), the value of a child in (25) can be written as

V C(n)

c(n)
=

1− ε
1− η

G(n)1−1/σ + β + β2

G(n)− βn
1

1− C/C(n)
, (26)

and using (22), (20) and (26), the solution for steady state fertility is characterized by

1 +G(n)1/σλ (1 + β)

1− λn =
1− ε
1− η

G(n) +G(n)1/σβ (1 + β)

G(n)− βn
1

1− C/C(n)
, (27)
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which equates the marginal cost and marginal benefit of a child, both as proportion of parental

consumption. For the solution to this equation to be optimal, we further need to check that n

satisfies n > n > n∗. We confirm that this is the case in the calibrated model.

For the case in which C = 0 we can derive explicit necessary and suffi cient conditions for optimal

fertility n to satisfy n > n > n∗, which also imply that the bequest constraint is binding. First, at

n = n∗ we have that the marginal benefit is larger than the marginal cost in equation (27). Since

n∗ = (Rα)1/ε and G(n∗) = 1, then the following parameter restriction is required n > n∗ to hold

1 + λ (1 + β)

1 + β (1 + β)

1− β (Rα)1/ε

1− λ (Rα)1/ε
<

1− ε
1− η .

In order to interpret this condition, notice that if η > ε, then β > λ is suffi cient for the restriction

to be satisfied. The present value of the child’s future income is βw = w/R, while λw is the time

cost of raising a child. Therefore if β > λ children are a net financial gain in the sense that the

child’s future income is larger than the time cost of raising the child. Absent any constraints to

intergenerational transfers, altruistic parents would have the incentive to recover part of the cost of

raising children by giving the adult child a negative transfer. This would effectively transfer some

of the adult child’s income to the parent. Constraint (9) prevents such negative transfers from

occurring. Last, it can be shown that since n = 1/λ, condition λ1−ε > α is required to guarantee

n > n.

3.2 Calibration and results

In this section we calibrate the model. The main goal is to identify the EGS and assess the extent

to which it differs from the EIS.

3.2.1 Fertility data

We use evidence from a cross-section of US states to calibrate the model. This evidence is appro-

priate for our purpose for several reasons. First, in contrast with cross-sectional international data

in which countries are at different stages of the demographic transition, US states have all com-

pleted this transition. This feature maps better into our steady-state analysis. Second, cross-state

data is better for our purpose than individual-level data because relative income across states is

roughly constant, while individual income in any given year does not represent lifetime income. In

this respect, the cross-state fertility-income relationship is closer to the one captured in the model.

Third, despite the relative convergence in both income and fertility across US states, there is still

some cross-sectional variation. Last, the assumption that the interest rate is identical can be better

justified across US states than across countries.

Figure 1 displays the total fertility rate versus median household income across US states in

2016. The total fertility rate is from the 2018 National Vital Statistical Report, and it corresponds

to the number of births 1,000 women age 15-44 would have in their lifetime if they experienced the
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births currently occurring at each age. Median household income is from the American Community

Survey Brief (US Census Bureau, 2016). Average total fertility in the sample is 1.820 while average

median household income is $57,617. The size of the bubbles in Figure 1 represents 2016 population

weights from the Statistical Abstract of the US. Taking into account population weights, Figure

1 suggests a slightly negative relationship between fertility and income. Based on this data we

estimate an income elasticity of fertility of −0.143 (significant at the 5% level on a population-

weighted regression). This elasticity is close to the one estimated by Jones and Tertilt (2008) using

individual-level Census data for the most recent cohorts. For instance, for the 1951-1955 cohort,

whose average fertility was 2.05 children ever born and average occupational income was $49,378,

they estimate an income elasticity of fertility of −0.17. We will use our estimated elasticity as one

of the calibration targets.

3.2.2 The costs of raising children

As discussed above, the costs of raising children are fundamental for the identification of the key

parameter η. Our calibration requires data on both the goods costs and the time costs of raising

children. Recall that in our model cc effectively corresponds to the present value of the goods costs

of raising a child, while λw is the present value of the time costs. We use USDA data from Lino

(2012) to compute the goods cost of raising a child. According to the Lino (2012), the typical cost

of raising a child born in 2011 from age 0 to 17 for a family of four in the lowest income group is

$169,080, while for a family in the middle-income group is $234,900 and for a high-income family is

$389,670 in 2011 dollars. These figures include direct parental expenses made on children through

age 17 such as housing, food, transportation, health care, clothing, child care, and private expenses

in education. Assuming a discount rate of 3%, the corresponding present values of these sums are

$132,258 for low income, $183,340 for middle income, and $303,870 for the high income group.

Table 1 presents these goods costs for a "representative family" in each USDA income group.

Using the family income brackets from Lino (2012), we select a 2011 income of $43,625 for the

representative low-income family; $81,140 for middle income, and $126,435 for a high-income family.

The low-income family figure is computed as the average of the following two values: $27,840, which

corresponds to the income of a family in which both parents make the federal minimum wage in 2011,

and $59,410, which is the upper bound of low-income families from the Lino (2012) classification.

The middle-income family number is simply the mid-point of the Lino (2012) interval of $59,410

to $102,280. Last, the high-income "representative" family is computed as the average between

$102,280 and $150,000, where the latter corresponds to the 90th percentile of the family income

distribution in 2011 according to the US Census Bureau. For each of the representative families

we also compute a lifetime household income assuming a 43-year working life span and a 3% real

interest rate. From Figure 1 and Table 1, notice that the values of median household income by

states fall in between the low and middle-income family groups under the USDA classification. For

this reason, we will use the information of these two groups to calibrate the goods costs of raising

children.
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As we discuss in Cordoba and Ripoll (2016), accounting for the time costs of raising children is

not trivial. Available estimates are based on time use survey data, but the diffi culty of measuring

time costs is that in many instances parents multitask, taking care of children as a secondary

activity while performing other primary activities. Using the 2003-2006 American Time Use Survey,

Guryan et al. (2008) find that while mothers spend around 14 hours per week in child care, fathers

spend around 7 hours. These correspond to primary time parents spend on children (basic care of

children, education, recreation and any travel related to these). If the total time parents spend in

the presence of their children is measured (both primary and secondary time), then mothers spend

45 hours per week and fathers spend 30 hours. In a related study, Folbre (2008) uses the 1997 Child

Development Supplement of the Panel Survey of Income Dynamics to conclude that the average

amount of both passive and active parental-care hours per child (not including sleep) is 41.3 per

week for a two-parent household with two children ages 0 to 11. Folbre (2008) also discusses two

alternative ways of computing the monetary value of these hours: one uses a child-care worker’s

wage and the other the median wage. The former method implies that the time cost of raising

children is on average around 60% of the total costs (see Table 7.3, p. 135), while the latter implies

it is 75%.

In order to compute the time costs for each of the representative families in Table 1 we use

the more conservative estimate in which they are about 60% of the total cost of raising a child.

As can be seen in Table 1, the present value of the time costs of raising a child is $198,387 for

a low-income family, $275,011 for a middle-income family, and $455,804 for a high-income family.

Table 1 also presents the total costs of raising a child: $330,645 for a low-income family, $458,351

for a middle-income family, and $759,674 for a high-income family.

It is important to notice that the total costs of raising a child in Table 1 map into the economic

value of a child. As discussed before, optimal fertility is decided comparing the marginal cost and

the marginal benefit of a child. Since the values in Table 1 correspond to the total marginal cost

of a child, they also correspond to the value of a child, or the marginal benefit. As the median

household income across US states in Figure 1 ranges from about $43,000 to $78,000, our calibrated

model should be consistent with a value of child ranging between $330,645 and $458,351, which

correspond to the total cost of raising a child for low and middle-income families in Table 1. The

table also reports the costs of raising a child as a fraction of the lifetime household family income,

which are useful for calibration purposes. As Table 1 indicates, for the average two-parent two-

child family in the low and middle-income groups in the US, the goods costs of raising each child

correspond to 10.8% of the lifetime household income, while time costs are 16.2% and total costs

are 26.9%.

3.2.3 Exogenous parameters

Some parameters in the model are set exogenously. We set the length of each of the three periods

of life to 25 years: a child consumes with the resources transferred by his parent from ages 0 to 25;

young adults have children at age 25 and work until age 50, while old adults consume and retire
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from age 50 to 75. The annual interest rate is set to 3% which implies a discount factor β of 0.48

per 25-year period.

We set σ = 1, the typical lowest bound for this parameter in quantitative macro models (Gu-

venen, 2006). The main purpose of this calibration is to disentangle the EIS from the EGS. With

the restriction η ∈ (0, 1), setting σ to this lowest bound will be particularly informative regarding

how different the EIS and the EGS might be. We do provide alternative calibrations of the model

for the larger values of σ in the robustness section.

Parameter ε determines the degree of diminishing altruism. While little is know about this

parameter, there is one study that directly estimates it. Dickie and Messman (2004) uses stated-

preference data on parental willingness to pay to relieve symptoms in children’s acute respiratory

illnesses. The distinct feature of this study is that it estimates how parental willingness to pay

changes with the number of children in the family. In addition to strongly supporting parental

altruism toward their children, the paper estimates an elasticity of the parental willingness to pay

with respect to the number of children in the family of −0.288 (see their Table 5, p. 1159).

In order to map this elasticity into our model, and to the extent that health expenditures

in treating acute illnesses increases the survival probability of the child, we compute the implied

willingness to pay WTP for an increase ∆πc in survival. In this case the WTP is directly linked

to the value of a child and given by7

WTP (n) = V C(n) ·∆πc.

Since we are only interested in the elasticity of WTP (n) with respect to n, the magnitude of term

∆πc does not play a role in the value of this elasticity. Using the expression above together with

equation (26) we obtain

εWTP (n) =
∂WTP

∂n

n

WTP
= −ε.

We therefore set ε = 0.288. This value suggests a relatively low degree of diminishing marginal

altruism. Since we are setting ε exogenously, we provide robustness checks for the value of this

7To derive the WTP (n) formula we write the utility of the parent as

V (cc, b) = max
1

1− η
C (cc, cy, co)

1−η + α (πcn)1−ε V (c′c, b
′),

where πc is the survival probability of the child. This implies that the willigness to pay to increase survival by ∆πc
is given by

WTP (n) =
∂V/∂πc
∂V/∂cy

∆πc
n

.

Because πc and n enter symetrically in the altruistic weight function, it turns out that

WTP (n) =
∂V/∂πc
∂V/∂cy

∆πc
n

=
∂V/∂n

∂V/∂cy

∆πc
πc

= V C(n) ·∆πc.

Since in our model πc = 1, evaluating the expression above at πc = 1 delivers

WTP (n) = V C(n) ·∆πc.
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parameter below.

3.2.4 Calibrated parameters

The remaining four parameters [λ, α, η, C] are calibrated to four targets. Table 2 reports the results.

Although the parameters are jointly calibrated, each one can be more directly related to one of the

targets. First, parameter λ is the present value of the time costs of raising a child, λw, as a fraction

of parental lifetime income w. We calibrate λ to match this share in the data, which according to

Table 1 corresponds to an average of 16.2% for a typical family with two parents and two children

in the low and middle-income USDA groups in Lino (2012). Since in our model there is a single

parent, and the average fertility in the sample is two children per household, then the average single

parent will be raising one child and λ = 0.324.

Second, parameter α, which corresponds to the level parameter in the altruistic weight, has a

first-order effect on the goods costs of raising children as a fraction of lifetime parental income, or

cc/w. To see this, using equation (21) write

cc
w

=
1− λn

n+ α−1/σβ1/σnε/σ (1 + β)
.

Given the exogenous values of R, β and σ, as well as the calibrated value of λ, and given that the

average n will be calibrated to a target of n = 0.921, then the equation above determines α for a

given cc target. According to Table 1, the average cc for low and middle-income families is 10.8%.

We obtain a calibrated value α = 0.307.

Third is our parameter of interest, η. Although η is calibrated jointly with the rest of the

parameters, its value is mainly identified from the value of a child. In particular, we choose η

so that the model delivers an average fertility of around one child per parent, or more precisely

n = 0.921, which corresponds to half of the average fertility across US states in Figure 1. Using

equation (24), the optimality condition for fertility, together with the expressions for the value of

a child in (26), and adult consumption (20), we can write

wλ+ cc
w

=
V C(n)

w
=

1− ε
1− η

G(n)1−1/σ + β + β2

G(n)− n/R
G(n)1/σ (1− λn)

n+G(n)1/σ (1 + β)

1

1− C/C(n)
,

where the left-hand side represents the total cost of raising a child as a share of parental lifetime

income, and the right-hand side is the value of a child also as a fraction of parental lifetime income.

For C = 0, and given ε and the calibration targets described for λ, α, the equation above identifies

η for a target of n = 0.921. Parameter C is still to be determined, but as long as C/C(n) is small,

η will be of first-order importance in determining the value of a child, and through this channel,

the fertility level. We obtain a calibrated value of η = 0.285, or an EGS is 3.5, a large degree of

intergenerational substitution.

Last is parameter C, non-market consumption. We calibrate this parameter in order to match
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the income elasticity of fertility in our sample, which we computed to be −0.143 (see fitted line in

Figure 1). If C = 0 then fertility would not be related to income in our model. To see that write

the optimality condition of fertility in (24) as

wλ+ cc =
1− ε
1− η

G(n)1−1/σ + β + β2

G(n)− n/R
c(n)

1− C/C(n)
.

Notice, using (22) and (20), that both the total cost of raising a child wλ+cc and adult consumption

c(n) are proportional to w. Therefore, if C = 0, then both the marginal cost and the marginal

benefit of a child are proportional to lifetime income and fertility choices would be independent of

w. Only if C > 0 there is a link between fertility and income. In fact, this relationship is negative

because when w increases the marginal benefit increases less than the marginal cost due to the

presence of C/C(n). Calibrating C in order to target an income elasticity of fertility of −0.143

results in a maximum C/C(n) of 4.79% across US states, a small value.8

The calibration implies that the bequest constraint binds. Therefore in the calibrated model no

bequests or other inter vivos transfers to adult offsprings are given and all expenses on children take

place during childhood. This case represents well the average family in the United States. Although

inter vivos transfers and voluntary bequests do occur in the US, a relatively small fraction of adults

receive them, and they occur in small amounts. For instance, using the 1988 special supplement on

transfers between relatives from the PSID, Altonji et al. (1997) document that only 23% of adult

children (on average 31 years old) receive transfers from parents (on average 59 years old). These

are overall small transfers: the mean is $3,442, and the median is $951 in 2011 dollars. A similar

pattern has been documented for bequests. Using the 1993-1995 Asset and Health Dynamics among

the Oldest Old (AHEAD) data, Hurd and Smith (2001) document that most bequests are of little

of no value: single descendants at the bottom 30% receive $2,952, and the average single descendant

receives $14,760 in 2011 dollars. Given the highly skewed wealth distribution in the United States,

the occurrence of significant bequests concerns only of a small fraction of the population.9

Our calibrated model also has implications for cross-state variations in the value of a child.

Figure 2 illustrates this point. Under our benchmark calibration, the average value of a child

across US states is $375,220. The maximum value of a child in the sample is $517,169 (Maryland)

and the minimum is $264,199 (Mississippi). These values are overall plausible. The median income

8Although the income elasticity of fertilty we estimate is statistically significant, its absolute value is small. Since
in the calibrated model US states only differ in household income, this small elasticity implies that the model cannot
be expected to explain all the fertility dispersion in the data. However, what is important to notice is that this does
not affect the main point of this calibration exercise, which is to illustrate how our main parameter η can be identified
from the value of a child that matches average fertility.

9 It may appear surprising that bequests are minimal in the US, as this may not be the case for other countries.
We acknowledge that the US may be different than other countries in this respect. Older adults across countries
differ on their portfolio allocation and medical coverage, which will necessarily affect the size of inter vivos transfers
and bequests. For instance, in Italy about 56% of bequests are in the form of houses (Bellettini et al., 2017). In
contrast, in the US the value of houses and any liquid assets left behind by the deceased parent are used to cover
medical or nursing home bills, as well as funeral expenses. Little is left after those payments are accounted for (Hurd
and Smith, 2001). Perhaps in Italy housing is the preferred form of accumulating assets and the coverage of medical
expenses for the elder is more comprehensive than in the US. We leave for future work exploring the effect different
institutional settings on parental incentives to transfer resources to adult children.
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in all US states falls within the low and middle income brackets. According to Table 1, the value

of a child for the average family in these two brackets is $330,645 and $458,351 respectively.

3.3 Robustness and discussion

We check the robustness of our calibration to alternative values of both σ and ε. For our benchmark

value ε = 0.288, we find that as σ increases the calibrated value of η decreases. For instance, for

σ = 1.5, a typical value in quantitative macro, we obtain η = 0.238. As can be seen in equation

(26), a larger σ increases the marginal benefit of a child (value of a child) because the marginal

utility of parental consumption falls faster. To counteract this effect and match a given number

of children, η has to fall in order to discourage parents from adding new children. The parameter

that changes the most as σ increases is C, which rapidly increases with σ, although the ratio C/C

only changes slightly. What we conclude is that if anything, raising the value of σ only widens the

gap between σ and η, providing additional evidence of a distinct role for the EIS and the EGS.

We also calibrate the model for different values of ε. For our benchmark value σ = 1, we find

that as ε increases, our calibrated value of η also increases. For instance, for ε = 0.5 we obtain

η = 0.488 while for ε = 0.8 we obtain η = 0.8. As ε increases, the altruistic weight on the marginal

child decreases, lowering the demand for children. To counteract this effect and match a given

number of children, the EGS has to decrease so that parents are willing to add more children and

smooth consumption across more individuals.

We also analyze the consequences of making η approach σ in our benchmark calibration where

σ = 1. This requires abandoning one of the identification targets while other parameters need to be

adjusted to match the other moments. If the target on average fertility is abandoned, we find that

fertility approaches the maximum feasible as η → 1, a prediction inconsistent with the evidence.

This is expected because the value of a child, as described by equation (26), explodes as η → 1.

If the target on goods costs of raising children, cc/w, is abandoned, then we find that α → 0 as

η → 1. The model can then match fertility but goods costs of children become just a small fraction

of what the data suggest. A low α keeps the value of a child from exploding but also reduces the

expenditures of children’s consumption. Alternatively, we could exogenously make η → 1 while at

the same time making ε endogenous to improve the model’s fit. According to (26), this requires

ε to approach one as well. In that case, the model would require an implausibly strong degree of

diminishing altruism. Overall, our calibration exercises support η < 1, namely an EGS larger than

one.

Finally, we analyze what would happen if the restriction σ = η is imposed and η is calibrated to

match the fertility target. We find that for ε = 0.288, the calibrated model requires η < 0, violating

the restriction η ∈ (0, 1). To understand why η < 0 is required, recall that η is identified from

the optimal fertility condition, which equates the value of a child to his marginal cost: V C (n) =

MC(n). With a low enough ε one might need η < 0 because the value of a child is much larger

than the marginal cost. This implies that for the model to match calibration targets on fertility

and consumption, there exists a lower bound for ε below which η would be negative. To see this
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formally, write V C (n) more extensively as V C (n, c; η, ε), which makes it explicit that V C depends

on the number of children, a consumption sequence c and parameters η and ε. Given targets for

fertility, n, consumption sequences, c, and a value for ε, the value of η must satisfy

V C (n, c; η, ε) = MC (n) .

Notice that V C (n, c; η, ε) is increasing in η: it goes to infinite as η → 1, decreases as η goes to zero,

and reaches a positive lower bound when η = 0. Therefore, this equation typically has a unique

solution. Since V C (n, c; η, ε) = V C (n, c; 0, ε) /(1− η), the solution for η can be expressed as

1− η =
V C (n, c; 0, ε)

MC (n)
. (28)

In this formulation, V C (n, c; 0, ε) is a lower bound on the value of a child, found by setting η = 0.

For η ∈ (0, 1) the restriction V C (n, c; 0, ε) < MC (n) is needed. This restriction states that when

η = 0 (EGS = ∞), the linear case, the value of a child should fall below its marginal costs.

Otherwise, the value of a child is too high even for η = 0 and no feasible value of η can be used to

match the fertility target.

As discussed, when the restriction σ = η is imposed and ε = 0.288, ε is too low (low degree of

diminishing altruism) and we obtain η < 0. In those cases, the minimum feasible ε that allows for

η ∈ (0, 1) satisfies the condition:

V C (n, c; 0, ε) = MC (n) . (29)

We then use equation (29) to find the minimum ε for which restriction η ∈ (0, 1) is satisfied. We find

this value to be ε = 0.4. This value happens to be within the range of other calibrated models in

the literature: Birchenall and Soares (2009) calibrate values of ε in the range of 0.4 to 0.6; Doepke

(2004) calibrates ε = 0.5; and Manuelli and Seshadri (2009) calibrate ε = 0.35. For the value

ε = 0.4 we find the calibrated η = σ = 0.133. Such a calibration poses two important problems.

The first one is that the implied EIS of 7.5 conflicts with extensive evidence based on aggregate

consumption data, which supports an EIS lower than one. As discussed in Guvenen (2006), the

largest EIS that has been either estimated econometrically or calibrated in the context of a model

is at most one. For example, Yogo (2004) confirms Hall’s (1988) findings that "The EIS is less

than 1 and not significantly different from 0 for 11 developed countries" (p. 797). Second, this

evidence points to perhaps the major problem with a model that imposes η = σ, namely its lack

of robustness. The reason is that estimates of the EIS vary widely, from close to zero to slightly

larger than one. Given the uncertainty surrounding σ, a robust fertility model should be able to

handle plausible estimates of σ, such as σ = 1, not just certain values of σ. But as we discussed

above, the model with σ = η = 1 fails to match key targets.

To reiterate, the important finding of this exercise is to show that for a reasonable calibration
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of a generalized dynastic model that disentangles the EIS from EGS, the calibrated EGS turns out

to be significantly larger than one and above standard value of the EIS. Our calibration suggest

that individuals have a low intertemporal substitution, but a higher intergenerational substitution,

a novel result in the literature.

4 DYNASTIC LIFE CYCLE MODEL WITH LEISURE

This section extends the benchmark model to include a more realistic life cycle of altruistic families,

endogenous consumption, life cycle savings, leisure, labor, fertility and life span T . This extension

allows to check the robustness of our main result, that EGS > EIS, to major generalizations of

the benchmark model. An advantage of the extended model is that we are now able to calibrate

σ within the model to match life-cycle stylized facts. In contrast, σ in the benchmark was set to

a standard value commonly used in the literature. The EIS determines the degree of consumption

smoothing over the life cycle of the parents. In the calibration strategy we exploit changes in

time use over the life cycle, specifically leisure, in order to determine the EIS. In particular, adults

face important changes in leisure with the arrival of children, their departure from the home, and

retirement. The EIS is calibrated to match the observed consumption smoothing over the life cycle

in the presence of discrete changes in leisure. In contrast, the EGS directly determines the value

of a child, making it a key parameter in matching the fertility level as in Section 3.

One of the main insights of the analysis in this section is that the introduction of leisure into

the model makes the case for a separation between the EGS and EIS even stronger. The reason

is that leisure makes life even more valuable, and therefore increases the value of a child and the

economic incentives to have more children. A higher EGS provides a counterbalancing force, one

that makes parental consumption even more valuable. We are not aware of any other life cycle

altruistic models of fertility with leisure in the literature.

The model in this section links to multiple literatures including household consumption over

the life cycle, household equivalent scales, consumption smoothing across generations, families in

macroeconomics, fertility choice, male and female labor supply, male and female wage differentials

over the life cycle, male and female time use, health over the life cycle and retirement. Because

of the multiple elements involved, we make some simplifying assumptions in order to focus on the

calibration of the EIS and the EGS. In this respect, the exercise in this section can be seen as

the first pass of a research agenda on the generalized altruistic framework proposed here. While

there is a vast literature on estimating the EIS, we hope a similar literature on estimating the EGS

develops.

4.1 Model

Consider an economy in which families consist of couples, the "head" and the "wife", and their

children. We assume this couple operates as a unitary household and allow for economies of scale

at the household level. Children stay at home with the parents until they become adults at age I
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(for independence). Children enjoy consumption (c) and leisure (l), go to school and do not work.

Parents decide their children’s consumption and can make non-negative transfers (b) to their adult

offsprings. Adults enjoy consumption and leisure, work, save (z), make transfers, have all their

children (n) at age F (≥ I), retire at age P (for pensioner) and live for T years. There are financial

constraints in the form of borrowing and saving limits. Since death is certain at age T there are

no unintended bequests. In fact, as we show below, parental transfers in the model only occur

when adult offsprings are younger since that is the period when financial constraints are tighter.

For tractability, we assume that both the head and the wife enjoy the same consumption and

leisure. The differences between the head and wife appear in the budget constraints in the form of

differences in wages, labor supply, time spent raising children and time spent in home production.

4.1.1 Lifetime composite consumption

To include leisure and a more complete life cycle, we now define C as

C =


[

1
Ω

∑T
a=0 β

aHax
1−σ
a

] 1
1−σ

if σ > 0 and σ 6= 1

exp
[

1
Ω

∑T
a=0 β

aHa lnxa

]
if σ = 1

, (30)

where

xa = cψa l
(1−ψ)
a ,

and Ω ≡
∑T

a=0 β
aHa. In this specification a denotes the age, xa is a composite consumption flow,

la is leisure, ψ is the share of consumption in the composite consumption flow, 1/σ is the EIS,

and Ha stands for health at age a. Ha is introduced in order match the consumption hump as

in Murphy and Topel (2006), and along the lines discussed by Attanasio and Weber (2010). In

particular, a decreasing health after age 55 will induce lower levels of consumption and leisure. The

definition of Ω ensures that the limit of function C when σ → 1 is of the Cobb-Douglas type as

described by the second part in equation (30). Finally, we follow Bullard and Feigenbaum (2007)

in adopting a Cobb-Douglas specification for the composite consumption flow x.

4.1.2 Couple’s utility

We consider only situations in which couples enjoy the same consumption and leisure. This sim-

plification implies that the head and the wife have the same C and their join lifetime utility has

the following utilitarian form,

Wt = 2
C1−η

1− η + Φ (n)Wt+1,

where t indexes generations, n now represents couples of children and Φ (n) is the total weight

the couple of parents give to their n couples of children. Defining Vt = Wt/2 to be the average
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household utility, then

Vt =
C1−η

1− η + Φ (n)Vt+1,

which corresponds to equation (3) in the previous section.

4.1.3 Household’s problem

Let b = [ba]
T−F
0 be the vector of transfers a couple receives from their parents at different ages.

We also refer to b as bequests. These transfers are the only source of consumption for children so

that parents have full control over their children’s consumption. After age I, the transfers in vector

b correspond to parental transfers to adult offsprings, which can only occur until the offspring is

age T − F since parents die at age T .10

Let R be gross interest rate, h be the total annual available hours, ωia net-of-taxes wages, and

χia time spent in home production at age a for i = {head, wife}. The household’s problem can be

then described compactly as

V (b) = max
n,[ca,la,za,b′a]T0

C1−η

1− η + Φ (n)V
(
b′
)
, (31)

subject to

ba +
∑
i=h,w

ωia
(
h− la − χia

)
+Rza ≥ κca + za+1 for F > a ≥ I, (32)

ba +
∑
i=h,w

ωia
(
h− la − λian− χia

)
+Rza + Ta ≥ κca + za+1 + nb′a−F for T ≥ a ≥ F, (33)

ba = κca for I > a ≥ 0, (34)

za ≥ za ≥ za for T ≥ a ≥ I, (35)

b′a−F ≥ ba−F for T ≥ a ≥ I, (36)

h− la − λian− χia ≥ ha for P > a ≥ 0 and i = h,w, (37)

la = lR ≡ h− χ for T ≥ a ≥ P and i = h,w, (38)

n ≥ n ≥ 0.

The first restriction, equation (32), is the budget constraint for adult couples before children are

born. κca are the consumption expenditures of the couple where κ ∈ [0, 2] is a parameter de-

termining the degree of economies of at the household level. If κ = 2 there are no economies of

scale. Restriction (33) is the budget constraint for adult couples once children are born. λia are

10Writing the problem with vector b as the sole state vector saves in notation but it is equivalent to writing the
model with a vector of consumptions up to age I and a vector of transfers from age I on as the state vectors.
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time costs of raising children, Ta is retirement income for P ≤ a ≤ T , and nb′a−F are transfers to

offsprings. Restriction (34) states that a child’s consumption while at home equals the parental

transfers divided by κ. To see more clearly the scale economies operating in households with

children, substitute (34) into (33) to obtain

ba +
∑
i=h,w

ωia
(
h− la − λian− χia

)
+Rza ≥ κ

(
ca + c′a−Fn

)
+ za+1 for F + I > a ≥ F.

Household expenditures are thus given by κ
(
ca + c′a−Fn

)
.11 Notice that there is generally con-

sumption inequality between parents and their children at any given moment since ca and c′a−F
need not be the same.

Equation (35) are financial constraints, a standard feature of life cycle models that helps match

the hump-shaped consumption profile and could be of particular importance for young parents.12

Equation (36) are transfer constraints preventing parents from extracting resources from their

offsprings.13 Below we show that if bequest constraints do not bind, then borrowing constraints

would not bind either. This is because, absent bequest constraints, parents would act as banks for

their offsprings, providing resources to the young in exchange for negative transfers later in life.

The equations in (37) describe potential lower bounds to the labor supply, h − la − λian − χia. In
particular, ha is the lower bound to hours worked. This constraint may be relevant for working

parents when children are born.

Let
[
θa, φa, φa, µa, νa

]T
a=I
≥ 0 be the Lagrange multipliers on constraints (33), (32), (35), (36)

and (37) respectively. The first order conditions with respect to la,ca, za+1, and b′a−F are given by

Cσ−η
βaHa

Ω
x−σa (1− ψ)

xa
la

= θa

[
wwa + wha + vwa + vha

]
for P ≥ a ≥ I, (39)

Cσ−η
βaHa

Ω
x−σa ψ

xa
ca

= κθa for T ≥ a ≥ I, (40)

θa = θa+1

(
R+ φ

a+1
− φa+1

)
for T ≥ a ≥ I, (41)

Φ (n)
∂V (b′)

∂b′a−F
− θan+ θaµan = 0 for T ≥ a ≥ F, (42)

where the envelope condition with respect to ba reads

∂V (b)

∂ba
= θa for 0 ≤ a ≤ T − F. (43)

11κ multiplies the whole expression because n corresponds to couples of children.
12The constraint allows for borrowing as well as saving constraints. Borrowing constraints are standard. Saving

constraint are less standard but they improve the fit of the model, as we discuss below. Our main findings do not
depend on this feature of the model.
13As we discuss in Cordoba and Ripoll (2016) these constraints bind in the empirical relevant case in which the

total cost of raising a child is lower than the present value of the child’s income. Absent constraints on transfers,
fertility will be the highest possible.
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4.1.4 Optimal leisure

Combining (39) and (40) the optimality condition for leisure can be written as

1− ψ
ψ

ca
la

=
1

κ

[
wwa + wha + vwa + vha

]
for P > a ≥ I,

where
[
wwa + wha + vwa + vha

]
/κ corresponds to the shadow price of leisure. If the labor supply

constraint (37) does not bind for either the head or the wife, then optimal leisure is given by

la =

{ [
1−ψ
ψ

κ
wwa +wha

]
ca for P > a ≥ I

lR for P ≤ a
,

where
[
wwa + wha

]
/κ is the effective average wage for the couple and lR is (exogenous) leisure

upon retirement. Notice that since the head and the wife have the same allocation of leisure and

consumption, they face the same shadow price of leisure, which corresponds to the couple’s effective

average wage.

4.1.5 Consumption smoothing and the role of σ

Let Ra ≡ R + φ
a+1
− φa+1 be the shadow interest rate at age a. When the borrowing constraint

binds Ra > R. The following Euler equation is obtained from the optimality condition (40),

Ha
x1−σ
a

ca
= Ra+1

[
βHa+1

x1−σ
a+1

ca+1

]
for T > a ≥ I. (44)

Notice that when the borrowing constraint binds, then

Ha
x1−σ
a

ca
> R

[
βHa+1

x1−σ
a+1

ca+1

]
,

and the Euler equation does not provide identifying information for the EIS since there is no

consumption smoothing. In this case the Euler equation determines the shadow interest rate Ra+1

rather than the growth rate of consumption. Since the borrowing constraint typically binds for

younger adults in life cycle models, as it will be the case in our model too, we can only use the

Euler equation later in life to calibrate σ. In particular, we will use the Euler equation at retirement

age P for this purpose when savings are positive and leisure jumps. In that case the Euler equation

at age P − 1 can be written as

cP
cP−1

= βR
HP

HP−1

[
(cP /cP−1)ψ (lR/lP−1)1−ψ

]1−σ
. (45)
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The evidence suggests that consumption either does not or only marginally jumps at retirement

(Hurst, 2008), while there is a jump up in leisure from lP−1 to lR. We also confirm using PSID

data that there is no significant jump in consumption at retirement. For the equation above to

hold one would need σ ' 1 so that the jump on the right-hand side does not conflict with a smooth

left-hand side.14

An alternative to using the jump in leisure at retirement to identify σ is to find other periods

in the life cycle where leisure may also change and individuals are not constrained. An example is

the period when all children leave the home. However, data limitations prevent us from pursuing

this avenue since we do not have complete life cycle information on all time use from the PSID,

while we do know when individuals retire.

4.1.6 Children’s consumption

Parents help their offspring smooth their consumption during their lifetime by making transfers.

Transfers are strictly positive during childhood but they could also be positive later in life. Using

the Envelope condition in (43) and the optimality condition (42), the following intergenerational

Euler equation characterizes positive transfers:

Cσ−ηHa
x1−σ
a

ca
=

Φ (n)

n

[(
C ′
)σ−η

β−FHa−F

(
x′a−F

)1−σ
c′a−F

]
. (46)

According to this equation, between ages F and F + I parents equate their marginal utility at

age a (left-hand side) with their children’s marginal utility at age a − F , weighting the latter by
(Φ (n) /n). In a steady state (46) can be written as:

Ha−Fx
1−σ
a−F /ca−F

Hax
1−σ
a /ca

= G(n) (βR)F , (47)

where G(n) ≡ n/(Φ (n)RF ), as in Section 3. The equation above states that the marginal utility of

the parent relative to that of the offspring is the same whenever transfers are positive. This equation

suggests that parental transfers eventually stop once the offsprings can finance more consumption

with their own resources than what parents can provide. Full equalization of marginal utilities

between parents and their children is obtained if G(n) = 1 and βR = 1.

Using (44), one also finds that in a steady state15

Ha−Fx
1−σ
a−F /ca−F

Hax
1−σ
a /ca

= βF
∏a
s=a−F Rs.

14We explored the possibility that habit formation could avoid the consumption jump at retirement. In the
specification where habits are described by the previous period composite consumption, x, we still find that σ = 1 is
needed to avoid a jump in consumption at retirement.
15Equation (44) also applies to children who face the most drastic financial constraints: za = 0 and za = 0 for

I > a ≥ 0.
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Comparing the last two expressions it follows that

G(n) =
∏a
s=a−F

Rs
R
.

According to this expression, if G(n) = 1 then parents act as banks, offsetting the financial con-

straints faced by their children. Also, parents would fully smooth children’s consumption in the

sense that when the child becomes independent at age I, he does not experience a jump in con-

sumption. As we see next, however, G(n) > 1 is the relevant case. This gap increases with n, and

drives a wedge between parents and children marginal utilities according to Equation (47).

4.1.7 Transfers to adult offspring

Consider now transfers to independent offspring. Using equations (42) and (43) we have that after

the child becomes independent, then parental transfers satisfy

θa ≥
Φ (n)

n
θ′a−F for T ≥ a ≥ F + I,

with strict inequality if the bequest constraint binds. The left-hand-side is the marginal cost of

transferring resources to the offspring and the right-hand side the marginal benefit. In a steady

state this expression simplifies to

G(n)RF θa ≥ θa−F for T ≥ a ≥ F + I,

On the other hand, the steady state first order condition for savings is given, according to (41), by

θa−F = Ra−F+1θa−F+1 or

θa−F = θa
∏F
s=1Ra−F+s for T ≥ a ≥ F + I.

Combining the last two expressions, one obtains

G(n) ≥
∏F
s=1

Ra−F+s

R
for T ≥ a ≥ F + I.

Since the left hand side is independent of a then it must be the case that:

G(n) ≥ max
a∈[F+I,T ]

∏F
s=1

Ra−F+s

R
. (48)

To better understand this expression, it is convenient to consider two cases. First, suppose financial

frictions are not binding so that Ra = R for all a ∈ [F + I, T ]. In that case, G(n) ≥ 1 with strict

inequality if the transfer constraint is binding for any age. Second, suppose borrowing constraints
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are binding for at least some ages. In that case G(n) > 1. Moreover, if transfers are positive they

will be only for those ages in which offsprings are the most constrained, at ages that attain the

maximum in equation (48).

In conclusion, if the bequest constraints or borrowing constraints bind then: (i) G (n) > 1;

(ii) the child has higher marginal utility of consumption than the parent while they live together;

and (iii) the adult offspring may receive parental transfer but only when borrowing constraints the

tightest.

4.1.8 Optimal fertility

The optimal fertility choice in this model is given by

T∑
a=F

θa
θF

 ∑
i=w,h

[(
wia + νia

)
λia
]

+ b′a−F

 = Φ′ (n)
V (b′)

θF
, (49)

which equalizes the marginal cost to the marginal benefit of children. In order to further analyze

the marginal cost let RF+1,a =
∏a
s=F+1Rs for a > F . Then the first order condition for savings,

equation (41), implies that
θa
θF

=
1

RF+1,a
for a > F.

Therefore, the marginal cost of children MC(n) can be decomposed between time and goods costs

as

MC(n) = MCtime +MCgoods =

T∑
a=F

1

RF+1,a

∑
i=w,h

[(
wia + νia

)
λia
]

+

T∑
a=F

1

RF+1,a
b′a−F . (50)

According to this expression, the marginal cost of a child for a constrained parent is lower than for

an unconstrained parent since the former discount the future at a higher rate, that is, RF+1,a >

Ra−(F+1). In addition, a binding minimum labor hour constraint (νia > 0) increases the cost of

raising children since wages do not fully capture the value of the time invested in children.

The economic value of a child corresponds to the marginal benefit in equation (49). Using (31)

and (40), and assuming Φ (n) = αn1−ε, this value can be written in a steady state as

V C(n)

cF
= Φ′ (n)

V (b′)

θF
=

1− ε
1− η

αn−ε

1− αn1−ε
κΩ

ψβFHF

(
C

xF

)1−σ
. (51)

This equation is a generalization of (26) in Section 3. Notice that V C(n) includes the lifetime utility

the child derives from his individual consumption and leisure because ΩC1−σ =
∑T

a=0 β
aHax

1−σ
a .

This version of the model generates significantly higher economic values of children relative to

standard fertility models in the literature which typically abstract from leisure.
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4.2 Data

In order to calibrate the model we use information from the Panel Study of Income Dynamics

(PSID) to obtain a series of stylized features of the life cycle of a family in the US.

4.2.1 PSID sample

The PSID is a longitudinal panel with information on household income, wealth, consumption,

demographics, hours worked and labor earnings for heads and wives. In addition, the Child De-

velopment Survey (CDS) of the PSID provides information on the time spent raising children. We

use the sample period 1999-2013 (biennial) in order to utilize the upgraded consumption measure,

one that accounts for about 70% of the consumption measured in the Consumption Expenditure

Survey (Charles et al., 2006). As it is standard practice, we only use the Survey Research Center

data and drop Survey of Economic Opportunity component of the PSID.

To be consistent with the model, we only include in our sample married or cohabiting couples

that remain intact during the observed period 1999-2013. We use marital status and change in

marital status to select this sample.16 We also eliminate the top and bottom 0.1% of the wealth

distribution (Blundell et al., forthcoming). The resulting sample includes 5,030 households and

23,114 observations. For about 35% of the households we have at least 7 observations, while for

48% we have at least 5. Virtually all sample heads are males. A substantial fraction of female wives

work, with 86% in the labor force for at least some part of the observed period, and only 17% of

them exiting the labor force for at least some time when kids are born. Finally, children of up to

age 17 are present in 62% of the households.

Table 3 presents descriptive statistics for the PSID sample, which align well with other samples

in the literature. Starting with hours worked, the median participating female wife in our sample

works about 200 less hours a year than the median male head, who works 2,015 hours. There is

a sizable wage gap, with median male hourly wages of $26 and female wages of $17. We compute

hourly wages directly by using labor earnings (including labor income from business) and hours

worked.

Median family income in the sample is $87,500, higher than the 2016 US median of $57,617.

This can be attributed to our sample selection of intact married couples, which is the one that best

reflects the model. Median total wealth, which includes home equity, is $198,720. Since the median

age of household heads in our sample is 52, our median wealth is also higher than the median net

worth for US households in a similar age bracket (about $90,000 in 2011 —US Census).

Our measure of consumption includes non-durables and services. We construct this measure by

adding the following PSID categories: total food expenditure (home, away and delivery); housing

(rent, insurance and utility, and excluding mortgages and property taxes); transportation (gasoline,

auto insurance, vehicle repair, parking, bus, cab and other, and excluding vehicle loan and down

payment); education; childcare; and health care. As in Blundell et al. (forthcoming), we impute

16 If a couple in our sample divorces or separates during the observed period, we drop the subsequent observations
since the head and wife are no longer an intact couple. We lose few observations under this criteria.

28



homeowners rent as 6% of the home value reported by the households. Median consumption in

the sample is $36,187, which would correspond to about $51,695 if measured in the Consumption

Expenditure Survey (Charles et al., 2006).

Turning to some sample demographic characteristics, the median male head has 14 years of

schooling, and the female wife 13 years. This relatively high education levels are reflected in late

childbearing age, with the male head at 32 years of age and the female at 30. Last, among couples

with children, the median number is 2 kids.

4.2.2 Life-cycle profiles

We use our PSID sample to construct life cycle profiles of hourly wages and labor supply for heads

and wives, as well as household consumption. Hourly wages are exogenous in the calibration,

while the profiles of labor supply and consumption are used to compute calibration targets. In

order to generate these profiles we proceed as follows. Starting first with hourly wages, we run

a pooled regression of (log) wages (separately for head and wife) against year dummies, as well

as demographic characteristics (state of residence, race and schooling).17 We restrict the sample

to individuals ages 20 to 75. Omitted categories are: year 2011, white race, and the state of

Pennsylvania (PA). We normalize the residuals of the wage regression using the median schooling

(of the head or the wife). We then plot the implied hourly wage profile by averaging the residuals

by age. Figure 3 shows the results. The dots are averages by age and the fitted lines are age

polynomials. At age 20 the hourly wage for a white male head with median schooling in PA in

2011 is around $15. This wage peaks at around $30 at age 50. In addition to the wage gap between

male heads and female wives, we find a flatter wage profile for the latter. A white female wife with

the median years of schooling in PA in 2011 is around $12 at age 20 and it peaks to $18 at age 50.

We use these fitted wages as exogenous profiles in the calibration.

We follow a similar procedure to construct labor supply profiles as shown in Figure 3. The

only difference with respect to wages is that when we fit the age polynomials for hours worked

(for heads and wife), we also control for the number of children in the household, the number of

adults, a dummy for whether or not children are present, and a dummy for retirement. We follow

Bullard and Feingembaun (2007) and classify as retired individuals older than 65 who work less

than 10 hour a week. We use these additional controls to construct fitted profiles that are consistent

with the representative couple in our model. This representative couple has the median years of

schooling and the median number of children. In the model, all children are born at the same time

when the parents are age F and leave the home together when the parents are age F + I. We

choose F = 32, which corresponds to the median childbearing age in our sample, and I = 22.

As can be seen in Figure 3, the average hours worked for male heads between ages 30 and 55 is

about 2,100 hours, while it is about 1,500 for female wives. Notice how in this age range, the profile

for males is flatter than that of females. The fitted age profiles for the representative couple in

our model show how male heads slightly increase hours worked when children arrive, while female

17Data are weighted using the lastest longitudinal family weight and errors are clustered at the household level.
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wives decrease labor supply. We calibrate our model to match these labor supply profiles. Since we

assume the leisure of heads and wives is the same, the difference in labor supplies are attributed

to child care and home production, with the latter being a residual in the calibration. Last, the

coeffi cient on the retirement dummy is significant and is reflected on the fitted age profiles as a

marked drop in labor supply at age 65.

Figure 3 also includes the profile of household consumption of non-durables and services. In

constructing this profile we follow the same procedure outlined for the case of hours worked, but we

include couples of all ages. The dots on the graph correspond to the averages by age, where controls

have only been introduced for time, race, state of residence and schooling, but not for family size.

The consumption profile traced by the dots is hump-shaped starting at around $24,000 at age 20 and

peaking at $38,000 at age 55. Since PSID data captures about 70% of the consumption categories,

actual total consumption would be $34,285 for age 20 and $54,285 at age 55. This represents a

peak to through ratio of 1.58. As in the case of hours worked, the fitted polynomial is drawn to

capture the representative couple in the model with two children arriving when the parents are age

32. We estimate an increase in household consumption of 17% when the two children are born.

This estimate is consistent with the 7.5% increase in household consumption that results from

the arrival of the first child as estimated by Blundell et al. (forthcoming) using the PSID (their

Table 4). Last, we find that there is no statistically significant change in household consumption

at retirement. We use this estimated consumption change at retirement together with the growth

rate of consumption between ages 20 and 55, and the growth rate after 55 as target moments in

the calibration.

4.3 Calibration and results

We calibrate our model to various features of the life cycle of a typical couple in the PSID.

4.3.1 Exogenous parameters

Table 4 lists the exogenous parameters in our calibration. We follow Birchenall and Soares (2009)

and set the interest rate r = 3%, a typical value in the demographics literature. Recall that κ

represents economies of scale in consumption. The consumption literature has used household-

equivalence scales to transform household expenditure data for families of different sizes into per

capita consumption services. These equivalence scales only provide information about the house-

hold’s technology to transform expenditures into consumption services, but tell nothing about

potential consumption inequality within the family. We therefore use information on equivalence

scales to calibrate economies of scale at the family level, a technological parameter. In particular,

we follow Fernandez-Villaverde and Krueger (2007) and use the equivalence scale for households of

size two to set κ = 1.34 in the calibration (their Table 1, p. 554).

We set h, which is the number of available hours in a year to 5, 000. We compute this number

by taking the 8, 760 total hours in a year and subtracting the average time spent in sleeping, eating
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and personal care. According to Aguiar and Hurst (2007) this average time was about 3,760 hours

(72 hours per week) in 2003 (their Table III, p. 977). We set T = 80.

In the model, at age a the head spends λhan hours raising children, and the wife spends λ
w
a n.

We calibrate the model to n = 1 (2 children per couple) and set λha and λ
w
a exogenously for the

case of the typical household with two parents and two children. As discussed above, Guryan et

al. (2008) find that the average mother spend around 14 hours per week in primary child care (728

hours a year), while the average father spend around 7 hours (364 hours a year). These numbers

go up to 45 and 30 hours a week (or 2,340 and 1,560 hours a year) respectively if secondary time

is taken into account. Folbre (2008) argues in favor of counting both primary and secondary time.

Here we compromise between these two approaches and assign 1,340 hours of childcare a year for

the wife and 660 for the head (husband). Under this calibration the wife contributes 67% of the

total childcare time. This is consistent with averages reported by others in the literature (Blundell

et al., forthcoming). Last, wage profiles ωha and ω
w
a for the head and the wife are as reported in

Figure 3.

4.3.2 Calibrated parameters

Table 5 reports the results of our calibration. Parameter σ is calibrated so that there is no jump in

consumption at retirement. As discussed above, this is consistent with our estimates of the fitted

consumption profile in Figure 3 and other results in the literature (Hurst, 2008; Aguiar and Hurst,

2005). Consistent with our discussion of equation (45), we set σ = 1 to prevent a consumption

jump at retirement.

Parameter ψ, which is the share of consumption in the composite good x is calibrated to match

the average hours worked by make heads between ages 30 and 55. As observed in Figure 3, male

heads’ labor supply is quite stable within this age range and averages around 2,100 hours. We

obtain ψ = 0.4. Parameter β is calibrated to match the average growth of consumption between

ages 22 and 55. This results in β = 0.962, a typical value.

Health index Ha is calibrated so that the annual consumption growth rate after age 55 fits the

data. The resulting Ha is plotted in Figure 4. Normalizing H20 = 1 we obtain that, for instance,

H80 = 0.67.

Parameter α, which corresponds to the level parameter of the altruistic function is informative

of the goods costs of raising one child. We use the USDA estimates of the goods costs of raising

one child in Lino (2012) as presented in Table 1. We choose the middle-income group because the

median household income in our sample of $87,500 falls into this bracket. The computations in

Lino (2012) correspond to children ages 0 to 17 and do not include the costs of attending college.

These are hard to compute because they vary widely, from $17,131 per year at the typical 4-year

public college (tuition, room and board), to $38,589 per year in private institutions (Lino, 2012, p.

22). Since we assume children leave the home at age I = 22 and in our PSID sample parents are

relatively well educated and wealthy, we assume parents pay for college. Since most enrollment in

college in the US is in public institutions, we add a present-value cost of $38,526 to the total costs

31



of raising a child. This corresponds to college costs of $17,131 per year for ages 18 to 21. Therefore,

the present value of the goods costs of raising one child is set to $221,866 (in 2011 dollars). We

then calibrate α to match a value of $211,866, which results in α = 0.22.

Two parameters remain to be determined, ε and η. We initially chose to exogenously set

ε = 0.288 as discussed in Section 3, and to calibrate η to match the median number of children

per household, which is two in the PSID sample (n = 1). However, we faced the issue that for

this value of ε the calibrated η was a negative number. Intuitively, this result arises because the

inclusion of leisure into the utility significantly increases the value of a child making unfeasible for

the model to account for a fertility of n = 1 with a calibrated degree of diminishing altruism of

ε = 0.288. This issue is even more severe if the restriction η = σ is imposed.

To better understand the issue, remember that the economic value of a child is positively related

to η (see equation 51): it goes to infinite as η → 1, decreases as η goes to zero, and reaches a positive

lower bound when η = 0. As in equation (28), we can calculate this lower bound for the value of a

child when η = 0. In the case of the life cycle model with leisure, the lower bound for the economic

value of a child, V C (n, c, l; η, ε), is given by

V C (1, c, l; 0, ε) =
α (1− ε)

1− α
κ

ψβFHF

T∑
a=0

βaHa

(
cψa l

(1−ψ)
a

cψF l
(1−ψ)
F

)1−σ

,

which can be easily computed by setting the target n = 1, using the observed allocations of

consumption (c) and leisure (l) from the data (which the model matches well as we show below),

and given the parameters already calibrated (α, κ, ψ, β, Ha, σ). We find that V C (1, c, l; 0, 0.288)

is around $1.2 million, while MC(1) is around $400,000. Thus, for ε = 0.288 and for the lowest

possible value of η = 0, the marginal benefit of children in the model is much larger than the

marginal cost, a possibility already discussed in Section 3.3.18 The economic value of a child tends

to be much larger when leisure is taken into account.

We are not aware of any other altruistic models of fertility choice in which leisure enters utility.

As a result, the range of values of ε for which the restriction 0 < η < 1 is satisfied is smaller. In

the model with leisure, the minimum required ε satisfies the condition

V C (1, c, l; 0, ε) = MC (1) ,

which is the analogous to equation (29). Separating σ from η is even more important when leisure

is introduced because this restriction increases the economic value of the child.

For the calibrated parameters and model allocations we find that ε ∈ [0.67, 1). These values of

ε imply a stronger degree of diminishing altruism than what the estimate of Dickie and Messman

(2004) suggests. They are also larger than calibrated values of ε in the literature. For example,

18We tried a number of alternatives seeking to reduce V C (1, c, l; 0, ε) when ε = 0.288, but calibration targets, such
as requiring the model to match average leisure time, impose a tight discipline and leave little room to affect this
value. Imperfect altruism, so that for example parents do not care about children’s leisure, could reduce the problem.
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Birchenall and Soares (2009) calibrate values of ε in the range of 0.4 to 0.6, Doepke (2004) calibrates

ε = 0.5, and Manuelli and Seshadri (2009) calibrate ε = 0.35. However, none of these models

includes leisure in the utility function. At the low end of the feasible interval for ε, where diminishing

altruism is as mild as possible and ε ∈ [0.67, 0.80], the calibration implies that η falls in the range

η ∈ [0.0, 0.407]. What we can conclude from this calibration is that η might be closer to zero, and

is definitely far from one. This confirms the result obtained in Section 3 that EGS = 1/η > 1 ≥
1/σ = EIS.

4.3.3 Results and discussion

Figure 4 portrays the model’s predictions for the median representative family in the sample over

the life cycle. It includes the growth rate of consumption, health index Ha, and hours worked for

heads and wives. The model overall tracks the data well over the life cycle.

Figure 5 plots the predictions regarding time use over the life cycle, in particular leisure, child-

care, and homework hours for heads and wives. Although we do not have life cycle profiles for these

variables from the PSID, the model’s predictions are reasonable. For example, Aguiar and Hurst

(2007) report average weekly hours of leisure to be 35 in 2003, which corresponds to 1,820 hours

a year (their leisure measure 1 in Table III). Our model is consistent with this level during prime

age. Homework hours are computed as a residual in the model.

Figure 5 also plots the predictions regarding saving. Our model does not include mortality risk

nor health shocks, which explain the behavior of saving after retirement. The calibrated model

predicts that the median representative couple does not leave bequests at the end of life. This is

consistent with Di Nardi et al. (2016) who document that bequests motives are large only for the

richest people. We do not expect the addition of mortality risk to affect our calibration of the EGS.

As Di Nardi et al. (2016) show, in the presence of mortality risk and deteriorating health in old

age, medical spending becomes the most important factor in explaining saving during retirement.

Although our model does reasonably well fitting the life cycle data in a number of dimensions,

there is room for improvement. We leave additional refinements of this model for future work. We

see the model in this section as the initial step of a research agenda that integrates the life cycle

into our generalized dynastic model.

5 FURTHER EXTENSIONS

We close this paper providing additional illustrations of the scope of our framework beyond altruistic

models of fertility choice. We provide a few extensions in order to illustrate other contexts in which

disentangling the EGS from the EIS might be useful. In particular, we suggest how to extend our

framework to include infant mortality risk, to allow for η > 1, and to analyze long-term inequality

in a model with idiosyncratic risk.
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5.1 EGS and the coeffi cient of risk aversion

Those familiar with the Epstein-Zin-Weil (EZW) preferences from Epstein and Zin (1989) and Weil

(1990), may find a resemblance between these and our formulation, and may wonder whether our

framework reduces to a relabeling of EZW preferences. Although non-separability is a feature of

both EZW and our preferences, they are conceptually quite different. EZW preferences disentangle

aversion to risk from aversion to deterministic consumption fluctuations. In the absence of risk, the

EZW formulation collapses into the standard formulation. This is not the case with our preferences.

The framework we presented above does not model risk. Our preferences disentangle aversion to

two types of deterministic fluctuations in consumption: temporal variation and intergenerational

variation.

In order to illustrate the relationship between EZW and our preferences, we now introduce

child mortality risk into our model and combine EZW utility with our approach to disentangle

three parameters: the EIS, the EGS and the coeffi cient of relative risk aversion (CRRA). Infant

mortality is a potentially important determinant of fertility choices.19 In order to introduce risk,

it is convenient to utilize the representation of our preferences in equation (2). Recall that lifetime

utility W is non-negative so that zero is a lower bound, a property that we use shortly. Consider

now the possibility that the lifetime utility of the child is a random variable, W̃ . Let µ
(
W̃
)
denote

the certainty equivalent operator. In particular, Epstein and Zin (1989) as well as Weil (1990)

consider a particular CRRA operator µ(W̃ ) =
(
EW̃ 1−ρ

)1/(1−ρ)
where ρ ≥ 0 is the coeffi cient of

relative risk aversion. For example, ρ = 0 means that parents are neutral to risks associated to their

children’s welfare. Following EZW, when certainty equivalent µ
(
W̃
)
is what the parent perceives

as the utility of his child, preferences can be described by

W =

[
C1−η + Φ(n)µ

(
W̃
)1−η

] 1
1−η

.

Suppose now infant mortality is the only risk. In particular, let π be the survival probability of

a newborn. In that case, µ
(
W̃
)

=
[
π (W ′)1−ρ + (1− π)D

]1/(1−ρ)
where D is the imputed utility

in case of death. To simplify, suppose D = 0 which means that being alive is always better than

not,W ′ ≥ D = 0. Furthermore, if the death of a child is not so painful as to eliminate all enjoyment

of having children, then the additional assumption ρ ∈ (0, 1) is required. In other words, if ρ > 1

so that parents are significantly risk averse, then µ (W ′) would be zero whenever D = 0. Parental

welfare simplifies to

W =
[
C1−η + Φ(n)π(1−η)/(1−ρ)

(
W ′
)1−η]1/(1−η)

.

In order to relate the expression above to our earlier formulation in (3), assume that Φ(n) = αn1−ε

19See, among others, Doepke (2005) and Jones and Schoonbroodt (2010).

34



and rewrite preferences in terms of V rather than W to obtain

V =
1

1− η

(∑T

t=0
βtc1−σ

t

) 1−η
1−σ

+ αn1−επ(1−η)/(1−ρ)V ′.

These preferences are an extension of our framework that disentangles three different concepts: the

EIS = 1/σ, EGS = 1/η and the CRRA = ρ. The expected utility model is the special case η = ρ,

while if σ = η = ρ would imply additive separability across time, generations, and states. Finally,

if 1− ε = (1− η)/(1− ρ) then parents only care about the number of surviving children, πn, which

provides microfoundations to the simplifying assumption made in the literature.20

5.2 EGS less than one

Our benchmark formulation assumes η ∈ (0, 1), and the calibration shows this assumption is not

binding. We now show that it is simple to relax this assumption. Consider again the representa-

tion of our preferences in (2). As mentioned above, they are a monotonic transformation of our

benchmark preferences and are strictly non-negative for any η, not just for η ∈ (0, 1). Despite W

being positive, it is still true that parental welfare is decreasing in the number of children, n, when

η > 1. Therefore, in that case the optimal number of children would be zero. This result, however,

is due to the implicit assumption that the welfare of the unborn individual is zero (see Cordoba

and Ripoll, 2011). The following generalized version of (2) makes this point clear. Suppose there

is a number of potential children, np. Let W be the welfare of an individual if born, and D if

unborn. D is what parents perceive, or impute, is the welfare of the unborn. This is analogous,

but not the same, to the perceived utility in case of dead. As in the previous example, D could be

normalized to zero so that altruistic parents perceive potential children are better off being born

than unborn.21 In this case parental preferences are

W =
[
C1−η + Φ(n)

(
W ′
)1−η

+ (Φ(np)− Φ(n))D1−η
] 1
1−η

. (52)

Equation (2) is a special case of (52) that requires D = 0. Notice that if η > 1 and D = 0

then W = 0. In this case, the small degree of substitutability between utilities means that if one

individual receives zero utility then parents utility is also zero. To make an analogy with the theory

of the firm, ifW is production and the inputs are the utilities of individuals, then η > 1 means that

all inputs are essential. To avoid this implication when assuming D = 0 requires the restriction

η ∈ (0, 1) as in the benchmark. But if D > 0 then parental utility increases with the number of

children, for any η > 0, as long as W ≥ D. Allowing for D = 0 and calibrating the model with

preferences (52) would still require a low D and η ∈ (0, 1) , as otherwise the model would not be

able to match the value of a child as discussed in Section 3.
20See, for instance, Jones and Schoonbroodt (2010).
21One way, although not the only way, to rationalize abortion by altruistic parents would occur when D > W .
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5.3 EGS in Bewley models

The EGS is a potentially important determinant of long-run inequality. There is evidence from

Menchik (1979) and Sholz and Seshadri (2009) that family size affects the ability of parents to

accumulate wealth. There is also evidence of substantial intergenerational persistence in earnings,

income and wealth (Mulligan, 1997; Lee and Solon, 2009). While in existing models of inequality

the EIS determines precautionary saving, the EGS may play an important role in determining

intergenerational precautionary savings and long-run inequality. Preliminary evidence of this can

be found in Cordoba, et al. (2016). While their analysis does not disentangle the EGS from the

EIS, they do find that a low curvature in the utility function is necessary to match both the fertility-

income relationship as well as intergenerational savings and the mass of adult children who receive

zero transfers and bequests from their parents.

Cordoba, et al. (2016) analyze a two-period (child and adult) Barro-Becker model of fertility

embedded into a Bewley framework. Since individuals in their model only consume when adults, the

framework does not allow for a distinction between the EIS and the EGS. Adult children receive

transfers from the parent and draw an earning ability shock that is conditional on that of the

parent. In the context of their model, the curvature of the utility function determines consumption

smoothing across generations. They find that the following ingredients are needed in order for

the model to replicate persistent inequality: a low utility curvature (larger than one elasticity of

substitution), a non-negative transfer constraint, an exponential altruistic function, diminishing

marginal time costs of raising children, and discrete number of kids. Extending Cordoba, et al.

(2016) to incorporate a life cycle model along the lines of the model in Section 4 is left for future

work.

6 CONCLUDING COMMENTS

The EIS has always played an important role in most macroeconomic models, determining both

decisions within the lifetime of an individual, as well as across generations. This key role is in

part due to the artifact that existing models assume the EIS and EGS to be identical. Once these

concepts are disentangled, some of the roles previously played by the EIS now belong to the EGS.

For instance, we have shown how the EGS is a key determinant of the long-term fertility rate and

might be also key to understand long-run inequality. There are also instances in which the EGS is

likely to play an important role in the short term. For instance, at the business cycles frequency,

the EGS determines how a shock to the family budget, say an unemployment shock or winning

the lottery, affects expenditures in children and, in particular, investments in their education and

human capital formation.

Our paper is the first to formally model a distinction between intertemporal and intergener-

ational substitution. The generalized dynastic framework we propose easily allows to associate a

single parameter with the EIS, and a different one with the EGS. The simplicity of our preferences

provides a useful and general framework for analyzing intergenerational issues. We expect this
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framework to introduce a new perspective, and to be useful in analyzing a number of interesting

and relevant questions in macroeconomics.
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TABLE 1  

Cost of raising a child from age 0 to 17, United States 

 

Family income 

group 

Annual 

household 

income 

Lifetime 

household 

income 

Cost of raising a child  Cost of raising a child as a fraction of 

lifetime household income 

Goods cost Time cost 

 

Total cost 

 

 Goods costs Time cost Total cost 

Low income 43,625 1,038,633 132,258 198,387 330,645  12.7% 19.1% 31.8% 

Middle income 81,140 2,083,219 183,340 275,011 458,351  8.8% 13.2% 22.0% 

High income 126,435 4,295,835 303,870 455,804 759,674  7.1% 10.6% 17.7% 

Average low and 

middle income 

      10.8% 16.2% 26.9% 

 
Notes:  Family income groups correspond to the USDA categories in Lino (2012): low refers to families with before-tax income below $59,410 in 2011; middle 

between $59,410 and $102,870; and high above the latter. Annual household income corresponds to a representative family for each group. Lifetime household 

income is computed assuming a 40-year working life span and a 3% interest rate. Goods costs correspond to Lino’s (2012) projected direct parental expenses 

(housing, food, transportation, health care, clothing, child care and private education) made on a child born in 2011 from age 0 to 17, assuming an inflation rate 

of 2.55%. Costs are measured for a family with two parents and two children. Time costs correspond to the scenario in which parents spend 21 hours per week in 

child care (Guryan et al., 2008) valued at a nanny’s wage, or to the scenario in which parents spend 41 hours per week (Folbre, 2008) valued at the median wage. 

These time costs are imputed using Folbre’s (2008) estimates of the share of time costs on total costs of raising children on her Table 7.3 (p. 133). 



TABLE 2 

Benchmark dynastic model – Calibrated parameters 

 

Parameter Concept Target Target 

value 

Parameter 

value 

λ  Time cost of raising one child as 

share of parental lifetime income  

Time cost of raising one child as 

share of household lifetime 

income 

16.2% 0.324 

α  Level parameter in altruistic 

weight 

Goods cost of raising one child 

as share of household lifetime 

income 

10.8% 0.307 

η Inverse of the EGS Average total fertility (one-

parent family) 

0.921 0.285 

C/C Share of non-market consumption  Income elasticity of fertility  -0.143 4.79%  
 

Notes:  Targets on goods and time costs of raising children are taken from Table 1. Average total fertility is half of that observed because a family in the model 

consists of one parent and half of the children in a family from the data. The income elasticity is computed by the authors using the cross-state US data in Figure 

1. The share of non-market consumption corresponds to the maximum C/C ratio computed among US states in calibrated model. 

  



TABLE 3 

PSID descriptive statistics 

 

 Mean Median Standard deviation 

Hours worked    

    Male head 1,708 2,015 1,087 

    Female wife    

        All wives 1,132 1,248 978 

        Participating 1,658 1,840 726 

Hourly wages    

    Male head 37 26 74 

    Female wife 23 17 206 

Family income 113,330 87,500 141,503 

Consumption 42,561 36,187 26,206 

Total wealth 550,165 198,720 1,169,944 

Years of schooling    

    Male head 13.8 14.0 2.5 

    Female wife 13.6 13.0 2.3 

Number of children 1.88 2.00 0.89 

Childbearing age    

    Male head 32.3 32.0 4.6 

    Female wife 30.4 30.0 4.9 

 
Notes:  Sample corresponds to 5,030 households of the PSID in which the head and wife are married or cohabiting and are intact couples 

during the period 199-2013. Statistics are computed using latest longitudinal family weights. Values are in 2011 dollars. Hourly wages are 

computed using labor earnings (including labor income from business) and hours worked. Family income corresponds to total family 

money. Consumption includes non-durables and services. Total wealth includes house equity. Number of children is computed over 

families with children and corresponds to kids up to 17 years of age present in the family unit.  



TABLE 4 
Dynastic life cycle model with leisure – Exogenous parameters 

 

Parameter Concept Source Parameter value 

r Interest rate Birchenall and Soares (2009) 3% 

𝜅̅ 
 

Economies of scale in 

family consumption 

Fernandez-Villaverde and 

Krueger (2007) 

1.34 

ℎ̅ 
 

Total number of available 

hours 

Aguiar and Hurst (2007) 5,000 

λm(a) and λf(a) Annual time cost of 

raising children for head 

and wife 

Guryan et al. (2008) 660 hours for head 

1,340 hours for wife 

wm(a) and wf(a) Wage profile of male 

heads and female wives 

Authors’ computations from 

PSID married sample 

PSID (Figure 3) 

 
Notes:  Parameter 𝜅̅ corresponds to the mean household equivalent scale for a family size of two from Fernandez-Villaverde and Krueger (2007, their Table 1). 

Total number of available hours from Aguiar and Hurst (2007) corresponds to available hours in a year (8,760 hours) net of the 2003 average time spent in 

sleeping, eating and personal care, which is about 3,760 hours (72 hours per week). Annual costs of raising children are based on estimates from Guryan et al. 

(2008) using ATUS. Hourly wages for male heads and female wives are computed from the PSID household sample in Table 3. They are constructed fitting age 

polynomials to the residuals of a pooled regression that controls for individual demographic characteristics of household heads and time dummies.     

 



TABLE 5 

Dynastic life cycle model with leisure – Calibrated parameters 

 

Parameter Concept Target Target 

value 

 Parameter 

value 

σ Inverse EIS  Change in consumption at 

retirement 

0%  1 

ψ Share of consumption in 

composite good 

Average hours worked 

male head ages 30-55 

2,100  0.41 

β Discount factor Average consumption 

growth ages 22-55 

1.69%  0.981 

H(a) Life cycle health index Average consumption 

growth after age 55  

-0.42%  Figure 4 

α Level parameter altruistic 

weight 

Goods cost of raising one 

child 

$221,866  0.22 

 
Notes:  Except for the goods costs of raising one child, all other targets were computed using the PSID household sample in Table 3. The goods costs of raising a 

child come from Lino (2012, his Table 10) using USDA data. We use the costs for the middle-income group since the median family income in our PSID sample 

in Table 3 ($87,500) falls into this USDA range (before-tax income between $59,410 and $102,870 in 2011 dollars). We convert Lino’s computation to present 

value by using a 3% annual interest rate.  
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FIGURE 1
Total fertility versus median household income, US states - 2016

Notes: Total fertility rate is from the 2018 National Vital Statistical Report, and it corresponds to the number of births 1,000 women age 15-44 would have in 
their lifetime if they experienced the births occurring at each age in 2016. Median household income is from the American Community Survey Brief (US 
Census Bureau, 2016) and it corresponds to average median household income in 2016.
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FIGURE 2
Model-implied value of a child across US states

Notes: Median household income is from the American Community Survey Brief (US Census Bureau, 2016) and it corresponds to the average median 
household income in 2016. The value of a child is based on the calibrated model and it corresponds to the marginal cost (goods and time) of raising a child.
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FIGURE 3 
PSID life cycle profiles

Notes: Hourly wages and hours represent white male heads of female wives with the mean years of schooling in the sample, and living in Pennsylavania (PA) in 
2011. Consumption corresponds to households with white male heads and mean yearas of schooling in PA in 2011. Fitted lines correspond to age polynomials. 
For hours worked and consumption polynomials include the effect of the arrival and departure of children, and of retiment.
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FIGURE 4 
Dynastic life cycle model - Calibrated consumption and hours worked

Notes: Household consumption growth in the data is computed using the fitted polynomial in Figure 3. The health index is calibrated to match household 
consumption growth after age 55. Hours work in the data for males and females correspond to the fitted age polynomials in Figure 3.
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FIGURE 5 
Dynastic life cycle model - Predictions for saving and time use

Notes: All figures correspond to predictions of the calibrated model according to Table 5 and 6. Leisure hours are assumed to be the same for head and wife, 
while childcare and homework hours differ.


