
CS0449 TEACHING ASSISTANTS

Basics of C Programming
CS 0449: Introduction to System Software

2

Meta-Notes

▶ These slides were adapted heavily from recitation slides created by Martha
Dixon who was a teaching assistant (TA) for this course in Fall of 2020.
They contain materials which were obtained from various sources,
including, but not limited to, the following:
[1] J. Misurda, CS 0449: Introduction to Systems Software, 3rd ed. Pittsburgh, PA: University of

Pittsburgh, 2017.
[2] S. J. Matthews, T. Newhall, and K. C. Webb, Dive into Systems: A Gentle Introduction to

Computer Systems. San Francisco, CA: No Starch Press, 2022.
[3] R. Bryant, D. R. O’Hallaron, and M. S., Computer Systems: A Programmer’s Perspective.

Princeton, NJ: Pearson, 2016.
[4] L. Oliveira, V. Petrucci, and J. Misurda, in Introduction to Systems Software, 2022

Agenda

3

▶ Course News!
▶ Pointer Lab
▶ File I/O in C

– Standard integer sizes
– Reading/writing files

▶ Project 1
▶ Tophat

4

Course News

▶ Project check-ins
▶ Due date: 9th
▶ Lab slides:

https://sites.pitt.edu/~shk148/teaching/CS0449-2241/#hando
uts

Pointers
Point to here, point to there, point to

that, point to this, and point to
nothing! well, they are just memory

addresses!!??

5Shinwoo Kim - CS 0449

next:
value: 0

● remember writing linked lists?
class Link {

 Link next;

 int value;

}

Link list = new Link();

list.next = new Link();

list.next.next = new Link();

You've kinda used pointers in Java...

6

next:
value: 0

next:
value: 0

what about a reference that
doesn't refer to anything?

C has null too, but you
have to yell it: NULL!

A pointer is a variable that contains a memory address

Shinwoo Kim - CS 0449

Pointers are variables, so they have a type

● The type describes what kind of data it points to
○ An int has type int
○ A pointer to an int has type int*
○ A pointer to a pointer to an int has type int**

● Expressions also have a type
○ If x has type int, then x+4 also has type int
○ If x has type int, then &x has type int*
○ If p has type int*, then *p has type int
○ If p has type int*, then &p has type int**

7Shinwoo Kim - CS 0449

Pointers are variables, so they store data

● a variable is a named piece of memory
● a pointer is a variable that holds a memory address

int x = 0x100;

int y = 0x200;

int* px = &x;

int* py = &y;

8

Name Address Value

x DC00 0100

the addresses of these
variables are given to us

automatically by the compiler-ish

py DC0C DC04

px DC08 DC00

y DC04 0200

since pointers are variables,
can you get their addresses?

Shinwoo Kim - CS 0449

Declaring pointers

● in Java, how do you declare an array of any type X?
○ you put square brackets after the type: X[]

9

int[]
an array that holds ints.

int[][]
an array that holds arrays,

and each of those holds ints.

int*
an pointer to an int.

int**
a pointer to a pointer, which

points to an int.

a C pointer can point to either a
single value or an array of that type.

Shinwoo Kim - CS 0449

Shinwoo Kim - CS 0449

The address-of operator (&)

● when used as a prefix operator, & means "address of"
○ it gives you the memory address of any variable, array item, etc.

● the address is given to you as a pointer type
○ i.e. it "adds a star" I know it seems backwards, why wouldn't they make * add a star, or name pointers int& right?

○ use it on an int?
■ you get an int*

○ use it on an int*?
■ you get an int**

○ YOU GET THE IDEA I hope
● you can use it on just about anything with a name
○ &x

○ &arr[10]

○ &main (yep!) google function pointers in C!

10

Accessing the
value(s)

at a pointer

11Shinwoo Kim - CS 0449

The value-at (or "dereference") operator
● * is the value-at operator
○ it dereferences a pointer

○ that is, it accesses the memory that a pointer points to

● it's the inverse of &
○ every time you use it, you remove a star again, this feels backwards?

12

int** ppx = ...
int* px = *ppx;
int x = *px;

goes to the address that ppx
contains, and gets the int* there
goes to the address that px
contains, and gets the int there

Shinwoo Kim - CS 0449

Arrays are just pointers well…sort of

● In C, array names are just aliases that can be used as pointers
○ int y[] = {2, 3, 4, 5}; // these two are
○ int *y = {2, 3, 4, 5}; // roughly equivalent

● Indexing and dereferencing pointers are equivalent
○ Side note: you can do math with pointers…this is called pointer arithmetic.
○ when you use the array indexing operator, you're really just adding an offset to

the pointer, and using that as the address to access.

*y ≡ y[0] *(y+1) ≡ y[1]

13Shinwoo Kim - CS 0449

2 3 4 5

int int int intint*
y

Pointer types are important!

● If x is an int*8_t*, x[3] access elements at byte offset 3 ✕ 1 = 3
● If x is an int*32_t*, x[3] access elements at byte offset 3 ✕ 4 = 12

14Shinwoo Kim - CS 0449

2 3 4 5
int8_t int8_t int8_t int8_t

int8_t*

y

2 3 4 5
int32_t int32_t int32_t int32_t

int32_t*

y

0 1 2 3

0 4 8 12

Pointer arithmetic
● if we write this:

int array[] = {0, 1, 2, 3};

● memory looks like this:
● if we want to access array[2]...
○ what is that equivalent to?
○ *(array + 2)

● but how big is each item in
the array? (what is sizeof(int)?)

● when we write array + 2, we don't get 0xDC02, we get 0xDC08
● it adds the size of 2 items to the address
● when you add or subtract offsets to pointers, C "scales" the

offsets by multiples of the size of the type they point to.

15

Name Address Value

array[3] DC0C 3

array[2] DC08 2

array[1] DC04 1

array[0] DC00 0

Shinwoo Kim - CS 0449

Oh yeah, and that stupid -> operator
● if you have a pointer to a struct, you must access its fields

with: ->

16

Food* pgrapes = &produce[0];
pgrapes->price = 2.99;
(*pgrapes).price = 2.99;

these are identical
in meaning.

Shinwoo Kim - CS 0449

Common pointer
patterns

17

I.e., String = char[] = char*

Shinwoo Kim - CS 0449

Every problem in CS...
● ...can be solved with another level of

indirection/references/pointers.
● pointers are the basis of:
○ strings
○ arrays
○ object-oriented programming
○ dynamic memory management
○ pretty much everything your operating system does
○ pretty much everything... everything does.

● higher level languages often give you more abstract, safer
ways of achieving the same things that you can do with
pointers

18Shinwoo Kim - CS 0449

Multi-dimensional arrays
● we already saw single-dimensional arrays, but…

19

int** arr2d = ...

…

1 9 4 3 0 7 6

2 2 0 0 5 3 9

6 0 4 3 7 7 7

1 2 3 4 5 6 7

a Java int[][]
works exactly the

same way!

Shinwoo Kim - CS 0449

Pass-by-reference
● often you want to give another function access to your

variables.

20

fgets(buffer, 100, stdin);
int x, y;
function_that_returns_two_values(&x, &y);

since these functions have access to buffer, x,
and y, they can change their values.

Shinwoo Kim - CS 0449

Pass-by-reference (example)

21

Pointer Lab

22Shinwoo Kim - CS 0449

Solve a series of short coding puzzles to
better understand how pointers work!

Getting set up

1. Download the starter code:

On Thoth:

wget https://cs0449.gitlab.io/fa2023/labs/02/pointerlab-handout.zip -O

pointerlab-handout.zip

1. Unzip to your private directory on Thoth

unzip pointerlab-handout.zip

- Creates a directory called pointerlab-handout that contains a number of files
- You will modify only the file pointer.c

23Shinwoo Kim - CS 0449

https://cs0449.gitlab.io/sp2023/labs/02/pointerlab-handout.zip

pointer.c

● Skeleton for some programming exercises
● Comment block that describes exactly what the functions

must do
○ and what restrictions there are on their implementation.

24Shinwoo Kim - CS 0449

TASK: Pointer Arithmetic

Goal

● Compute the size (how much memory a single one takes
up, in bytes) of an int

Hint

● Arrays of ints allocate contiguous space in memory so
that one element follows the next.

25Shinwoo Kim - CS 0449

TASK: Manipulating Data Using Pointers

Motive/Goal

● Manipulate data in new ways with your new knowledge of pointers
● swapInts() - swap the values that two given pointers point to

(without changing the pointers themselves)
● serializeBE() - change the value of the elements of an array to

contain the data in an int.
○ Use big-endian order.
○ You are not permitted to use [] syntax to access or change elements in the array

anywhere in the pointer.c file.

● deserializeBE() - does the opposite operation of serializeBE().
● The serializeBE()/deserializeBE() functions emulate what would

happen when sending an int through the internet.

26Shinwoo Kim - CS 0449

As an aside: Endianness

27Shinwoo Kim - CS 0449

TASK: Pointers and Address Ranges

Goal

● Determine whether pointers fall within certain address ranges,
defined by an array.
○ Determine if the address stored in ptr is pointing to a byte that makes up some part of

an array element for the passed array. The byte does not need to be the first byte of
the array element that it is pointing to.

intArray: 0x0 size: 4 ptr: 0x0 return: 1

intArray: 0x0 size: 4 ptr: 0xF return: 1

intArray: 0x0 size: 4 ptr: 0x10 return: 0

intArray: 0x100 size: 30 ptr: 0x12A return: 1

intArray: 0x100 size: 30 ptr: 0x50 return: 0

intArray: 0x100 size: 30 ptr: 0x18C return: 0

28Shinwoo Kim - CS 0449

TASK: Byte Traversal

Motive

● Learn to read and write data by understanding the layout of the bytes.

Background

● C strings do not not how ‘long’ they are (No .length() method).
○ We need to calculate this ourselves.
○ All C strings are arrays of characters that end with a null terminator, \0.

Goal

● stringLength() - returns the length of a string, given a pointer to its
beginning.
○ Note that the null terminator character does NOT count as part of the string length.

● stringSpan (str1, str2) - returns the length of the initial portion of str1
which consists only of characters that are part of str2.
○ The search does NOT include the terminating null-characters of either strings, but ends there.

29Shinwoo Kim - CS 0449

TASK: Selection Sort

● Your final task is to implement
selection sort
○ Just like 445… but in C
○ You may use loops and if

statements
○ But still no array syntax (array[])

30Shinwoo Kim - CS 0449

In case you forgot…

31

Let:
arr:= array
n:= the length of arr

for i = 0 → (n-1)
 minIndex = i
 for j = (i+1) → n
 if arr[minIndex] > arr[j]
 minIndex = j
 end if
 end for
 swap(arr[i], arr[minIndex])
end for

Shinwoo Kim - CS 0449

➢ The following driver program has been provided to help you check the
correctness of your work:

ptest

checks functional correctness: Does your solution produce the expected result?

To use:

1. Build using make

2. Run using ./ptest

➢ You must rebuild each time you modify pointer.c

➢ Gradescope Autograder may test your program on inputs that ptest
does not check by default.

➢ Coding style (restriction) will be checked by grader TA on Gradescope

Evaluation

32Shinwoo Kim - CS 0449

Basics of File I/O
Reading and writing files in C

33Shinwoo Kim - CS 0449

What we have seen so far …

● In lab 0, you (maybe unknowingly) used command line
arguments to interact with your program
○ When you ran ./calculator 4 5 +

34Shinwoo Kim - CS 0449

● In lab 1, you used the standard I/O stream(s)
○ printf(), scanf(), and other <stdio.h> functions

● This week, we’ll learn to read and write from files on your
computer
○ which you will need to do for the first project

● In C, a file is simply a sequence (stream) of bytes:
○ Text files (or ASCII file) is sequence of ASCII code, i.e., each byte is the 8

bit code of a character (*.txt, *.c, etc.)
○ Binary files contains the original binary number as stored in memory (*.pdf,

*.doc, *.jpg, etc.)

What is a file?

35Shinwoo Kim - CS 0449

A hex dump of the 318 byte Wikipedia favicon

https://en.wikipedia.org/wiki/Hex_dump
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Favicon

Opening files with fopen()

FILE *fopen(const char * pathname, const char*mode);

> FILE* pt = fopen("E:\\PATH\program.txt","w");

36Shinwoo Kim - CS 0449

● opens the file whose name is the string pointed to by pathname and
associates a stream with it.

● returns a pointer (of type FILE) to the stream

Opening Files with fopen()

*fopen(const char * filename, const char * mode);

Modes:

○ r: opens an existing file for reading.
○ w: opens a file for writing.

● If filename does not exist, new file is created.
● starts writing at the beginning of file.

○ a: opens a text file for writing in appending mode.
● If filename does not exist, new file is created.
● start appending content in the existing file content.

○ r+: opens a file for both reading and writing.
○ b: indicates file is a binary file
○ and more…

■ Use man fopen to learn more

37Shinwoo Kim - CS 0449

fread() lets us read, fwrite() lets us write

fread(void *ptr, size_t size, size_t nmemb, FILE*
stream);
➢ reads nmemb items of data each size bytes long
➢ from stream
➢ stores them at the location given by ptr.

fwrite(const void *ptr, size_t size, size_t nmemb,
FILE * stream);
➢ writes nmemb items of data each size bytes
➢ to the stream
➢ from the location given by ptr.

38Shinwoo Kim - CS 0449

Reading and writing moves the pointer

39Shinwoo Kim - CS 0449

10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
…

File * stream

> fread(ptr1, 1, 1, stream)

File * stream

> fwrite(ptr1, 1, 1, stream)

File * stream

Example

> fread(ptr1, 1, 1, stream)

This reads 1 byte and moves the file position indicator by 1 byte (8 bits).

> fread(ptr1, 4, 1, stream)

This reads 1 block of 4 bytes, moving the file position indicator by 4 bytes (4 * 8 = 32 bits).

> fread(ptr1, 4, 2, stream)

This reads 2 blocks of 4 bytes each from the file stream, moving the file position indicator by
4×2=8 bytes (8 * 8 = 64 bits).

40

We can rewind or fast-forward with fseek()

fseek(FILE *stream, long offset, int whence);

➢ sets the file position indicator for the stream
➢ new position (measured in bytes) = offset + whence.

whence:

● SEEK_SET - from start-of-file
● SEEK_CUR - from current position
● SEEK_END - from end-of-file

41Shinwoo Kim - CS 0449

Example

● fseek(file, 10, SEEK_SET)
moves the file position indicator 10 bytes from the beginning of the file.

● fseek(file, 10, SEEK_CUR)
moves the file position indicator 10 bytes forward from the current position in
the specified file stream.

● fseek(file, 10, SEEK_END)
moves the file position indicator 10 bytes before the end of the specified
file stream.

42

Always remember to save (and close) your files!

● Just like memory leaks, you may also get file handle leaks
○ If you use fopen(), always remember to fclose()

■ int fclose(FILE* filePointer)

● returns 0 on success!
● If you are confused about these functions → Consult the MANual

43Shinwoo Kim - CS 0449

Thoth man errors: try MANPATH= man 3 fopen

44

Project 1
Quick Guide

45

Project Brief

▶ The goal of this project is to convert a CBM file into a BMP file
– CBM is a custom file format made by Dr.Luis
– BMP is a standard image format

▶ *.BMP ⇒ Bitmap Image File
– Container format for a big array of pixels (picture cells)
– Each pixel is represented by a 24-bit number:

● 8 bit for Red (0-255)
● 8 bit for Green (0-255)
● 8 bit for Blue (0-255)

46

Pixels

CBM file

47

▶ Each CBM file consists of:
– A header

● Which contains metadata about the file (image size, number of colors, etc.)
– Color palette

● n RGB values
– Image

● Each pixel is represented as a single byte which indexes the color from the
palette

● E.g., pixeli = 7
» ⇒ pixeli = palette[7]

Phase 1. Read the CBM file

▶ Your task is to read the CBM
header & palette and display it to
the terminal

– Hint: defines structs and read
the structs using
fread(&stuct,...)

▶ How many colors in palette?
– See number of colors from

header.

$./cbm2bmp --info CBM_FILENAME
=== CBM Header ===
Magic: 0x7449
Width: 958
Height: 718
Number of colors: 16
Color array offset: 22
Image array offset: 70

=== Palette (R, G, B) ===
Color 0: (24, 36, 21)
Color 1: (37, 66, 26)
Color 2: (56, 91, 41)
Color 3: (77, 113, 63)
Color 4: (5, 9, 5)
Color 5: (53, 51, 49)
Color 6: (102, 102, 103)
Color 7: (75, 74, 72)
Color 8: (104, 139, 86)
Color 9: (176, 188, 219)
Color 10: (150, 164, 172)
Color 11: (127, 146, 128)
Color 12: (123, 78, 204)
Color 13: (198, 208, 129)
Color 14: (219, 119, 118)
Color 15: (163, 41, 75)

48

BMP File

▶ The beginning of the BMP is a header which contains
metadata (key details about the picture)

49

Header54 bytes

Image
content

24-bit lena.bmp

b044d2a9b13ae35152ab
5d93a49cc112b044d2a9
251d9ed69482c88a4077
c619bcfcf227afbc0c6e
6529aac435c769696ddb
6206340827ab559e6029
a99aae4a62f622a699ea
e0750fec6f65f74d5d28
f1e9a99aae4

b13ae35152ab5d93a49
cc112b044d2a9b13ae354 bytes

Image
content

24-bit lena.bmp

49

50

BMP Header

Bitmap File Header

Identifier (ID) 2

File Size 4

Reserved 4

Bitmap Data Offset 4

DIB Header

Bitmap Header Size 4

Width 4

Height 4

Planes 2

Bits Per Pixel 2

Compression 4

Bitmap Data Size 4

H-Resolution 4

V-Resolution 4

Used Colors 4

Important Colors 4

File header
(14 bytes)

DIB Header
(40 bytes)

Header

Phase 2. Generate BMP Header

51

$./cbm2bmp --bmp-info CBM_FILENAME
=== BMP Header ===
Type: BM
Size: 2073654
Reserved 1: 0
Reserved 2: 0
Image offset: 54

=== DIB Header ===
Size: 40
Width: 960
Height: 720
color planes: 1
bits per pixel: 24
Compression scheme: 0
Image size: 0
Horizontal resolution: 0
Vertical resolution: 0
colors in palette: 0
important colors: 0

First two bytes must be BM (not Nul-terminated)

Derive size from CBM file

52

Size of BMP

▶ Size of BMP file
– Size of Header + Size of Image

● Size of Image = Width * Height * Size of Pixel
▶ Note. Width must account for padding

– Padding is applied if length of each row is not a multiple of 4 Bytes

Phase 2. Generate BMP Header

53

$./cbm2bmp --bmp-info CBM_FILENAME
=== BMP Header ===
Type: BM
Size: 2073654
Reserved 1: 0
Reserved 2: 0
Image offset: 54

=== DIB Header ===
Size: 40
Width: 960
Height: 720
color planes: 1
bits per pixel: 24
Compression scheme: 0
Image size: 0
Horizontal resolution: 0
Vertical resolution: 0
colors in palette: 0
important colors: 0

First two bytes must be BM (not Nul-terminated)

Derive size from CBM file

Keep reserved values as zero

See handout for the rest.

54

Phase 3. Construct the BMP

▶ Combining phase 1 and 2 ⇒ Construct the BMP file
– fwrite() to a file
– Must write headers to file, then pixels

▶ Caveats
– In CBM file:

● Pixels in palette are RGB
● Each entry in the image section is an index of the palette
● Pixels are stored Top → Bottom

– In a BMP:
● Pixels are BGR; Pixels are stored directly in the image section (no

indexing a palette)
● Each row has padding
● Pixels are stored Bottom → Top

01001100001101100101110011
0000100101100101001100001
100101000111110000110111011
010101011111000111010010011
1000000010101111010100100
001011111011101101100010100
110011110001100101000001111
1010011111001110000011011111
11110001111010010001010001
01101011110101000000010001
0000010111101100000011100
000100000011001000010000
0111011010101101010110101011
01001011100000101100001011

55

Phase 3. Convert the image

7
10001011
00111011
00111011

24-bit lena.cbm 24-bit lena.bmp

Palette
(from CBM)

56

Remarks

▶ See handout for
– Reading command line arguments
– Compactness of Structs

● !!!
– Makefiles

