
CS 0449: Introduction to Systems Software

Multi-file Development:
Writing Makefiles
Shinwoo Kim
Teaching Assistant
shinwookim@pitt.edu
https://www.pitt.edu/~shk148/

https://www.pitt.edu/~shk148/

News

▶ Project 4
○ New deadline: Tuesday, April 11th 2023 23:59 ET

▶ Final Exam
○ See schedule on PeopleSoft

▶ Exam II
○ Grading In progress …

Compilation using gcc

▶ In this course, you’ve been using the GNU C Compiler (GCC) to compile your
C source code into machine code
○ gcc -Wall hello.c -o hello

▶ This is fine, but what if you have to compile multiple files?
○ gcc plugin1.c -o plugin1.so -shared
○ gcc plugin2.c -o plugin2.so -shared
○ …
○ gcc plugin_manager.c -o plugin_manager.so

▶ But what about even larger projects?
○ The Linux operating system requires you to compile thousands of source files
○ Might take a couple of hours to compile some files…Will you just sit there and wait until it finishes?

▶ Can we automate compilation?

Makefile 101
Don’t read this: https://www.gnu.org/software/make/manual/make.html

Unless you really want to :)

Slides provided by Luis Oliveira

Apologies for the back-and-forth theme switches

https://www.gnu.org/software/make/manual/make.html

Make!

•What is make?
• It’s a program that describes the relationship amongst files in your

program!
• https://www.gnu.org/software/make/manual/make.html#Overview

• If done properly, it can detect which files on your software project were
changed. And it can recompile [only!] those files and any other pieces
of code that depend on them.

• Saves time in LARGE projects!

•How does it work?
• The relationships are described in a file named “Makefile” [by default]

• You can name it differently, but it’s not current practice!
• https://www.gnu.org/software/make/manual/make.html#Makefile-Names

• Make will look into that file, and follow the rules described therein

Compiling efficiently and effectively

▶ Makefiles allow us to automate and optimize the compiling process
▶ Allows us to automatically recompile (or rebuild) only the files that have been

modified
○ Compares the last-modified timestamp to the last-compiled timestamp

▶ Allows us to compile multiple files quickly and simply with a single command
(make)

▶ Allows us to create custom settings that can be used to build with different
options
○ make x86
○ make arm
○ make linux
○ make force

You’ve used Makefiles before…Queue Lab! Malloc Project!

Rules

•Rules specify how to make files
• How to make a file is specified by a recipe

• Made files are called targets

• Targets have prerequisite

• Dependencies can be made by another rule :s

target: prerequisites

 recipe

prog: main.o

gcc –o prog main.o

main.o: main.c

gcc –c main.c

Target main depends on main.o (that
is created by another rule) and it’s
made by invoking gcc –o prog
main.o

Because the Makefile has a rule to
generate main.o…
But you still need main.c

Exercising

•Write a Makefile with only the prog rule and try to “make prog”

prog: main.o

gcc –o prog main.o

Output:

cc -c -o main.o main.c

gcc -o prog main.o
What???
It looks like make knows how to generate
object files… It has some implicit rules
But we have no control this way!

Make sure you use TABS, not
SPACES!

→
|

Getting some control: Rules with patterns

•We can create implicit rules, for example, how to generate an object
file from a C file:

%.o: %.c

gcc –c $< -o $@

What the???

These rules need to have a single %.
The % function is simple! (I promise)
This rule matches any file that ends in “.c” and will
create a file with the same name with extension “.o”
For example main.c ⇒ main.o

What about
these?

Well…

•Since we don’t know the name of the file being generated or it’s
dependencies, we need to use the make’s magical Automatic Variables:

•So, when I need main.o, we execute:
• gcc -c main.c -o main.o

•Check this if you find an unknown variable being used:
• https://www.gnu.org/software/make/manual/make.html#Automatic-Variables

%.o: %.c

gcc –c $< -o $@

$< ⇒ The name of the first prerequisite: whatever.c
$@ ⇒ The name of the target: whatever.o

Checkpoint: Basic C Makefile

•Give it a try, edit the Makefile:

• It seems there is nothing to do?
• Well… if you have building up to this point, you already have prog made…

• Add a rule to clean up the files you generated:

prog: main.o
gcc –o prog main.o

%.o: %.c
gcc –c $< -o $@

$ make
make: 'prog' is up to date.

clean:
rm –f prog main.o

Checkpoint: Basic C Makefile

•Give it a try:

prog: main.o
gcc –o prog main.o

%.o: %.c
gcc –c $< -o $@

clean:
rm –f prog main.o

$ make
make: 'prog' is up to date.
$ make clean
rm -f prog main.o
$ make prog
gcc -c main.c -o main.o
gcc -o prog main.o

Variables

•Say I want to compile my code with some compilation flags
gcc –Wall –g –O2 –c main.c –o prog
• I could write a Makefile like this:

• But to make is more easily modifiable I could write it like this:

•Give it a try, and modify your Makefile
• Then change the optimization flag from -O2 to -O0

prog: main.o
gcc –o prog main.o

%.o: %.c
gcc –Wall –g –O2 –c $< -o $@

CFLAGS := –Wall –g –O2
prog: main.o

gcc –o prog main.o
%.o: %.c

gcc $(CFLAGS) –c $< -o $@

Live Demo
Wow that’s some big font

Your Turn
Recitation Website: Practice Lab

http://pitt.edu/~shk148/teaching/CS0449-2234/Makefile-lab.html

No submission…but you will need to write a Makefile for project 4 (and submit it!)

http://pitt.edu/~shk148/teaching/CS0449-2234/Makefile-lab.html

Reference Slides
Courtesy of TA Jake

Kasper

Sample C Programs

int main(int argc, char** argv){
int num = 1;
num = add_five(num);
print_num(num);

}

#include <stdio.h>
void print_num(int num){

printf(“Your number is: %d\n”, num);
}

int add_five(int num){
return num + 5;

}

Main.c

file3.c file2.c

The Makefile

The Makefile

all: exe

The first thing we want to do
is specify the ‘all’ rule, which
is executed when someone
types ‘make’ into the shell

Think of it as your int main()
for a makefile

Also note that the ‘all’ rule
has a prerequisite, which is
the executable file called
‘exe’

The Makefile

all: exe

exe: Next, we need to tell the
makefile how to construct
the exe executable

Thus, we’ll add in a rule
telling the makefile how we
should do this.

The Makefile

all: exe

exe: ?Next, we need to tell the
makefile how to construct
the exe executable

Thus, we’ll add a rule in
telling the makefile how we
should do this.

What prerequisites does our
executable need to be able
to function properly?

The Makefile

all: exe

exe: main.o file2.o file3.oThe executable is going to
depend on all of the object
files we need to link
together

Specifically, this means exe
is going to depend on
main.o, file2.o, and file3.o

We’ll tell the makefile that
these files are the
prerequisites for exe

The Makefile

all: exe

exe: main.o file2.o file3.o

main.o:

file2.o:

file3.o:

Next, we need to tell the
Makefile how to generate
each of these 3 object files

We can add rules for main.o,
file2.o, and file3.o

Once again, we need to
consider the dependencies
for each of these files…

What do they depend on?

The Makefile

all: exe

exe: main.o file2.o file3.o

main.o: main.c

file2.o: file2.c

file3.o: file3.c

Well, in order to build a
main.o, we actually need a
main.c file…

However, the main.c file
already exists in the
directory (we’re modifying
it), so we don’t need to
make rules for how to
generate our .c files

So, for each object file, they
will have their c counterpart
as a prerequisite

The Makefile

all: exe

exe: main.o file2.o file3.o

main.o: main.c

file2.o: file2.c

file3.o: file3.c

We have all of our rules… but we
haven’t actually told the makefile how
to make each of these files…

Let’s start with the .o files. In order to
turn the c file into a .o file, we need to
run the command:

gcc -c <fname>.c -o <fname>.o

This goes for all .c files and .o files
we’re trying to generate.

The Makefile

all: exe

exe: main.o file2.o file3.o

main.o: main.c

file2.o: file2.c

file3.o: file3.c

gcc -c <fname>.c -o <fname>.o

Now that we have our compile
command, let’s tell the Makefile to
actually run that command for each
corresponding .c and .o file

The Makefile

all: exe

exe: main.o file2.o file3.o

main.o: main.c

gcc -c main.c -o main.o

file2.o: file2.c

gcc -c file2.c -o file2.o

file3.o: file3.c

gcc -c file3.c -o file3.o

gcc -c <fname>.c -o <fname>.o

Now that we have our compile
command, let’s tell the Makefile to
actually run that command for each
corresponding .c and .o file

This is what the makefile should look
like now that we’ve filled in the rules for
generating our object file.

The Makefile

all: exe

exe: main.o file2.o file3.o

main.o: main.c

gcc -c main.c -o main.o

file2.o: file2.c

gcc -c file2.c -o file2.o

file3.o: file3.c

gcc -c file3.c -o file3.o

Lastly, we need to tell the Makefile how
to generate the executable once all of
the object files have been generated.

To do this, we need to link all of the
objects together into the executable
using the following gcc command:

gcc -o exe main.o file2.o file3.o

Let’s add this to the exe rule

The Makefile

all: exe

exe: main.o file2.o file3.o

gcc -o exe main.o file2.o file3.o

main.o: main.c

gcc -c main.c -o main.o

file2.o: file2.c

gcc -c file2.c -o file2.o

file3.o: file3.c

gcc -c file3.c -o file3.o

Now, our Makefile is
complete! We can run our
makefile in the shell using
the make command.

Let’s try it out:

The Makefile - Compilation

It compiled! But we have some warnings…

Since the main.c file doesn’t have direct access to these functions, we need to be a little more explicit as to not
anger the compiler/linker. Recall one of the special keywords we used when we want to use something
declared in another file…

Fixing the C File

int main(int argc, char** argv){
int num = 1;
num = add_five(num);
print_num(num);

}

Main.c

This was our original source file… but we know there were some warnings
about not knowing what add_five() and print_num() were

Let’s slap in a declaration with our magic keyword

Fixing the C File

extern int add_five(int);
extern void print_num(int);

int main(int argc, char** argv){
int num = 1;
num = add_five(num);
print_num(num);

}

New Main.c

The Makefile - Compilation

Our warnings went away! And better yet, our executable has been generated, and we can now run our program

Running the Make Generated Executable

This output makes sense, given our program

int main(int argc, char** argv){
int num = 1;
num = add_five(num);
print_num(num);

}

Something Special About Makefiles

▶ Makefiles have a very useful feature to them
○ Rules will be run if their prerequisites are “out of date”
○ For example, when making object files, only modified

C files will be recompiled by make
○ This can be very beneficial… but also tricky

■ It saves a lot of compile time by only recompiling
new changes

■ But… some changes, like changes to header files,
won’t allow make to recompile (since we typically
don’t have rules dependent on header files)

Something Special About Makefiles

▶ To use our previous example, if I modify main.c, only
the main.o rule will run to update main.o (and, of
course, the rule to link the files into the executable)

▶ The file2.o and file3.o files will be deemed up to
date, since file2.c and file3.c haven’t changed

▶ If no files have been modified since the last make
command, it will tell you so by saying:

Makefiles - A Less Gentle Introduction

▶ While makefiles have useful functionality, we
still have some issues…

▶ For example, why does our file name start at
file2, and not file1?
○ Well, that was a small mistake…
○ No big issue, we can just change it to be

file1.c and file2.c
○ …right?

An Unfortunate Issue With the Old Makefile

ughh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh

Makefiles - A Less Gentle Introduction

▶ The downside to our Makefile is that all of
the file names and object files were
hardcoded in
○ Meaning, when we change a file name, or

even add a new file, we have to rewrite
our Makefile

EVERY TIME

Optimizing the Makefile

all: exe

exe: main.o file2.o file3.o

gcc -o exe main.o file2.o file3.o

main.o: main.c

gcc -c main.c -o main.o

file2.o: file2.c

gcc -c file2.c -o file2.o

file3.o: file3.c

gcc -c file3.c -o file3.o

Before we get started, let’s
examine the makefile one
more time. All of our object
rules are separate, so if we
add another file, we’d have
to add another individual
rule with individual
commands… which is
tedious.

Let’s combine our object file
rules into one rule.

Optimizing the Makefile

all: exe

exe: main.o file2.o file3.o

gcc -o exe main.o file2.o file3.o

main.o file2.o file3.o: main.c

gcc -c main.c -o main.o

At this point, we’ve gotten
rid of all of the other rules
that basically replicate the
same command. We still
need to modify this new rule
a bit, since we’re still only
using main.c as a
prerequisite and only
compiling main.c. Let’s bring
over the other files and
commands.

Optimizing the Makefile

all: exe

exe: main.o file2.o file3.o

gcc -o exe main.o file2.o file3.o

main.o file2.o file3.o: main.c file2.c file3.c

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

Now the makefile should be
back to working order.

This makes it a very small bit
easier to add new files, but
we still run into the problem
of changing file names.

All of the file names are still
hardcoded into the rule. To
fix this issue, we need to
introduce lists and
wildcards

Makefiles: Lists and Wildcards

▶ Instead of specifying each individual c file, I want the makefile to prune
my directory and find all files ending in .c
○ This solves the problem of being able to find all of the files without

being too explicit in the makefile
▶ Recall a command we’ve seen before (albeit very briefly)

ls *.c

▶ This is a shell command that prints all files in a directory with the .c
extension
○ Which sounds a lot like what we want for our makefile…
○ The * is called a wildcard - it uses a qualifier to do something with

every file that has that qualifier (in this case, .c)

The * Wildcard

▶ We saw about listing all files with a .c extension

ls *.c

▶ We can also use the wildcard to copy all files in a directory

cp my_dir/* my_new_dir

○ This will copy all files in my_dir and place them in
my_new_dir

○ If I only wanted to copy .c files from my_dir, I can use:

cp my_dir/*.c my_new_dir

Makefiles: Lists and Wildcards

▶ Using the * qualifier, we can find every C file
▶ But, we need some kind of variable to store

them in
▶ Makefiles have some interesting syntax,

which is arguably more confusing than C :D
▶ That being said, let’s dissect how we can

declare lists and use wildcards

Makefiles: Lists and Wildcards

SOURCES=$(shell find *.c)

Telling the Makefile to interact with
the shell and run the find *.c
command, then storing the result in
the SOURCES list

SOURCES=$(shell ls *.c)

SOURCES=$(wildcard *.c)

Telling the Makefile to interact with
the shell and run the ls *.c
command, then storing the result in
the SOURCES list

Telling the Makefile to use its own
wildcard function to find files with a
.c extension and storing them in the
SOURCES list

Makefiles: Lists and Wildcards

THESE ALL DO THE SAME THING!

The important thing is that we can
store all of the source files (.c files) in
our SOURCES list

SOURCES=$(shell find *.c) SOURCES=$(shell ls *.c) SOURCES=$(wildcard *.c)

Makefiles: Lists and Wildcards

▶ Now that we have a list of our sources, we
can generate a list of object files we want to
create from the source files

▶ We can do this by doing a similar process,
just replacing the .c extension with a .o
extension

▶ Let’s see how we can do that in a Makefile

Makefiles: Lists and Wildcards

OBJS=$(patsubst %.c, %.o, $(SOURCES))

▶ There’s a lot to unpack here.
▶ Let’s go left to right

○ First, we’re declaring a list called OBJS, which will store our object files
○ Second, we’re using a command that Makefiles have called patsubst,

which takes in 3 arguments
■ The first pattern we want to overwrite (we want to replace the .c)
■ The second pattern we want to overwrite with (replace extension as .o)
■ The values we’re actually trying to overwrite (our .c source file names)

Makefiles: Lists and Wildcards

OBJS=$(patsubst %.c, %.o, $(SOURCES))

▶ The function also introduces a new wildcard, the % symbol
○ This wildcard will essentially find the name of any .c file and

replace all instances of % with that file name
▶ This function will also execute for each file in the SOURCES list

○ We use $(SOURCES) to access every value in our list at
once

Makefiles: Lists and Wildcards

OBJS=$(patsubst %.c, %.o, $(SOURCES))

▶ Consider this scenario:
○ SOURCES is a list containing main.c, file2.c, and file3.c
○ $(SOURCES) = main.c file2.c file3.c

▶ Based on this, the above line will go through each file in
SOURCES, and perform the pattern substitution on the string

▶ Thus, $(OBJS) = main.o file2.o file3.o

Makefiles: Lists Variables and Wildcards

▶ So far, we’ve been saying that SOURCES and OBJS are lists
○ Which is true
○ However, they are more accurately described as just

variables
○ We can also make variables set to be only one value

▶ All variables in Makefiles can be accessed using the
$(var_name) syntax
○ In the case of lists, this evaluates to a concatenation of

every element in the list
○ Think of it as printing the contents of an entire array instead

of accessing each element one by one

Using Variables and Wildcards in the Makefile

all: exe

exe: main.o file2.o file3.o

gcc -o exe main.o file2.o file3.o

main.o file2.o file3.o: main.c file2.c file3.c

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

Revisiting our old makefile,
let’s try to use what we
know about variables to
create a more general and
responsive Makefile.

To do this, we’ll utilize the
SOURCES and OBJS
variables we’ve talked about
so far.

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: main.o file2.o file3.o

gcc -o exe main.o file2.o file3.o

main.o file2.o file3.o: main.c file2.c file3.c

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

Now that the variables are
in, we can replace some of
the rules with our variable
names (since the
prerequisites of the exe rule
are the contents of the OBJS
list and the following rule
are the contents of the OBJS
and SOURCES list)

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

$(OBJS): $(SOURCES)

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

There is still one more
problem we need to resolve.

For the exe rule, we can
replace the object files with
$(OBJS) to make the exe
rule dynamic.

The main issue, however, is
the $(OBJS) rule. All of the
files are still being compiled
manually. To fix this, we’ll
need some more wildcards.

Examining Makefile Wildcards

▶ Let’s look at some wildcards to see how
they’ll be useful to us in our rules
○ @ → filename of the target, or if multiple

targets, name of the target which caused
the rule to execute

○ < → name of the first prerequisite
○ ^ → names of all prerequisites

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

$(OBJS): $(SOURCES)

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

Looking at these wildcards,
trying to write the
instructions for the OBJS
rule seems tricky…

They won’t let us iterate
over each of the
prerequisite and target pairs
like we’d want (for example,
matching main.c and main.o)

So… we’ll need to revisit
something else.

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

?: ?

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

Let’s revisit the % wildcard.

This wildcard performs a
string matching with the
given suffix, then swaps that
matching string into place.

For example, if we have %.c
and the wildcard finds a
main.c file, it replaces
instances of the wildcard
with ‘main’.

So, what if we made our rule
with the % wildcard?

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

%.o: %.c

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

Now, the rule can be
interpreted as:

For all files ending with .c,
make a corresponding .o,
one file at a time

By using the wildcard
instead of a list, we can
compile each individual file
instead of trying to use the
whole list at once. This is the
behavior we want.

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

%.o: %.c

gcc -c main.c -o main.o

gcc -c file2.c -o file2.o

gcc -c file3.c -o file3.o

The final step is to use the
other wildcards we learned
about: ^ and @.

Recall that @ is the name of
the target (in this case, the .o
file) and ^ is the list of all
prerequisites (which, due to
the % wildcard, is only 1 .c
file).

So, let’s replace the
hardcoded file names with
these wildcards.

Using Variables and Wildcards in the Makefile

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

%.o: %.c

gcc -c $^ -o $@

Finally, this is our shiny new
makefile. No matter what
changes we make to
filenames, or however files
we add or remove from our
directory, the simple make
command will be able to
compile our program.

More Functionality

▶ While this Makefile is dynamic, there are still
some more things we can add

▶ Specifically, we need things like C compiler
flags
○ -g, -std=c99, -Wall, -Werror, etc.

▶ We might also want an easy way to clean up
all of the generated object files
○ Using a clean rule

More Functionality - Variables

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

%.o: %.c

gcc -c $^ -o $@

Let’s add in the compiler
flags that we want to
compile our program with.
We’ll make a variable called
CFLAGS and store them
there. Then, when we go to
compile our source files, we
can add these CFLAGS to
the compile command.

More Functionality - Variables

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

all: exe

exe: $(OBJS)

gcc -o exe $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

Now, our Makefile has a
variable where we can set
and change the compiler
flags as needed, without
having to edit the rest of the
contents of the makefile.

Let’s also extend this idea to
the name of the executable.
It might be better practice to
store it in a variable so we
don’t have to change
multiple instances if we want
to alter its name.

More Functionality - Variables

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

all: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

Once again, we’ve made it
easier to be able to alter the
name of the executable
without having to change
more than one line in our
Makefile.

The last thing we might want
to consider is the clean
rule, which will remove the
executable and the object
files to keep the
environment clean.

More Functionality - Clean

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

all: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

clean:

Let’s design our clean
function.

Does the clean function
have any dependencies?

More Functionality - Clean

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

all: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

clean:

Let’s design our clean
function.

Does the clean function
have any dependencies?

Not really, we only want to
delete files if they exist, and
do nothing if they don’t. We
don’t need to build any files
for clean to work.

More Functionality - Clean

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

all: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

clean:

Let’s design our clean
function.

Does the clean function
have any dependencies?

Not really, we only want to
delete files if they exist, and
do nothing if they don’t. We
don’t need to build any files
for clean to work.

What commands should
clean run?

More Functionality - Clean

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

all: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

clean:

rm -f $(TARGET)

rm -f $(OBJS)

Since we’re only trying to
delete object files and the
executable, we can simply
run rm to remove the object
list and the target.

In order to clean our
environment, we can type
make clean into the
command line.

This just about sums up our
basic Makefile!

Our Basic Makefile

▶ This Makefile is a great start
▶ It allows us to have a variable number of C

source files with variable names, and will still
allow us to compile to the executable with a
simple command

▶ But… there’s even more we can do
▶ Before we talk about it, let’s review the C

preprocessor

The C Preprocessor

▶ The C preprocessor comes in before the
compiler and alters the file, basically
performing a search and replace

▶ There’s a ton of stuff we can do with the C
preprocessor, but let’s start with some
simple things
○ Let’s start with a simple integer constant

The C Preprocessor

▶ In general, we dislike “magic numbers” in programming
○ Basically, numbers that come from seemingly nowhere

▶ We can fix this idea by labeling these magic numbers with a
name
○ In this case, replace the magic number 1 with TRUE and the

magic number 0 with FALSE
▶ The C preprocessor will come in before compilation and replace

all instances of TRUE with 1 and all instances of FALSE with 0

#define TRUE 1
#define FALSE 0

The C Preprocessor

▶ We can also extend the use of these “macros”
▶ What if I want to write a min and max function?

○ We can use the C preprocessor to do this without
unnecessary function calls

▶ It uses the preprocessor and ternary operators to
implement a min and max function

#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y))

The C Preprocessor

▶ Let’s apply the preprocessor to debugging
▶ We can create macros that control whether

or not we want to specify debugging prints
▶ If we do want the debugging control, insert

desired print statements into our program
▶ If not, ignore the printf statements

The C Preprocessor - Debugging

#define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)

The C Preprocessor

Define the DEBUG macro

#define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)
#endif

The C Preprocessor

If the debug macro has
been defined, do the next
line (which it is defined)

#define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)
#endif

The C Preprocessor

Define the PDEBUG
macro to be a
replacement for printf.

This syntax says that all
arguments passed to
PDEBUG will be
copy-pasted into printf

#define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)
#endif

The C Preprocessor

#define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)
#endif

If DEBUG was not
defined, then define
PDEBUG to be replaced
with empty text

Basically, PDEBUG will be
replaced with “”, which
won’t print anything

The C Preprocessor - Debugging

#define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)
#endif

// #define DEBUG
#ifdef DEBUG
#define PDEBUG(...) printf(__VA_ARGS__)
#else
#define PDEBUG(...)
#endif

Debug is defined, so print
statements are enabled

Debug is not defined, so
print statements are

disabled

The C Preprocessor

▶ This can obviously be very useful for debugging
▶ We don’t need to constantly add/delete these

statements, we can just use the PDEBUG macro
in place of printf in our code, and define DEBUG
to enable print statements

▶ But, we have to alter and recompile the C file
every time…

▶ Enter, once again, the Makefile

The C Preprocessor and the Makefile

▶ We can actually tell the Makefile to define macros for a C
source file

▶ We can use a gcc compiler flag, -D, to do this
▶ For example, for the DEBUG macro in the previous

example, we can tell make to compile with the flag
-DDEBUG to define the debug macro

▶ We can also tell the compiler what the value of the macro
should be
○ If I wanted the DEBUG macro to have a value of 5, I

can tell gcc -DDEBUG=5

The C Preprocessor and the Makefile

▶ This means that in our C code, we can
remove the initial #define DEBUG

▶ Instead of commenting it out every time, we
can situationally tell the compiler to initialize
it using a rule in the Makefile

▶ Let’s think about how we can do this

More Functionality - Debugging

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

all: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

clean:

rm -f $(TARGET)

rm -f $(OBJS)

This is the Makefile we had
previously. This time, let’s
modify it so that we can
situationally allow
debugging statements.

First, we’ll need a new
variable DEBUG which will
contain the debug flags we
want to use, and a debug
rule that we can call with
make debug

More Functionality - Debugging

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

DEBUG=

all: $(TARGET)

debug:

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS)

clean:

rm -f $(TARGET)

rm -f $(OBJS)

We’ll also need to append
this debug variable onto our
object file compilation rule,
so the debug command will
also get passed in when we
want.

More Functionality - Debugging

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

DEBUG=

all: $(TARGET)

debug:

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS) $(DEBUG)

clean:

rm -f $(TARGET)

rm -f $(OBJS)

Originally, the DEBUG
variable is empty, so that
when the user calls a regular
make, it will never get
initialized, and therefore
never initialize our macro,
which won’t swap PDEBUG
with printfs. We need to
update it’s value in debug

More Functionality - Debugging

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

DEBUG=

all: $(TARGET)

debug: DEBUG=-DDEBUG

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS) $(DEBUG)

clean:

rm -f $(TARGET)

rm -f $(OBJS)

Since we’re not running
shell commands in the
debug rule, we can just tell
debug to change the value
of one of our previously
declared variables.

Now that DEBUG has been
properly set, however, we
need to rebuild the
executable. Thus, we can
add a second stage to the
debug rule telling it to build
the executable, or TARGET

More Functionality - Debugging

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.o, $(SOURCES))

CLFAGS=-g -Wall -std=c99

TARGET=exe

DEBUG=

all: $(TARGET)

debug: DEBUG=-DDEBUG

debug: $(TARGET)

$(TARGET): $(OBJS)

gcc -o $(TARGET) $(OBJS)

%.o: %.c

gcc -c $^ -o $@ $(CFLAGS) $(DEBUG)

clean:

rm -f $(TARGET)

rm -f $(OBJS)

Now, whenever we run
make debug, the DEBUG
macro will be defined, and
print statements will be
enabled.

Whenever we run make,
however, the macro will not
be defined and the print
statements won’t appear.

Drawbacks

▶ As we mentioned before, the makefile will only execute
rules when the source has been modified

▶ This method of debugging enabling, however, doesn’t
modify the source file…

▶ So when we switch between make and make debug, it’s
not going to recompile the program, meaning it won’t
update the value of the DEBUG variable

▶ In order to actually push our changes through, we’ll need
to first make clean to get rid of the old executable, then
run the desired make command

Drawbacks

Notice that in the first example,
we first ran make to generate
the executable. After, we ran
make debug to try to add our
print statements, but the
Makefile told us there was
nothing to be done, and the
print statements weren’t
executed.

In the second example,
however, the opposite was
true.

Drawbacks

Using make clean will
allow the makefile to
generate the
executable with the
proper definition of the
DEBUG macro.

If we want it to work
every time without
using make clean, we
can alter the rules to
execute clean before
trying to make the
target. This does,
however, sacrifice some
of the benefits of
Makefiles.

Last Example - Compiling Shared Objects with a
Makefile

▶ Let’s use our knowledge of makefiles to do
something beneficial to our upcoming
project: let’s write some simple rules that will
allow us to compile shared object files

▶ To do this, let’s add a filesystem that will
hold the .c source files for the shared
objects as well as the resulting .so files

Last Example - Compiling Shared Objects with a
Makefile

▶ Let’s use 2 folders
○ so_sources
○ so_objects

▶ We’ll compile each individual source file in
so_sources to a resulting .so file in
so_objects

▶ For simplicity, we’ll also assume that each
shared object only uses 1 .c file

Makefile For Shared Objects

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.so, $(SOURCES))To start, we’re going to find
our source files and make
object files with a .so

Our makefile is going to
change in the sense that
we’re not making a target
anymore, just the individual
shared object files. So, we’ll
use the wildcard rule to
generate them.

Also, all is only going to
depend on our objects now.

Makefile For Shared Objects

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.so, $(SOURCES))

all: $(OBJS)

%.so: %.c

Now we need to think about the
commands we want to run to generate
the shared object files. If we recall from
Lab 5, we want:

gcc -c <fname>.c -o <fname>.so -shared

So, we’ll use a similar setup to our old
object file rule, just modifying the
command slightly to match the one
above.

Makefile For Shared Objects

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.so, $(SOURCES))

all: $(OBJS)

%.so: %.c

gcc -c $^ -o $@ -shared

That should just about do it!
Well, almost…

The meat of the Makefile is
finished, this should
hopefully compile all of the c
source files to the .so object
files.

However, we didn’t tell the
Makefile about our
filesystem. We’ll need to add
these paths to the Makefile.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find *.c)

OBJS=$(patsubst %.c, %.so, $(SOURCES))

all: $(OBJS)

%.so: %.c

gcc -c $^ -o $@ -shared

We also need to update the
definition of sources to
include the new directories.

Specifically, it’s still going to
look for our source files in
the current directory, but
they’ll be in the so_sources
directory, which is where we
want to pull the sources
from. We’ll also need to do
something similar to the
objects.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find $(SOURCE_DIR)/*.c)

OBJS=$(patsubst %.c, %.so, $(SOURCES))

all: $(OBJS)

%.so: %.c

gcc -c $^ -o $@ -shared

Now, we need to edit the
OBJS definition.

Currently, it replaces all
instances of .c with .so. We
want to do something similar
to change the destination
directory.

Instead of going to
so_sources/.so, we need to
pattern substitute
so_sources with so_objects.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find $(SOURCE_DIR)/*.c)

TMP_OBJS=$(patsubst %.c, %.so, $(SOURCES))

OBJS=$(patsubst $(SOURCE_DIR)/%, $(OBJECT_DIR)/%, $(TMP_OBJS))

all: $(OBJS)

%.so: %.c

gcc -c $^ -o $@ -shared

In this case, we changed the
initial OBJS definition to be
TMP_OBJS to avoid a self
referential definition using
patsubst. Next, we’ll tell
patsbust to replace every
instance of the source
directory with the object
directory.

The last thing we have to do
is update our rule to also be
looking in the right places
for these files.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find $(SOURCE_DIR)/*.c)

TMP_OBJS=$(patsubst %.c, %.so, $(SOURCES))

OBJS=$(patsubst $(SOURCE_DIR)/%, $(OBJECT_DIR)/%, $(TMP_OBJS))

all: $(OBJS)

$(OBJECT_DIR)/%.so: $(SOURCE_DIR)/%.c

gcc -c $^ -o $@ -shared

There’s just one problem
with this makefile. It
assumes that the object
folder already exists, which
it might not if we want to
write a clean rule.

So, let’s tell the Makefile that
all will also depend on the
existence of the object
directory. Then, we’ll make a
rule to generate the object
directory if it doesn’t exist
already.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find $(SOURCE_DIR)/*.c)

TMP_OBJS=$(patsubst %.c, %.so, $(SOURCES))

OBJS=$(patsubst $(SOURCE_DIR)/%, $(OBJECT_DIR)/%, $(TMP_OBJS))

all: $(OBJECT_DIR) $(OBJS)

$(OBJECT_DIR)/%.so: $(SOURCE_DIR)/%.c

gcc -c $^ -o $@ -shared

$(OBJECT_DIR):

Notice that we put the
directory as a prerequisite
first. We can’t build the
objects until we’ve made the
directory, which is why
we’ve chosen this specific
order.

Now, if the object directory
rule is executed, it’s
because the object directory
doesn’t exist. So, we just
need to have that rule make
the directory.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find $(SOURCE_DIR)/*.c)

TMP_OBJS=$(patsubst %.c, %.so, $(SOURCES))

OBJS=$(patsubst $(SOURCE_DIR)/%, $(OBJECT_DIR)/%, $(TMP_OBJS))

all: $(OBJECT_DIR) $(OBJS)

$(OBJECT_DIR)/%.so: $(SOURCE_DIR)/%.c

gcc -c $^ -o $@ -shared

$(OBJECT_DIR):

mkdir -p $@

Now our makefile can read
in all source files in the
source directory and place
them in the object directory,
even if that directory doesn’t
yet exist.

Since we’ve also stored all
of our objects in their own
directory, our clean rule
becomes much more simple
to write.

Makefile For Shared Objects

SOURCE_DIR=so_sources

OBJECT_DIR=so_objects

SOURCES=$(shell find $(SOURCE_DIR)/*.c)

TMP_OBJS=$(patsubst %.c, %.so, $(SOURCES))

OBJS=$(patsubst $(SOURCE_DIR)/%, $(OBJECT_DIR)/%, $(TMP_OBJS))

all: $(OBJECT_DIR) $(OBJS)

$(OBJECT_DIR)/%.so: $(SOURCE_DIR)/%.c

gcc -c $^ -o $@ -shared

$(OBJECT_DIR):

mkdir -p $@

clean:

rm -rf $(OBJECT_DIR)

This is our final makefile for
generating shared objects.

The clean function will
remove the directory and
any files that exist within it.

Takeaways

▶ Makefiles can be very useful for larger projects with
multiple files

▶ They can also extend to languages other than C!
▶ There are also many ways to write Makefiles, as we’ve

witnessed
▶ Makefile design can be centered around functionality or

efficiency
○ Like in our make debug example

▶ It’s up to you how to write and store your code, and how
to write Makefiles in response to your own style

