e _*] University of

CS 0449: Introduction to Systems Software | ' Pittsburgh | sgcmeess

and Information

Project 4:
Writing your own shell

Shinwoo Kim

Teaching Assistant
shinwookim@pitt.edu
https://www.pitt.edu/~shk148/

Spring 2023, Term 2234
Friday 12 PM Recitation
5502 Sennott Square
Mar 2nd, 2023

https://sites.pitt.edu/~shk148/CS0449-2234/

Course News!

» Exams

o Exam | grades were returned on March 24th, 2023
m Check your email for class statistics
m Request regrades if needed (this may adjust your grade up or down)

o Exam Il was on March 30th, 2023 during lecture
m Still a few people who haven’t taken it yet...so won’t discuss

» Labs
o Lab 5 (Process Lab) IS NOW due on April 3rd, 2023 @ 11:59 PM EST

» Projects
o Project Ill: Late submission closed on March 27th, 2023 @11:59 PM
EST

m Remember to schedule check-off meetings if you haven’t already
o Project IV was released on March 30th, 2023
m Due: April 10th, 2023 @ 11:59 PM EST

» Poll Everywhere

o www.pollev.com/shinwookim908
o Solutions to recitation questions will be posted on website

University of Pittsburgh - CS 0449

http://www.pollev.com/shinwookim908

PEV: Signals

- @& When poll is active, respond at pollev.com/shinwookim908

Which of the following are TRUE about signals?

SIGKILL can beignored

Users can use custom
signals, like SIGUSR1

SIGSEGV happens when a
child process terminates.

None of the above

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

University of Pittsburgh - CS 0449

Project |V

Writing your own shell

User Applications
Shell

Kernel

The shell

is the outermost layer of the operating system

What’s a shell?

» |t’s the “command line”
» A shellis an application program that runs programs
on behalf of the user.

» Typically a shell is a program that

1. Repeatedly prints a prompt
2. Waits for a command line on stdin
3. Carries out some action (as directed by the contents of the command

line)

» A Read — Evaluate — Print |oop (REPL)

University of Pittsburgh - CS 0449

Some terminology

» A shell is a user interface for accessing an computer
system

» Most often the user interacts with the shell using a
command-line interface (CLI).
» The terminal is a program that opens a graphical

window and lets you interact with the shell.

o Actually this is a terminal emulator or virtual console

o Technically, terminals are physical machines that provides an interface with
a larger machine
m Teletypewriters
m Video display terminals

» |n reality, all these terms are more or less used
interchangeably.

University of Pittsburgh - CS 0449

Many different shells, including your very own!

» There are various different shells that you can use.
o sh - Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

» Most common is the Bourne-Again shell (bash)

o Installed with most Linux distributions
o Just another program — /bin/bash

» Some others include:

o Z-shell (zsh) — /bin/zsh
m Preinstalled for modern MacOS, modern Linux distributions
o PowerShell, COMMAND.COM

m For Windows
m Not a Unix-Shell

o fish/csh, and much more

» For project IV, you will implement your very own shell

o Primitive, yet still functional
o It accomplishes all that needs to be done

University of Pittsburgh - CS 0449

mSh Spec Ifl Catl on Hopefully you can come vp with a good name for your chell that ends with “ch”

Your shell should:

» Print a prompt: “>"

» Read user input

o The command line input by the user consists of a name and zero or
more arguments (delimited by spaces)

> 1s #
> 1s -a #
> exit #

> load better_1ls #

University of Pittsburgh - CS 0449

command: ls; arguments: 1ls
command: ls; arguments: ls, -a
command: exit; arguments: exit

command: load; arguments load, better_ls

msh specification

Your shell should:

» Support built-in commands

o exit: The shell should exit upon receiving this command
o load: The shell should dynamically load a plugin and initialize it

» Support extensioning built-in commands via plugins
o Plugin Interface:
m int initialize()
) Returns 0 on success
m int run(char **argv)
e argv: array of Strings terminated by NULL
o argv = {"1s", "-a", NULL}
e Returns 0 on success
o Throw error message if plugin could not be loaded
Error: Plugin <plugin> initialization failed!
o Once loaded, user should be able to run the extended functionality by
invoking the plugin’s name

University of Pittsburgh - CS 0449 10

msh specification

Your shell should:

» Support extensioning built-in commands via plugins

> broken_better_ls # Not loaded

> load broken better 1ls

Error: Plugin broken better ls initialization failed!
> broken_better_ls # Still not loaded

> better_1ls # Not loaded

> load better_1ls # Success

> better_1ls # Loaded

msh msh.c better 1ls.c better ls.so
>

University of Pittsburgh - CS 0449

11

msh specification

Your shell should:

and pags in arquments

» Allow for instantiating other executables

shk148@thoth $./msh

> vim better _ls.c

> gcc better_ls.c -o better_ls.so -shared

> load better 1ls

> better 1ls

msh msh.c better_ls.c better_ls.so

> exit
shk148@thoth $

University of Pittsburgh - CS 0449

12

msh specification limitations

To simplify your implementation, testing will be limited
to.:
1. Commands will have a maximum size of 200

characters

2. Program names and arguments will have a maximum
size of 20 characters

3. There will be at most 20 arguments

4. Your shell need only support loading upto 10 plugins

University of Pittsburgh - CS 0449 13

Building the shell: Skeleten Shelleton

int main(){

while (TRUE) When do we break out of this loop?

{ /* Infinite Loop for REPL */
PrintCommandPrompt()
cmdLine = readFromStdIn();
cmd = parseCommand(cmdLine);
If (cmd is BuiltInCommand) {executeBuiltInCommand(cmd)};
Else
{ IF the command not a buift-in command, we shovld check if ite a name of an executable file

fork()

// Child process should run the executable

What shouvld the parent process do while the child process is running?
}

} .. This is just one approach to building your shell

University of Pittsburgh - CS 0449 14

Review: C Strings

What does the following program output?

#include <stdio.h>

int main ()

{

char str[25] = "Computersystems";
printf ("%s", str + 8);

return 0;

University of Pittsburgh - CS 0449

15

PEV: C Strings

What does the following code output?

Review: C Strings

What does the following program output?

#include <stdio.h>
int main ()
{
char str[25] = "Computersystems";

printf ("%s", str + 8);

return 9;
University of Pittsburgh - CS 0449 12
Powered hv ‘h Pall Fuervwhere
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

University of Pittsburgh - CS 0449 16

Building the shell: Reading and Parsing Input

Built-in command or path to another execvtable

|
S 1s -1 -a /usr

Command line argoments

» A command goes in —) — a process comes out

o A shell, at its simplest, is a program that reads input from the user
and tries to execute commands.

» We can read in a line of input using fgets()

» Given a user input, we need to categorize it as

o Built in command or
o Name of an executable

» But before we can interpret the input, we need to
tokenize it

"ls -1 -a /usr" /* delimited by * '*/

= {"1ls", "-1", "-a", "/usr"}

University of Pittsburgh - CS 0449 17

man strtok @apridged

» The strtok() function can help tokenize strings
» #include <string.h>

» char *strtok(char *str, const char *delim);

o Breaks string str into a series of tokens using the delimiter delim.

o Returns a pointer to the next token, or NULL if there are no more
tokens.

» Called in one of two ways:

1. strtok(str, d) // starts processing a new string
2. strtok(NULL, d) // continue processing a string

University of Pittsburgh - CS 0449

18

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){
char str[] = "I:love-programming";
char delim[] = "-:";
char *token;

token = strtok(str, delim);

printf("%s\n", token);

return 0;

University of Pittsburgh - CS 0449

$./strtok _example

I

What will be printed?

19

A strtok() example

$./strtok _example

I

I 6 But the cecond token should be ‘love”

#include <stdio.h>

#include <string.h>

int main(){
char str[] = "I:love-programming";
char delim[] = "-:";
char *token;
token = strtok(str, delim);
printf("%s\n", token);
token = strtok(str, delim);

printf("%s\n", token); - What will be printed?

return 0;

University of Pittsburgh - CS 0449

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){
char str[] = "I:love-programming";
char delim[] = "-:";
char *token;
token = strtok(str, delim);
printf("%s\n", token);
token = strtok(NULL, delim);

printf("%s\n", token); -

return 0;

University of Pittsburgh - CS 0449

$./strtok _example

I
love

How can we print the remaining tokene?

What will be printed?

21

A strtok() example

char* s = “See the red fox”;
char* s =| s | e | e t | h| e r|le|d f | o| x | \©
char* t = strtok(s, " ");
char* s =/ S| e | e |[\o|t | h|e rfe|d f | o| x | \@
- char* t = strtok(NULL, " ");
char* s =| s | e | e | \0O ,t h | e |\@| r | e | d f | o| x | \©
t char* t = strtok(NULL, " ");

char* s =| s e e | \0| t h e |[\@| r e d | \0o| f o) x | \0

<«

char* t = strtok(NULL, " "); .

char* s =| s e e | \0| t h e [\@| r e d | \0| f o) X | \0

char* t = strtok(NULL, " ");

t - NULL

» strtok() changes the string that has been parsed!

University of Pittsburgh - CS 0449

idem-po-tent

» The strtok() function exhibits some weird behavior

o strtok() changes the string that has been parsed
o Replacing the character in place with a null terminator ('\0")

» strtok() produces different results when called

multiple times

o It’s a non-idempotent function
m Which has side effects.

» |n comparison, functions that have no side effects are
called idempotent.

X = 2; // Assignment operations are

X = 2; // idempotent

X 2;

X = 2; // Calling it multiple times

X = 2; // always produces the same result

University of Pittsburgh - CS 0449 23

man strtok #NOTES-AND-BUGS

» Be cautious when using these functions. If you do

use them, note that:

o These functions modify their first argument.
o These functions cannot be used on constant strings.
o The identity of the delimiting byte is lost.

» For instance, if you try

o strtok(“String Constant”, delim)
o Segmentation fault! (attempting to write to a literal)

University of Pittsburgh - CS 0449

24

Still unsure? Read the man pages!

S man strtok

» What arguments does the function take?
o read SYNOPSIS

» What does the function do?
o read DESCRIPTION

» What does the function return?
o read RETURN VALUES

» What errors can the function fail with?
o read ERRORS

» |s there anything | should watch out for?
o read NOTES

» | want an example

o read EXAMPLES
o https://pitt.edu/~shk148/teaching/CS0®449-2234/code/strtok.c.html

University of Pittsburgh - CS 0449

25

https://sites.pitt.edu/~shk148/teaching/CS0449-2234/code/strtok.c.html

strtok() vs strsep()

» Alternatively, you can use strsep()

o #include <string.h>
o char *strsep(char **stringp, const char *delim);

» A replacement for strtok()

» But not all C versions support it

o For instance, ANSI-C does not support strtok()
o Hence, it is less portable

» You may use either strsep() or strtok() in this

project
o Read the documentation (man strsep) to see how each work!

University of Pittsburgh - CS 0449

26

Building the shell: Executing command

» Once we've tokenized the input, we can use standard

C-string functions to compare
o strcmp() and friends

» |f the keyword matches a built-in command
o Run it!
o Some functionalities may require dynamically loading plugins
m Just as you did for lab 5

» |f the keyword is unknown,

o It’s probably the name of an executable
o So run it!
m fork() and friends

o exec*()
o wait()

University of Pittsburgh - CS 0449

27

Building the shell: Executing command

» Once we’ve tokenized the input, we can use standard

C-string functions to compare
o strcmp() and friends
» |f the keyword matches a built-in command
o Run it!
o Refer tolab 5 on how to dynamically load plugins
» |f the keyword is unknown,

o It’s probably the name of an executable
o So run it!
m fork() and friends

University of Pittsburgh - CS 0449

28

Building the shell: Executing command

{"1ls", "-1", "-a", "/usr"}

» Once we’ve tokenized the input, we can use standard

C-string functions to compare
o strcmp() and friends

» |f the keyword matches a built-in command
1. exit = Exit the program

2. load = Dynamically load plugins (just like lab 5)

m Since our shell needs to support dynamically loading multiple plugins
e Devise some data structure to store them
e Create helper functions to add and access plugins

University of Pittsburgh - CS 0449 29

Building the shell: Executing command

» |f the keyword does not match a built-in command
» Check if it’s a plugin

o and run it
» |If it’s not a plugin

o It must be an executable name

o fork(), exec*(), and their friends!
m Make sure to use the correct exec*() function
m And correctly pass in arguments

University of Pittsburgh - CS 0449

30

Implementation Hints

1. When multiprogramming with fork()s
o Think about the order in which processes need to run
o Does a process need to wait for another?

2. String parsing is weird and hard

o Especially since the standard functions exhibits odd behavior
o Carefully read the documentation
o Verify output before moving onto next step

3. There is a lot to program

o Break your program down into smaller functions
o readInput(), parseInput(), runBuiltIn(), ...
o To pass values between functions, you have to store them in the heap!

> Since this project requires access to many standard
library functions, we highly recommend developing

on Thoth or another Linux machine

o And plan for outages!
> Back-up frequently (to your local machine)

University of Pittsburgh - CS 0449

Implementation Challenges

1. This project ties in everything you’ve learned so far
o C programming & debugging
> See LabO0 (Hello lab)
o C-Strings and standard library functions
> See Project | (BMP Steganography) for a guide
o Maintaining data structures in C
> Lab3 (Queue lab)
o Pointers and management of memory
> See Lab2 (Pointer lab), Project Il (Malloc)
o Process management and dynamic loading
> See Lab5 (Loading and Forking)

2. One common issue: Memory leaks

o Not maintaining pointers
o malloc() without free()
o Test your code for memory leaks using valgrind!

University of Pittsburgh - CS 0449

32

Implementation Challenges

2. One common issue: Memory leaks

o Not maintaining pointers
o malloc() without free()
o Test your code for memory leaks using valgrind!

$ valgrind --leak-check=full --show-leak-kinds=all ./msh

HEAP SUMMARY:

==630754== in use at exit: 3,683 bytes in 6 blocks

==630754== total heap usage: 8 allocs, 2 frees, 5,731 bytes allocated

==630754==

==630754== |820 (808 direct, 12 indirect) bytes in 1 blocks are definitely lost in loss record 4 of 5
==630754== at 0x484DA83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-1linux.so)
==630754== by 0x10981F: get_user_input (luis.c:134)

==630754== by 0x1097D7: main (luis.c:124)

==630754==

==630754== (2,050 bytes in 2 blocks are definitely lost in loss record 5 of 5

==630754== at Ox484DA83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-1inux.so)
==630754== by 0x10983A: get_user_input (luis.c:137)

==630754== by 0x1097D7: main (luis.c:124)

==630754==

==630754== LEAK SUMMARY:

==630754== definitely lost: 2,858 bytes in 3 blocks

==630754== indirectly lost: 12 bytes in 1 blocks -

==630754== possibly lost: @ bytes in @ blocks

==630754== still reachable: 813 bytes in 2 blocks

==630754== suppressed: O bytes in @ blocks

University of Pittsburgh - CS 0449

33

Debugging

» Debugging this project is hard
o So many functionalities to look out for

m So many places to go wrong
m So many places to shoot yourself in the foot

o Measure twice, cut once!
» This project is fairly open-ended in its
implementation

o You should be able to explain your own code!
O “I wrofe it and it sort of works, but I don't know why” — BAD!

GDB: GNU Debugger Valgrind Memcheck
“the archer fish is known to shoot down "hunting down heap memory errors
bugs from low hanging plants by spitting with...origami?"

water at them" -- Jamie Guinan

www.gnu.org/software/gdb/ valgrind.org

University of Pittsburgh - CS 0449

Works Referred

» Creative Commons photography courtesy of Arnold
Reinhold and technikum?29 via the Wikimedia
Foundations

» strtok() examples adapted from Weber State
University

University of Pittsburgh - CS 0449

35

https://icarus.cs.weber.edu/~dab/cs1410/textbook/8.Strings/strtok.html
https://icarus.cs.weber.edu/~dab/cs1410/textbook/8.Strings/strtok.html

