
Malloc Night 2023
Shinwoo Kim + Jake Kasper
CS 0449 Teaching Assistants

Spring 2023, Term 2234
5502 SENSQ
Feb 22nd, 2023

CS 0449: Introduction to System Software University of Pittsburgh

1

Agenda

＞ Conceptual Overview with Shinwoo

○ The standard malloc() interface

＞ Project Logistics
＞ Implementation Details with Jake

○ Designing your own malloc()!

＞ Debugging Tips and Tricks with GDB
＞ Q&A + TA-aided Debugging

○ Game-plan: Finish Phase 1 by the end of the night

Slides to be shared at end of the night ⇒ Discord

2University of Pittsburgh - CS 0449

Conceptual Overview
Shinwoo Kim

3

Dynamic
Memory Allocation
Assigning memory at execution time

4

Dynamic memory allocation

● Used when

○ Data structures whose size is NOT
known at compile-time

○ Particular chunk of memory is not
needed for the entire run

■ Can reuse that memory for
storing other things later

● Dynamic memory allocators
manage an area of process
address space known as the
heap

5University of Pittsburgh - CS 0449

Kernel virtual memory
User stack

(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc())

m[emory] alloc[ator]

● Allocator maintains heap as collection of variable sized blocks,
which are either allocated or free

6University of Pittsburgh - CS 0449

char *my_string = (char*)

malloc(10*sizeof(char));

strcpy(my_string, “hello”);

…
free(my_string);

Explicit allocator (C)

String my_string = new String(“hello”);

Implicit allocator (Java)
● Types of allocators

- Explicit allocator manages
memory for you

- Implicit allocator requires the
programmer to directly manage
memory

The glib malloc() package

#include <stdlib.h>
void *malloc(size_t size)
● Successful:

○ Returns a void pointer to a memory block of at least size bytes
○ aligned to a 16-byte boundary (on x86-64)
○ If size == 0, returns NULL

● Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
● Returns the block pointed at by p to pool of available memory
● p must come from a previous call to malloc(), calloc(), or realloc()

Other functions
● calloc(): Version of malloc that initializes allocated block to zero
● realloc(): Changes the size of a previously allocated block
● sbrk(): Used internally by allocators to grow or shrink the heap

7University of Pittsburgh - CS 0449

A malloc() example
#include <stdio.h>
#include <stdlib.h>

void foo(long n)
{
 /* Allocate a block of n longs */
 long *p = (long *) malloc(n * sizeof(long));
 if (p == NULL) { // always check return value of malloc()
 perror("malloc"); // print error message
 exit(0);
 }

 /* Initialize allocated block */
 for (long i=0; i<n; i++)
 p[i] = i;
 /* Do something with p */
 . . .
 /* Return allocated block to the heap */
 free(p); // Always free after malloc()
}

8University of Pittsburgh - CS 0449

malloc returns a void pointer,
so we need to cast it to the
type of pointer we want

For an array of n chars, we need to
allocate n*sizeof(chars)

Note: malloc() only makes room for
your data, it does NOT initialize your
data!

https://sites.pitt.edu/~shk148/teaching/CS0449-2234/code/malloc_example.c

https://sites.pitt.edu/~shk148/teaching/CS0449-2234/code/malloc_example.c.html

Project logistics
Your roadmap to success!

9

The malloc project.

● Now that we’ve seen malloc() work…
○ We get to make our own 🥳

■ That means you cannot call malloc() or free() anywhere in your code
● Other than your own implementations

Design Goals
TODO:

- mm_init() ←This one is done for you! But you should still read it and understand it

- mm_malloc(size_t size) ←This is your malloc() implementation

- mm_free() ← This should free the block that you mm_malloc()ed

- And other helper functions ← Helper function makes debugging easier

Perform well in both time and space complexity
⇒ Essentially becomes an optimization problem

10University of Pittsburgh - CS 0449

Malloc Lab Roadmap

● Initially, we’ll do a naïve implementation. (Phase 1) done by end of week 1

○ This means we just need it to work
■ A working allocate and free is all that’s needed

● Implement coalesce and splitting (Phase 2) done by middle of week 2

○ To start, focus on the early traces, which should require implementing

● Once everything else works, implement the explicit free list (Phase
3) done by deadline

○ Should see a massive performance improvement once you complete phase 3

11University of Pittsburgh - CS 0449

Project logistics

● This project is NOT meant to be done is one sitting
○ If one of the TAs or staff sat down to do this lab from scratch, it would still take

at least a week

● Plan ahead, leave plenty of time for design
○ Measure twice, cut once

● Work in small blocks of time
○ One or two hours, then take a break!

■ Your brain can keep working subconsciously

○ Leave enough time for your “Eureka!” moments

● Start the project and come to office hours as early as you can
○ Debugging this project is hard, even for TAs
○ Errors are generally too complicated to look at a little code in Discord and see the

mistake
○ Asking for help last minute will likely not succeed

12University of Pittsburgh - CS 0449

Modularity and Design

● Good style shouldn’t be an afterthought
○ Hard to debug if you can’t read your own code
○ Easier to explain to/get help from TAs with cleaner code

● That is to say…
1. Avoid long if-else chains (may be a loop? switch?)
2. Think carefully about what exactly each function should do

ー Don’t put everything in a single function

3. Descriptive comments!
ー comments as you go
ー Especially useful for check-off meetings

13University of Pittsburgh - CS 0449

Testing and getting help

● The driver will run traces on your program
○ Similar to Queue Lab
○ Designed to test all sorts of functionality of your implementation
○ Work on traces from easiest down, don’t try to do them all at once

● Portion of grade is on performance
○ Based on how much time it took
○ Must perform at a certain level in comparison to a “real” malloc() implementation

● Use whiteboards or notebook paper
○ Do a lot of drawing of your free lists

14University of Pittsburgh - CS 0449

Debugging

● You’re given a couple of functions to debug your heap
○ examine_heap() - prints out the heap’s contents
○ check_heap() - checks to make sure the heap is in a consistent state
○ Especially useful early on

● GNU Debugger
○ See Lab 0 for GDB walkthrough

■ Cheatsheet in Discord

○ No more printf() debugging
○ GDB is huge for debugging, especially on this lab

15University of Pittsburgh - CS 0449

Getting help from the TAs (and staff)

● You will most likely get stuck or have bugs in your program
○ That’s normal.
○ Learning to identify and fix bugs is one of the learning objectives of this course

■ Debugging: Learning tools to help debug program crashes and break down existing
programs.

● Hence, a simple “can you look at my code?” is not acceptable
○ Instead, narrow down where the problem is happening

■ Use GDB!!!

○ Isolate the region of code with the bug, and show us the code with the full error
message.

● We want to help you succeed, but TAs are not compilers
○ After getting help and making the necessary changes, don’t show us yourcode

and ask “is this better?”
○ Instead, compile and test it! That’s what programming is about: you make a

thing, you test the thing, you fix the bugs.

16University of Pittsburgh - CS 0449

Other non-breathing resources

● Read the C Memory Management slides
○ Re-read them a couple times for good measure
○ Impossible to do well on project without a good conceptual understanding of

memory allocation

● C issues: See K & R
○ An oldie but goodie

● Other places to turn to when you get stuck (Because you will
probably get stuck)

○ CSAPP 3e Chapter 9.9
○ Drawing it out on a whiteboard!

17University of Pittsburgh - CS 0449

Implementation Details
Jake Kasper

18

The Heap

19University of Pittsburgh - CS 0449

Heap

Data block 1

Data block 2

Data block 3

Data block 4

Free block

Calls to malloc() allocate blocks of
data on the heap

Some data lives here, like a struct or an array

Calls to free() deallocate blocks of
data on the heap

Fragmentation

20University of Pittsburgh - CS 0449

External

Occupied by P1

Occupied by P2

Occupied by P3

Occupied by P4

Free memory

Lots of little, free spaces

Struct Information

● The BlockInfo struct will contain the
metadata for each heap block

– size refers to the number of bytes this block
contains

■ The allocated bytes for FreeBlockInfo are included in
size

– prev points to the previous block in the heap
● The FreeBlockInfo struct will contain the

metadata for each free block (once we
implement Phase 3, more later)

– nextFree points to the next free block in the
list of free blocks

– prevFree points to the previous free block in
The list of free blocks

● The Block struct is what makes up a
block

– The block’s metadata is stored in info and, if
it’s a free block, freeNode will maintain its
location in the free block list

21University of Pittsburgh - CS 0449

typdef struct _BlockInfo{

 long int size;

 struct _Block* prev;

} BlockInfo

typdef struct _FreeBlockInfo{

 struct _Block* nextFree;

 struct _Block* prevFree;

} FreeBlockInfo

typdef struct _Block{

 BlockInfo info;

 FreeBlockInfo freeNode;

} Block

mm_init()

● The mm_init() initializes the allocator
– subsequent calls reset the allocator

● Nothing to modify
– But you still need to understand it

● Tells us we need to manage:
– free_list - we will ignore this until phase 3
– malloc_list_tail - points to the last block in the heap

■ Used to actually ensure the validity of your heap, so it’s important to maintain
● examine_heap()

● check_heap()

– heap_size - the actual byte size of your heap
■ Your implementation should NOT manually change this value, but you should understand

how it’s changed in requestMoreSpace()

● This function is called by the other source files we won’t be editing

22University of Pittsburgh - CS 0449

int mm_init() {

 free_list_head = NULL;

 malloc_list_tall = NULL;

 heap_size = 0;

 return 0;

}

mm_malloc(size_t size)

● Allocates a block of memory of the given size

23University of Pittsburgh - CS 0449

void* mm_malloc(size_t size) {

 Block* ptrFreeBlock = NULL;

 Block* splitBlock = NULL;

 long int reqSize;

 // Zero-size requests get NULL.

 if (size == 0) {

 return NULL;

 }

 // Determine the amount of memory we want to allocate

 reqSize = size;

 // Round up for correct alignment

 reqSize = ALIGNMENT * ((reqSize + ALIGNMENT - 1) / ALIGNMENT);

 ptrFreeBlock = searchList(reqSize);

malloc() and free() have to consider…

24University of Pittsburgh - CS 0449

32 16 40

Header before block
contains block length

Block header contains
block size

This block only needed one word for memory, but the added header
doubled the amount of allocated space it needed

Memory allocator looks at block
header and frees that many

subsequent bytes

malloc() and free() have to consider…

- 4 ways of keeping track of free memory
- Implicit List ← Start Here
- Explicit List ← Final implementation of project
- Segregated List
- Sort blocks by size

25University of Pittsburgh - CS 0449

32 16 40

Implicit Free List

26University of Pittsburgh - CS 0449

32 -16 16 -24 40

Header of a free block will contain
the size of the free block (negative

to denote that block is free)

Keep a list of ALL
blocksmalloc(8);

mm_malloc(size_t size)

1. Determine the required size (adjust for correct alignment)
2. Search the list of blocks

➢ Are any of them big enough?
i. Let’s give that back to the callee of mm_malloc()

3. What if there are no blocks big enough for our requested size?
➢ We need to request more space from the system
➢ requestMoreSpace(size_t reqSize) - grows the heap

i. Look at how this function is implemented and try to understand it

4. Now we have a block (either from the list or from our request)
➢ How do we mark it as allocated?

5. Let’s give it our function callee

27University of Pittsburgh - CS 0449

Implicit free lists: finding free blocks

28University of Pittsburgh - CS 0449

24 -16 24 -24 16

Start of heap End of heap

Last block
allocated

Next fit:

malloc(16);

24 -16 24 16 -8 16

First fit:

24 16 24 -24 16

Best fit:

24 16 24 -24 16

First fit: starts at beginning
of heap and selects the first
block that can be used

Next fit: same as first fit,
but starts searching from the
previously allocated block

Best fit: finds the block
which fits the best (least
amount of wasted space)

Implicit Free List

29University of Pittsburgh - CS 0449

32 -16 16 -24 40

Let’s mark this block to be
allocated. If negative represents

free…how can we represent
allocated?

malloc(8);

We need to return this
address to the user (not

the address of the
header)

● Currently, if we find a block that’s big enough, we allocate it.
○ We are massively over-allocating memory
○ We might ask for 4B, get get 32B.

● … If we have a block that’s large enough to split into 2, let’s do it!
○ A block at minimum needs to contain the header + alignment padding

● If we run into a really big block, we could split into two parts:
○ One part just big enough to fit our requested block
○ Another part at least as big as our minimum block size

● After splitting, need to get a pointer to the newly created blocks
○ Special, unscaled pointer arithmetic can help here
○ Make sure all of your new blocks are added to the list

● Draw out a test case, with at least 3 to 5 blocks, trying several
cases

○ Helps a lot for this function and coalesce

Phase 2: Splitting Free Blocks

30University of Pittsburgh - CS 0449

● Searching a list is slow…
○ How can we speed it up?

■ Reduce the number of elements in the list!

● Let’s create a list with just the free blocks
○ That way we’re not traversing over allocated blocks

■ Which we can’t allocated anyways

● Make sure to maintain this list upon coalescing…
○ Your implementation may not guarantee that two free blocks next to each other

in the heap are also next to each other in the free list…

Phase 3: Explicit Lists

31University of Pittsburgh - CS 0449

Currently, an implicit list

32University of Pittsburgh - CS 0449

Actual memory
block

B
lo

ck
In

fo

Actual memory
block

B
lo

ck
In

fo

Actual memory
block

B
lo

ck
In

fo

size (size of this block)
⚠ IMPORTANT: A negative size represents a free block with that size

prev (pointer the previous block in the list)

Explicit List

33University of Pittsburgh - CS 0449

Actual memory
block

he
ad

er Actual memory
block

he
ad

er Actual memory
block

he
ad

er

FreeBlockInfo exists only in ‘free’ blocks
nextFree (a pointer to the next free block)
prevFree (a pointer to the last free block)

These pointers form the basis of an explicit free list.
● When a block is free, these will be useful
● When a block is allocated (‘in-use’), you don’t need to do anything about

this struct, its data will simply be overwritten by the user

Fr
ee

B
lo

ck
I

nf
o

FreeBlockInfo not
needed for phase 1

mm_free(void* ptr)

● Deallocate the given pointer that was previously allocated by
mm_malloc()

1. Get to the header of the block and mark it as free
a. ptr points to the data portion of the block, not the header
b. How can we get back to the header?
c. How can we denote a block is free

2. Phase 2: implement coalesce()
a. As described in lecture

34University of Pittsburgh - CS 0449

void mm_free(void* ptr) {

 Block* blockInfo = (Block*)UNSCALED_POINTER_SUB(ptr, sizeof(BlockInfo));

// YOUR CODE

 coalesce(blockInfo);

}

Memory Allocation Example

35University of Pittsburgh - CS 0449

Implicit Free List - Example Freeing

36University of Pittsburgh - CS 0449

24 8 8 -16 32

free(p3);

P1 P2 P3 P4 P5

Implicit Free List - Example Freeing

37University of Pittsburgh - CS 0449

24 8 -8 -16 32

free(p3);

Deallocate the space
occupied by p3

We should consider
all this free space as

one free area

We will coalesce these
blocks

Implicit Free List - Example Freeing

38University of Pittsburgh - CS 0449

24 8 -32 -16 32

free(p3);

Now, this block contains
the free data for the

next as well

Implicit Free List - Example Freeing

39University of Pittsburgh - CS 0449

24 8 -32 32

free(p3);

Since this is all one
block now, we relink the
connection to the next

block

We’ve coalesced,
meaning the pointer to
this block goes away

References
Works Referred
Gavin Heinrichs-Majetich’s CS 0449 Recitation Slides (Fall 2022)
Martha Dixon’s CS 0449 Recitation Slides (Fall 2020)
Randal Bryant & David R. O'Hallaron’s Computer Systems: A Programmer's Perspective
Carnegie Mellon University’s 15-213: Introduction to Computer Systems (Fall 2017)

40University of Pittsburgh - CS 0449

