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1. Introduction
Organ transplantation is the only viable therapy for
end-stage liver diseases such as primary biliary cir-
rhosis and hepatitis B. In 2001, nearly 6,000 Americans
received a liver transplant, while over 10,000 new
patients were added to the waiting list. During this
period, over 2,000 patients died while awaiting a liver.
Currently, over 18,000 patients are on the waiting list
(United Network for Organ Sharing (UNOS) 2004b).
As with other organs, the supply of cadaveric livers
has not kept pace with demand (Institute of Medicine
(IOM) 1999, UNOS 2004b).
There have been many methods proposed to

increase the number of organ donations. For instance,
the American Medical Association considered a pro-
posal that would pay donors for organs (Carton
2002). In Boston and Washington, D.C., family mem-
bers can improve a relative’s priority for a transplant
by becoming organ donors themselves (Okie 2001).
Transplant surgeons are now splitting livers and
transplanting them into two separate patients (Marcus
2003). Another increasing source of donated livers,
and the subject of this paper, is living donors, where
transplantation is accomplished by removing an

entire lobe of the donor’s liver and implanting it
into the recipient. The nondiseased liver has a unique
regenerative ability, so that a donor’s liver regains its
previous size within two weeks (International Asso-
ciation of Living Organ Donors (IALOD) 2002); the
same process occurs in the recipient. Living donors
are often, but not always, related to the recipient.
While donating part of a liver does entail real risk for
the donor, to date there have been only two donor
deaths as a result of living-donor liver donation in
the United States (Russo and Brown 2003), which is
comparable to the mortality rate of other living-donor
procedures such as kidneys donation (Coalition on
Donation (COD) 2004).
Table 1 shows U.S. liver transplant and waiting-

list data from 1996 to 2001 for both pediatric patients
and adults (UNOS 2004b). Although the number of
living donors is still a small portion of all trans-
planted organs, the recent percentage increase in
living-donor transplants is much greater than the per-
centage increase in cadaveric transplants. The num-
ber of living-donor liver transplants has grown by an
order of magnitude from 1996 to 2001, and now rep-
resents over 10% of all transplants. Initially, living-

1420



Alagoz et al.: The Optimal Timing of Living-Donor Liver Transplantation
Management Science 50(10), pp. 1420–1430, © 2004 INFORMS 1421

Table 1 U.S. Liver Transplant and Waiting-List Data Between 1996
and 2001

1996 1997 1998 1999 2000 2001

Patients waiting 7�398 9�527 11�908 14�445 16�874 18�214
Deaths 1�003 1�199 1�437 1�850 1�787 2�003
Deceased donors 4�017 4�101 4�416 4�485 4�582 4�665

Adults 3�547 3�613 3�896 4�040 4�118 4�175
Pediatrics 470 488 520 445 464 490

Living donors 60 84 87 230 380 515
Adults 3 3 24 140 272 408
Pediatrics 57 81 63 90 108 107

donor transplantation was almost exclusively used
in the pediatric population, where a parent of a
child with end-stage liver disease would donate a
lobe in order to save their child’s life. However, as
demonstrated in Table 1, a large component of the
rise in living-donor transplants has been from adult
to adult. Bolstered by the success of adult-to-adult
living-donor transplantation from Japan, where there
are social prohibitions to cadaveric transplantation
(Nishizaki et al. 2002), adult-to-adult living-donor
transplantation has spread rapidly in the United
States as waiting-list death rates have risen, and wait-
ing time for organs has skyrocketed, with a median
waiting time of 770 days in 1998.
There are several potential advantages of using a

living donor: The organ is usually of higher quality,
there is no waiting time on the list for the patient,
the time spent by the organ outside the body—cold-
ischemia time—is essentially zero, and the time of the
transplantation can be selected rather than dictated
by a cadaveric donation (IALOD 2002). This timing
decision is the focus of this paper. In addition to these
benefits, a complete preoperative evaluation of the
donated liver is possible, which may increase the suc-
cess of the operation (Hashikura et al. 2002). More-
over, the posttransplant quality of life is generally
higher for living-donor recipients than for cadaveric
liver recipients (Trotter et al. 2002).
The purpose of this study is to determine the opti-

mal timing of living-donor liver transplantation. That
is, we seek a policy describing those health states in
which the living-donor liver transplantation should
occur, and those where waiting is the optimal action.
In current practice, the patient, the transplant sur-
geon, and/or the physician responsible for the care
of the patient are the decision makers (IALOD 2002,
UNOS 2004a), and we assume that their objective is
to maximize the patient’s total expected discounted
reward. The model presented in this paper is general
enough to handle various reward function definitions.
Possible definitions include total discounted expected
life days and total discounted quality-adjusted life
days (QALD) of the patient, a common measure in

medical decision-making research. The QALD mea-
sure is based on the assumption that the patient
assigns a quality score between zero and one to each
health state (Gold et al. 1996). A quality score of one
corresponds to perfect health, whereas a quality score
of zero corresponds to death.
Although the financial costs of liver transplantation

are significant, we do not consider these costs or per-
form a cost-effectiveness analysis, because our deci-
sion maker is the patient/physician, and the financial
costs of the liver transplant are rarely incurred by the
patient (Health-Alliance 2004, Mayo Clinic 2004). Fur-
thermore, because cost-effectiveness in health care is
typically used as a metric for group- or population-
based policies (Eisenberg 1989, Weinstein and Stason
1977), as opposed to individual patient choices, it is
not applicable in this situation.
We assume that the donor is indifferent to the tim-

ing of transplantation and that the quality of the
donated organ is fixed. We assume that there is a finite
number of health states, and that a complete order-
ing over the health states exists. We also assume that
the patient is either ineligible or has decided not to
receive cadaveric organ offers. We do not consider the
risk for the donor in the decision process. Although
we assume that the decision maker is both indiffer-
ent to the timing of the resolution of uncertainty and
risk neutral, we recognize that these assumptions do
not necessarily hold (Chew and Ho 1994). Consider-
ing these and other patient preference issues is left for
future research.
The optimal solution to this problem may appear

to be straightforward, i.e., the patient should have the
transplant immediately once the living donor comes
forward. Consider, however, that there are two com-
ponents of a patient’s total reward—pretransplant
reward and posttransplant reward—and recall that the
overall objective is to maximize the total discounted
reward rather than maximizing one of these compo-
nents. When transplantation occurs, the patient’s pre-
transplant life ends and the posttransplant life begins.
Therefore, if transplantation occurs at an early stage of
the disease, the patient may maximize her posttrans-
plant reward but not her total reward.
To the best of our knowledge, there are no other

studies that consider the optimal timing of living-
donor liver transplantation. Several researchers do,
however, examine how to allocate cadaveric organs
(particularly kidneys) to patients such that society’s
benefit is maximized (Righter 1989; David and Yechiali
1995; Zenios et al. 1999, 2000). Several others inves-
tigate the problem of when to accept a cadaveric
organ offer such that the patient’s benefit is maxi-
mized (David and Yechiali 1985, Ahn and Hornberger
1996, Hornberger and Ahn 1997). Most of these stud-
ies focus on kidneys and do not explicitly model
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patient health. Su and Zenios (2002) study the kidney-
allocation problem, considering both society’s and the
individual patient’s perspective, but do not consider
the effects of the dynamic behavior of patient health on
the decision process. Howard (2002) models the prob-
lem of when to refuse a cadaveric liver, but does not
provide any solutions to this decision model. Instead,
he provides statistical evidence that explains why a
transplant surgeon may reject a cadaveric liver offer.
The remainder of this paper is organized as follows.

In §2, we present a Markov decision process (MDP)
model of the problem. We derive several structural
properties of this MDP model and its optimal policy
in §3. In §4, we present and discuss computational
results. We draw some conclusions and discuss future
research directions in §5.

2. Model Formulation
We formulate a discrete-time, infinite-horizon, dis-
counted MDP model of this problem. The transition
probabilities and the reward function are assumed to
be stationary. The notation used in the model is as
follows.

h: Patient health. Note that h is typically described
by a vector of lab values. Because we assume a com-
plete ordering of the health states, we model h as a
scalar without loss of generality.

S: State space, S = �1� � � � �H + 1� where H + 1 rep-
resents death.

Figure 1 State-Transition Diagram

Death

(H+1)

Transplant

1 2 3 H–1 H

(T,1,r (1,T ))

(W ,P(H + 1 |1), r(1,W ))

(W , P(2 | 1),r (1,W ))

(W ,P(3 |1),r (1,W ))

(T,1,r (2,T ))

(W ,P(H + 1 |2),r (2,W ))

.   .   .   .

(T,1,r (H,T ))

(W ,P(1 | 1),r (1,W ))

( . ,1,0)

( . ,1,0)

Note. The labels (a�h�� P �j � h�� r �h� a�) on each arc represent the action taken at state h, the probability that the patient will move to state j when her current
state is h, and the reward obtained by taking action a in health state h, respectively. Note that this figure does not show all possible transitions.

P	h′ � h
: Probability that the patient will be in state
h′ at time t + 1 given that she is in state h at time t
and the liver is not transplanted at time t.

P : Transition probability matrix, i.e., P = �P	h′ � h
,
h�h′ ∈ S.

a	h
: Action taken at state h, to be chosen from
{Transplant(T ), Wait(W )}.

r	h�T 
: Total expected discounted posttransplant
reward when patient health is h at the time of the
transplant. Note that r	h�T 
 is also a function of the
liver quality and patient type, i.e., gender and blood
type. However, because these factors are assumed to
be fixed, we suppress this dependency for notational
convenience.

r	h�W
: Expected intermediate reward accrued in
the current time period when patient health is h and
she chooses to wait.

V 	h
: Maximum total expected discounted reward
that the patient can attain when her current health
is h.

�: Discount rate, 0≤ �≤ 1.
Note that r	h�T 
 accounts for the possibility of

death during the transplant operation. Because in
practice patients often need retransplantation due to
a number of severe posttransplant complications, we
incorporate the risk and the reward of retransplanta-
tion into r	h�T 
.
Figure 1 shows the state-transition diagram of

the MDP. The decision maker can take one of two
actions at state h, namely, “Transplant” or “Wait for
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one more decision epoch.” If the patient chooses
“Transplant” in health state h, she receives a reward
of r	h�T 
, quits the process, and moves to absorb-
ing state “Transplant” with probability one. If the
patient chooses to “Wait” in health state h, then she
receives an intermediate reward of r	h�W
 and moves
to health state h′ ∈ S with probability P	h′ � h
. The
optimal solution to this problem can be obtained by
solving the following set of recursive equations (Put-
erman 1994):

V 	h
 = max
{
r	h�T 
� r	h�W
+�

∑
h′∈S

P	h′ � h
V 	h′

}
�

h= 1� � � � �H + 1� (1)

It can be shown that there exists a stationary optimal
policy for the discounted as well as the undiscounted
case, because there is no reward associated with
remaining in the absorbing states (Puterman 1994).

3. Structural Properties
In this section, we derive some structural proper-
ties of the living-donor model (LDM) given by (1).
Some of these properties provide closed-form solu-
tions to the LDM under certain assumptions on the
reward function and the transition probability matrix.
Our main result establishes sufficient conditions that
ensure the existence of an optimal control-limit policy.
A control-limit policy is of the simple form: Choose
the “Transplant” action and “Accept” the organ if and
only if the observed health state is one of the states
j� j+ 1� � � � �H , for some state j , called the control limit
(Barlow and Proschan 1965). If it is known that the
optimal policy is of the control-limit type, the problem
can typically be solved more efficiently. Such policies
are also easier to implement (Puterman 1994).
The following additional assumptions are made

throughout:

Assumption 1 (As1). The function r	h�T 
 is nonin-
creasing. That is, as the patient gets sicker, her posttrans-
plant discounted expected reward does not increase.

Assumption 2 (As2). The function r	h�W
 is nonin-
creasing. That is, the expected intermediate reward that the
patient accrues is nonincreasing in h.

Let a∗	h
 be the optimal action in state h. Theorem 1
presents sufficient conditions under which it is opti-
mal to choose “Transplant” for all health states.

Theorem 1. If P is upper triangular, i.e., the patient
health never improves, and

�1−�P	h �h
r	h�T 
≥r	h�W
+�r	h+1�T 
�1−P	h �h

for h=1�����H� (2)

then a∗	s
= “T ” for all s ∈ S.

Both the upper-triangularity assumption on P and
Condition (2) in Theorem 1 are very restrictive. In fact,

our computational tests in §4 indicate that transplant-
ing right away is typically suboptimal for the LDM.
For this reason, we next explore conditions under
which the optimal policy may not be “Transplant” for
all states but still has an appealing structure.
In many areas of application, such as maintenance

optimization (Pierskalla and Voelker 1976, Valdez-
Flores and Feldman 1989, Chen and Feldman 1997),
inventory theory (Harrison and Taksar 1983), and
queueing (Weiss 1979), authors derive sufficient con-
ditions to ensure the existence of an optimal control-
limit policy. Most assume special structure on the
transition probability matrix and/or the reward func-
tion. Below, we define some concepts that are used
to specify these special structures. Interested readers
should refer to Barlow and Proschan (1965), Derman
(1962; 1963a, b), and Pierskalla and Voelker (1976) for
more details.
Definition 1 (Barlow and Proschan 1965). (a) A

discrete distribution �pk�


k=0 is IFR (increasing fail-

ure rate) if pk/
∑


i=k pi is nondecreasing in k = 0�1,
2� � � � �
(b) A Markov chain is said to be IFR if its rows are

in increasing stochastic order, that is,

z	i
=
H+1∑
j=h

P	j � i
 (3)

is nondecreasing in i for all h= 1� � � � �H + 1.
This definition is equivalent to the well-known

notion of stochastic dominance and may be viewed
intuitively as follows: The sicker the patient, the more
probable the patient will become even sicker.
Control-limit policies are studied for similar models

(Derman 1962, 1963a, b; Barlow and Proschan 1965;
Rosenfield 1976), but because the structure of our
model does not match the structure of these similar
models, new conditions need to be derived. For exam-
ple, the IFR assumption is not sufficient to guarantee
the existence of a control-limit optimal policy.
In the following theorem, we consider the case in

which the transition probability matrix is IFR and
show that the patient’s total discounted expected
reward is nonincreasing in h.

Theorem 2. If P is IFR, then for s = 1� � � � �H , V 	s
≥
V 	s+ 1
.

The following theorem, the main result of this sec-
tion, gives a set of conditions sufficient to guarantee
the existence of a control-limit optimal policy.

Theorem 3. Let P be an IFR matrix and suppose P and
r(h, T) satisfy the following conditions:

H∑
k=j

P 	k � h
 ≤
H∑
k=j

P 	k � h+ 1
� for j = h+ 1� � � � �H and

h= 1� � � � �H� (4)
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and

r	h�T 
−r	h+1�T 


r	h�T 

≤ ��P	H+1 �h+1
−P	H+1 �h
�

for h=1�����H−1� (5)

Then there exists an optimal control-limit policy. In other
words, there exists a state j such that a∗	1
= a∗	2
= · · · =
a∗	j − 1
 = “W” and a∗	j
 = a∗	j + 1
 = · · · = a∗	H
 =
“T .”

In Theorem 3, (4) implies that the sicker the patient
is, the more likely it is that she will move to sicker
health states. Note that (4) and Definition 1 have simi-
lar interpretations, but (4) is neither a consequence of,
nor sufficient to establish, Definition 1. Condition (5)
on the reward function has an intuitive explanation.
Namely, as the patient gets sicker, the reduction in the
benefit of waiting is greater than the reduction in the
benefit of performing the transplant.
Theorem 4 addresses the relationship between

the optimal policies for two patients with different
disease progression rates, but equivalent reward
functions. We show that, given both patients have
control-limit optimal policies, if Patient 1 deteriorates
faster than Patient 2, then Patient 1 has a lower opti-
mal control limit. First, we describe a plausible rela-
tionship between the transition probability matrices
for two different diseases. Namely, if one of the tran-
sition probability matrices has a faster deterioration
rate than another, then we say that transition prob-
ability matrix is dominated by the other. In medical
terms, this condition may arise when the progression
of two diseases are different.
Definition 2. Let P = �P	j � i
� i� j = 1� � � � �n and

Q = �Q	j � i
� i� j = 1� � � � �n be two transition proba-
bility matrices. We say P dominates Q,

P �Q� if
n∑

j=k

P	j � i
≤
n∑

j=k

Q	j � i
� 1≤ i� k≤ n�

Consider the implications of this definition by let-
ting the random variables X	h
 and Y 	h
 be the time
to death starting from health state h under transi-
tion probability matrices P and Q if no transplant is
performed, respectively. It can easily be shown that
Definition 2 implies ordinary stochastic dominance
between X	h
 and Y 	h
, i.e., X	h
≥st Y 	h
 for h ∈ S.

Theorem 4. Let �1 and �2 be two problem instances
that satisfy the conditions of Theorem 3 so that the opti-
mal policies for �1 and �2 are both control-limit optimal
policies with control limits j1 and j2, respectively. Let P1
and P2 be the transition probability matrices of �1 and �2,
respectively. If �1 and �2 have the same reward functions,
r	h�T 
 and r	h�W
� and P1 � P2, then j1 ≥ j2.

Note that Theorem 4 holds even if the conditions of
Theorem 3 do not hold, as long as both problems have
control-limit optimal policies and nonincreasing opti-
mal value functions and the same reward functions.

Corollary 5. Let �1 and �2 be two problem instances
with nonincreasing optimal value functions and the opti-
mal policies for �1 and �2 both be control-limit optimal
policies with control limits j1 and j2. Let P1 and P2 be the
transition probability matrices of �1 and �2, respectively.
If �1 and �2 have the same reward functions, r	h�T 
 and
r	h�W
� and P1 � P2, then j1 ≥ j2.

4. Computational Results
4.1. Data Sources
We use clinical data to estimate transition probabili-
ties, intermediate rewards, and terminal rewards. The
data are from two sources. The first is a data set
from UNOS that covers 28,717 patients nationwide
(UNOS 2004b). UNOS is the organization that admin-
isters the organ procurement and allocation system
in the United States. The second is a data set from
The Thomas E. Starzl Transplantation Institute at the
University of Pittsburgh Medical Center (UPMC), one
of the largest liver transplant centers in the world.
This data set covers 3,009 patients from the UPMC
transplant center with greater clinical detail than the
UNOS data set.
It is necessary to consider both data sets for several

reasons. While the UNOS data set covers every trans-
plant candidate nationwide, it is quite shallow and
does not contain some important items. For instance,
no clinical laboratory values or patient blood types
are included for most patients. The UPMC data set
is more detailed and complete, including all pertinent
clinical information about listed patients and donor
organs, but only provides data for a single transplant
center.

4.2. Estimating Parameters
We use the Model for End-stage Liver Disease (MELD)
scores to represent patient health. The MELD score,
first introduced by Malinchoc et al. (2000) to assess
the short-term prognosis of patients with liver cir-
rhosis (Malinchoc et al. 2000, Wiesner et al. 2001), is
a function of several laboratory values (total biliru-
bin, creatinine, and prothrombin time) that are mea-
sures of the liver disease. UNOS currently uses MELD
scores to assess the medical urgency of liver patients
(UNOS 2004a). MELD scores are restricted to integers
ranging from 6 to 40, where 40 is the sickest. In this
study, we use this same range to measure a patient’s
health status but, because of the sparsity of the data,
we aggregate the scores into groups of two or three.
The data are classified into five disease groups

based on the underlying etiology (cause) of end-stage
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liver disease. We estimate the transition probabili-
ties for each disease group separately because the
progression of liver disease is highly disease depen-
dent (Dienstag and Isselbacher 2001, Podolsky and
Isselbacher 2001). For each group, we estimate the
pretransplant transition probabilities between health
states using the Natural History Model (NHM) of
Alagoz et al. (2002). The NHM, an empirical stochas-
tic model, employs cubic spline functions to estimate
incomplete observations and uses the resulting data
sets to predict values of the disease covariates of a
particular patient at time t+ 1 given known values at
time t.
There are two types of rewards in the MDP model:

pretransplant and posttransplant reward. Because we
are unaware of any existing data on quality-adjusted
rewards for MELD scores, we use total discounted
life expectancy in days rather than total discounted
QALD for r	h�W
 and r	h�T 
 in our computational
tests.
If the patient chooses to “Wait,” the patient accrues

one day as the intermediate reward, i.e., r	h�W
= 1,
∀h ∈ S. If the patient chooses the “Transplant” option,
then she receives a posttransplant reward that is equal
to the expected life days of the patient, given her
health status at the time of the transplant and the liver
quality. To estimate the expected posttransplant life
days of the patient, given her MELD score at the time
of transplant and liver quality, we use the Cox pro-
portional hazards model (Cox 1972) of Roberts et al.
(2004). The inputs of this model include the donor
characteristics and the clinical characteristics of the
patient at the time of the transplant.

4.3. Numerical Examples
First consider a 60-year-old female patient with pri-
mary biliary cirrhosis who has blood type A. Figure 2
depicts the optimal transplant/wait policy for this
patient with 10 potential donors. Table 2 contains
the characteristics of these donors. We used these
characteristics because the model of Roberts et al.
(2004) identifies these factors to be most influential
on the posttransplant survival rates. We apply a 0.99
annual discount rate (daily �= 0�999972). Recall that
as the MELD score increases, the patient gets sicker.
In Figure 2, the organs are ordered from highest to
lowest quality, i.e., Organ 1 is the “best” and Organ 10
is the “worst” organ. The quality of a liver for a given
patient is determined by the posttransplant survival
model of Roberts et al. (2004). As Figure 2 shows, the
optimal policy varies for different liver qualities. If
the only liver available to the patient is Organ 1, then
the optimal policy for this particular patient is as fol-
lows: “Wait” until the MELD score rises over 14, and
then accept the liver and have the transplantation.
We tested a total of 840 instances and, while none

strictly satisfied the conditions of Theorem 3, all of the

Figure 2 The Transplant-Wait Decisions for Annual Discount Rate =
0.99 (	= 0
999972)
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optimal policies were of control-limit type. To quan-
tify the magnitude of the violations of the conditions
of Theorem 3, we define the following metrics:
The maximum violation of the IFR assumption:

 1 = max
j� h

{
max

{
0�

H+1∑
k=j

�P 	k � h+ 1
− P	k � h

}}

for j = 1� � � � �H + 1 and h= 1� � � � �H − 1�

The maximum violation of Condition (4):

 2 = max
j� h

{
max

{
0�

H∑
k=j

�P 	k � h+ 1
− P	k � h

}}

for j = h+ 1� � � � �H and h= 1� � � � �H − 1�

The maximum violation of Condition (5):

 3 =max
h

{
max

{
0��max�0�P	H+1 �h+1
−P	H+1 �h
�

− �r	h�T 
−r	h+1�T 


r	h�T 


}}

for h=1�����H−1�

Table 2 Donor Characteristics

Organ no. Age Sex Blood type Donor white1 CMVGR2

1 20 Female A No No
2 25 Female A No No
3 35 Female A No No
4 20 Male A No No
5 30 Male A No No
6 40 Male A No No
7 50 Male A No No
8 52 Female O No Yes
9 60 Male O No No
10 70 Male O No Yes

1 Indicates whether the donor is white or not.
2 Indicates whether the donor has cytomegalovirus (CMVGR) or not.
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Table 3 Maximum Violations of Conditions of Theorem 3

Disease 1 Disease 2 Disease 3

�1 0.0234 0.0021 0.0189
�2 0.0038 0.0012 0.0189
�3 0.1052 0.1089 0.1195

Note that the values of  1 and  2 depend only on
the etiology of the liver disease, whereas  3 depends
on the patient type, donor organ quality, and the
discount rate because r	h�T 
 is a function of these
three factors. Table 3 reports the maximum  1,  2, and
 3 values obtained with an annual discount rate of
0.99. The values for  1 and  2 are very small, whereas
 3 values are relatively larger.
As discussed earlier, the policies in Figure 2 are

examples of control-limit policies. The control limit
for this patient is a MELD score of 16 when the poten-
tial donors are of organ types 7, 8, or 9, and rises to
a MELD score of 20 when there is a very low-quality
liver such as Organ 10. In general, as the liver quality
drops, the control limit is nondecreasing and thus the
“Wait” region becomes larger. This result is intuitive:
As the patient’s posttransplant life expectancy drops
while her pretransplant life expectancy remains the
same, she chooses to wait until she reaches a sicker
state.
Disease and patient type affect the optimal policies.

Figure 3 shows the optimal policy for seven patient
types, where patient type is differentiated by char-
acteristics not including the MELD score, 10 levels
of liver quality, and three disease groups, again with
an annual discount rate of 0.99. Table 4 shows the
static characteristics of the patient types that are used
in generating Figure 3. In Figure 3, patients are in
decreasing order with respect to their posttransplant
expected life days for a given liver. As the quality
of the patient characteristics drops, the “Wait” region
becomes larger. Intuitively, this result makes sense
because, as the quality of patient characteristics drops,
the ratio of pretransplant survival to posttransplant
survival rate increases. In general, our findings indi-
cate that Disease Group 2, which includes Hepatitis B
and C, has the highest control limits for the same
patients and livers.

5. Summary and Future Work
We consider the problem of optimally timing living-
donor liver transplantation. We formulate an MDP
model of this decision problem and solve numeri-
cal examples using clinical data. To the best of our
knowledge, this study is the first to formulate the
living-donor organ transplantation problem by explic-
itly modeling patient health and the first to solve
numerical instances of the problem using clinical data.

Figure 3 Transplant-Wait Decisions for Annual Discount Rate = 0.99
(	= 0
999972)
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Note. Disease Group 1 includes the following diseases: primary biliary cir-
rhosis, primary sclerosing cholongitis, alcoholic liver disease, and auto-
immune disorders. Disease Group 2 includes the following diseases: hepati-
tis C virus and hepatitis B virus. Disease Group 3 includes the acute failure
(fulminants) diseases.

We derive structural properties of the LDM, includ-
ing conditions that guarantee the existence of a
control-limit policy. We also establish sufficient condi-
tions for some of the intuitive results seen in our com-
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Table 4 Patient Characteristics

Patient no1 Age Sex Blood type CMVGR2 Encephel3 Priortx4

1 22 Female A No No No
2 30 Female A No No No
3 40 Female A No Yes No
4 50 Female A No Yes No
5 60 Female A No Yes No
6 65 Female A Yes Yes Yes
7 72 Female A Yes Yes Yes

1 The patients are ordered according to their total life expectancies with a
given organ, i.e., Patient 1 has the longest expected life and Patient 7 has the
shortest life expectancy given the same liver.

2 Indicates whether the patient has cytomegalovirus (CMVGR) or not.
3 Indicates whether the patient has encephalopathy or not.
4 Indicates whether the patient had a prior transplant or not.

putational experiments. For instance, if one disease
causes a faster deterioration in patient health than
another, and yet results in identical posttransplant life
expectancy, then the control limit for this disease is
less than or equal to that for the other.
In all of our computational tests, the optimal pol-

icy is of control-limit type. In some of the examples,
when the liver quality is very low, it is optimal for the
patient to choose never to have the transplant. This
implies that measuring an allocation system based on
total number of transplants may not fully capture the
patient’s perspective. Our computational experiments
also show that there are significant differences in the
optimal policies for identical patients in different dis-
ease groups. There are two possible sources of this
variation: differences in the disease progression and
differences in the posttransplant survival rate of the
diseases.
Future research will consider the problem of accept-

ing/refusing cadaveric liver(s) offered for transplan-
tation. The cadaveric liver case is more complicated
than the living-donor case, because there is uncer-
tainty regarding the future availability of livers. Fur-
thermore, there are multiple organ types in the
cadaveric-donor problem, whereas in the living-donor
problem there is a single organ type available to the
patient. In the cadaveric-donor problem, the composi-
tion of the waiting list and the rank of the patient on
the waiting list have a significant effect on the trans-
plant/wait decision. Clearly, a patient at the “top”
of the list will be more selective than a patient near
the “bottom” of the list. Moreover, the waiting list
is dynamic. Capturing these complexities requires a
different state definition and different transition prob-
ability structures. Future work will combine the two
models into a single decision model in which the
patient has both a living-donor and the possibility of
a cadaveric donor(s).
Lastly, these decision models could be generalized

to address the problem of optimally timing other

living-donor organ transplantations, given the follow-
ing components: a proxy for the patient health, the
transition probabilities between patient health states,
a measure for organ quality, and a reward function
for a given organ and patient health characteristics. If
there are additional treatment options (such as dial-
ysis in the kidney transplantation), then the action
space could be expanded to include new actions.
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Appendix
Proof of Theorem 1. The theorem holds for s = H

because

V 	H
=max
{
r	H�T 
� r	H�W
+�	1− P	H �H

r	H + 1�T 


+�P	H �H
V 	H

}
�

Because r	H + 1�T 
= 0 and

r	H�T 
 ≥ r	H�W
/	1−�P	H �H

� V 	H
= r	H�T 
�

and a∗	H
 = “T .” Assume that a∗	s
 = “T ” for s = h� � � � �
H − 1. Then V 	s
= r	s� T 
 for s = h� � � � �H . Now

V 	h− 1
=max
{
r	h− 1�T 
� r	h− 1�W


+�
∑
h′

P	h′ � h− 1
V 	h′

}
� and

r	h− 1�W
+�
∑
h′

P	h′ � h− 1
V 	h′


≤ r	h− 1�W
+�
∑

h′>h−1
P	h′ � h− 1
r	h�T 


+�P	h− 1 � h− 1
V 	h− 1
 (A1)

= r	h− 1�W
+�r	h�T 
�1− P	h− 1 � h− 1


+�P	h− 1 � h− 1
V 	h− 1
� (A2)

where (A1) follows from the induction hypothesis, (As1),
and because P is upper triangular. So, if a∗	h−1
 is uniquely
“W ,” then (A2) is equivalent to

V 	h− 1
�1−�P	h− 1 � h− 1


≤ r	h− 1�W
+�r	h�T 
�1− P	h− 1 � h− 1


≤ r	h− 1�T 
�1−�P	h− 1 � h− 1
�

where the last inequality follows from (2). Therefore,
V 	h− 1
≤ r	h− 1�T 
 or a∗	h− 1
= “T ” which is a contra-
diction from which the result follows. �

Before proving our main results, we give two inequalities
that hold for IFR matrices and nonincreasing functions.
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Lemma 1. Let P be an IFR transition probability matrix and
V 	h
 be a nonincreasing function. Then the following hold:

	a

∑
h′≤h

�P	h′ � h
− P	h′ � h+ 1
V 	h′


≥ ∑
h′≤h

�P	h′ � h
− P	h′ � h+ 1
V 	h
�

	b

∑
h′′>h

�P	h′′ � h
− P	h′′ � h+ 1
V 	h′′


≥ ∑
h′′>h

�P	h′′ � h
− P	h′′ � h+ 1
V 	h+ 1
�

Proof of Lemma 1. (a) First note that the IFR assumption
requires that

∑h′
i=1 P	i � h
 ≥

∑h′
i=1 P	i � h+ 1
 for any h′ ∈ S.

Now,

∑
h′≤h

�P	h′ � h
− P	h′ � h+ 1
V 	h′


= �P	1 � h
− P	1 � h+ 1
V 	1


+
h∑

h′=2
�P	h′ � h
− P	h′ � h+ 1
V 	h′


≥ �P	1 � h
− P	1 � h+ 1
V 	2


+
h∑

h′=2
�P	h′ � h
− P	h′ � h+ 1
V 	h′


= �P	1 � h
+ P	2 � h
− P	1 � h+ 1
− P	2 � h+ 1
V 	2


+
h∑

h′=3
�P	h′ � h
− P	h′ � h+ 1
V 	h′


≥ �P	1 � h
+ P	2 � h
− P	1 � h+ 1
− P	2 � h+ 1
V 	3


+
h∑

h′=3
�P	h′ � h
− P	h′ � h+ 1
V 	h′
� (A3)

where (A3) follows because P	1 � h
≥ P	1 � h+1
 and V 	1
≥
V 	2
. We obtain the second inequality by recasting (A3), and
the last inequality holds because P	1 � h
 + P	2 � h
 ≥ P	1 �
h+ 1
+ P	2 � h+ 1
 and V 	2
 ≥ V 	3
. The result follows if
we apply the same procedure to states 3 through h.
(b) The proof is similar to the proof of Part (a) and is

omitted. �

Proof of Theorem 2. This theorem is a direct result of
the infinite-horizon version of Lemma 3.9.4 in Topkis (1998)
or, equivalently, Theorem 4.7.3 in Puterman (1994). �

Proof of Theorem 3. First note that the monotonicity
result of Theorem 2 holds. If we show that for some h,
a∗	h
= “T ” implies a∗	h+ 1
= “T ,” then the result follows.
Assume that the converse is true. In other words, for some
h, a∗	h
= “T ” but a∗	h+ 1
 is uniquely “W .” In this case,

r	h�T 
 ≥ r	h�W
+�
∑
h′∈S

P	h′ � h
V 	h′
 and

r	h+ 1�T 
 < r	h+ 1�W
+�
∑
h′∈S

P	h′ � h+ 1
V 	h′
�

It is obvious that,

r	h�T 
−r	h+1�T 


>r	h�W
−r	h+1�W


+�

[∑
h′≤h

P	h′ �h
V 	h′
+ ∑
h′′>h

P	h′′ �h
V 	h′′

]

−�

[∑
h′≤h

P	h′ �h+1
V 	h′
+ ∑
h′′>h

P	h′′ �h+1
V 	h′′

]
�

≥�

[∑
h′≤h

P	h′ �h
V 	h′
+
H∑

h′′=h+1
P	h′′ �h
V 	h′′


]

−�

[∑
h′≤h

P	h′ �h+1
V 	h′
+
H∑

h′′=h+1
P	h′′ �h+1
V 	h′′


]
�

because of (As2) and V 	H + 1
= 0. The last inequality can
also be rewritten as

r	h�T 
− r	h+ 1�T 


> �

(∑
h′≤h

�P	h′ � h
− P	h′ � h+ 1
V 	h′


+
H∑

h′′=h+1
�P	h′′ � h
− P	h′′ � h+ 1
V 	h′′


)
� (A4)

From Theorem 2 we know that V 	h
 is nonincreasing
in h. Therefore, the result of Lemma 1 applies to this prob-
lem and we can replace each V 	h′
 with V 	h
 without vio-
lating (A4). Similarly, as a result of Lemma 1 and (4), we
can replace each V 	h′′
 with V 	h+ 1
. We then obtain the
following:

r	h�T 
−r	h+1�T 


>�

([(
1−

H∑
h′′=h+1

P	h′′ �h
−P	H+1 �h

)

−
(
1−

H∑
h′′=h+1

P	h′′ �h+1
−P	H+1 �h+1

)]

V 	h


+
H∑

h′′=h+1
�P	h′′ �h
−P	h′′ �h+1
V 	h+1


)
�

=�

( H∑
h′′=h+1

�P	h′′ �h+1
−P	h′′ �h
�V 	h
−V 	h+1

)

+�
(
�P	H+1 �h+1
−P	H+1 �h
V 	h


)
�

From (4),
∑H

h′′=h+1�P	h
′′ � h+1
−P	h′′ � h
 is nonnegative, so

we can drop the first term and rewrite the last inequality as
follows:

r	h�T 
− r	h+ 1�T 


> ��P	H + 1 � h+ 1
− P	H + 1 � h
V 	h
� (A5)

Using (A5) and (5) we obtain

��P	H + 1 � h+ 1
− P	H + 1 � h
V 	h


< ��P	H + 1 � h+ 1
− P	H + 1 � h
r	h�T 
�

which is equivalent to assuming that V 	h
 < r	h�T 
, which
means there exists a contradiction. Therefore, a∗	h + 1
 =
“T ” also holds, from which the result follows. �
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Lemma 2. Let P and Q be n×n transition probability matri-
ces where P �Q. Furthermore, let V 	j
 be a monotonically non-
increasing function in j . Then for any i, the following are true:

	a

∑
j≤i

�P 	j � i
−Q	j � i
V 	j
≥∑
j≤i

�P 	j � i
−Q	j � i
V 	i
�

	b

∑
j>i

�P	j � i
−Q	j � i
V 	j
≥∑
j>i

�P	j � i
−Q	j � i
V 	i+ 1
�

The proof of Lemma 2 is very similar to that of Lemma 1
and is omitted.

Proof of Theorem 4. Suppose that we solve the two
problems simultaneously using the value-iteration algo-
rithm. We first show that starting with a value of 0 for all
states in both problems, at the end of each iteration of the
algorithm, the value function of �1 will be greater than or
equal to the value function of �2 for each health state. Let
V

j
i 	h
 be the value function of the state h of problem i at the

end of iteration j . We start with 0 for both problems. In this
case,

V 1
1 	h
= V 1

2 	h
=max�r	h�T 
� r	h�W
�� h= 1� � � � �H

as shown in Theorem 2. Therefore, the result holds for the
base case.
Now, assume that V n

1 	h
≥ V n
2 	h
�h= 1� � � � �H , holds for

iterations 2� � � � �n. Then we want to show that V n+1
1 	h
 ≥

V n+1
2 	h
�h = 1� � � � �H . If for any state h, V n+1

2 	h
 = r	h�T 
,
then the result immediately follows because V n+1

1 	h
 ≥
r	h�T 
. Otherwise, the application of the value-iteration
algorithm results in the following:

V n+1
1 	h
 ≥ r	h�W
+�

∑
h′≤h

P1	h
′ � h
V n

1 	h
′


+�
∑
h′′>h

P1	h
′′ � h
V n

1 	h
′′
 and

V n+1
2 	h
 = r	h�W
+�

∑
h′≤h

P2	h
′ � h
V n

2 	h
′


+�
∑
h′′>h

P2	h
′′ � h
V n

2 	h
′′
�

We easily obtain the following:

V n+1
1 	h
−V n+1

2 	h


≥�
∑
h′≤h

P1	h
′ �h
V n

1 	h
′
+�

∑
h′′>h

P1	h
′′ �h
V n

1 	h
′′


−�
∑
h′≤h

P2	h
′ �h
V n

2 	h
′
−�

∑
h′′>h

P2	h
′′ �h
V n

2 	h
′′


≥�
∑
h′≤h

P1	h
′ �h
V n

2 	h
′
+�

∑
h′′>h

P1	h
′′ �h
V n

2 	h
′′


−�
∑
h′≤h

P2	h
′ �h
V n

2 	h
′
−�

∑
h′′>h

P2	h
′′ �h
V n

2 	h
′′
 (A6)

=�

(∑
h′≤h

�P1	h
′ �h
−P2	h

′ �h
V n
2 	h

′


+ ∑
h′′>h

�P1	h
′′ �h
−P2	h

′′ �h
V n
2 	h

′′

)

(A7)

≥�

(∑
h′≤h

�P1	h
′ �h
−P2	h

′ �h
V n
2 	h


+ ∑
h′′>h

�P1	h
′′ �h
−P2	h

′′ �h
V n
2 	h+1


)
(A8)

=�

(∑
h′≤h

�P1	h
′ �h
−P2	h

′ �h
�V n
2 	h
−V n

2 	h+1

)

≥0� (A9)

where (A6) follows from the induction assumption and (A7)
is obtained by simply rearranging terms. Inequality (A8)
holds because P1 � P2 and the monotonicity of the value
function imply that V n

2 	h
′
 can be replaced with V n

2 	h
, and
V n
2 	h

′′
 can be replaced with V n
2 	h + 1
, without violating

the inequality as a result of Lemma 2. The first inequality
in (A9) follows from rearranging the terms in (A8), and the
second part of (A9) follows because P1 � P2 and the value
function is monotonic.
Because the value function for �1 is always greater than

or equal to that of �2 at each iteration of the value-iteration
algorithm, the optimal value function of �1 will always be
greater than or equal to that of �2. Hence, if for state j1,
a1	j1
 = “T ” in the first problem, because r	j1
 ≤ V2	j1
 ≤
V1	j1
= r	j1
, a2	j1
= “T ” always holds in the second prob-
lem. As a result, because we have a control-limit optimal
policy in both problems, the control limit in the first prob-
lem will always be greater than or equal to the control limit
in the second problem, from which the result follows. �
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