
1

Process Management:
fork-exec model
Shinwoo Kim
Teaching Assistant
shinwookim@pitt.edu
https://www.pitt.edu/~shk148/

Spring 2023, Term 2234
Friday 12 PM Recitation
5502 Sennott Square
Mar 2nd, 2023

CS 0449: Introduction to Systems Software

mailto:shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/CS0449-2234/

Course News!
● Exam II next week
● Quiz 2 graded
● Project 3 due tonight

○ Late submissions until the 27th

● Trying something new
○ www.pollev.com/shinwookim908
○ to improve recitation participation
○ gauge your understanding
○ and provide more practice for the upcoming exam

2University of Pittsburgh - CS 0449

http://www.pollev.com/shinwookim908

3University of Pittsburgh - CS 0449

● Assuming the heap remains as below, if the following malloc
executes, what is the value stored in p1?

p1 = malloc(32)

0xa000 0xa008 0xa010 0xa018

0xa020 0xa028 0xa030 0xa038

Quiz, revisited

4University of Pittsburgh - CS 0449

Address 0xa00 0xa008 … 0xa020 0xa028 …

Value 16 0x0000 … -32 0xa000 …

Q1.3. Malloc
● Consider an allocator implementation with the following

characteristics
○ The first-fit free algorithm is used to allocate data.
○ All blocks have a header with a size and a pointer to the previous block.
○ The header is 16B (2 ✕ 8 bytes) in size.
○ Positive sizes indicate the block is allocated, and negative sizes indicate it is free.
○ All freed blocks are immediately coalesced if possible.
○ When a block is split, the lower (first) part of the block becomes the allocated part

and the upper (second) part becomes the new free block.
○ If the heap doesn’t have enough space to hold the data, it grows by the minimum

amount needed to fit the data. Always successfully.

5University of Pittsburgh - CS 0449

Q1.3. Malloc
● Consider an allocator implementation with the following

characteristics
○ The first-fit free algorithm is used to allocate data.
○ All blocks have a header with a size and a pointer to the previous block.
○ The header is 16B (2 ✕ 8 bytes) in size.
○ Positive sizes indicate the block is allocated, and negative sizes indicate it is free.
○ All freed blocks are immediately coalesced if possible.
○ When a block is split, the lower (first) part of the block becomes the allocated part

and the upper (second) part becomes the new free block.
○ If the heap doesn’t have enough space to hold the data, it grows by the minimum

amount needed to fit the data. Always successfully.

6University of Pittsburgh - CS 0449

Process Management
The Linux Fork-Exec model

7

Creating new processes & programs
● fork-exec model (Linux)

○ fork() copies the current process
■ Creating a “child” process that is a duplicate of the memory

and state of its parent process
○ exec*()replaces the current process’s code and address

space with the code for a different program
■ Family: execv, execl, execve, execle, execvp, execlp

○ fork() and exec() are system calls
● Other system calls for process management

○ getpid() gets process id
○ exit(int) ends the current process

■ Argument is known as the exit code
■ We can have processes that are no longer running, but not yet

deallocated (Zombie processes)
○ wait() yields the process and returns only when the child

process ends
■ Return value of wait() is the process id of the child that

exited
■ Specify which child to wait for using waitpid(pid_t)

8University of Pittsburgh - CS 0449

9University of Pittsburgh - CS 0449

Process 2

“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

fork()

Creating new processes & programs

10University of Pittsburgh - CS 0449
Chrome.exe

exec*()

Process 1

“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

fork(): creating new processes
● pid_t fork(void)

○ Returns 0 to the child process
○ Returns child’s process ID (PID) to the parent process

● Child is almost identical to parent:
○ Child gets an identical (but separate) copy of the parent’s address space
○ Child has a different PID than the parent

● fork is unique (and often confusing) because it is called once but
returns “twice”

11University of Pittsburgh - CS 0449

Understanding fork()

12University of Pittsburgh - CS 0449

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Understanding fork

13

Process X
(parent) pid_t pid = fork();

if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Process Y (child)
pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Understanding fork

14

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid = Y pid = 0

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Process X (parent) Process Y (child)

hello from parent hello from child

Which one appears first?

Modeling fork() with process graphs
● A process graph is a useful tool for capturing the partial ordering

of statements in a concurrent program
○ Each vertex is the execution of a statement
○ a → b means a happens before b
○ Edges can be labeled with current value of variables
○ printf vertices can be labeled with output
○ Each graph begins with a vertex with no in edges

15University of Pittsburgh - CS 0449

Fork example

● Both processes continue/start execution after fork
○ Child starts at instruction after the call to fork (storing into pid)

● Can’t predict execution order of parent and child
● Both processes start with x=1

○ Subsequent changes to x are independent

16University of Pittsburgh - CS 0449

void fork1() {
 int x = 1;
 pid_t pid = fork();
 if (pid == 0)

printf("Child has x = %d\n", ++x); // child only
 else

printf("Parent has x = %d\n", --x); // parent only
 printf("Bye from process %d with x = %d\n", getpid(), x); // both
}

17

void fork1() {
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) printf("Child has x = %d\n", ++x);
 else printf("Parent has x = %d\n", --x);
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

Modeling fork() with process graphs

As long as C comes before BC
and P comes before BP

C BC P BP
P BP C BP
C P BC BP
C P BP BC
C BC BP P
P BC C BP Not possible!

Seq 1:
L0
L1
Bye
Bye
Bye
L2

PEV: Is the following sequence of outputs possible?

18University of Pittsburgh - CS 0449

void nestedfork() {
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

19University of Pittsburgh - CS 0449

PEV: Are the following sequences of outputs possible?

20

void nestedfork() {
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

Seq 1:
L0
L1
Bye
Bye
Bye
L2

University of Pittsburgh - CS 0449

NO!

Fork bombs 💣
● A Fork bomb (AKA rabbit virus, or wabbit)

○ is a denial-of-service attack
○ wherein a process continually replicates itself to deplete available system

resources
○ while(true) { fork(); }

● :(){ :|:& };: ← This is all you need for a fork bomb

○ https://en.wikipedia.org/wiki/Fork_bomb

● Try experimenting on your own machine
○ Preferably on a virtual machine
○ Worst case scenario, you just reboot your machine!

● That being said, if you fork bomb Thoth, your access to it will be
revoked
○ And you will need access for other courses (e.g., 1550)

21University of Pittsburgh - CS 0449

https://en.wikipedia.org/wiki/Fork_bomb

Lab 5: Loading &
Forking
Executables and Plugins

22

Now, it’s your turn!
● In lab 5, you will practice:

a. Learn how libraries are loaded dynamically
b. Learn how processes are created

■ Using fork(), exec()
■ And wait()

● Three parts
a. Plugging your code!
b. FORK!
c. Gradescope Questions

23University of Pittsburgh - CS 0449

Collaboration on this lab is allowed and encouraged!

Part A: Plugging your code!
● Read the handout on how function pointers work

○ A function pointer is a variable that stores the address of a function that can later
be called through that function pointer.

● return_type (*pointer_name)(list,of,argument,types);
○ long int (*f_ptr)(int, int);
○ Really useful for general purpose functions!

■ A sort function that can work on any data type
● Works as long you pass in a function that can compare two values of that type

void qsort(void *base, size_t n_elem, size_t elem_size,
int(*compare)(const void *, const void *));

24University of Pittsburgh - CS 0449

Part A: Plugging your code!
● Read the handout on how function pointers work

○ A function pointer is a variable that stores the address of a function that can later
be called through that function pointer.

● return_type (*pointer_name)(list,of,argument,types);
○ long int (*f_ptr)(int, int);
○ Really useful for general purpose functions!

■ A sort function that can work on any data type
● Works as long you pass in a function that can compare two values of that type

void qsort(void *base, size_t n_elem, size_t elem_size,
int(*compare)(const void *, const void *));

25University of Pittsburgh - CS 0449

int compare_ascending(const void *val1, const void *val2) {

// Compares integers

 return *(const int *)val1-*(const int *)val2;

}

If I want to use qsort() on a different
data type (e.g., Strings), all I need to do is,
swap out the comparison function!

Part A: Plugging your code!
● Build a program that accepts a plugin name as a parameter and

executes that plugin.
○ Plugin file will have the name plugin-name.so
○ All Plugin support

■ int initialize()
■ int run()
■ int cleanup()

○ Your program should be run as
■ $./program plugin-name

26University of Pittsburgh - CS 0449

/* Sample Plugin */

int initialize() {

 printf("Initializing plugin\n");

}

int run() {

 printf("Running plugin\n");

}

int cleanup() {

 printf("Cleaning plugin\n");

}

// Create a shared object

gcc plugin.c -o plugin.so -shared

● Create plugin_manager.c that
○ reads the first argument - you may need to format your argument (e.g., “plugin” → ./plugin.so)
○ Loads the shared object
○ Runs initialize(), run(), and cleanup() in that order

To dynamically link libraries you will need to get familiar with
 dlfcn.h functions (see lecture slides for examples)

Dynamic linking requires the -ldl flag when compiling with gcc
(gcc plugin_manager.c … -ldl)

Part B: FORK!
● Forking allows us to expand our programs to multiple processes

○ But how can processes communicate with one another?

■ That is, how do we synchronize processes? ←This is often known as interprocess communication

● Signals are primitive standardized that can be sent to processes
○ By other processes, the OS, etc.

● For example, when you kill a program with ctrl + c, the shell
sends the SIGINT signal to that process

○ Which usually terminates the program

● When you get a segmentation fault, the OS usually sends the
SIGSEGV signal to the process

● However, we can capture the signals to do something else
○ For example, on when the user tries to kill the process (SIGINT) print “No!” and

keep running

27University of Pittsburgh - CS 0449

Part B: FORK!
● Create a program run_on_demand.c that:

○ When it receives signal SIGUSR1,
■ Fork-execs ls

○ When it receives signal SIGUSR2,
■ Fork-execs ls -l a

● When CTRL + c is pressed, the program should print
○ “Leaving gracefully”
○ Then exit

● Remember to synchronize the processes
○ Printing order should be respected
○ The process should “wait” until the ls is complete

28University of Pittsburgh - CS 0449

Sample Output

Received signal <signal number>.

Running <command>.

<ls output>

Done!

Sample Output

Received signal <signal number>.

Received signal <signal number>.

Running <command>.

<ls output>

<ls output>

Done!

Done!

Testing with signals
● How can we test signals?
● Signals are sent by processes…so we can create a wrapper program

that tests our run_on_demand program
○ For example:

29University of Pittsburgh - CS 0449

pid_t pid = fork();

if (pid == 0) // child process

 exec("./run_on_demand");

else // parent process

 kill(pid, SIGUSR1); //send

SIGUSR1 to child

This is pseudo-code
● Or we can do so manually:

○ Open up two terminals
○ In terminal 1, run run_on_demand
○ In terminal 2, manually send signals

■ $ kill -s SIGUSR1 pid
■ How do we know pid?
■ $ ps ux gets you the pid of all

process (that you are running)

Part C: Gradescope Questions
● Fork tracing questions + extra
● Good exam practice!

⇒ You must submit:

1. plugin_manager.c
2. run_on_demand.c
3. Answer questions on Gradescope

30University of Pittsburgh - CS 0449

Collaboration on this lab is allowed and encouraged!

