CS 0449: Introduction to Systems Software | VRIversity of | - vostof Computing

PittSburgh and Information

Process Management:
fork-exec model

Shinwoo Kim

Teaching Assistant
shinwookim@pitt.edu
https://www.pitt.edu/~shk148/

Spring 2023, Term 2234
Friday 12 PM Recitation
5502 Sennott Square
Mar 2nd, 2023

mailto:shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/CS0449-2234/

Course News!

3 Respond at PollEv.com/pollster123 &5

Exam ” next WEEk How are you feeling about the basics?
Quiz 2 graded

e Project 3 due tonight
o Late submissions until the 27th

e Trying something new
o www.pollev.com/shinwookim908
o to improve recitation participation
o gauge your understanding
o and provide more practice for the upcoming exam

I'm confused

I'm catching on slowly
I think | get it

Loud and clear!

Hurry up to the hard stuff

Powere d by 0 Poll Everywhere

University of Pittsburgh - CS 0449

http://www.pollev.com/shinwookim908

@& When poll is active, respond at pollev.com/shinwookim908

We use dynamic memory because:

The heap is significantly faster than the
stack

Storing data on the stack requires knowing
the size of that data at compile time

The stack is prone to corruption from
buffer overflows.

None of the above

Powered hv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Quiz, revisited

e Assuming the heap remains as below, if the following malloc
executes, what is the value stored in p1?

Address 0xa00 | oxaees 6xa020 Bxa028
Value 16 oxe00 32 oxaeee
p1 = malloc(32)
©Xa000 OXxa008 0©xa010 0xa018
0Xa020 0Xxa028 ©Xxa030 Oxa038

University of Pittsburgh - CS 0449

Q1.3. Malloc

e Consider an allocator implementation with the following
characteristics

(@)

O O O O O

The first-fit free algorithm is used to allocate data.

All blocks have a header with a size and a pointer to the previous block.

The header is 16B (2 X 8 bytes) in size.

Positive sizes indicate the block is allocated, and negative sizes indicate it is free.
All freed blocks are immediately coalesced if possible.

When a block is split, the lower (first) part of the block becomes the allocated part
and the upper (second) part becomes the new free block.

If the heap doesn’t have enough space to hold the data, it grows by the minimum
amount needed to fit the data. Always successfully.

University of Pittsburgh - CS 0449

Q1.3. Malloc

e Consider an allocator implementation with the following
characteristics

(@)

O O O O O

The first-fit free algorithm is used to allocate data.

All blocks have a header with a size and a pointer to the previous block.

The header is 16B (2 X 8 bytes) in size.

Positive sizes indicate the block is allocated, and negative sizes indicate it is free.
All freed blocks are immediately coalesced if possible.

When a block is split, the lower (first) part of the block becomes the allocated part
and the upper (second) part becomes the new free block.

If the heap doesn’t have enough space to hold the data, it grows by the minimum
amount needed to fit the data. Always successfully.

University of Pittsburgh - CS 0449

Process Management

The Linux Fork-Exec model

Creating new processes & programs

e fork-exec model (Linux)

o fork() copies the current process
m Creating a “child” process that is a duplicate of the memory
and state of its parent process
o exec”()replaces the current process’s code and address
space with the code for a different program
m Family: execv, execl, execve, execle, execvp, execlp
o fork() and exec() are system calls

e Other system calls for process management
o getpid() gets process id
o exit(int) ends the current process
m Argumentis known as the exitcode .
m We can have processes that are no longer running, but not yet l
deallocated (Zombie processes)
o wait() yields the process and returns only when the child
process ends
m Return value of wait() is the process id of the child that
exited
m Specify which child to wait for using waitpid(pid_t)

University of Pittsburgh - CS 0449

@& When poll is active, respond at pollev.com/shinwookim908 o

Do parent processes wait for grandchildren processes?

True False

Powered hv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Creating new processes & programs

Ve

Process 1

\
‘ \ g

S

“Memory”

Stack

Heap

Data

Code

Vs

Process 2

for‘k()>

IICPU’I
| Registers |

University of Pittsburgh - CS 0449

)

“Memory’

Stack

Heap

Data

Code

IICPU”
| Registers |

exec*()

Chrome.exe

10

fork(): creating new processes

e pid_t fork(void)
o Returns O to the child process
o Returns child’s process ID (PID) to the parent process

e Child is almost identical to parent:

o Child gets an identical (but separate) copy of the parent’s address space
o Child has a different PID than the parent

e fork is unique (and often confusing) because it is called once but
returns “twice’

University of Pittsburgh - CS 0449

11

Understanding fork()

University of Pittsburgh - CS 0449

pid _t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from \n");

}

12

Understanding fork

=

Process X

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from \n");

}

Process Y (child)

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");

} else {
printf("hello from

}

\n");

13

Understanding fork

Process X (parent) Process Y (child)
» pid_t pid = fork(); » pid_t pid = fork();
if (pid == 0) { if (pid == 0) {
printf("hello from child\n"); printf("hello from child\n");
} else { } else {
printf("hello from \n"); printf("hello from \n");
} }
» pid_t pid = fork(); pid = Y » pid_t pid = fork(); pid = 0
if (pid == 0) { if (pid == 0) {
printf("hello from child\n"); printf("hello from child\n");
} else { } else {
printf("hello from \n"); printf("hello from \n");
} }
hello from hello from child

Which one appears first?

Modeling fork() with process graphs

e A process graph is a useful tool for capturing the partial ordering

of statements in a concurrent program
o Each vertex is the execution of a statement
a — b means a happens before b
Edges can be labeled with current value of variables
printf vertices can be labeled with output
Each graph begins with a vertex with no in edges

o O O O

University of Pittsburgh - CS 0449

15

Fork example

void forkl() {
int x = 1;
pid_t pid = fork();

if (pid == 0)
printf("Child has x = %d\n", ++x); // child only
else

printf("Parent has x = %d\n", --x); // parent only

printf("Bye from process %d with x = %d\n", getpid(), x); // both

e Both processes continue/start execution after fork
o Child starts at instruction after the call to fork (storing into pid)

e Can’t predict execution order of parent and child

e Both processes start with x=1
o Subsequent changes to x are independent

University of Pittsburgh - CS 0449

16

Modeling fork () with process graphs

void forkl() {
int x = 1;
pid_t pid = fork();
if (pid == 9) printf("Child has x = %d\n", ++x);
else printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}
C ¢ C 8C P 8P
child ‘ P BP C BP Aclong as C comes before BC
X=2 Cl'lﬂd jxe C P BCBP and P comes before BP
+ printf printf CP BPBC
C 8C 8PP
P RP pBLC BP } Not poscible!
Parent Bye

printf printf

17

PEV: Is the following sequence of outputs possible?

void nestedfork() {
printf("LO\n");
if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");
}
}

printf("Bye\n");

¥

University of Pittsburgh - CS 0449

Seq 1:
LO
L1
Bye
Bye
Bye
L2

18

& Respond at pollev.com/shinwookim908 u
7 Text a CODE to 37607

Are the following sequences of outputs possible?

PEV: Are the following sequences of outputs possible?

void nestedfork() { Seq 1:
printf("LO\n"); Lo True 167611
if (fork() == 0) { L1
printf("L1\n"); Bye
if (fork() == @) { Bye
printf("L2\n"); Bye
} L2
}
, Printe(Eyeln"); False 167723

Powered hyv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app u

PEV: Are the following sequences of outputs possible?

void nestedfork() { Seq 1:
printf("LO\n"); LO
i'F ('FOr‘k() == @) { L1
printf("L1\n"); Bye
if (fork() == @) { gye
printf("L2\n"); Lgiw
} 3
} B FH— o ‘\’—C Protess
printf("Bye\n") T A le J tecs 2

?r A LDY‘(+‘F

} LO B\/e
* De } PYoccSS l

University of Pittsburgh - CS 0449

Fork bombs @

e A Fork bomb (AKA rabbit virus, or wabbit)

o is a denial-of-service attack
o wherein a process continually replicates itself to deplete available system

resources
o while(true) { fork(); }
e :(){ :|:& };: < Thisis all you need for a fork bomb
o https://en.wikipedia.org/wiki/Fork_bomb
e Try experimenting on your own machine

o Preferably on a virtual machine
o Worst case scenario, you just reboot your machine!

e That being said, if you fork bomb Thoth, your access to it will be

revoked
o And you will need access for other courses (e.g., 1550)

University of Pittsburgh - CS 0449

https://en.wikipedia.org/wiki/Fork_bomb

Lab 5: Loading &
Forking

Executables and Plugins

Now, it’s your turn!

e Inlab 5, you will practice:
a. Learn how libraries are loaded dynamically

b. Learn how processes are created
m Using fork(), exec()
m Andwait()

e Three parts

a. Plugging your code!
b. FORK!
c. Gradescope Questions

Collaboration on thic lab ic allowed and encouraged!

University of Pittsburgh - CS 0449

Part A: Plugging your code!

e Read the handout on how function pointers work
o A function pointer is a variable that stores the address of a function that can later
be called through that function pointer.
e return_type (*pointer_name)(1list,of,argument, types);
o 1long int (*f_ptr)(int, int);
o Really useful for general purpose functions!

m A sort function that can work on any data type
e Works as long you pass in a function that can compare two values of that type

void gsort(void *base, size_t n_elem, size_t elem_size,
int(*compare) (const void *, const void *));

University of Pittsburgh - CS 0449

24

Part A: Plugging your code!

e Read the handout on how function pointers work
o A function pointer is a variable that stores the address of a function that can later
be called through that function pointer.
e return_type (*pointer_name)(list,of,argument, types);
o 1long int (*f_ptr)(int, int);
o Really useful for general purpose functions!

m A sort function that can work on any data type
e Works as long you pass in a function that can compare two values of that type

void gsort(void *base, size_t n_elem, size_t elem_size,
int(*compare) (const void *, const void *));

IF I want to vee qsort () on a different int compare_ascending(const void *vall, const void *val2) {
data type (e.g., gtr/'ugr}, all T need to do ic, // Compares integers

cwap out th par Fumction! return *(const int *)vall-*(const int *)val2;
wap ovt the comparison function!

University of Pittsburgh - CS 0449 25

Part A: Plugging your code!

e Build a program that accepts a p/lugin name as a parameter and

executes that plugin. /% sample Plugin */

o Plugin file will have the name plugin-name.so int initialize() {
o All PIugin support printf("Initializing plugin\n");

s int initialize() }

m int run()

m int cleanup() intrm?(){" . -
o Your program should be run as y printr("Running pluginn®;

m S ./program plugin-name

// Create a shared object int cleanup() {

gcc plugin.c -o plugin.so -shared printf("Cleaning plugin\n");

. To dgnam}ica//g link librariec you will need to get familiar with
e (reate plugln—manage r.c that dlfcn.h functions (cee lecture slides for examplec)

o reads the first argument - you may need to format your argument (e.g., ‘plugin”— ./plugin.co)

o Loads the shared object Dynamic linking requires the —1d1 flag when compiling with gcc
o Runs initialize(), run(), and cleanup() in that order(gcc plugin_manager.c .. -1dl)

University of Pittsburgh - CS 0449 26

Part B: FORK!

Forking allows us to expand our programs to multiple processes
o But how can processes communicate with one another?

s? < Thic is often known as interprocecs communication

m Thatis, how do we synchronize processe

Signals are primitive standardized that can be sent to processes
o By other processes, the OS, etc.

For example, when you kill a program with ctrl + c, the shell
sends the SIGINT signal to that process

o Which usually terminates the program
When you get a segmentation fault, the OS usually sends the

SIGSEGV signal to the process

However, we can capture the signals to do something else

o For example, on when the user tries to kill the process (SIGINT) print “No!” and
keep running

University of Pittsburgh - CS 0449 27

Part B: FORK!

Create a program run_on_demand.c that:

(@)

(@)

When it receives signal SIGUSR1,
m Fork-execs 1s

When it receives signal SIGUSR2,
m Fork-execs 1s -1 a

Sample Output
Received signal <signal number>.
Running <command>.
<1ls output>

Done!

When CTRL + c is pressed, the program should print

(@)

(@)

Remember to synchronize the processes

(@)

(@)

“Leaving gracefully”
Then exit

Printing order should be respected
The process chould ‘wait” until the 1s ic complete

University of Pittsburgh - CS 0449

Sample Output

Received ber>.

Received s i mber>.
Running <comm
<ls output>
<1ls output>
Done!

Done!
28

Testing with signals

e How can we test signals?
e Signals are sent by processes...so we can create a wrapper program

that tests our run_on_demand program
o For example:

- pid_t pid = fork(); e Or we can do so manually:
This is pseudo-code if (pid == @) // child process o Open up two terminals
exec("./run_on_demand"); o Interminal 1, run run_on_demand
else // parent process o In terminal 2, manually send signals
kill(pid, SIGUSR1); //send m $ kill -s SIGUSR1 pid

m How do we know pid?
m S ps ux gets you the pid of all
process (that you are running)

SIGUSR1 to child

University of Pittsburgh - CS 0449 29

Part C: Gradescope Questions

e Fork tracing questions + extra
e Good exam practice!

Collaboration on thic lab ic alfowed and encouraged!

= You must submit;

1. plugin_manager.c
2. run_on_demand.c
3. Answer questions on Gradescope

University of Pittsburgh - CS 0449

30

