
1

Project 4:
Writing your own shell

Shinwoo Kim
Teaching Assistant
shinwookim@pitt.edu
https://www.pitt.edu/~shk148/

Spring 2023, Term 2234
Friday 12 PM Recitation
5502 Sennott Square
Mar 2nd, 2023

CS 0449: Introduction to Systems Software

https://sites.pitt.edu/~shk148/CS0449-2234/

Course News!

▶ Exams
○ Exam I grades were returned on March 24th, 2023

■ Check your email for class statistics
■ Request regrades if needed (this may adjust your grade up or down)

○ Exam II was on March 30th, 2023 during lecture
■ Still a few people who haven’t taken it yet…so won’t discuss

▶ Labs
○ Lab 5 (Process Lab) IS NOW due on April 3rd, 2023 @ 11:59 PM EST

▶ Projects
○ Project III: Late submission closed on March 27th, 2023 @11:59 PM

EST
■ Remember to schedule check-off meetings if you haven’t already

○ Project IV was released on March 30th, 2023
■ Due: April 10th, 2023 @ 11:59 PM EST

▶ Poll Everywhere
○ www.pollev.com/shinwookim908
○ Solutions to recitation questions will be posted on website

2University of Pittsburgh - CS 0449

http://www.pollev.com/shinwookim908

PEV: Signals

3University of Pittsburgh - CS 0449

Project IV
Writing your own shell

4

The shell
is the outermost layer of the operating system

5

Kernel

Shell

User Applications

Hardware

What’s a shell?

▶ It’s the “command line”
▶ A shell is an application program that runs programs

on behalf of the user.
▶ Typically a shell is a program that

1. Repeatedly prints a prompt
2. Waits for a command line on stdin
3. Carries out some action (as directed by the contents of the command

line)

▶ A Read → Evaluate → Print loop (REPL)

6University of Pittsburgh - CS 0449

Some terminology

▶ A shell is a user interface for accessing an computer
system

▶ Most often the user interacts with the shell using a
command-line interface (CLI).

▶ The terminal is a program that opens a graphical
window and lets you interact with the shell.

○ Actually this is a terminal emulator or virtual console
○ Technically, terminals are physical machines that provides an interface with

a larger machine
■ Teletypewriters
■ Video display terminals

▶ In reality, all these terms are more or less used
interchangeably.

7University of Pittsburgh - CS 0449

Many different shells, including your very own!

▶ There are various different shells that you can use.
○ sh – Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

▶ Most common is the Bourne-Again shell (bash)
○ Installed with most Linux distributions
○ Just another program → /bin/bash

▶ Some others include:
○ Z-shell (zsh) → /bin/zsh

■ Preinstalled for modern MacOS, modern Linux distributions

○ PowerShell, COMMAND.COM
■ For Windows
■ Not a Unix-Shell

○ fish/csh, and much more

▶ For project IV, you will implement your very own shell
○ Primitive, yet still functional
○ It accomplishes all that needs to be done

8University of Pittsburgh - CS 0449

msh specification Hopefully you can come up with a good name for your shell that ends with “-sh”

Your shell should:

▶ Print a prompt: “>”
▶ Read user input

○ The command line input by the user consists of a name and zero or
more arguments (delimited by spaces)

> ls # command: ls; arguments: ls

> ls -a # command: ls; arguments: ls, -a

> exit # command: exit; arguments: exit

> load better_ls # command: load; arguments load, better_ls

9University of Pittsburgh - CS 0449

msh specification

Your shell should:

▶ Support built-in commands
○ exit: The shell should exit upon receiving this command
○ load: The shell should dynamically load a plugin and initialize it

▶ Support extensioning built-in commands via plugins
○ Plugin Interface:

■ int initialize()
● Returns 0 on success

■ int run(char **argv)
● argv: array of Strings terminated by NULL

○ argv = {"ls", "-a", NULL}
● Returns 0 on success

○ Throw error message if plugin could not be loaded
Error: Plugin <plugin> initialization failed!

○ Once loaded, user should be able to run the extended functionality by
invoking the plugin’s name

10University of Pittsburgh - CS 0449

msh specification

Your shell should:

▶ Support extensioning built-in commands via plugins

> broken_better_ls # Not loaded
> load broken_better_ls
Error: Plugin broken_better_ls initialization failed!
> broken_better_ls # Still not loaded
> better_ls # Not loaded
> load better_ls # Success
> better_ls # Loaded
msh msh.c better_ls.c better_ls.so
>

11University of Pittsburgh - CS 0449

msh specification

Your shell should:

▶ Allow for instantiating other executables and pass in arguments

shk148@thoth $./msh
> vim better_ls.c
> gcc better_ls.c -o better_ls.so -shared
> load better_ls
> better_ls
msh msh.c better_ls.c better_ls.so
> exit
shk148@thoth $

12University of Pittsburgh - CS 0449

msh specification limitations

To simplify your implementation, testing will be limited
to:

1. Commands will have a maximum size of 200
characters

2. Program names and arguments will have a maximum
size of 20 characters

3. There will be at most 20 arguments
4. Your shell need only support loading upto 10 plugins

13University of Pittsburgh - CS 0449

Building the shell: Skeleton Shelleton

int main(){

while (TRUE)

{ /* Infinite Loop for REPL */

 PrintCommandPrompt()

 cmdLine = readFromStdIn();

 cmd = parseCommand(cmdLine);

 If (cmd is BuiltInCommand) {executeBuiltInCommand(cmd)};

 Else

 {

 fork()

 // Child process should run the executable

 }

}

}

14University of Pittsburgh - CS 0449

…This is just one approach to building your shell

If the command not a built-in command, we should check if it’s a name of an executable file

When do we break out of this loop?

What should the parent process do while the child process is running?

Review: C Strings

What does the following program output?

15University of Pittsburgh - CS 0449

#include <stdio.h>

int main ()

{

 char str[25] = "Computersystems";

 printf ("%s", str + 8);

 return 0;

}

PEV: C Strings

16University of Pittsburgh - CS 0449

Building the shell: Reading and Parsing Input

▶ A command goes in → 📦 → a process comes out
○ A shell, at its simplest, is a program that reads input from the user

and tries to execute commands.

▶ We can read in a line of input using fgets()
▶ Given a user input, we need to categorize it as

○ Built in command or
○ Name of an executable

▶ But before we can interpret the input, we need to
tokenize it

"ls -l -a /usr" /* delimited by ‘ ’*/

⇒ {"ls", "-l", "-a", "/usr"}

17University of Pittsburgh - CS 0449

Built-in command or path to another executable

$ ls -l -a /usr

Command line arguments

man strtok abridged

▶ The strtok() function can help tokenize strings
▶ #include <string.h>
▶ char *strtok(char *str, const char *delim);

○ Breaks string str into a series of tokens using the delimiter delim.
○ Returns a pointer to the next token, or NULL if there are no more

tokens.

▶ Called in one of two ways:
1. strtok(str, d) // starts processing a new string
2. strtok(NULL, d) // continue processing a string

18University of Pittsburgh - CS 0449

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

 char str[] = "I:love-programming";

 char delim[] = "-:";

 char *token;

 token = strtok(str, delim);

 printf("%s\n", token);

 return 0;

}

19University of Pittsburgh - CS 0449

What will be printed?

$./strtok_example

I

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

 char str[] = "I:love-programming";

 char delim[] = "-:";

 char *token;

 token = strtok(str, delim);

 printf("%s\n", token);

 token = strtok(str, delim);

 printf("%s\n", token);

 return 0;

}

20University of Pittsburgh - CS 0449

What will be printed?

$./strtok_example

I
🤔 But the second token should be “love”I

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

 char str[] = "I:love-programming";

 char delim[] = "-:";

 char *token;

 token = strtok(str, delim);

 printf("%s\n", token);

 token = strtok(NULL, delim);

 printf("%s\n", token);

 return 0;

}

21University of Pittsburgh - CS 0449

What will be printed?

$./strtok_example

I
love

How can we print the remaining tokens?

A strtok() example

22University of Pittsburgh - CS 0449

S e e t h e r e d f o x \0 …char* s =

S e e \0 t h e r e d f o x \0 …char* s =

S e e \0 t h e \0 r e d f o x \0 …char* s =

S e e \0 t h e \0 r e d \0 f o x \0 …char* s =

S e e \0 t h e \0 r e d \0 f o x \0 …char* s =

char* t = strtok(s, " ");

t

t

t

t

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

t → NULL

▶ strtok() changes the string that has been parsed!

char* s = “See the red fox”;

idem· po· tent

▶ The strtok() function exhibits some weird behavior
○ strtok() changes the string that has been parsed
○ Replacing the character in place with a null terminator ('\0')

▶ strtok() produces different results when called
multiple times
○ It’s a non-idempotent function

■ Which has side effects.

▶ In comparison, functions that have no side effects are
called idempotent.

x = 2; // Assignment operations are
x = 2; // idempotent
x = 2;
x = 2; // Calling it multiple times
x = 2; // always produces the same result

23University of Pittsburgh - CS 0449

▶ Be cautious when using these functions. If you do
use them, note that:
○ These functions modify their first argument.
○ These functions cannot be used on constant strings.
○ The identity of the delimiting byte is lost.

▶ For instance, if you try
○ strtok(“String Constant”, delim)
○ Segmentation fault! (attempting to write to a literal)

man strtok #NOTES-AND-BUGS

24University of Pittsburgh - CS 0449

Still unsure? Read the man pages!

$ man strtok

▶ What arguments does the function take?
○ read SYNOPSIS

▶ What does the function do?
○ read DESCRIPTION

▶ What does the function return?
○ read RETURN VALUES

▶ What errors can the function fail with?
○ read ERRORS

▶ Is there anything I should watch out for?
○ read NOTES

▶ I want an example
○ read EXAMPLES
○ https://pitt.edu/~shk148/teaching/CS0449-2234/code/strtok.c.html

25University of Pittsburgh - CS 0449

https://sites.pitt.edu/~shk148/teaching/CS0449-2234/code/strtok.c.html

strtok() vs strsep()

▶ Alternatively, you can use strsep()
○ #include <string.h>
○ char *strsep(char **stringp, const char *delim);

▶ A replacement for strtok()
▶ But not all C versions support it

○ For instance, ANSI-C does not support strtok()
○ Hence, it is less portable

▶ You may use either strsep() or strtok() in this
project
○ Read the documentation (man strsep) to see how each work!

26University of Pittsburgh - CS 0449

Building the shell: Executing command

▶ Once we’ve tokenized the input, we can use standard
C-string functions to compare
○ strcmp() and friends

▶ If the keyword matches a built-in command
○ Run it!
○ Some functionalities may require dynamically loading plugins

■ Just as you did for lab 5

▶ If the keyword is unknown,
○ It’s probably the name of an executable
○ So run it!

■ fork() and friends
● exec*()

○ wait()

27University of Pittsburgh - CS 0449

Building the shell: Executing command

▶ Once we’ve tokenized the input, we can use standard
C-string functions to compare
○ strcmp() and friends

▶ If the keyword matches a built-in command
○ Run it!
○ Refer to lab 5 on how to dynamically load plugins

▶ If the keyword is unknown,
○ It’s probably the name of an executable
○ So run it!

■ fork() and friends

28University of Pittsburgh - CS 0449

Building the shell: Executing command

{"ls", "-l", "-a", "/usr"}

▶ Once we’ve tokenized the input, we can use standard
C-string functions to compare
○ strcmp() and friends

▶ If the keyword matches a built-in command
1. exit ⇒ Exit the program
2. load ⇒ Dynamically load plugins (just like lab 5)

■ Since our shell needs to support dynamically loading multiple plugins
● Devise some data structure to store them
● Create helper functions to add and access plugins

29University of Pittsburgh - CS 0449

Building the shell: Executing command

▶ If the keyword does not match a built-in command
▶ Check if it’s a plugin

○ and run it

▶ If it’s not a plugin
○ It must be an executable name
○ fork(), exec*(), and their friends!

■ Make sure to use the correct exec*() function
■ And correctly pass in arguments

30University of Pittsburgh - CS 0449

Implementation Hints

1. When multiprogramming with fork()s
○ Think about the order in which processes need to run
○ Does a process need to wait for another?

2. String parsing is weird and hard
○ Especially since the standard functions exhibits odd behavior
○ Carefully read the documentation
○ Verify output before moving onto next step

3. There is a lot to program
○ Break your program down into smaller functions
○ readInput(), parseInput(), runBuiltIn(), …
○ To pass values between functions, you have to store them in the heap!

➢ Since this project requires access to many standard
library functions, we highly recommend developing
on Thoth or another Linux machine
○ And plan for outages!

➢ Back-up frequently (to your local machine)

31University of Pittsburgh - CS 0449

Implementation Challenges

1. This project ties in everything you’ve learned so far
○ C programming & debugging

➢ See Lab0 (Hello lab)

○ C-Strings and standard library functions
➢ See Project I (BMP Steganography) for a guide

○ Maintaining data structures in C
➢ Lab3 (Queue lab)

○ Pointers and management of memory
➢ See Lab2 (Pointer lab), Project II (Malloc)

○ Process management and dynamic loading
➢ See Lab5 (Loading and Forking)

2. One common issue: Memory leaks
○ Not maintaining pointers
○ malloc() without free()
○ Test your code for memory leaks using valgrind!

32University of Pittsburgh - CS 0449

Implementation Challenges

2. One common issue: Memory leaks
○ Not maintaining pointers
○ malloc() without free()
○ Test your code for memory leaks using valgrind!

$ valgrind --leak-check=full --show-leak-kinds=all ./msh

33University of Pittsburgh - CS 0449

HEAP SUMMARY:
==630754== in use at exit: 3,683 bytes in 6 blocks
==630754== total heap usage: 8 allocs, 2 frees, 5,731 bytes allocated
==630754==
==630754== 820 (808 direct, 12 indirect) bytes in 1 blocks are definitely lost in loss record 4 of 5
==630754== at 0x484DA83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so)
==630754== by 0x10981F: get_user_input (luis.c:134)
==630754== by 0x1097D7: main (luis.c:124)
==630754==
==630754== 2,050 bytes in 2 blocks are definitely lost in loss record 5 of 5
==630754== at 0x484DA83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so)
==630754== by 0x10983A: get_user_input (luis.c:137)
==630754== by 0x1097D7: main (luis.c:124)
==630754==
==630754== LEAK SUMMARY:
==630754== definitely lost: 2,858 bytes in 3 blocks
==630754== indirectly lost: 12 bytes in 1 blocks
==630754== possibly lost: 0 bytes in 0 blocks
==630754== still reachable: 813 bytes in 2 blocks
==630754== suppressed: 0 bytes in 0 blocks

Debugging

▶ Debugging this project is hard
○ So many functionalities to look out for

■ So many places to go wrong
■ So many places to shoot yourself in the foot

○ Measure twice, cut once!

▶ This project is fairly open-ended in its
implementation
○ You should be able to explain your own code!

○ “ I wrote it and it sort of works, but I don’t know why” ←BAD!

34University of Pittsburgh - CS 0449

Works Referred

▶ Creative Commons photography courtesy of Arnold
Reinhold and technikum29 via the Wikimedia
Foundations

▶ strtok() examples adapted from Weber State
University

35University of Pittsburgh - CS 0449

https://icarus.cs.weber.edu/~dab/cs1410/textbook/8.Strings/strtok.html
https://icarus.cs.weber.edu/~dab/cs1410/textbook/8.Strings/strtok.html

