
➢ Standard Integer Sizes
➢ Reading/writing files in C

○ fopen(), fread(), fwrite(),
fseek(), fclose()

➢ Project 1 discussion

REC3: File I/O in C Shinwoo Kim
Teaching Assistant
shinwookim@pitt.edu

https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234
Friday 12 PM Recitation

Feb 3rd, 2023

Department of Computer Science
School of Computing & Information

University of Pittsburgh

CS 0449: Introduction to System Software University of Pittsburgh

1

Fixing sizes of data types

● In lecture, you saw that C’s data types don’t have a
defined size
○ There were minimum requirements, but it was really

machine-dependent
○ int must be greater than a short ⇒ but just how greater?

■ Who knows! The compiler does

○ This may cause issues, if we need to represent a integer as exactly N
bytes

● libc to the rescue!
○ The C standard library provides a header file will allows us to do this
○ #include <stdint.h>

■ int8_t, int16_t, int32_t, int64_t

■ uint8_t, uint16_t, uint32_t, uint64_t

■ int_least8_t,...
○ https://www.gnu.org/software/libc/manual/html_node/Integers.html

2Shinwoo Kim - CS 0449

https://www.gnu.org/software/libc/manual/html_node/Integers.html

Basics of File I/O
Reading and writing files in C

3Shinwoo Kim - CS 0449

What we have seen so far …

● In lab 0, you (maybe unknowingly) used command line
arguments to interact with your program
○ When you ran ./calculator 4 5 +

4Shinwoo Kim - CS 0449

● In lab 1, you used the standard I/O stream(s)
○ printf(), scanf(), and other <stdio.h> functions

● This week, we’ll learn to read and write from files on
your computer
○ which you will need to do for the first project

● In C, a file is simply a sequence (stream) of bytes:
○ Text files (or ASCII file) is sequence of ASCII code, i.e., each byte is

the 8 bit code of a character (*.txt, *.c, etc.)
○ Binary files contains the original binary number as stored in memory

(*.pdf, *.doc, *.jpg, etc.)

What is a file?

5Shinwoo Kim - CS 0449

A hex dump of the 318 byte Wikipedia favicon

https://en.wikipedia.org/wiki/Hex_dump
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Favicon

Opening files with fopen()

FILE *fopen(const char * pathname, const char*mode);

> FILE* pt = fopen("E:\\PATH\program.txt","w");

6Shinwoo Kim - CS 0449

● opens the file whose name is the string pointed to by pathname
and associates a stream with it.

● returns a pointer (of type FILE) to the stream

Opening Files with fopen()

*fopen(const char * filename, const char * mode);

Modes:

○ r: opens an existing file for reading.
○ w: opens a file for writing.

● If filename does not exist, new file is created.
● starts writing at the beginning of file.

○ a: opens a text file for writing in appending mode.
● If filename does not exist, new file is created.
● start appending content in the existing file content.

○ r+: opens a file for both reading and writing.
○ b: indicates file is a binary file
○ and more…

■ Use man fopen to learn more

7Shinwoo Kim - CS 0449

fread() lets us read, fwrite() lets us write

fread(void *ptr, size_t size, size_t nmemb, FILE*
stream);
➢ reads nmemb items of data each size bytes long
➢ from stream
➢ stores them at the location given by ptr.

fwrite(const void *ptr, size_t size, size_t nmemb,
FILE * stream);
➢ writes nmemb items of data each size bytes
➢ to the stream
➢ from the location given by ptr.

8Shinwoo Kim - CS 0449

Reading and writing moves the pointer

9Shinwoo Kim - CS 0449

10100110101111111011111010111111100100
01110010000110000100100010010010000101
10010010100110101111111011111010111111
10010001110010000110000100100010010010
00010110010010100110101111111011111010
11111110010001110010000110000100100010
010010000101100100…

File *
stream

> fread(ptr1, 1, 1, stream)

File *
stream

> fwrite(ptr1, 1, 1, stream)

File *
stream

We can rewind or fast-forward with fseek()

fseek(FILE *stream, long offset, int whence);

➢ sets the file position indicator for the stream
➢ new position (measured in bytes) = offset + whence.

whence:

● SEEK_SET - from start-of-file
● SEEK_CUR - from current position
● SEEK_END - from end-of-file

10Shinwoo Kim - CS 0449

Always remember to save (and close) your files!

● Just like memory leaks, you may also get file handle
leaks
○ If you use fopen(), always remember to fclose()

■ int fclose(FILE* filePointer)

● returns 0 on success!
● If you are confused about these functions → Consult the

MANual

11Shinwoo Kim - CS 0449

Thoth man errors: try MANPATH= man 3 fopen

Project 1
Hiding data & reading files

12Shinwoo Kim - CS 0449

*.BMP Bitmap Pictures

● Bitmap Image File
○ Container format for a big array of pixels (picture cells)
○ Many different formats; we will focus on Windows Bitmap (24-bit

RGB color)
■ Each pixel is represented by a 24-bit number:
■ 8 bit for Red (0-255)
■ 8 bit for Green (0-255)
■ 8 bit for Blue (0-255)

13Shinwoo Kim - CS 0449

TODO 1: Reading the metadata

At the beginning of the BMP is a header which contains
metadata (key details about the picture)

14Shinwoo Kim - CS 0449

Header54 bytes

Image
content

24-bit lena.bmp

b044d2a9b13ae35152ab5d93a
49cc112b044d2a9251d9ed694
82c88a4077c619bcfcf227afb
c0c6e6529aac435c769696ddb
6206340827ab559e60262f622
a699eae0750fec6f65f74d5d2
8f1e9a99aae43ec822251d9ed
69482c88a4077c619bcfcf22a
fbc0c6e6529aac435c769696d
d22a699eae0750fec6f65f74d
5d28f1e9a99aae43ec8223408
27b044d2a9b13ae35152ab5d3

b13ae35152ab5d93a49cc112b
044d2a9b13ae35152ab5d93a454 bytes

Image
content

24-bit lena.bmp

TODO 1: Reading the metadata

For phase 1, you are expected to read the header(s), print
and validate them.

15Shinwoo Kim - CS 0449

Bitmap File Header
Identifier (ID) 2

File Size 4
Reserved 4

Bitmap Data Offset 4
DIB Header

Bitmap Header Size 4

Width 4
Height 4
Planes 2

Bits Per Pixel 2
Compression 4

Bitmap Data Size 4

H-Resolution 4
V-Resolution 4
Used Colors 4

Important Colors 4

File header
(14 bytes)

DIB Header
(50 bytes)

Header file
(Image
profile)

TODO 2: Revealing the Hidden Image

16Shinwoo Kim - CS 0449

10001011
00111011
00111011

1000 1011

1000 1011

1011 1000Move pixel by pixel (row-wise),
flip the 4 MSB and 4 LSB in
each color of each pixel

● Again, move pixel by pixel (row-wise)
○ At each pixel, grab the 4 MSB from image 1 and 4 MSB from image 2
○ Write the 4 MSB from image 2 into the 4 LSB of image 1

TODO 3: Hiding your own image

17Shinwoo Kim - CS 0449

1000 1011

1111 1000

1111 1000

1111 1011

Image 1 Image 2

Tying the parts together

./bmp_stenography --info FILENAME

=== BMP Header ===
Type: BM
Size: 2073654
Reserved 1: 0
Reserved 2: 0
Image offset: 54

=== DIB Header ===
Size: 40
Width: 960
Height: 720
color planes: 1
bits per pixel: 24
Compression scheme: 0
Image size: 2073600
Horizontal resolution: 7559
Vertical resolution: 7559
colors in palette: 0
important colors: 0

18Shinwoo Kim - CS 0449

./bmp_stenography --reveal FILENAME

● Reveals the hidden picture
● Should overwrite FILENAME

./bmp_stenography --hide FILENAME1
FILENAME2

● Hides FILENAME1 inside FILENAME2

Your program must do the following

HINT:
Your main() function takes arguments:
int main(int argc, char *argv[]);
● argc: # of arguments
● argv[]: actual arguments

○ Note argv[0] is the program name

