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perating room (OR) scheduling is an important operational problem for most hospitals. In this study, we

present a novel two-stage stochastic mixed-integer programming model to minimize total expected oper-
ating cost given that scheduling decisions are made before the resolution of uncertainty in surgery durations.
We use this model to quantify the benefit of pooling ORs as a shared resource and to illustrate the impact of
parallel surgery processing on surgery schedules. Decisions in our model include the number of ORs to open
each day, the allocation of surgeries to ORs, the sequence of surgeries within each OR, and the start time for
each surgeon. Realistic-sized instances of our model are difficult or impossible to solve with standard stochastic
programming techniques. Therefore, we exploit several structural properties of the model to achieve compu-
tational advantages. Furthermore, we describe a novel set of widely applicable valid inequalities that make it
possible to solve practical instances. Based on our results for different resource usage schemes, we conclude
that the impact of parallel surgery processing and the benefit of OR pooling are significant. The latter may lead
to total cost reductions between 21% and 59% on average.
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under uncertainty. We also show how our model can
be used for long-term strategic planning.

Because the OR is typically the bottleneck in the
overall process, we make it the central focus of our
study. We consider a multi-OR scheduling problem
where the surgery durations are uncertain and ORs
are identical. The main decisions are the number of
ORs to open, the assignment of surgeries to ORs, the
sequence of surgeries within each OR, and the times
at which surgeons start their first surgery of the day.
Our model explicitly considers the fact that some por-
tion of surgeries can be completed in parallel because
of the availability of multiple ORs and the assistance

1. Introduction

Health-care expenditures in the United States ex-
ceeded $2.2 trillion in 2007, accounting for over 16%
of the gross domestic product. Hospital expenditures
account for approximately a third of this total amount
(Centers for Medicare and Medicaid Services 2007),
and surgery generates a large portion of a hospital’s
total expenses and revenues (Healthcare Financial
Management Association 2003). Recognizing the sig-
nificance of efficient allocation of surgery resources,
many in the operations research and medical fields
have studied operating room (OR) scheduling prob-
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lems. The majority of articles have focused on either
single-OR models or deterministic multi-OR mod-
els. In this paper, we consider a model for the opti-
mal design of surgery schedules across multiple ORs

of other surgeons in addition to the primary staff sur-
geon (e.g., surgery fellows).

Beyond operational decisions, our model can also
be used to quantify the potential benefit of sharing
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ORs among surgeons. In practice, hospitals typically
use block-booking policies in which surgical groups are
given blocks of time in one or more ORs (Dexter et al.
1999a, b). The surgical groups, in turn, allocate these
blocks of OR time to individual surgeons, and the
further planning is made independently for each sur-
geon. Splitting resources in this way is motivated by
the desire to simplify the planning process; however,
it may lead to inefficiencies. Our model can be used to
determine the optimal schedule for surgeons assum-
ing that available ORs are pooled together as a com-
mon shared resource. Thus, we can use our model to
assess the benefits of pooling ORs compared to the
commonly used block-booking policy. The paralleliz-
able nature of surgery is an important factor that must
be considered to accurately estimate the benefits of
OR pooling.

We formulate a two-stage stochastic mixed-integer
program (SMIP) for the multi-OR scheduling prob-
lem with multiple surgeons. We analyze properties
of our model such as the highly symmetric structure
of the first-stage problem and the feasibility of the
second-stage problem. Standard stochastic program-
ming approaches, such as the L-shaped algorithm, fail
for practical instances. Therefore, we exploit a num-
ber of structural properties of our model. We present
valid inequalities that ensure feasibility of the second-
stage subproblems. We show that subproblems can
be solved using a fast procedure that exploits their
special structure. We also propose a new and widely
applicable set of valid inequalities based on Jensen’s
inequality (Jensen 1906). We perform a series of com-
putational experiments to test our proposed methods.

We calibrate our numerical experiments based on
data from the thoracic surgery department at the
Mayo Clinic in Rochester, MN. Our results reveal that
the benefit of pooling ORs and the impact of parallel
surgery processing are substantial, and they become
more striking when the cost of surgeon idle time is
high. The total operating cost reduction that can be
achieved through OR pooling changes between 21%
and 59% on average.

The remainder of this paper is organized as fol-
lows. In §2, we provide some background on the
OR scheduling problem. We review the relevant lit-
erature and identify our contribution in §3. In §§4
and 5, we provide the formulation of our model, dis-
cuss its structural properties, and present our solution
methods. In §6, we present results from our numeri-
cal study of our algorithms and managerial insights
based on empirical data. Finally, we summarize gen-
eral insights of our analysis in §7.

2. OR Scheduling Background

The daily fixed cost of opening an OR is significant
because of the cost of OR staff and staffing of sup-
porting upstream (intake) and downstream (recovery)

areas. Typically, ORs have planned session lengths of
eight to nine hours per day. Using an OR beyond this
period results in direct overtime costs and indirect
costs resulting from staff dissatisfaction. In addition
to these costs, there are also less tangible costs such
as the costs of surgeon idle time, OR idle time, and
patient waiting time.

The surgery listing of a surgeon defines the set of
surgeries to be performed by him or her on a partic-
ular day. Surgeons typically define the order of the
surgeries in their listing. The ordering is based on sev-
eral factors such as the health status of the patients,
difficulty and length of the surgery, and other patient-
or surgery-related attributes. At many institutions,
surgeons are allocated a block of time in an OR dur-
ing which they may complete their surgeries.

Between two consecutive surgeries in an OR, there
are cleaning and setup activities. The time spent on
these activities is called OR turnover time. In addition
to OR turnover time, surgeons also need time between
surgeries, which we refer to as surgeon turnover time.
These two types of turnover times include different
resources (ORs and surgeons). Therefore, they may be
completed in parallel.

Figure 1 illustrates important aspects of OR sch-
eduling with a simple deterministic example. There
are 11 surgeries to be performed by three surgeons.
Each block represents a surgery, and the size of the
blocks denote the lengths of the surgeries. For exam-
ple, surgeon 1 has five surgeries, of which the third
is the longest. The two white blocks represent the
daily session length for two identical ORs (e.g., eight
hours). A feasible schedule is illustrated where surg-
eries of surgeon 2 are scheduled in OR 1, and surg-
eries of surgeons 1 and 3 are allocated across both
ORs. Surgeries in OR 1 are completed after the daily
session ends, so there is a certain amount of overtime
associated with it. As can be observed, the surgeon
idle times between consecutive surgeries in this exam-
ple are realized mainly because the OR turnover time
is significantly greater than the surgeon turnover time
(which is true in most surgical environments).

An important consideration in the design of surgery
schedules is that surgery durations are highly uncer-
tain (Strum et al. 2000, 2003; Dexter and Ledolter
2005; Dexter et al. 2006). When surgeries are sched-
uled based on expected values of surgery durations
(as is often done in practice), high expected overtime
and surgeon idle time may occur (Denton and Gupta
2003), which is illustrated in Figure 2. In this particu-
lar example, there are five surgeries to be completed
by two surgeons and they are scheduled in two ORs
based on their expected durations. In the first sce-
nario, actual durations of the last surgeries in ORs are
longer than their expected durations, and this results
in unexpected overtime in both ORs. In the second
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Surgeon 1
OR 1
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Surgeon2 /1 3 4
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OR 2
Surgeon 3 1
OR 1 2
OR2 \
Overtime
OR
turnover
i Surgeon Surgeon
ime . . N
idle time turnover time
Figure 1 A Feasible Surgery Schedule lllustrating Three Surgeons Sharing Two ORs

scenario, the actual durations of the first and second
surgeries in OR 2 are shorter than their anticipated
durations, and as a result, we observe that the idle
time of the corresponding surgeon increases.

A surgery consists of a sequence of several activ-
ities, including preincision, incision, and postincision.
Although surgeons are key members of the surgi-
cal team, they need not be present in the OR for all
parts of these activities. For example, the preincision
phase includes positioning the patient on the OR bed
and initiating anesthetic, and the postincision phase

includes closing the incision. Because these activities
may also be performed by other members of the team,
they do not necessarily require the presence of the
surgeon in the OR. This is particularly true for aca-
demic medical centers, where surgical fellows may
perform these tasks while a staff surgeon operates in
another nearby OR. For example, a pulmonary lobec-
tomy consists of an initial incision and separation of
the rib cage, followed by the actual lung lobe removal.
In an academic medical center, much of this initial
work can be done by an experienced surgical fellow,

Mean value scenario: Actual surgery
durations are equal to expected durations

OR 1|

OR 2

Scenario 1: Actual surgery durations are
longer than expected durations

OR 1

OR 2

Overtime

Figure 2

Scenario 2: Actual surgery durations are
shorter than expected durations

OR 1

OR2 [1 /2

Surgeon idle time

An lllustration of Overtime and Surgeon Idle Time Under Different Scenarios
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Incision

Preincision L
Postincision

OR 1

OR 2

Figure 3 Parallel Surgery Processing of Two Surgeries

Across Two ORs

with the primary staff surgeon then reviewing the
work and performing the critical phase of the surgery.
As a result of this flexibility, surgeries can be paral-
lel processed if multiple ORs are available. In such a
setting, the surgeon is considered idle if he or she is
in the surgical ward but not performing the critical
portion of a surgery. Figure 3 illustrates this situation,
which we refer to as parallel surgery processing. The
second surgery starts before the first surgery is com-
pleted, and hence the last phases of the first surgery
and the first phases of the second surgery are pro-
cessed in parallel. After performing the incision phase
of the first surgery in OR 1, the surgeon uses his or her
turnover time and then goes to OR 2 to perform the
critical portion of the second surgery. If the surgeon
is still occupied with the incision phase of surgery 1
when the preincision phase of surgery 2 is completed,
then the incision phase of surgery 2 is delayed until
the surgeon becomes available.

3. Literature Review

3.1. Prior Work

Deterministic and stochastic mathematical program-
ming models, queuing models, simulation models,
and heuristic approaches have all been widely used
to investigate OR scheduling. We focus on those
studies that are directly related to multi-OR schedul-
ing or that consider stochastic programming mod-
els for OR scheduling. More-extensive reviews are
found in Blake and Carter (1997), Gupta (2007), Gupta
and Denton (2008), Erdogan and Denton (2011), and
Cardoen et al. (2010).

Velasquez and Melo (2005) study the determinis-
tic multi-OR scheduling problem where each surgery
has a preferred starting time and the objective is to
meet these preferences as much as possible. They for-
mulate the problem as a set-packing problem by dis-
cretizing the planning horizon and considering all
possible combinations of resources for each discrete
unit of time. Exploiting the special structure of this
problem, the authors use column generation and con-
straint branching. Their computational results show

that practical instances can be solved within a reason-
able amount of time.

Jebali et al. (2006) propose a two-step hierarchical
approach to solve a deterministic multi-OR scheduling
problem with eligibility constraints related to surgi-
cal equipment. In the first step, surgeries are assigned
to ORs through the use of an integer programming
(IP) model that minimizes the total cost of overtime
hours, undertime hours (i.e., the OR idle time), and
patient waiting time between initial hospitalization
and surgery. In the second step, the surgery sequence
within each OR is determined by solving an IP model
that further minimizes the total overtime in ORs.

Testi et al. (2007) propose a three-phase method
to generate weekly schedules for a multi-OR surgi-
cal suite. In the first phase, the available OR time
is distributed among surgical wards based on their
demands by solving an IP model that is similar to
a bin-packing problem. In the next phase, a weekly
cyclic timetable is determined by using an IP model
that maximizes the surgeon preferences subject to sev-
eral constraints. In the final phase, patients for the
next available day are selected based on a priority
score, and surgeries within each OR are sequenced
using simple sequencing rules such as longest waiting
time, longest processing time, and shortest process-
ing time. The performance of these rules is analyzed
by using a discrete event simulation model. Con-
structing a cyclic schedule of surgeries is also stud-
ied by several other researchers, including Belién and
Demeulemeester (2007), van Qostrum et al. (2008),
and Adan et al. (2009).

Weiss (1990) considers the problem of minimizing
resource idle time and procedure waiting time in a
single-OR environment where the surgery durations
are uncertain and the decisions are the sequence of
surgeries and their start times. He solves small prob-
lem instances that include two or three surgeries, and
his numerical results reveal that the solution highly
depends on the cost coefficients. Wang (1993) also
considers a single-server (equivalently OR) appoint-
ment system where the processing times are assumed
to have phase-type distribution. Exploiting the spe-
cial structure of the problem, he is able to solve larger
instances than Weiss and shows that constant interar-
rival times cannot guarantee optimality.

Denton and Gupta (2003) study the single-server
appointment-scheduling problem where the service
durations are stochastic and the sequence of customers
is fixed. The objective is to determine appointment
times for the customers to minimize the total expected
cost of customer waiting time, server idle time, and
tardiness with respect to the session length. They for-
mulate this problem as a two-stage stochastic linear
program, derive upper bounds that are independent of
job duration distribution type, and solve the problem
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by using these bounds in a modified L-shaped algo-
rithm that is based on successively partitioning the
space of the random job durations. Denton et al. (2007)
extend this study to investigate surgery sequencing
and start-time decisions. They consider several differ-
ent surgery sequences obtained with simple heuristic
rules. Their computational results show that the per-
formance of OR schedules are affected both by sched-
uled start times and sequencing decisions.

Denton et al. (2010) study the deterministic and
stochastic versions of the surgery allocation problem
in a multi-OR environment where the main aim is
to minimize the total fixed cost of opening ORs and
expected overtime cost. They focus only on the allo-
cation decisions and do not consider the sequencing
decisions within the ORs. For the stochastic version
of the problem, they present both a two-stage SMIP
with binary variables in the first stage and a robust
formulation. To solve the problem, they develop valid
inequalities that reduce symmetry and use lower and
upper bounds on the optimal number of ORs to open
each day. Moreover, they propose a simple and fast
heuristic that performs reasonably well across many
instances.

Only a few studies consider stochastic programm-
ing-based approaches to capture the stochastic behav-
ior of surgery durations (Denton and Gupta 2003;
Denton et al. 2007, 2010). These studies view surgery
as a single activity; however, in practice a surgery
is comprised of several activities. Depending on
surgery-to-OR assignment decisions, some of these
activities can be carried out simultaneously (in paral-
lel), and parallelizing surgeries may improve the effi-
ciency of resource usage significantly (Sandberg et al.
2005; Sokal et al. 2006, 2007; Marjamaa et al. 2009).
To our knowledge, parallel surgery processing has
not yet been incorporated into any optimization mod-
els. However, considering parallel surgery processing
is essential to estimating the benefits of pooling OR
capacity.

3.2. Our Contributions

This paper differs from the existing literature in a
number of ways. The contributions made in this study
are as follows.

¢ We model the stochastic multi-OR schedul-
ing problem, integrating allocation, and sequencing
decisions.

* We consider surgeons, as well as ORs, as
resources.

* We provide a more realistic model of the surgery
process by explicitly considering the preincision, inci-
sion, and postincision phases.

* Because our problem is unsolvable with standard
techniques, we exploit several structural properties of

our model. We also present a novel and widely appli-
cable set of valid inequalities that are essential to solv-
ing large instances.

* We quantify the benefit of OR pooling and illus-
trate the impact of parallel surgery processing on the
performance of surgery schedules.

4. Problem Definition and

Mathematical Formulation

Our model considers daily decisions that include the
number of ORs to open, surgery-to-OR assignment
decisions, the sequence of surgeries within each OR,
and the start time for each surgeon on the day of
surgery. We formulate our model as a two-stage
stochastic program with recourse (Dantzig 1955). In
the first stage, the model determines the number of
ORs to be opened, the assignment of surgeries to
ORs, the sequence of surgeries within each OR, and
start time for each surgeon. These decisions are made
prior to the day of surgery (e.g., usually 24-48 hours
in advance). Next, on the day of surgery, the actual
surgery durations become known. Uncertainty in
surgery durations is represented by a finite set of
scenarios in the second stage. Each scenario is com-
posed of collective random outcomes for the preinci-
sion, incision, and postincision durations of surgeries.
Second-stage decisions include actual surgery com-
pletion times, surgeon idle times, and overtime in
each OR. The objective of our model is to minimize
total costs, including first-stage costs of opening ORs
and expected second-stage costs of overtime and sur-
geon idle time. We use the following notation in our
formulation.

Indices
i surgery indices.
surgeon index.
g, r: OR indices.
w: scenario index.
ip: index of the first surgery of surgeon k.

i,j:
k:

Problem Instance-Related Parameters
n: total number of surgeries to be scheduled.
ng: total number of available ORs.
ng: total number of surgeons.
biy: binary parameter denoting whether
surgery i immediately precedes surgery j in
surgeon k’s surgery listing.
pre;(w): preincision duration of surgery i under
scenario w.
pi(w): incision duration of surgery i under
scenario .
post;(w): postincision duration of surgery i under
scenario w.

Configuration or Environment-Related Parameters
L: session length for each OR.
¢/: daily fixed cost of opening an OR.
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c’: per-minute overtime cost of an OR. <L Vk, (1g)
c®: per-minute idle time (waiting time) cost of X Yz € 10,1} Vi, j#i,7, (1h)
a surgeon.
s5: surgeon turnover time between two consecutive t>0 Vk, (1i)
surgeries.
sR: OR turnover time between two consecutive where
surgeries.
In our notation, w € ) represents the random out- Qx,y, 2z, ) =E[Qx,y, 2,1, £(w))] (2)
come of the realized scenario. Given n surgeries, we . .
. - is the expected recourse function, and
obtain a random vector £(w) = {pre,(w), ..., pre, (o),
pi(®), ..., p,(w), post,(w), ..., post, (w)}. We denote g
the finite support of £(w) by 2, where E € R¥". Qx,y,z,t,é(w)) =min) c’O(w)+ > CSIij(w)
=1 (i) S bie=1
Decision Variables s
x,: binary decision variable denoting whether OR +3 -l (w) (3a)
r is opened or not. k=1
y;,: binary decision variable denoting whether g4,
surgery i is allocated to OR r or not.
z;;: binary decision variable denoting whether Cilw)<My,, VYo,i,r, (3b)
surgery i precedes surgery j in OR r or not R
(defined for (i, j, r): i # j). Note that z;, does  Cjr(®@) = Ci(@) + 5" + pre;(@) + pj() + post; ()
not denote immediate precedence but denotes ~M(l-zy) Vo, i, j#i,r, (3c)

general precedence relation between i and j.
z;;, is fixed to 0 if j precedes i in one of the
surgeons’ surgery listing.
t,: start time for surgeon k.

Ci,(w): completion time for surgery i in OR r under
scenario w.

I;(w): surgeon idle (waiting) time between surgeries
i and j under scenario w (defined for (i, j):
Y by =1; ie., i immediately precedes j in
one of the surgeons’ surgery listing).

I (w): idle time of surgeon k before his or her first
surgery under scenario w.

O,(w): overtime in OR r, with respect to session
length L under scenario w.

Note that while defining the parameters and deci-
sion variables, we use only one (or two, depending on
the number of subscripts) of the indices to denote the
sets. However, our definitions apply to other indices
denoting the same set. For example, C,, applies to
subscripts i, j, and i;.

Using the above notation, we formulate the model
as follows:

MR
min Y ¢x, +@(x,y,z,t) (1a)
r=1
st y, <x, Vi, r, (1b)
1R
Yyp=1 Vi, (1c)
r=1
itz <y, Vi j>ir, (1d)
Zijp+ 2, <Yy, Vi, j>i,7, (e)

Zj+ 2y 2 Yty —1 Vi, j>i,r,  (1f)

nR

3Gy, (@) =t + [ () + pre, (o) +p;, (@) + post, (o)
r=1
Vo, k, (3d)

ZR: Ci,(w) > t, + pre;(w) + p;(w) + post,(w)

r=1

Yo, (i, k): Yby=1, (e)

j=1

zR:er(w) = ZR:Ci,(w) —post,(w)+5° +p;(w)+post(w)

r=1
+Ij(w) Yo, )): Yby=1, (3f)
k=1
0.(0)=C,(w) =L Yo, i,r, (3g)

Ciy(), [ (w), [;(w), O,(w) >0 VYo, i,j, r, k. (3h)

The objective function (la) is the sum of the first-
stage cost and the expected second-stage cost over all
scenarios. The first-stage cost is the fixed cost of open-
ing ORs, and the second-stage costs are the sum of
expected overtime costs and surgeon idle time costs.
Note that the OR scheduling problem we consider in
this study is a multicriteria problem, and each piece
of the total operating cost defined by (1a) corresponds
to a different performance measure.

Constraints (1b) and (1c) ensure that a surgery
can be assigned to an OR only if it is opened and
each surgery is assigned to exactly one OR, respec-
tively. A precedence relation exists between two surg-
eries if and only if they are both assigned to the
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same OR and this is enforced by constraints (1d)—(1f).
Constraint (1g) ensures that the starting time of each
surgeon is no more than the session length. This con-
straint reflects an operationally meaningful assump-
tion; if all of the surgeries of a surgeon are anticipated
to be performed beyond the session length by using
overtime, then it is more reasonable to schedule that
particular surgeon’s surgeries in another OR or on
another day. As we have the upper bound L on the
surgeon start times in the first stage, the surgery com-
pletion times in the second stage are also bounded.
Constraints (1h) and (1i) define binary and nonnega-
tivity restrictions for the first-stage decision variables,
respectively.

The second-stage problem for a given x, v, z, t, and
é(w) is formulated explicitly by (3). The completion
time of a surgery in an OR is 0 unless it is assigned
to that OR, which is enforced by constraint (3b). Con-
straint (3c) defines the completion time of surgeries
in ORs considering their precedence relation, pro-
cessing times, and OR turnover time. The M param-
eter used in constraints (3b) and (3c) is an upper
bound on the surgery completion times. Constraints
(3d) and (3e) ensure that surgeries of a surgeon can-
not be started before his or her arrival to the surgi-
cal suite. Constraint (3d) determines the idle time of
the considered surgeon before his or her first surgery.
Because the preincision of the first surgery needs
to be started after the arrival of the surgeon, that
portion is not included in the surgeon idle time as
opposed to the preincision parts of the subsequent
surgeries where the surgeon is considered to be idle
unless he or she is performing the critical part of a
surgery. Constraint (3f) provides the relation between
surgery completion times, surgeon idle times, and
the sequence of surgeries in surgeons’ surgery listing.
Constraint (3g) defines the overtime used in each OR.
Constraints (3h) define nonnegativity restrictions for
the second-stage decision variables.

Notice that we assume that the durations of all
surgeries are realized at the beginning of the day
of surgeries, and this is consistent with the limited
recourse for schedule changes during the day (ie.,
rescheduling of surgeries is not allowed). Although
this can be considered as a limiting assumption for
dynamic surgical environments where the surgeries
are rescheduled during the day, we leave reschedul-
ing for future research because it greatly complicates
the problem.

It can be easily shown that the formulated stochas-
tic multi-OR scheduling problem is NP-hard by
reducing the bin-packing problem, which is known to
be NP-hard, to a special case of our problem.

5. Solution Methods

The mathematical model we present is a two-stage
SMIP with binary and continuous first-stage decision

variables and purely continuous second-stage vari-
ables. We solve this SMIP by using the L-shaped
method (Van Slyke and Wets 1969), which is an outer
linearization approach in which a master problem
(composed of the first-stage variables and constraints)
is solved iteratively. Optimality and feasibility cuts,
based on the solutions of the second-stage scenario
subproblems, are used to approximate the recourse
function (optimality cuts) and guarantee feasibility
of the second-stage subproblems (feasibility cuts)
throughout the iterations. The optimality cuts include
a variable, 6, that represents the approximate recourse
function, defining a progressively better lower bound
on the recourse function at each iteration.

5.1. Antisymmetry Constraints

In this study, we consider the case (common in prac-
tice) in which the ORs are identical and therefore
interchangeable. Given a solution, an equivalent solu-
tion can be obtained by swapping the set of surg-
eries assigned to any pair of ORs. Thus, our problem
has complete symmetry with respect to ORs. While
solving highly symmetric IP models, standard solu-
tion algorithms may need to explore many alterna-
tive symmetric solutions, which consumes too much
computational time. Therefore, eliminating symmet-
ric solutions while formulating and solving a problem
may be beneficial (Sherali and Smith 2001, Margot
2002, Ostrowski et al. 2011). We add the following
symmetry-breaking constraints, which are introduced
by Denton et al. (2010), to the problem

X, > xr+1

r=1,2,...,ng—1, (4a)

dYyp=1 i=1,2,..., min{n, ng}, (4b)
r=1

i—1

min{i, ng}
3 Yig < > Y, Y@, 1)izr. (4¢)
q=r

j=r-1

Constraint (4a) breaks the symmetry with respect to
ORs by introducing an arbitrary ordering. Similarly,
constraints (4b) and (4c) introduce a lexicographic
order in terms of the indices of surgeries allocated to
each OR. For example, if the first i — 1 surgeries are
assigned to the first » — 1 ORs, then the ith surgery
should be assigned to one of the first » ORs. Denton
et al. (2010) observe that these constraints have a sig-
nificant impact on the solution time for a stochastic
version of the bin-packing problem.

5.2. Feasibility of the Second-Stage Problem

The extensive form of our two-stage recourse prob-
lem ensures feasible schedules, i.e., schedules that do
not include cyclic surgery sequences or any other kind
of infeasibilities. However, a decomposition method
like the L-shaped method that solves the master and
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recourse problems separately may result in feasible
first-stage solutions that are second-stage infeasible.
This is because the completion time-related con-
straints (i.e., constraints (3b)—(3f)) are in the second
stage. The standard L-shaped method (Van Slyke and
Wets 1969) generates feasibility cuts to induce feasibil-
ity of first-stage solutions with respect to second-stage
constraints. However, instead of generating feasibility
cuts at each iteration of the L-shaped method (which
may be very time consuming), we add the induced
constraints introduced in Proposition 1 to the master
problem a priori to induce relatively complete recourse.

ProrosITION 1. A first-stage solution (x,y,z,t) is
feasible for first- and second-stage problems if it satisfies
(1b)_(11)/ (4)/ and

1R
up=u;+d— nd(l — Zzij,> Vi, j#i, (5a)
r=1
g
u]Zul+d V(l, ]) Zbl]k=1’ (5b)
k=1

where w;s are nonnegative auxiliary first-stage decision
variables and d is a positive finite scalar.

By enforcing the difference of completion times of
the surgeries that are scheduled within the same OR
to be at least d, constraint set (5a) prevents infeasi-
ble schedules with respect to the sequence within an
OR. In a similar way, constraint set (5b) ensures the
feasibility of the constructed sequence with respect to
surgeons across the ORs. As a result, constraints (5)
ensure that z yields acyclic surgery sequences. There-
fore, any first-stage feasible solution that also satis-
fies (5) is feasible for the second-stage problem under
each scenario. Note that any positive finite scalar can
be selected as d, and we choose d =1 in our compu-
tational study:.

5.3. Structure of Scenario Subproblems

Letting k denote the index of the surgeon who per-
forms surgery i, the second-stage recourse problem
can be solved in closed form as follows:

e If y;,, =0, then C;,(w) =0.

o If y;,, =1, then (i, r) pair falls into one of the fol-
lowing four categories and the corresponding C;,(w)
takes a value accordingly:

1. If i is the first surgery in OR r and i =i, then

Ci.(w) =t +pre,(w) + p;(w) + post,(w). (6)
2. If i is the first surgery in OR r but i # i}, then

ty + pre;(o) + p;(w) + post;(w),

C;(w) = max ]é [bﬁk |:;_ZR1 Ciy(w) - post].(w)iH 7)

+5° + p;(®) + post, (w).

3. If i is not the first surgery in OR r but i =i}, then

max{z;;, C;,(w)} + s + pre(w)
C;,(w) = max ]+Pi(w) + post, (), 8)
ti + pre;(w) +pi(w) + post;(w).
4. If i is not the first surgery in OR r and i # i,
then

t + pre;(w) + p;(w) + post;(w),

max(z;;, Cj, ()} + s* + pre; ()
]
C,(w)=max{ TPi (w) + post,(w), o)

> |:bjik [i Cir(@) = POStj(w)}]

j=1 =
+5° + p;(w) + post,(w).

Given the values of the C;,(w) variables, the remain-
ing decision variable values can be expressed as

I@) = 3. Cy (@) — 3 Gy (@) + post;(@) — s° — p; (@)
r=1

r=1

—post;() V(i j): Y& b =1, (10)

(@) = 3°Cy. (@) — b — pre, ()
r=1
—p;, (@) —post, (w) Vk, (17)
O,(w) =max{0,mlax{Ci,(w)} —L} vr.  (12)

Using the above equations, we obtain the optimal
solution to the primal subproblem. We use the opti-
mal primal solution as the initial solution and solve
the subproblem to get the dual solution so as to gen-
erate the optimality cuts.

5.4. Extended Master Problem Formulation
The following is an equivalent formulation of our
problem:

min Y cx, +6 (13)
r=1
st. 0>a(x,y,z,t), (14)

(1b)-(1i), (4), (5).

The standard L-shaped algorithm starts by solving the
initial restricted master problem (RMP), which is

R
min Y c/x, +6

r=1

(1b)=(1i), (4), (5).
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A stopping criterion is used to determine if the RMP
results in the minimum expected second-stage cost.
If it does not, duality is employed to generate a cor-
responding optimality cut, which includes the first-
stage variables and the linking variable 6. Iterations
continue until the optimal solution is reached.

Our initial computational experiments revealed that
the standard L-shaped algorithm fails to solve even
small problem instances within a reasonable amount
of time. The main reason is that the 6 variable carries
only limited information between first and second
stages (Ruszczynski 1986, Kiwiel 1990, Smith et al.
2004). Because of this, the solutions generated by solv-
ing the RMP usually have high expected second-stage
cost, and hence the lower and upper bounds converge
to the optimal solution very slowly. To deal with
this issue, we propose a novel way to strengthen the
formulation by including a lower bounding inequal-
ity for 0 in the first stage, based on the following
proposition.

PrOPOSITION 2. Let (%, 1,2, 1) and Q(&, 7,2, t, é(v))
be a feasible first-stage solution of our problem and the
corresponding second-stage cost under the mean value sce-
nario, respectively. Then,

0>Q(%, 7,2t w). (15)

Proor. For any given feasible first-stage solu-
tion, the second-stage subproblems are feasible and
bounded. Then, we have

ax,7,2,0>Q(F 7,2 éw) (16)

by Jensen’s inequality (Jensen 1906). Moreover, we
have .
b=ax,y,zt) (17)

because 0 > @(x,y,z,t) is a part of our formula-
tion (Equation (14)); (15) directly follows from (16)
and (17). O

We observe that these cuts are broadly applica-
ble to two-stage stochastic programs with recourse.
We use valid inequalities based on Proposition 2 to
speed up the convergence of the L-shaped algorithm.
The following are additional parameters and auxiliary
decision variables we use and the lower bounding
inequality we propose.

Additional Parameters
pre;: expected preincision duration of surgery i.
p;: expected incision duration of surgery i.

post;: expected postincision duration of surgery i.

Auxiliary Decision Variables

C;,: completion time for surgery i in OR r under the
mean value scenario.

I;: surgeon idle time between surgeries i and j
under the mean value scenario (defined for

(i, ) X b =1).

I: idle time of surgeon k before his or her first
surgery under the mean value scenario.

O,: overtime in OR r, with respect to session
length L under the mean value scenario.

ProrosiTioN 3. Let variables C,, I, I, and O, be

defined by the following inequalities:
C,<My, Vi, r, (18a)
Cj, = C;, + 5" +pre; +p; + post, — M(1 - z;,)
Vi, j#i,r, (18b)

"R
> C,, =t +L+pre, +p, +post, Vk, (18c)
r=1

nR
> C, > t,+pre, +p, + post;

r=1

VG, k): Yby=1, (18d)
j=1
; C, =) C,—post,+s° +p; + post;, +I;

r=1
g
k=1

0,>C,—L V¥i,r, (18f)

Co L 1;, 0,20 Vi, j,r, k. (18g)

Then,

R s
0=>c"0,+ Yy FLi+y L (19
r=1 (i, 1): 3 =1 k=1
is a valid inequality for the RMP and hence can be added
to the RMP together with (18).

Proor. This result directly follows from the validity
of Proposition 2 for every feasible first-stage solution
and the definition of mean value scenario, additional
parameters, and auxiliary variables. [

Then, the initial RMP used in the L-shaped algo-
rithm becomes the following extended RMP (ERMP):

nR
min Y c/x, +6

r=1

s.t. (1b)-(1i), (4), (18), (19).

Note that constraints (18) ensure the second-stage
feasibility of the first-stage solutions by eliminating
the schedules that include cyclic surgery sequences,
so we do not need to include the induced con-
straints (5) in the ERMP.

Valid inequalities in stochastic programming is
explored by earlier work, including Laporte et al.
(1994), Guan et al. (2006), Sanchez and Wood (2006),
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and Guan et al. (2009). Sanchez and Wood use inequal-
ities based on Jensen (1906) within the simulation-
based approach they propose for solving two-stage
SMIPs. However, their method assumes a binary first
stage and may require full enumeration of every fea-
sible first-stage solution.

6. Computational Results

In this section, we first give some information on the
data set we use to generate realistic problem instances
for computational experiments. Next, we compare the
performance of the algorithms we propose and dis-
cuss the value of capturing uncertainty. Finally, we
estimate the value of OR pooling and illustrate the
impact of parallel surgery processing.

6.1. Parameter Estimation

We use data from the Mayo Clinic’s Division of
General Thoracic Surgery at St. Marys Hospital in
Rochester, MN. The department consists of six sur-
geons and their surgical residents, along with sup-
port staff (including nurses), and it performs more
than 2,000 thoracic procedures per year. The surgeons
provide comprehensive diagnosis and surgical care
to adult patients with diseases of the lungs, trachea,
esophagus, diaphragm, chest wall, and mediastinum.
Thoracic surgery often consists of several separate
subprocedures. Surgeons within the thoracic area per-
form surgeries every other day, usually with at least
two staff surgeons working each day. Because the
Mayo Clinic is an academic teaching institution, each
staff surgeon may have multiple fellows assisting in
the procedures, with the primary staff surgeon per-
forming the critical part of each surgery.

Our parameter estimations are based on the histori-
cal data provided by the thoracic surgery department
of the Mayo Clinic and our discussions with an anes-
thesiologist who works as an administrative director
in the thoracic surgery department. The daily fixed
cost of opening an OR, ¢/, is estimated to be $4,437.
The session length, L, is nine hours per day for an
OR. The overtime cost, c?, is estimated to be $12.37
per minute, which is 50% higher than the regular OR
time cost. Because we could not directly estimate the
cost of the surgeon idle time exactly, based on our
discussion with the administrative director, we use
two different levels of idle time cost to evaluate its
effect. In the first case, we assume that scheduling 50
minutes of surgeon idle time is equivalent to open-
ing another OR and incurring its fixed cost. For this
case, surgeon idle time is $88.74 per minute. In the
second case, we assume that 250 minutes of idle time
is equivalent to opening an OR and use $17.748 per
minute as the surgeon idling cost. We refer to these
as high and low idle time costs, respectively.

The setup activities between two consecutive surg-
eries were reported to be completed within 30 min-
utes, which corresponds to OR turnover time in our
formulation. Because it is reported to be very short, we
assume that surgeon turnover time is 0 in our compu-
tational study. Our problem instances are based on 322
actual surgical days realized in the Division of Gen-
eral Thoracic Surgery at St. Marys Hospital. For each
day, the following information is retrieved from the
realized schedule and used as input:

* The number of surgeries, surgeons, and avail-
able ORs,

* The number and type of subprocedures in each
surgery, and

* The ordered surgery listing of each surgeon.

For each surgical day, i.e., problem instance, we
generate 500 different scenarios by sampling prein-
cision, incision, and postincision durations for each
surgery based on the number and type of the subpro-
cedures included.

We estimated the probability distributions of the
surgery durations from historical data. Thoracic surg-
eries involve several distinct subprocedures per-
formed in sequence. Unfortunately, times for each
subprocedure are not collected; only the start and
stop times for the preincision, incision, and postinci-
sion were available. However, we are able to identify
which subprocedures were performed during each
surgery. We observe that the surgeries contain at most
five combinations of the 21 most common subpro-
cedures. The duration of a subprocedure is highly
dependent on the complexity of the surgery, which
is closely related to the number of subprocedures
included. For example, if one surgery contains sub-
procedures 1, 5, and 6, and another surgery contains
1, 10, and 12, the time to carry out subprocedure 1
should be similar because they both include three sub-
procedures. To determine this relationship, we used a
multiple regression model implementing a bootstrap
method to estimate the probability distribution of the
individual subprocedure durations.

The incision duration includes the critical portion
of surgery, which is completed by the primary sur-
geon, as well as the noncritical portion of surgery.
We used a discrete event simulation model (Huschka
et al. 2007) to estimate the implied duration of the
critical portion of surgery. The resources in our simu-
lation model include ORs and surgeons, and the enti-
ties in the model were the patients. Similar to our
stochastic programming model, the focus of the sim-
ulation model is also on the preincision, incision, and
postincision aspects of the surgery.

We compared the results for various assumptions
about the percentage of incision duration that com-
prises the critical portion of surgery. For our compar-
ison, we considered the amount of overtime used to
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Table 1 Size-Based Classification of Problem Instances for 322 Surgical Days
Average Maximum

Set no. Ngin No. of days n Ng Ng Ngiy n Ng Ng Ngin
1 [1,100] 177 3.95 1.76 2.64 41.16 7 3 4 99
2 [101,200] 67 6.79 2.49 3.93 149.09 9 3 5 200
3 [201,300] 46 8.04 243 4.39 234.74 9 3 6 280
4 [301,400] 17 9.29 2.59 4.88 338.88 11 4 6 390
5 [401,500] 6 10.17 2.83 5.17 436.83 11 3 6 485
6 [501,600] 7 11.00 2.57 5.71 550.57 12 3 7 600
7 [601,700] 2 11.00 3.00 6.00 609.00 11 3 6 612

complete the surgeries. If the overtime levels were
close to the actual observations, we assumed that
the estimates were reasonable. Based on this analysis,
approximately 25% of the incision duration is esti-
mated to be critical. Therefore, we decreased the inci-
sion duration to 25% of its initial value to estimate the
duration of the critical portion of the surgery. We real-
located remaining time to the preincision and postin-
cision durations evenly.

The problem size for each surgical day, i.e., prob-
lem instance, depends on the number of surgeries,
surgeons, and available ORs. We classify the prob-
lem instances into seven sets based on the number of
binary variables, which we denote as ng;,,. We present
the number of problem instances, average and max-
imum number of surgeries (1), surgeons (1), avail-
able ORs (ny), and binary variables (n;,) for each set
in Table 1. More than 90% of the problem instances
are included in the first four sets. The remaining 10%
are considered as large instances. The largest instance,

which is an instance in set 7, includes 612 binary
variables, and it corresponds to a surgical day that
involves 11 surgeries, three surgeons, and six ORs.

6.2. Computational Performance of the
Proposed Algorithms

We analyze the performance of the standard L-shaped
algorithm (Figure 4) with different master problem
formulations: RMP and ERMP. The main drawback
of the standard L-shaped algorithm is that it solves
the master problem, which is a mixed-integer pro-
gram (MIP), to optimality at each iteration. This
requires significant computational effort that may not
be productive at early iterations when few optimal-
ity cuts have been added to the master problem. In
the second approach, we implement the L-shaped
algorithm within a branch-and-cut framework (Fig-
ure 5), adding optimality cuts at each integer-feasible
node. This approach solves the master problem only
once, by adding the optimality cuts during branch

Generate the two-stage o
SMIP defined by (1)—(3).

Add symmetry-breaking o
constraints (4).

Initialize the master problem
as (13), (1b)—(11), (4).

J—

If RMP is to be used, add induced constraints (5) to the
master problem to ensure second-stage feasibility.
Else, if ERMP is to be used, add the valid inequalities
(18) and (19) to the master problem.

Solve the master problem

— t‘f O]?tll’{lal,lty. <

Let (x’,y’, z’, ") be the
optimal solution.
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Figure 4 Flow Chart for Our Solution Method That Uses the L-Shaped Algorithm
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Generate the two-stage o
SMIP defined by (1)—(3). "

Add symmetry-breaking
constraints (4).

Initialize the master problem
as (13), (1b)—(1i), (4).

»

J—

Solve the master problem until an
integer-feasible solution
(', y", 7/, t’) is found.
Let (x”,y”, z”, t”) denote the best

A

If RMP is to be used, add induced constraints (5) to the
master problem to ensure second-stage feasibility.
Else, if ERMP is to be used, add the valid inequalities

(18) and (19) to the master problem.

solution obtained so far. Initialize
&y, 2" ") as (', s 7 1),

v

Given (x",y’, 7/, ), solve the
o| second-stage problem under each
i’ scenario and generate the
corresponding optimality cut.

Add the optimality cut to
the master problem.

Is the optimality cut

violated?

NO

Update (x”,y”, 7"

L") as (X, ¥, 7, ) if (X7, y’, 7/, t') results in a
better objective function value.
Fathom the current node.

A 4

A 4

Resume solving the master problem until
another integer-feasible solution is found
or until no unexplored node remains.

Figure 5

and bound. We test our branch-and-cut approach with
both of the master problem formulations, RMP and
ERMP.

We coded our algorithms in Microsoft Visual Stu-
dio .NET 2003 using the CPLEX 11 callable library.
We conducted our experiments on an Intel Core2
Duo PC with processors running at 3.17 GHz and
2 GB memory under Windows XP. To compare the
computational performances of the proposed meth-
ods, we randomly choose 100 instances, i.e., surgical
days, from the first three sets. We report the aver-
age and maximum solution times (in CPU seconds)
and the number of iterations in Table 2. Sets 2 and 3

Is another
integer-feasible solution,
ie, (x,y, 2,1,

l

Stop.
(x//7 y", Z”, t") iS the
optimal solution.

NO

found?

Flow Chart for Our Solution Method That Uses the L-Shaped-Based Branch-and-Cut Algorithm

include problem instances that could not be solved
in three hours by the algorithms with RMP formu-
lation (these instances were solved within a reason-
able amount of time using the ERMP formulation).
For these unsolved instances, we consider the solu-
tion time as three hours, i.e., the computational time
limit, when calculating the average solution time.

As can be observed from Table 2, the stan-
dard L-shaped algorithm with ERMP performs best.
Regardless of the solution algorithm used, ERMP sig-
nificantly outperforms RMP. Therefore, we conclude
that adding valid inequalities (18) and (19) to the mas-
ter problem improves the formulation considerably.
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Table 2 Computational Performance of the L-Shaped and L-Shaped-Based Branch-and-Cut Algorithms

L-shaped-based

L-shaped algorithm branch-and-cut algorithm

RMP ERMP RMP ERMP
Solution time No. of Solution time No. of Solution time Solution time
) (CPU seconds) iterations (CPU seconds) iterations (CPU seconds) (CPU seconds)
Idle time Set  No. of

costlevel no. instances Average = Maximum  Average Maximum Average Maximum Average Maximum Average = Maximum Average Maximum
Low 1 60 8.76 60.30 69.23 338 1.51 1495 1432 82 12.81 77.33 455 34.94
2 25 1,689.12 >10,800.00 1,025.80 4,226 20.16 123.48 2248 52 776.13 6,141.42 49.48 249.28
3 15 7,784.51 >10,800.00 2,396.53 3,642 308.23 1,701.73  38.73 84 7,158.44 >10,800.00 1,016.65 10,146.41
High 1 60 7.77 44.69 63.67 275 1.79 13.72  17.08 92 14.80 211.90 6.84 94.31
2 25 968.23 >10,800.00 618.00 3,373 24.52 90.34 4144 142 649.23 3,560.53 95.75 1,281.81
3 15 5,923.05 >10,800.00 1,874.53 3,428 289.21 843.02  66.80 152 6,895.76 >10,800.00 424.68 1,449.48

Another conclusion from Table 2 is that the idle time
cost level does not have an impact on the relative per-
formance of the algorithms.

In Table 3, we report the solution times and num-
ber of iterations for 20 of the randomly selected
100 instances under the high idle time cost setting.
When we look at the solution times of these prob-
lem instances, we observe that there are a couple of
instances (2c and 3b) for which the L-shaped-based
branch-and-cut algorithm with ERMP outperforms all
other algorithms, although on average the standard
L-shaped algorithm with ERMP performs best.

We conclude that the standard L-shaped algorithm
with the ERMP formulation is superior, and hence
we use it to solve the remaining instances of our

problem. However, for larger instances that cannot
be solved optimally within the three-hour time limit,
we also generate a solution by using the L-shaped-
based branch-and-cut algorithm with the ERMP for-
mulation by imposing the same time limit. We use the
best solution—i.e., the solution with the lower objec-
tive function value—generated by these two methods.

We solve the mean value problem and the stochas-
tic problem for each surgical day under low and
high surgeon-idling cost levels, and we report the
average and maximum solution times in Table 4.
For some of the larger instances in sets 5, 6, and 7,
although we are able to solve the mean value prob-
lems within three hours, we are not able to solve
the stochastic problems. The number of unsolved
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Table 3 Computational Performance of the Proposed Algorithms for 20 Instances
L-shaped-based
L-shaped algorithm branch-and-cut algorithm

RMP ERMP RMP ERMP
Instance Solution time No. of Solution time No. of Solution time Solution time
no. (CPU seconds) iterations (CPU seconds) iterations (CPU seconds) (CPU seconds)
1a 2.16 27 0.17 2 2.97 0.61
1b 7.83 82 1.70 15 20.08 94.31
1c 43.83 275 417 21 61.17 11.00
1d 11.47 71 0.39 2 13.83 2.75
1e 15.41 110 8.56 53 41.89 15.74
1f 1.41 32 0.75 17 3.17 1.31
19 0.83 20 0.39 9 2.92 1.55
1h 0.234 1 0.312 13 0.688 1.109
1i 33.75 227 11.59 77 53.19 22.03
1j 0.97 35 0.47 13 1.50 1.36
2a 44.55 167 3.63 13 90.02 13.97
2b 167.90 441 21.50 57 178.49 41.41
2c >10,800.00 3,373 90.34 32 2,112.92 45.00
2d 322.34 349 13.17 14 550.86 68.44
2e 506.20 754 13.16 21 350.47 41.08
3a 3,652.47 1,577 32.72 19 9,843.77 185.44
3b >10,800.00 2,978 839.92 80 >10,800.00 716.06
3c 2,491.17 1,040 246.03 133 2,018.11 328.69
3d 1,930.78 1,037 35.22 22 5,440.00 322.14
3e >10,800.00 3,428 97.98 13 >10,800.00 235.16
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Table 4 Solution Times (in CPU Seconds) of Mean Value and Stochastic Problems
Low idle time cost High idle time cost
Mean value problem Stochastic problem Mean value problem Stochastic problem
Set no. Average Maximum Average Maximum Average Maximum Average Maximum
1 0.02 0.1 1.11 15.03 0.01 0.1 1.35 16.53
2 0.23 1.63 26.30 200.10 0.13 0.72 33.94 311.89
3 1.50 12.99 238.30 2,517.33 0.59 3.80 212.23 1,981.09
4 11.31 66.58 1,023.36 5,097.61 2.84 14.86 1,540.80 8,034.84
5 46.02 128.42 2,160.37 2,969.52 11.80 35.50 6,078.25 >10,800.00
6 196.13 687.18 5,241.69 >10,800.00 34.55 141.02 4,866.16 >10,800.00
7 126.78 151.83 9,447.07 >10,800.00 6.27 8.13 9,992.85 >10,800.00
Table 5 Percentage Gap Values for the Unsolved Instances
Low idle time cost High idle time cost
Gap between Gap between
No. of unsolved lower and upper bounds (%) No. of unsolved lower and upper bounds (%)
Set no. instances Average Maximum instances Average Maximum
5 — — — 2 1.36 217
6 1 2.41 2.41 3.75 5.88
7 1 1.85 1.85 1 4.03 4,03

instances and the percentage optimality gap between
the upper bound—the value of the best solution
obtained within three hours—and the lower bound—
the maximum of the bounds obtained by the standard
L-shaped algorithm with ERMP and the L-shaped-
based branch-and-cut algorithm with ERMP—are
reported in Table 5. Of particular interest is the aver-
age percentage gap, which is below 3% and 5% for
low and idle time costs, respectively.

6.3. Value of the Stochastic Solution

To assess the value of capturing uncertainty in
surgery durations, we estimate the value of the
stochastic solution (VSS), the difference between the
optimal objective function value of the stochastic
problem and the expected objective function value
of the optimal solution of the mean value prob-
lem (Birge and Louveaux 1997). As for the instances
whose stochastic problem formulations cannot be
solved within the allowed time limit, we consider the
value of the best solution obtained in our compar-
isons. We report the average and maximum improve-
ment brought by solving the stochastic problem in
Table 6. The average improvement when the idle time
cost is high (low) is more than 4% (less than 1%) for
most (all) of the data sets. Maximum VSS values in
Table 6 imply that there are problem instances where
the improvement is more than 9% and 28% when the
idle time is low and high, respectively. We conclude
that capturing the uncertainty is particularly impor-
tant when the cost of idle time is high. Observing
higher VSS values for high idle time costs is intu-
itive because having higher values of second-stage

cost coefficients implies that the impact of a realized
scenario would be more significant.

The total expected operating cost, which is the
objective function in our formulation, is composed of
three pieces, each of which is related to a different
performance criterion. By solving the stochastic prob-
lem rather than the mean value problem, we are able
to generate schedules with lower total expected oper-
ating costs. Because we are considering a multicriteria
problem, a decrease in the objective function value
does not necessarily imply that the schedule gets bet-
ter in terms of all performance measures considered.
Instead, it means that we are able to obtain a nondom-
inated solution with lower objective function value.
To see the impact of capturing uncertainty on the per-
formance measures of our concern, we summarize
the average number of open ORs, overtime per OR,
and idle time per surgeon of the schedules generated
by solving the mean value and stochastic problems

Table 6 Percentage Value of the Stochastic Solution for Each
Problem Set
Low idle time cost (%) High idle time cost (%)
Set no. Average Maximum Average Maximum
1 0.95 9.34 4.20 28.41
2 0.52 3.15 410 13.69
3 0.87 3.54 4.24 12.30
4 0.53 1.71 3.43 13.30
5 0.93 3.35 4.01 7.52
6 0.54 2.40 2.46 5.35
7 0.54 0.87 7.19 8.00
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Table 7 Optimal Solution Statistics for the Stochastic and Mean Value ~ among surgeons by using the following first-stage

Problems for Each Problem Set constraints:
Low idle time cost High idle time cost 1 ( ) %(B 8 ) 0 (20)
Ly, <1 Vr,(i,j>i): i+ Bix)=0,
Stochastic Mean value Stochastic Mean value Yir T Yjr e k=1 g .
Set no. problem problem problem problem

where B, which can be directly obtained from bys,

Average 1 2.07 2.06 2.34 2.34 is a binary parameter denoting whether surgery i
no. of 2 3.15 3.09 3.76 3.72 d .. ¥'s listing: —1if
open ORs 3 380 380 4.04 4.04 precedes surgery j in surgeon k’s listing; B =1 i

4 418 4.24 459 4.47 there exists a sequence of surgeries of surgeon k that
5 4.50 4.50 4.83 4.83 begins with surgery i and ends with surgery j, and
6 5.14 514 5.29 5.29 every surgery in the sequence immediately precedes
/ 5.00 5.00 6.00 5.00 the next one according to surgeon k’s listing. Then,

Average 1 23.00 24.92 20.34 18.54 constraint (20) ensures that surgeries i and j cannot be
overtime 2 49.39 54.08 42.89 40.21 scheduled in the same OR if they are not operated by
per OR s 60.48 64.38 65.39 %6.92 the same surgeon. This implies that the correspond-
(in minutes) 4 53.85 54.67 53.47 53.03 .

5 107.72 105.49 138.95 128.04 ing surgeons cannot share the same OR. Note that
6 74.74 71.35 39.81 81.89 when OR pooling is not allowed, the OR scheduling
7 79.62 78.95 49.92 89.21 problem has a feasible solution only if ny > ng. This

Average 1 85.31 89.33 57.29 60.31 is satisfied by all of our instances.
idle time 2 59.07 63.25 27.75 33.53
per surgeon 3 40.61 40.27 21.53 28.05 .

(in minutes) 4 4766 4235 99 61 28.80 Table 8 Percentage Improvement Brought by OR Pooling
5 61.23 66.55 26.45 33.32 Low idle time cost (%) High idle time cost (%)
6 44.31 52.03 27.51 33.25
7 27.44 30.89 3.97 2283 Set no. Average Maximum Average Maximum
1 22.22 53.03 34.19 82.21
2 29.56 49.71 51.90 76.31
in Table 7. For high idle time costs, the solutions to 3 29.12 46.53 98.65 77.63
hasti bl h 1 | ¢ d 4 28.52 46.96 55.92 74.78
stochastic problems have lower values of expecte 5 2785 35.61 55.93 64.64
idle time over all of the sets and higher values of 6 2178 34.41 50.04 68.22
7 22.59 27.27 54.85 55.47

overtime and numbers of open ORs for a majority of
the sets. Therefore, for high idle time costs, we con-
clude that the total cost reduction achieved by solving  1ahle9  optimal Solution Statistics for Settings 1 and 2 for Each
the stochastic problem is mostly attributable to the Problem Set

decrease in the average idle time values. For low idle

) Lo Low idle time cost High idle time cost
time costs, we are able to observe the multicriteria
structure of the problem more explicitly. The improve- ~ Setno. Setting 1 Setting2  Setting 1 Setting 2
ments in the number of open ORs and overtime val-  ayerage 207 2.45 234 263
ues play a significant role in the total cost reduction no. of 3.15 3.70 3.76 3.93
for sets 1-4, whereas the decrease in idle time still open ORs i-?g 3-52 j-gg 2-22
remains the only factor that lowers the objective func- 450 5.00 483 517
tion value for sets 5-7. 514 5.99 5.29 5.71
5.00 6.00 6.00 6.00
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6.4. Value of OR Pooling Average_ 23.00 22.01 20.34 20.83
OR pooling, which is allowed in our model, occurs g\ét:r(t)lge ggig gggg gggg ggzg
when the surgeries of different surgeons are allowed (in minutes) 5385 53.05 5347 5443

to be scheduled in the same OR. In this section, we
quantify the benefit of OR pooling by comparing two
implementation settings:
e Setting 1: Our original model, in which ORs are ~ Average
pooled as a shared resource. Ipde!? :S:g eon
* Setting 2: A restricted setting where OR pooling (in minutes)
is not allowed.
In setting 2, we consider a modified version

of our model that prevents the sharing of ORs

107.72 109.37 138.25 110.76
74.74 77.84 89.81 91.98
79.62 26.13 49.92 26.13

85.31 137.28 57.29 114.67
59.07 172.63 27.75 154.03
40.61 208.47 21.53 193.85
47.66 199.43 22.61 191.97
61.23 239.11 26.45 225.39
44.31 210.99 27.51 176.04
27.44 153.42 3.97 153.42

NO O R, WN = NO O WN—= NO O~ WN =
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Low idle time cost

High idle time cost

2012 2 2 2 2]3 3 3 3 3 3 201 2 2 2]3 3 3 3|4 4]5]6
1§ 1 ]2 2 2 2|3 3 3 3 3 3 18] 2 2 2 213 3 3 3|4|5]6
o [16| 1|2 2 2 23 3 3 3 3 3 o [16|2 2 2 2|3 3 3 3|4 4]5
5 ~|14] 1|2 2 2 2|3 3 3 3 3 3 § ~l14]2 2 2 2|3 3 3 3|4 4|5
582l 1]2 2 2 2|3 3 3 3 3 3 58[12]2 2 2 2|3 3 3 3|4 45
g0t T2 2 2 2]3 3 3 3 3|[52[10]2 2 2 2[3 3 3 3|4 4]s
Eg o8] 1 1|2 2 2 2(3 3 3 3 3 ZSgfo8]2 2 2 2 2]3 3 3[4 4|5
zSfo6]1 1|2 2 2 2|3 3 3 3 3 xS[06]2 2 2 2 2|3 3 3[4 4[5
o 041 1 1]2 2 213 3 3 3 3 o 04| 1 ]2 2 2 2|3 3 3 3|4 4
o2]1 1 1|2 2 2|3 3 3 3 3 02| 1 ]2 2 2 2(3 3 3 3|4 4
00| 1 1 1]|2 2 2 2]3 3 3 3 00| 1 |2 2 2 2|3 3 3 3|4 4
00J01]02]03]04]05]06][07]08]09]1.0 00]01]02]03]04]05]06]07]08]09]1.0
Parallelizable portion Parallelizable portion
coefficient coefficient

Figure 6

By comparing the optimal objective function val-
ues obtained by solving the problem under these two
settings, we evaluate the percentage reduction in the
expected total cost as a result of OR pooling. We sum-
marize the percentage improvements brought by OR
pooling in Table 8. In Table 9, we compare the aver-
age number of open ORs, overtime values, and idle
time values of the schedules generated by settings 1
and 2.

We observe from Table 8 that the average benefit
gained from OR pooling is more than 21% and 34%
for low and high idle time costs, respectively. The
results provided in Table 9 reveal that the substan-
tial cost reduction achieved by OR pooling is mainly
attributable to the decrease in the average number of
open ORs. The decrease in the required number of
ORs might result in significant savings because the
initial investment needed to build and open a new OR
is estimated between $700,000 and $9,000,000 (Greene
2004, 2006; Yee 2007; Zinn 2009).

6.5. Impact of Parallel Surgery Processing

The impact of parallel surgery processing is closely
related with the duration of the parallelizable por-
tion of the surgery (i.e., preincision and postincision
durations) as well as the length of the OR turnover
time. As the parallelizable portion and OR turnover
time increase, the potential benefits of parallel surgery
processing becomes higher; hence, opening more ORs
becomes favorable. To demonstrate this, we consider
a surgical day that includes six surgeries, one surgeon
and six available ORs. We consider different levels of
OR turnover time, in a range changing from zero to
two times the original turnover time (which is 30 min-
utes). As for the parallelizable portion of the surgery,
we consider a range from zero to one times the orig-
inal duration. The original parallelizable portions of
the surgeries are, on average, more than 80% of the
total surgery duration in the considered example. We
generate optimal schedules for the selected levels of
OR turnover time and the parallelizable portion of

Optimal Number of ORs to Open at Different Levels of OR Turnover Time and Parallelizable Portion of Surgeries

surgeries for both low and high idle time costs. Fig-
ure 6 illustrates the number of open ORs in the opti-
mal schedule. As the parallelizable portion or the OR
turnover time increases, the optimal number of open
ORs also increases. Moreover, for a given pair of OR
turnover time levels and parallelizable portion lev-
els, the optimal number of open ORs is higher when
the surgeon idling cost is higher. This shows that the
impact of parallel surgery processing becomes more
significant as the surgeon idle time cost increases.

7. Conclusions
We consider the problem of scheduling surgeries with
uncertain durations in a multi-OR environment. The
decisions in our model are the number of ORs to
open, the allocation of surgeries to ORs, the sequence
of surgeries within each OR, and the times at which
surgeons start their first surgery of the day. Our
model minimizes the sum of the fixed cost of opening
ORs, the overtime cost, and the surgeon idling cost.
We formulate the problem as a two-stage SMIP, where
OR opening, surgery allocation and sequencing, and
start-time decisions are made in the first stage (prior
to the day of surgeries), and the OR overtime and sur-
geon idle time values are realized in the second stage,
after the actual surgery durations become known. We
explicitly consider the different phases of the surg-
eries (preincision, incision, and postincision), which
allows us to evaluate the impact of parallelization of
a particular surgeon’s surgeries.

We analyze the properties of our model and present
a set of induced feasibility constraints and a set of
new valid inequalities based on Jensen’s inequality
so as to increase its solvability. Our results show
that adding the proposed valid inequalities decreases
the solution times of the standard L-shaped and
L-shaped-based branch-and-cut algorithms signifi-
cantly. Our results also indicate that the L-shaped
algorithm tends to perform better than the L-shaped-
based branch-and-cut algorithm. We solve both the
stochastic and mean value problems, and we estimate
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the value of capturing uncertainty in surgery dura-
tions by comparing the obtained solution value of the
schedules. Our results reveal that the value of cap-
turing uncertainty is particularly significant for high
idle time costs (around 4% on average and as high
as 28%).

We draw some important managerial insights
from our numerical results. Examples, based on real
data collected from the Mayo Clinic in Rochester,
MN, illustrate that the potential benefits of paral-
lel surgery processing increases; hence, opening more
ORs becomes favorable as the OR turnover time and
parallelizable portion of surgeries increases. We solve
our problem under different resource usage schemes,
and we observe from our computational results that
OR pooling leads to total cost reductions between
21.78% and 58.65% on average. Thus, OR pooling can
lead to substantial cost reduction in some cases.

Our comparison of different resource usage schemes
is based on the total expected operating cost. As
a result, our analysis is dependent on the specific
cost coefficients that weight the multiple criteria in
the objective function. We leave an explicit treatment
of this multicriteria optimization problem for future
work. However, we note that our model, methodolog-
ical results, and general insights are relevant to most
providers of surgical care.
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