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SUMMARY  

Medical treatment decisions are often sequential and uncertain. Markov 
decision processes (MDPs) are an appropriate technique for modeling and 
solving such stochastic and dynamic decisions.  This chapter gives an 
overview of MDP models and solution techniques. We describe MDP 
modeling in the context of medical treatment and discuss when MDPs are an 
appropriate technique. We review selected successful applications of MDPs 
to treatment decisions in the literature. We conclude with a discussion of the 
challenges and opportunities for applying MDPs to medical treatment 
decisions. 
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23.1  INTRODUCTION  

Medical treatment decisions must be made sequentially and in an uncertain 
environment. A physician determining a course of treatment must consider 
the patient’s current health, as well as the best treatment decisions in the 
future. One important source of uncertainty is that different patients will 
respond to treatments differently. Other sources of uncertainty include the 
availability of scarce resources, such as cadaveric organs for transplantation, 
and human behavior, such as the response time for individuals to react to 
stroke symptoms. In current medical practice, the vast majority of these 
treatment decisions are made using ad hoc or heuristic strategies. However, 
there is a growing feeling among medical practitioners that some treatment 
decisions are too complicated to solve accurately using intuition alone [1, 2]. 
The evidence for this includes psychological experiments that indicate that 
short-term memory has a limited capacity to handle multiple memory 
constructs, and a substantial body of evidence suggesting a large variation in 
clinical practice [1, 3-5].  
 
Physicians will always need to make subjective judgments about treatment 
strategies. However, mathematical decision models that provide insight into 
the nature of optimal decisions can aid treatment decisions. Markov decision 
processes (MDPs) (also known as stochastic dynamic programs) are an 
appropriate and under-utilized technique for certain types of treatment 
decisions. MDPs find optimal solutions to sequential and stochastic decision 
problems. The major advantage of MDPs is their flexibility. Although 
virtually every medical decision can be modeled as an MDP, the technique is 
most useful in classes of problems involving complex, stochastic and 
dynamic decisions, for which MDPs can find optimal solutions.    
 
An MDP is similar to a Markov process (or Markov model, as it is known in 
the medical decision making literature), except that the decision maker must 
make decisions at various time epochs. The goal of an MDP is to provide an 
optimal policy, which is a decision strategy to optimize a particular criterion 
such as maximizing a total discounted reward. In this way, MDPs differ from 
other stochastic modeling techniques such as discrete-event simulation or 
Markov processes. Such techniques may be used to evaluate the 
consequences of a fully specified stochastic model, but they do not allow for 
the stochastic optimization of that model; they evaluate just one particular 
policy at a time. To evaluate exhaustively every feasible policy in this 
manner may be computationally prohibitive. MDPs not only provide the 
consequences of a policy, they guarantee that no better policy exists.  
 
MDPs also have drawbacks. As the size of the problem increases, MDPs 
become harder to solve exactly. However, many techniques for finding 
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approximate solutions to MDPs exist. This has been a fertile research area 
recently, but not in the context of medical treatment decisions [6, 7]. Perhaps 
the biggest hindrance to the broader application of MDPs is data. Obtaining 
quality medical data is very difficult and expensive. It is common for a large 
medical study to cost several million dollars. MDPs are even more data-
intensive than other stochastic modeling techniques. This is because the 
transition probabilities governing the stochastic process, as well as the 
rewards, are permitted to vary according to the decision made at each 
decision epoch. While this flexibility is a large advantage in treatment 
decisions, it means that for every possible description of patient health and 
every possible treatment, an MDP requires enough observations to estimate 
accurately transition probabilities to the next epoch. In practice, this typically 
means that quality data covering thousands of patients is necessary for a 
successful and realistic MDP model.   Although the use of such large patient 
series is not common, the increasing use of electronic medical records 
systems is enhancing researchers’ ability to utilize large amounts of clinical 
data from thousands of patients [8].  
 
In Section 23.2 we provide formal models of MDPs and discuss 
implementation issues such as algorithms and efficiency issues. In Section 
23.3 we consider modeling issues particular to applying MDPs to health care 
problems.  In Section 23.4 we provide a selective literature review of 
previous successful applications of MDPs to medical treatment problems. 
For each article, we describe the medical application, modeling issues and 
the solution technique. Finally, in Section 23.5 we provide some conclusions 
and discuss the future of applying MDPs to medical treatment problems. 
 
23.2 FUNDAMENTALS OF MDP METHODOLOGY 

Markov decision processes, or stochastic dynamic programs, are a general 
framework for modeling dynamic systems under uncertainty.  Under mild 
separability assumptions, discrete-time MDPs can be applied to a variety of 
systems where decisions are made sequentially to optimize a stated 
performance criterion.  An MDP binds previous, current, and future system 
decisions through the proper definition of system states, defined as variables 
that contain the relevant information for making future decisions.  The 
system model evolves in the following manner:  The condition or state of the 
system is observed (or partially observed), an action is taken, a reward is 
received (or cost incurred), and the system transitions to a new state 
according to a known probability distribution.  The state variables must be 
defined so that given the current state of the system the future transitions and 
rewards are independent of the past.  This is the standard assumption of a 
Markov process.  MDPs are typically used to model dynamic systems; 
therefore the decisions are assumed to occur sequentially.  However, static 
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decisions can also be modeled using MDPs when the problem’s decisions or 
reward structure are separable: then a one-time decision can be optimized by 
decomposing it into a sequence of sub-decisions.   
 
23.2.1  Finite-horizon MDPs 
 
We now introduce the fundamentals of MDP methodology. For more 
complete coverage we refer the reader to Puterman, Bertsekas, or Bellman 
[9-11]. Following the notation of Puterman, the basic model of a finite-
horizon, discrete-time MDP is defined by ))()(( N,,, r,|S, A, p tt ⋅⋅⋅⋅⋅ , where S 
is the set of defined states and for every state Ss∈ , A is the set of all 
feasible actions or decisions and sA are those actions available at state s.  The 
system progresses to state s′  from state s when action sAa∈ is chosen at 
decision epoch t, ( Nt ,,1K= ), with known probability transition 

),|( asspt ′ .  When action sAa∈  is chosen from state s at decision epoch t, 
a reward ),( asrt  is received.  We define a policy { }121 ,,, −= Nddd Kπ  as a 
sequence of decision rules, where a decision rule is a mapping from states to 
actions, so that st Asd ∈)( .  The application of a policyπ induces a 
probability distribution over the states at various stages, where the state of 
the system after t transitions is tX  and the action chosen, tY , is a function of 
this state.  The objective is to compute the policy that maximizes a given 
criterion in expectation.   
Three commonly used criteria (when beginning in state s) are:  the total 
expected reward, 
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For a finite N, the optimal policy for both the average reward per stage and 
the total reward criterion are equivalent.  For the infinite-horizon case, which 
will be discussed shortly, there is a distinction.   
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We will present the fundamentals of the total discounted expected reward 
criterion.  Under the standard assumptions of a basic MDP model, where S 
and A are finite and the rewards are bounded, i.e. ∞<≤ Masrt ),( for 
every state-action pair ),( as , and Nt ≤ , then )(svN

π exists and is bounded.  
We seek a policy ∗π such that )()( * svsv NN

ππ ≤ for every Ss∈ . As a result of 
the principal of optimality [11], the separability of the MDP decisions and 
rewards can be exploited to decompose this N-period problem into a 
sequence of 1−N single-stage problems, by recursively solving backward 
from stage 1−N  to 1: 
 

)()( srsv NN =  for every Ss∈ , and 
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Here )(svt is the total discounted-expected reward of the tN − stage 
problem beginning in state s at stage t or as a single-stage problem with 
terminal rewards )'(1 svt+ , which are known at the time )(svt is computed.  
This is the true computational benefit of MDPs, the ability to reduce a 
problem into manageable subproblems and still attain the optimal solution.  
The optimal policy is defined to be the sequence of decision rules, mapping 
states to the actions that maximize the above recursion, i.e. 
 







 ′′+= +

∈′∈
∑ )(),|(),(maxarg)( 1 svasspasrsd t

Ss
t

Aa
t

s

λ   

           for 1,,1K−= Nt and Ss∈ . 
 
In the above solution and model we assumed that the decision horizon was a 
finite N.  Often there is no defined horizon or the number of stages is so large 
that it may be approximated by an infinite horizon.  In these instances we 
utilize the techniques discussed in the next section. 
 
23.2.2   Infinite-horizon MDPs 
 
Infinite-horizon models require an infinite amount of data.  Therefore, it is 
typically assumed that data are time-homogeneous or changing so slowly that 
homogeneity is a reasonable assumption. As a result, the state of an infinite-
horizon MDP must be carefully defined to ensure that the system transitions 
are stationary.  If the data are naturally time-dependent, the time-
homogeneity assumption can be satisfied by properly augmenting the state 
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definition with the time at which a system transition occurs.  The presence of 
stationary system transitions allows for the use of several elegant solution 
techniques and easily characterized optimal policies. We replace the above 
finite-horizon criteria with an infinite-horizon variant by taking the limit of 
each measure as N goes to infinity.  Unlike the total expected reward and 
discounted expected reward criteria, the analysis and solution methodologies 
for the average reward criterion depend on the structure of the underlying 
Markov processes [12]. Again we focus on the problem of maximizing a 
stream of discounted rewards, which is assured to converge as a result of the 
bounded rewards assumption.   
 
One of the key insights into infinite-horizon MDPs is that as a result of the 
assumptions of an infinite horizon, time-homogeneity, and Markov property, 
under a stationary policy π , i.e. )()( sdsdt = for all Ss∈ and K,2,1=t , 
the expected reward vector is also stationary   
 

)()( svsvt
ππ =  for K,2,1=t and Ss∈ , 

 
and )(svπ is the unique solution to the set of equations: 
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Ss

′′+= ∑
∈′

ππ λ  for Ss∈ . (1) 

 
It is well known that a stationary policy is optimal for these MDPs. In 
addition, the optimal vector *v is the solution of the following equations, 
known as Bellman’s equations: 
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Given any initial bounded vector ov , it can be shown that the following 
sequence converges to a solution of Bellman’s equations: 
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(2) 
 
However, this solution procedure, known as value iteration, may require an 
infinite number of iterations [13]. As a result, another technique, policy 
iteration, is typically used to search over the finite space of policies [11, 14]. 
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In policy iteration, we begin with a policy oπ , evaluate that policy by solving 
the set of linear equations in (1) to find 

oπv , use this value to choose the 
actions that maximize the equations in (2) to perform a policy improvement 
step, and determine the next policy 1π .  This process is continued until 
identical policies are found in subsequent iterations.  Each iteration results in 
a policy with an improved optimal reward vector and therefore, for an MDP 
with finite state and action spaces, policy iteration will terminate with the 
optimal policy in a finite number of steps.  There are several variants of the 
above techniques; however, the most successful solution methodologies will 
typically exploit the natural structure of a particular problem instance. 
 
23.2.3  Partially observed MDPs 
 
The above finite- and infinite-horizon MDPs fall into a broader class of 
MDPs that assume perfect state information – in other words, an exact 
description of the system.  However, often such precision is either too strong 
an assumption or is not plausible within the model.  For example, the state of 
an MDP could be results from a series of medical tests.  These results may 
supply a better idea of the true state of the patient, but are subject to the error 
of the tests.  Extensions of MDPs, called partially observed Markov decision 
processes (POMDPs), have been developed to deal with imperfect 
information [15, 16]. In these models it is assumed that uncertainty exists in 
the transitions of the system itself and in our knowledge of which state the 
system truly occupies.  Therefore, the objective is to find an optimal policy 
based on the observations of the system and the previous decision rules 
applied.  It is possible to replace the partially observed state with a sufficient 
statistic that can be interpreted as a likelihood estimation of the true state of 
the system given the observations seen.  In this manner, the model can be 
transformed to one with perfect information using the sufficient statistic as 
the state definition [17]. However, this conversion results in computationally 
intractable models for systems with even moderately sized underlying true 
state spaces.  As a result, heuristics or approximation techniques must be 
employed to effectively generate solutions to realistic problem instances.  
 
23.2.4  Semi-Markov decision processes 
 
The above discussion focused on models where the time between decision 
epochs is fixed and has no effect on the rewards of the system.  However, in 
health care and other applications, decisions may occur over continuous time 
intervals, such as when varying treatments can be administered.  The time 
between these transitions may depend on the action selected or may occur 
randomly.  In these instances, an extension of MDPs called semi-Markov 
decision processes (SMDPs) can be employed.  These models allow system 
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transitions to occur in continuous time and allow for the inclusion of a 
probability distribution over the amount of time spent in a state.  Through 
problem transformations and redefinitions, techniques and solution 
algorithms analogous to those of discrete-time MDPs have been developed 
for this class of problems [18, 19].  
 
23.3 MODELING ISSUES 

23.3.1  Benefit of MDP modeling over traditional decision modeling in 
health care 
 
For simple medical treatment decisions, a decision tree can be utilized to 
discover the best course of action.  A terminal node of a decision tree usually 
represents the expected utility (such as life expectancy or quality-adjusted 
life years) of a patient whose health progression follows that branch of the 
tree.  The path to that terminal node may be complex, and the calculation of 
that value, requires knowing how the patient may transition between various 
health states from the initial decision point until death.  Modeling these 
transitions in a standard tree requires a large number of nodes representing 
multiple time periods in the model, resulting in a tree explosion [20]: the 
situation is even more complex if the decision can be made at various times, 
which requires  the use of embedded decision nodes, making the analysis and 
interpretation of standard trees almost impossible.  As the complexity of the 
problem increases, the standard decision tree becomes impractical. 
 
Markov models are popular in medical decision making because they can 
handle some of the difficulty described above.  They allow for a simpler 
representation of the future states and possible transitions that may occur 
until the patient dies.  Solutions to Markov models are obtained via matrix 
algebra, cohort simulations, or Monte Carlo simulations.  Markov models 
have their limitations, however, because they are not well suited to handle 
the situation in which decisions may be made at multiple time points.  This 
deficiency of traditional Markov models is precisely the advantage of using 
Markov decision processes for treatment decisions.          

 
Rather than evaluating a decision tree based on a one-time decision (as is 
often the case in traditional decision trees and Markov models), MDPs allow 
the "do-nothing" option in each time period and consider the "do-something" 
option at any later decision epoch [21]. For example, organ transplantation 
can be modeled as an MDP in which the action each time a donor organ 
becomes available is to either accept the organ or reject it and wait for a 
better one.  The MDP methodology is especially beneficial because it offers 
the flexibility of choosing possibly different actions across multiple time 
periods according to the patient’s state.  For example, a doctor treating an 
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HIV-infected patient using highly active anti-retroviral therapy (HAART) 
may consider different doses and different combinations of drugs at different 
times during the course of treatment.  The action chosen depends on the 
patient’s state, which could include side effects, level of CD4 cells and viral 
RNA, signs of drug resistance, and degree of adherence to the regimen.  Just 
about any situation where one wants to optimize a process over multiple time 
periods can be modeled using an MDP.  As discussed above, though, exact 
solutions for large-scale problems may be computationally infeasible and one 
may need to resort to approximate heuristics. 
 
23.3.2  Issues in modeling disease treatment decisions 
 
Many MDP applications in health care must address the same important 
modeling issues.  For example, MDPs that attempt to optimize a treatment 
plan or surgery time for a disease require a model of how a patient's health 
evolves both before and after an intervention.  In the case of the optimal time 
to transplant a liver from a living donor, it is important to develop both a 
good natural history model of how a patient's health changes in the absence 
of a transplant and a post-transplant survival model that determines when a 
patient dies.  The natural history model is used to determine transition 
probabilities between health states from one period to the next if the patient 
chooses to wait another day for the transplant.  In MDP terminology, the 
survival model determines a terminal reward – the expected remaining life of 
the patient after receiving a new liver – when the transplant action is chosen.   
 
Another modeling issue in health care MDPs is determining the rewards 
associated with actions.  Optimal disease treatments are usually concerned 
with maximizing both total life years and quality of life.  The quality-
adjusted life year (QALY) is a popular measure in the medical literature that 
blends these two goals [22, 23]. This approach considers a patient's utility for 
various health states and multiplies the length of life under these health states 
by the utility weight.  One can assess these utilities in various ways including 
the standard gamble, the time-tradeoff, and the visual rating scale [24]. When 
quality adjustment is used, the decision to wait another day for treatment or 
surgery can have very different payoffs for different patients.  As Ahn and 
Hornberger note, for example, some kidney patients may not mind dialysis as 
much as others and hence would be willing to wait longer for a better donor 
match [25].   
 
An important area of research in medical treatment decisions concerns the 
correct way to discount future health consequences.  A ubiquitous model to 
handle this is the discounted-utility (DU) model in which the same discount 
rate (appropriately compounded) is applied to all future outcomes [26]. In 
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this way, outcomes that occur earlier are preferred to equally valued 
outcomes that occur later.  Over the last couple of decades, however, there 
has been much research questioning the normative aspects of the DU model 
[27]. Some of this research demonstrates preference reversals as the time 
until an event draws nearer, which is inconsistent with DU theory.  For 
example, one study showed that one month before birth, many women 
wanted to avoid using anesthesia, but during labor they often changed their 
mind and preferred the anesthesia [28]. Such reversals can be handled by an 
alternative discounting model – hyperbolic discounting [29]. Other observed 
phenomena that are inconsistent with traditional DU models include sign 
effects (where gains are discounted more than losses), magnitude effects 
(where small outcomes are discounted more than larger ones), and 
preferences for improving sequences over worsening sequences [27].  
 
A common and recommended practice in cost-effectiveness analyses is to 
use the same discount rate for both monetary and health outcomes [30]. 
However, people usually do not discount these two types of outcomes in the 
same way [31]. Rather, people often demonstrate higher discount rates for 
health than for money, and, moreover, do not demonstrate a correlation 
between discount rates in these areas [31]. This suggests that we must pay 
careful attention to the valuation and discounting of outcomes in an MDP.   
 
23.3.3  Appropriateness of MDPs 
 
Under mild assumptions about the reward functions, any discrete-time 
sequential decision under uncertainty can be modeled as an MDP. However, 
data limitations and computational effort may impose limits on one’s ability 
to solve large-scale MDP models in health care.  MDP models differ from 
other models used for treatment decisions. A discrete-event simulation 
estimates the behavior of a system under uncertainty but is generally unable 
to make optimal decisions within the simulation. An exception is 
optimization via simulation, in which parameters governing the simulation 
are optimized by estimating gradients [32]. In contrast, an MDP allows 
decisions to be embedded within a Markov process. Rather than an estimate 
of system behavior, an MDP implicitly considers all possible decision rules 
or policies and produces the one that behaves the best under a given 
optimality criteria.  
 
23.3.4  State definition 
 
Selecting the appropriate level of descriptive detail contained in the states of 
an MDP model is extremely important. From a modeling perspective, the 
more detailed the information contained in the states the better, since this 
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detail provides a greater distinction among patients. However, increasing the 
state space makes the model more difficult to solve.  Furthermore, data 
limitations may make a large state space undesirable.  For instance, there 
may be state-action pairs (s,a) for which few or no clinical observations 
occurred.  This is typically the case in health care models.  States can either 
be functions of physiological measures (e.g. laboratory values, heart rate, 
CD4 counts) or can be defined based on subjective judgments such as 
survival probability.   
 
When insufficient data exist to derive a transition probability distribution or 
estimated rewards for a set of state-action pairs, two main modeling 
approaches can be used. One method is to aggregate states judiciously and/or 
actions to accumulate enough observations for sufficient estimates. For this 
approach it is important that the aggregated states and/or actions can be 
justified clinically, since the model cannot distinguish among different 
patients in the same state. The other approach is to use empirical models of 
clinical phenomena to estimate the effect of one state-action pair by 
considering similar state-action pairs for which sufficient data exist. For 
instance, a statistical model such as a regression model might be able to 
estimate the effects of a particular state-action pair by considering the results 
of all states with the same action. This approach may be more successful in 
estimating rewards than transition probabilities. 
 
23.4 APPLICATIONS OF MDPs TO MEDICAL TREATMENT 
DECISIONS 

We summarize previous successful applications of MDPs to medical 
treatment decisions. Despite the appropriateness of MDPs for medical 
treatment decisions, the fact that relatively few such applications exist 
illustrates the difficulties in developing successful applications. 
 
Epidemic Control  Lefèvre developed a continuous-time MDP formulation 
to address the problem of controlling an epidemic in a closed population of N 
people [33]. The state of the system was described by the number of people 
infected, and the rest of the population was considered susceptible.  
Transition probabilities depended on the rate of infection from some external 
causes, the internal rate of disease transfer from those infected to the 
uninfected, and the rate at which the infected recovered from the disease.  At 
any point in time, the decision-maker could choose two parameter levels:  1) 
the amount of the population to quarantine, and 2) the amount of medical 
treatment to apply to the infected population.  Utilizing these definitions, the 
model minimized the total expected discounted cost over an infinite horizon 
where the costs incorporated the social cost of people being infected, the cost 
of quarantining, and the cost of administering medical treatment to those 
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infected.  Rather than use real data to solve an instance of the problem, 
Lefèvre developed the structure of the optimal policy according to the form 
of the various input parameters.  In order to do this, he used a technique that 
allows one to convert a continuous-time MDP into an equivalent discrete-
time MDP [19, 34].  
  
Drug Infusion  Hu et al. considered the problem of choosing an appropriate 
drug infusion plan for the administration of anesthesia [35]. The main 
decision in this problem was the level at which to set the drug infusion rate to 
reach a target concentration.  Too much anesthesia can cause problems with 
blood pressure, heart rate, or recovery from the anesthetic state, but too little 
anesthesia can make the patient more aware of the painful operation.  They 
modeled the problem as a POMDP, which in its pure form was 
computationally unsolvable.  Fast heuristics were necessary for this problem 
since the maintenance of drug concentrations at target levels is very time 
sensitive.   
 
One of the main difficulties in this problem arose from the inability to 
directly observe patient parameters such as anesthesia concentration in the 
blood and the clearance rate of the drug.  This lead to two main issues in the 
model: 1) the best way to estimate the prior and posterior distributions for 
these parameters (i.e., whether to use a continuous or discrete distribution), 
and 2) how much to emphasize active versus passive gathering of 
information (i.e., how much cost should be incurred now to obtain useful 
information that can be used more effectively later).  The authors developed 
their own discretization technique for estimating the parameter distribution.  
This technique has most of the advantages of using continuous and discrete 
distributions without incurring high computational costs. They applied six 
approximation methods to determine suboptimal though useful treatment 
strategies. Three of these treatment strategies emphasized active gathering of 
information, and the other three strategies emphasized passive gathering.  
Based on their results, they planned on implementing one of the passive 
gathering policies into the STANPUMP program at Stanford Medical 
School, which administers intravenous anesthetics. 
 
Kidney Transplantation  Ahn and Hornberger described a model of kidney 
transplantation that allowed patients to accept or reject an offered kidney 
based on the quality of the organ [25]. For a potential kidney, they estimated 
the one-year graft survival of that kidney in a certain patient.  For that 
patient, they also determined the one-year graft survival acceptance threshold 
that maximized his or her quality-adjusted life expectancy (QALE).  The 
QALE was based on patient-specific ratings for being in different health 
states.  Rather than solve the problem explicitly as an MDP, the authors 
restricted their search to threshold policies, thereby reducing the problem to 
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finding the optimal threshold level.  If the expected one-year graft survival 
for the kidney-patient pair exceeded the threshold, the patient accepted the 
transplant; otherwise the patient rejected it.  Their model was further 
simplified by having just five states: 1) alive on dialysis waiting for a 
transplant, 2) not eligible for transplantation, 3) received a functioning renal 
transplant, 4) transplant failed, and 5) death.  They assumed that patients 
transitioned between the different states according to a Markov chain with 
probabilities based on published graft and patient survival rates in the United 
States. 
 
Spherocytosis Treatment  Magni et al. used an MDP approach to decide on 
therapy for mild hereditary spherocytosis, a disease that causes the chronic 
destruction of red blood cells [21]. For patients with a mild form of this 
disease, the main medical treatments considered were prophylactic 
splenectomy and/or cholecystectomy or no surgery at all.  The state of the 
patient was described through the severity of gallstones and the presence of 
or years since removal of the spleen.  The authors considered gallstone 
natural history, risk of surgical mortality, and natural causes of death in 
deriving transition probabilities.  They estimated these probabilities and 
quality-of-life utilities based on published mortality tables and previous 
studies.  They assumed that decisions were made every year with the overall 
objective of maximizing the patient's quality-adjusted life years.  The optimal 
solution to the MDP model resulted in the following strategy:  If a six-year 
old patient does not have gallstones, then as long as she does not develop 
gallstones, wait until she is fifteen and then perform splenectomy surgery.  If 
gallstones do appear before the age of fifteen, then both cholecystectomy and 
splenectomy are suggested. 
 
Treatment of Ischemic Heart Disease  Hauskrecht and Fraser applied a 
POMDP formulation to the problem of treating patients with ischemic heart 
disease (IHD) [36]. IHD results from the heart not receiving adequate oxygen 
and is usually caused when the coronary arteries narrow.  For patients with 
this disease, physicians must choose among various diagnostic procedures 
(such as an angiogram or one of many varieties of stress test), which may be 
followed by a therapeutic intervention such as medication, surgery (such as 
angioplasty or bypass surgery), or nothing at all.  The state of the patient was 
described by a variety of variables including the level of coronary heart 
disease, ischemia level, history of coronary artery bypass grafting, history of 
percutanerous transluminal coronary angioplasty, and stress test results.  The 
uncertainty of the patient health state arises from the inability to know 
exactly the level of coronary artery occlusion or the homodynamic impact of 
that occlusion on myocardial ischemia.  Some variables, such as level of 
chest pain, are directly observable.   
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Hauskrecht and Fraser framed their POMDP as an infinite-horizon 
discounted model that seeks a treatment strategy that minimizes total lifetime 
costs (where the costs incorporate duration of life, quality of life, and 
monetary costs).  To solve their model they used heuristic procedures along 
with methods that take advantage of special problem structure.  They 
validated their model by devising treatments for ten case patients and then 
having a cardiologist evaluate their model's treatment strategy.  Almost all of 
the model's recommendations were deemed clinically reasonable, though the 
experiment also revealed areas for model improvement.  Overall, their 
POMDP formulation was very effective and efficient in generating good 
treatment strategies for IHD. 
 
Breast Cancer Screening and Treatment  Ivy used a POMDP to develop a 
cost benefit analysis of mammogram frequency and treatment options for 
breast cancer [37]. The goal was to minimize the total expected cost over a 
patient's lifetime, where costs were based on the patient's condition, exams, 
and treatment options.  The model consisted of three states:  no disease, non-
invasive breast cancer, and invasive breast cancer.  It was assumed that all 
patients started in the no-disease state, transitioned to the non-invasive state 
after a random number of years (according to a geometric distribution based 
on age) and then transitioned to the invasive stage after another random 
number of years (the model was flexible enough to relax the assumptions that 
all non-invasive cancers became invasive or that one must enter the non-
invasive state before reaching the invasive state).  The part of the model that 
was partially observable was the patient's condition. Two types of exams – 
clinical breast exams (CBE) and mammograms – could be performed to get 
information about the patient's state.  At the beginning of each time period, 
the decision-maker must choose whether to perform a CBE alone or a CBE 
with a mammogram.   If a mammogram was performed and the results were 
abnormal then the decision-maker could choose either a lumpectomy or a 
mastectomy.  If the mammogram was normal the decision-maker could 
choose to cease treatment.  Using estimates from the literature on costs, test 
specificity, test sensitivity, and disease progression rates, Ivy solved the 
dynamic program and characterized optimal decision regions based on the 
perceived probabilities of the different states of breast cancer.   
 
Liver Transplantation  Alagoz et al. presented an MDP model for deciding 
the optimal time to perform a living-donor liver transplantation [38]. In these 
types of transplants, the friend or relative of a patient agrees to donate a 
portion of her liver, and the livers of both the donor and the patient 
regenerate to a normal size.  The goal of the model was to determine when to 
perform the surgery in order to maximize the expected life years of the 
patient.  The model considered the daily decision of whether or not to 
transplant.  If a transplant was performed, the reward was the expected 
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remaining life years post-transplant, and this was based on survival-analysis 
estimates [39]. If no transplant was performed, then the patient died in the 
next day with some probability or transitioned to another health state and 
increased her life by one day.  The transition to other health states was 
governed by a natural history model of pre-transplant survival [39]. Alagoz 
et al. used the policy iteration algorithm to solve the MDP and generated an 
optimal stationary policy to transplant or wait at least another day as a 
function of the liver quality and the patient health at the start of the day [38].  
 
23.5 CONCLUSIONS 

MDPs are a powerful and appropriate technique for medical treatment 
decisions. MDPs provide optimal policies to stochastic and dynamic 
decisions. Examples of such decisions naturally arise in finding optimal 
disease treatment plans. Despite a wealth of potential applications, there have 
been very few successful applications of MDPs in the medical arena. This is 
due to several factors, particularly heavy data requirements and 
computational limitations. However, several recent trends appear to help 
ameliorate these limitations. First, the medical community is rapidly 
developing a more quantitative understanding of disease progression and the 
effects of treatment options. Additionally, the operations 
research/management science community is improving the solution 
methodology for MDPs, particularly approximate solutions of MDPs. Also, 
computing capacity continues to become cheaper.  Finally, more hospitals 
are using electronic medical record systems to gather large amounts of 
patient data.  This confluence of factors will open the door for the increased 
application of MDPs to medical treatment problems.  
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