C Practice

CS 0449: Introduction to System Software

Cso449 Teaching Assistants

Agenda

- Course News!
- Lab 2 - C Programming
- Parts 1, 2, and 3
- How strings work in C

Course News

- TA office hours
- See https://cs0449.gitlab.io/fa2023/general
- Lab 2 announced
- Due: 17:59 Thursday, September 21th, 2023.

Lab 2: C Practice!

Practicing C with three functions

Part 1: Calculating PI!

- TODO: You want to calculate PI
- We'll use Monte Carlo simulations to calculate the value of PI
- If we randomly distribute points over a square, and draw a circle within the area, we can use the ratio of points within the square to points within the circle to calculate π
» The math is explained more on the lab description. Follow the guide and the video in the Lab
- DO NOT make a main function!

Part 2: Convert String to Integer

- TODO: Write a program that converts a string to integer
- Create a file (atoi.c) that has your implementation
- You'll want to iterate through the characters in the string and convert them into integers
- How can we change the position or value of a digit within a number...?
- Some of things to note
- The string may start with a '-' or ' + ’.
- You can assume otherwise it only contains the numbers 0-9
- Remember that ' $\mathbf{0}$ ' is different from $\mathbf{0}$! Character $\mathbf{0}$ (' $\mathbf{0}$ ') is the ASCII number that represents character 0 .
- DO NOT make a main function!

$$
\begin{array}{llll}
\text { Input: "+523" } & \text { Input: "124" } & \text { Input: "-32" } \\
\text { Output: } 523 & \text { Output:124 } & \text { Output: }-32
\end{array}
$$

Understanding Strings in C

- Strings in C are effectively an array of chars
- The end of a string is denoted by the null terminator " 10 '
- ' 10 ' is the ASCII character with the value zero
- Without the null terminator, an attempt to read the string will go won't terminate... (until it encounters another zero in memory!)
char[] myString = "example";

${ }^{\prime} e^{\prime}$	${ }^{\prime} x^{\prime}$	${ }^{\prime} a^{\prime}$	${ }^{\prime} a^{\prime}$	${ }^{\prime} m^{\prime}$	${ }^{\prime} p^{\prime}$	${ }^{\prime} l^{\prime}$	${ }^{\prime} e^{\prime}$	${ }^{\prime} \backslash 0^{\prime}$

Part 3: Converting integers to strings

- TODO: Write a program that converts an integer to string - Create a file (itoa.c) that has your implementation
- You need to convert an integer into a string in accordance with that base that is given.
- The base can be base 2, base 8 , base 10 , and base 16
- Just like in part 2, the sign needs to be taken into consideration
- This will only apply to numbers in base 10
- You will be given a char array(aka string) to output your string in.
- Remember that if number $\mathbf{x y z}$ is in base b, then $\mathbf{x y z} / \mathbf{b}=\mathbf{x y}$
- Remember that if number $\mathbf{x y z}$ is in base b, then $\mathbf{x y z \% b}=\mathbf{z}$

