
CS0449 TEACHING ASSISTANTS

Queue Lab
CS 0449: Introduction to System Software

2

Meta-Notes

▶ These slides were adapted heavily from recitation slides created by Martha
Dixon who was a teaching assistant (TA) for this course in Fall of 2020.
They contain materials which were obtained from various sources,
including, but not limited to, the following:
[1] J. Misurda, CS 0449: Introduction to Systems Software, 3rd ed. Pittsburgh, PA: University of

Pittsburgh, 2017.
[2] S. J. Matthews, T. Newhall, and K. C. Webb, Dive into Systems: A Gentle Introduction to

Computer Systems. San Francisco, CA: No Starch Press, 2022.
[3] R. Bryant, D. R. O’Hallaron, and M. S., Computer Systems: A Programmer’s Perspective.

Princeton, NJ: Pearson, 2016.
[4] L. Oliveira, V. Petrucci, and J. Misurda, in Introduction to Systems Software, 2022

3

Acknowledgements

▶ Additional works referred
[1] Gavin Heinrichs-Majetich’s CS 0449 Recitation Slides (Fall 2022)
[2] Robert Sedgewick & Kevin Wayne’s Computer Science: An Interdisciplinary Approach
[3] Carnegie Mellon University’s 15-213: Introduction to Computer Systems
[4] University of Pittsburgh’s CS/COE 445: Data Structures and Algorithms I with materials developed

by Michael Lipschultz and Dr. John Ramirez

4

Course News!

▶ Queue Lab
▶ See Handout on Course Web
▶ Today’s recitation topic!
▶ Due: 11:59 PM Thursday, February 23rd

Queue
A linear collection of objects that are inserted and removed
according to the FIFO principle.

5

Basic Principles

● First In First Out (FIFO)

● Last In First Out (LIFO)

6

Stack

Queue

Stacks and queue both arise naturally in
countless applications.

Add to the
beginning

Take from the
beginning

Add to the
end

Take from the
beginning

● First-come-first-served resource allocation.
● Dispensing requests on a shared resource.
● Simulations of the real world.

● Last-come-first-served resource allocation.
● Function calls in programming languages.
● Fundamental abstractions in computing

Implementation

● How do we connect the elements?
○ Array based data structure

■ But we have to shift every time we ‘pop’ from the front
■ Also size is finite (we don’t know how much space we will need when we initialize the array)

○ Linked list data structure
■ No need for shifting ⇒ simply move the ‘head’ to the next node
■ No need to no size at initialization ⇒ If we need more space, simply allocate and link

7

val val val val

head

next next next next NULL

Queue Lab
Manipulating linked lists in C

8

About the Queue Lab

Purpose
To provide practice in the style of C programming which will be required for the next
project: Malloc Project.

Required Skills
➢ Explicit memory management, as required in C.
➢ Creating and manipulating pointer-based data structures.
➢ Working with strings
➢ Enhancing the execution performance of key operations by implementing data

structures that trade-off storage for execution speed.
➢ Implementing robust code that handles error conditions and operates correctly with

invalid arguments, including NULL pointers.

Todo
Implement a double-ended queue (deque) which supports both LIFO and FIFO principles
using a singly-linked list as the underlying data structure. Make the necessary
modifications to enhance the performance of the queue operations.

9

Setting up the environment

 Handout: https://cs0449.gitlab.io/fa2023/labs/03/

➢ Download the lab: $wget [LINK] -O queuelab-handout.zip
○ [LINK]:

https://cs0449.gitlab.io/sp2023/labs/03/queuelab-handout.zip

➢ Extract the files: $unzip queuelab-handout.zip
○ DO NOT UNCOMPRESS THE ZIP ON YOUR LOCAL MACHINE. Doing so may

corrupt the permissions and will not allow you to compile and run your program!
○ Please move your files to your private directory on Thoth
○ (see Academic Integrity Policies).

➢ Move into the new directory: $cd queuelab-handout
○ You will modify queue.h and queue.c
○ A makefile is provided to aid your testing. Run it via: $make

10

https://cs0449.gitlab.io/sp2023/labs/03/
https://cs0449.gitlab.io/sp2023/labs/03/queuelab-handout.zip

Testing

● Tester Program ./qtest
○ Interactive prompt for testing your implementation
○ You can use the built-in help command to see available commands
○ You can individually manipulate which of your functions you call

■ Use –f traces/trace-xx.cmd to run a specific trace
■ ⚠ Write your code to pass the tests in order

● The later tests intentionally try to break things and without a solid foundation
it won’t make sense to tackle them

● Autograder: driver.py (Used by GradeScope)
○ Runs ./qtest with all traces
○ Check your code via: $ make test

11

Queue Lab

● Start early
○ This gives you plenty of time to think, try, and seek help
○ As you may have noticed, Thoth gets buggy around deadlines

● Draw diagrams
○ This can help you understand what’s going on

● Simplify your code
○ Focus on being succinct and clear

● Comment your code!!
○ This helps you remember what you were doing when you come back later

● Don’t copy code or try to look up solution
○ It’s really easy to detect if you cheat
○ You need to fully understand implementing queues in C
○ Project 2 builds on top of Queue Lab!

● Understanding malloc() & free() and how structs work is necessary

12

Supported Operations

13

Functions Description

q_new() Create a new, empty queue

q_free() Free all storage used by a queue

q_insert_head() Attempt to insert a new element at the head of the queue (LIFO)

q_insert_tail() Attempt to insert a new element at the tail of the queue (FIFO)

q_remove_head() Attempt to remove the element at the head of the queue

q_size() Compute the number of elements in the queue

q_reverse() Reorder the list so that the queue elements are reversed in order
without using malloc or free

queue.h

● You are provided a header file with two struct definitions
to implement a linked list
○ Header file: contains C code to be shared between several C source

files (e.g., stdio.h)

14

/* Linked list element */

typedef struct ELE {

char *value;

struct ELE *next;

} list_ele_t;

Element (Node)

/* Queue structure */

typedef struct {

 list_ele_t *head;

/* Linked list of elements */

} queue_t;

Queue (Linked list)

queue.c

15

Head node Tail node

62 65 61 64 00 63 61 62 00

b e a d \o f u n \o

head

Queue

Additional
fields

63 61 62 00

c a b \o

Points to the head
node/element

Points to the next
node in the list

Points to the char array
value contained in this
node

● Allocate memory on the heap
○ malloc a queue_t

■ What do we do if malloc() returns NULL?
● Return a pointer to the queue

q_new creates a new, empty queue

16

queue_t *q = malloc(sizeof(queue_t));

code snippet from q_new()

q is a pointer to the beginning of the
block in memory where the queue
was allocated

Introducing malloc()

● Unlike Java, C has no new keyword

● Instead, to denote that a struct, array, or other data is
being placed in the heap where it can be accessed via
pointers, we request memory using malloc
○ thing_t thing = malloc(sizeof(thing_t));

■ Note that we must specify size in bytes
● malloc() returns a block with at least that size

■ Returns a pointer to that memory!
⚠ Every single object that is malloced must also be freed
before the program ends or you leak memory

○ free(thing);

● Project 2 will have you implement your own malloc()

17

The glibc malloc() package

#include <stdlib.h>
void *malloc(size_t size)

● Successful:
○ Returns a pointer to a memory block of at least size bytes
○ aligned to a 16-byte boundary (on x86-64)
○ If size == 0, returns NULL

● Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
● Returns the block pointed at by p to pool of available memory
● p must come from a previous call to malloc(), calloc(), or realloc()

Other functions
● calloc(): Version of malloc() that initializes allocated block to zero
● realloc(): Changes the size of a previously allocated block

18

A malloc() example

#include <stdio.h>
#include <stdlib.h>

void foo(long n)
{
 long i, *p;

 /* Allocate a block of n longs */
 p = (long *) malloc(n * sizeof(long));
 if (p == NULL) { // always check return value of malloc()
 perror("malloc"); // print error message
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;
 /* Do something with p */
 . . .
 /* Return allocated block to the heap */
 free(p); // Always free after malloc()
}

19

Inserting to the queue means more allocations

20

list_ele_t *newh = malloc(sizeof(list_ele_t));

newh->value = some kind of malloc

strcpy/strdup/etc s into newh->value

NOTE:
You can’t do newh->value = s directly. In C, you have
to use string manipulation functions from string.h

code snippet from q_insert_head()Declare and allocate space for a new element

Allocate space for string in the
value field of the struct and then
copy the given string into it

String Operations

21

function description

copying strings

strcpy() copies one string to another

strncpy() copies a certain amount of characters from one string to another

strdup() allocates a copy of a string

strndup() allocates a copy of a string of a specified size

comparing strings

strlen() returns length of a given string

strcmp() compares two strings

strncmp() compares a certain amount of characters of two strings

“n” functions basically just mean “do this up to at most n” characters and are often safer

Queue Walkthrough
Insertion using LIFO principles

22

q_insert_head() - insert element at head (LIFO)

23

head

next next next next NULL

We want a new node
here to be the head

This will no longer be the
head

q_insert_head() - insert element at head (LIFO)

24

head

next next next next NULL

next NULLtemp
Create a new node

q_insert_head() - insert element at head (LIFO)

25

head

next next next next NULL

next NULLtemp
Allocate space for the node

q_insert_head() - insert element at head (LIFO)

26

head

next next next next NULL

next NULLtemp
Make the new node’s data
hold the given string

some char array

q_insert_head() - insert element at head (LIFO)

27

head

next next next next NULL

next NULLtemp

some char array

Change the new node’s next
to point to the head node

q_insert_head() - insert element at head (LIFO)

28

head

next next next next NULLnext

temp

q_insert_head() - insert element at head (LIFO)

29

head

next next next next NULLnext

Make the head pointer point to
the new node

temp

Queue Walkthrough
Removal using FIFO principles

30

q_remove_head() - remove element at head

31

next next next next NULL

We want to remove this
node...

...and make this node
the new headhead

q_remove_head() - remove element at head

32

next next next next NULL

...and make this node
the new head

next NULL

Make a temporary node

list_ele_t* temp;

We want to remove this
node...

head

temp

q_remove_head() - remove element at head

33

next next next next NULL

next NULL

Make temp point to head->next

head

temp

q_remove_head() - remove element at head

34

next next next next NULL

next NULL

free head
head

temp

q_remove_head() - remove element at head

35

next next next NULL

next NULLtemp

head

q_remove_head() - remove element at head

36

next next next NULL

next NULLtemp

Make head
now point to
the temp node

head

Queue Walkthrough
Iterations and Traversals

37

Iterating through a linked structure

38

head

next next next next NULL

Iterating through a linked structure

39

head

next next next next NULL

Make the current node point to the head
nextcurr

Is curr->next NULL?

Iterating through a linked structure

40

next next next next NULL

Is curr->next NULL?

nextcurr

head

Iterating through a linked structure

41

next next next next NULL

Is curr->next NULL?

nextcurr

head

Iterating through a linked structure

42

next next next next NULL

Is curr->next NULL?

nextcurr

head

Iterating through a linked structure

43

next next next next NULL

q_size() = 4
q_insert_tail()

nextcurr

head

● A naïve approach to…
○ q_insert_tail() - Iterate through queue and insert a new node at the

end
○ q_size() - Iterate and count of the number of links we traverse

■ Just like stringLength() from Pointer Lab

● Run-time?
○ For ‘n’ elements, we need to traverse ‘n’ elements ⇒ O(n)
○ This is fine for a few elements, but what if our queue held 1 billion

elements?
■ Do we really want to traverse the whole list, just to ‘add’ 1 element?
■ Do we really want to traverse the entire list every time we want size?

● Can we do better?

Traversing the queue is slow

44

Keeping track of important details

● Queue operations can be implemented in O(1) time
○ The runtime should not depend on the number of elements present in

the list.
○ You should’ve seen this in CS445 (in Java).

● Could we store some information about our queue that we can
use in our operations?

○ What if we keep a counter of the number of elements?
■ Need to update this counter every time we add/remove.
■ But accessing this value(int) can be done in O(1) time!

○ What if we keep a reference that allows us to access the last element?
■ We could add a new element to the tail rather easily
■ But we would need to update this reference every time we

add/remove to the back
● But where can we store these values?

45

The space-time tradeoff

● By storing ‘extra’ information about our data structure, we
gain a boost in performance…but we need ‘extra’ memory
to store this information

○ This is called a Space-time tradeoff
■ or Time–memory trade-off
■ or Algorithmic space-time continuum

● Dynamic Programming (Memoization) is an algorithmic
optimization in which we significantly reduce time
complexity by using more memory.

○ Take CS1501 or CS1510 to learn more.

46

q_free() - free all storage used by queue

47

head

next next next next NULL

Iterate through the array and free each node
What happens if you miss a node?

Queue Walkthrough
Reversing the linked structure

48

head

next next next next NULL

“pitt” “is” “the” “best”

head

next next next nextNULL

“pitt” “is” “the” “best”

q_reverse() - reorder so the queue is reversed

49

q_reverse()

Queue Lab
Resources

50

Resources

51

1. C programming
a. B. W. Kernighan and D. M. Ritchie, “The C Programming Language, 2nd ed.” Prentice-Hall,

1988. (Chapter 5 and 6)
b. Wikibooks “C Programming”. Available here: https://en.wikibooks.org/wiki/C_Programming

2. Linked lists
a. CS 0445 Notes (Data Structures in Java)

i. Professor Lipschultz (CS 0445): notes on Linked Data Structures
ii. Dr. Ramirez's CS 0445 Course Website (see lectures section)

3. Asymptotic (big-O) notation.
a. Review of Asymptotic Complexity (Cornell University)

4. C reference
a. C Reference @ cppreference.com

i. Dynamic memory management
ii. C Strings Library

Per the Academic Integrity Policy, you should not search the web or ask others for solutions or advice
on the specifics of the lab.

That means that search queries such as “linked-list implementation in C” are off limits.

https://en.wikibooks.org/wiki/C_Programming
http://people.cs.pitt.edu/~lipschultz/cs445/notes07.html
https://people.cs.pitt.edu/~ramirez/cs445/
https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec19-asymp/review.html
https://en.cppreference.com/w/c
https://en.cppreference.com/w/c/memory
https://en.cppreference.com/w/c/string/byte

