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x86 Assembly Language
CS 0449: Introduction to System Software



Assembly Language
Because decoding 1s and 0s is hard
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What we are building towards…
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gcc hello.c

cpphello.c

C source

Preprocessed

hello.c

Preprocessed 
source

hello.o

Object
files

hello

Executable

Preprocessor
gcc -E hello.c

ld

Linker
gcc -u hello hello.o

Compiler
gcc -c hello.c

cc1

Any additional libraries 
get “linked” in here (e.g., 
stdio.h)

Assembly code

hello.s

gcc -S hello.c
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Level of 
abstraction

Very 
abstract

Not 
abstract

Application level (Word, Zoom, Firefox)

car *c = malloc(sizeof(car));
c->miles = 100;
float mpg = get_mpg(c);
free(c);

High-level language level (C, Java)

get_mpg:
pushq %rbp
movq %rsp, 

%rbp
...
popq %rbp
ret

Assembly language level 
(x86)

Machine language level
01110100000110001000110100000
10000000010100010011100001011
00000111111010000111111000100
11100001010001001110000101000
10100010

Operating system level (Linux, Windows, macOS)

Hardware 
level

Moving down the ladder of abstractions



What is assembly?
➔ Assembly language is a human-readable textual 

representation of machine language
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

011101000001100010001101000
001000000001010001001110000
101100000111111010000111111
100000111111010000111111100

Relatively Easy for us to understand

Easy for computer 
to understand

Assembly acts as a 
translator between 

high-level code and 
machine code

High-level language 
(C, Java)

Machine language



Enter x86

➔ In CS447 Computer Organization & Assembly, you used MIPS
◆ Which was based on a Reduced Instruction Set Computer (RISC) ISA

● Small number of instructions
● Simple instructions

➔ Now, we use x86 asm
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Intel 8086
Released 1978

Intel i9-10900K
Released 2020



x86 assembly language

➢ Epitome of Complex Instruction Set Computer (CISC)
○ Lots of instructions and ways to use them

■ Hundreds of instructions
➢ Designed for humans to write

○ From way back when programmers used to program in assembly language
○ A time before compilers or high-level languages

➢ Complex (multi-step) instructions
○ Instruction to search a string for a character
○ F2XM1 computes 2x - 1

■ Computes the exponential value of 2 to the power of the source operand minus 1. The source operand is located in register ST(0) and the 
result is also stored in ST(0). The value of the source operand must lie in the range - 1.0 to +1.0. If the source value is outside this range, the 
result is undefined.

➢ Fewer instructions to write the same program
○ compared to RISC
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But why use asm, if I can just code in C?

● Any C source can be compiled to assembly
○ gcc -S <SOURCE>.c
○ Not really helpful

● But what if we don’t have the source code?
○ such as a .exe program you downloaded from the web

● You can disassemble any compiled program to emit the 
assembly

● What can you do with this?
○ Examine behavior of a program
○ Reverse engineering!
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But why use asm, if I can just code in C?
Assembly is good for:

➔ Understanding the machine
◆ You get to see what exactly the CPU is 

doing
➔ Better optimization of routines

◆ Think you’re better than a compiler?
➔ Programming hardware-dependent 

routines
◆ E.g., compilers, operating systems,…

➔ Reverse-engineering and code 
obfuscation
◆ malware/driver analysis…

Knowing assembly will enhance your 
code!
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Assembly is bad for:

➔ Portability is lost
◆ Code only works for a particular 

architecture, or processor
➔ Obfuscate the code

◆ Not everyone can read assembly
● But you can!

➔ Debugging is hard
◆ Most debuggers are lost when 

hitting assembly
● But not GDB!

➔ Optimizations is tedious
◆ Tbh, you can’t beat a modern 

compiler

Use it with caution and sparsity!



One code, two assembly
● Assembly language is simply a textual representation of machine language

⇒ Multiple representations for the same machine language
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AT&T Syntax Intel Syntax

● Developed by AT&T (duh)
● Used by GNU Assembler (gas)
● Opcode appended by type:

○ b – byte (8 bit)
○ w – word (16 bit)
○ l – long (32 bit)
○ q – quad (64 bit)

● First operand is source
● Second operand is destination
● Dereferences are denoted by ()

● Developed by Intel (duh)
● Used by Microsoft (MASM), intel, NASM
● Type sizes are spelled out:

○ BYTE   – 1 byte
○ WORD   – 2 bytes
○ DWORD – 4 bytes (double word)
○ QWORD – 8 bytes (quad word)

● First operand is destination
● Second operand is source
● Dereferences are denoted by [] 



Keeping track of the registers

● Like in MIPS, x86 has calling conventions
○ The C Application Binary Interface (ABI)
○ Like MIPS, certain registers are typically used for returns values, args, etc

● The ABI is not defined by the language, but rather the OS
○ Windows and Linux (UNIX/System V) have a different C ABI 

● In our x86-64 Linux C ABI,
○ %rdi, %rsi, %rdx, %rcx, %r8, %r9 are used to pass arguments (like the 

a registers in MIPS)
■ Remaining arguments go on the stack

○ A function callee must preserve %rbp, %rbx, %r12, %r13, %r14, %r15 
(like the s registers in MIPS) 

○  %rax (overflows into %rdx for 128-bits) stores the return value (like v0, v1 in 
MIPS)

● Reference manual provides extra information
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Will I have to write assembly code for this course?

● No! No matter how good you are at programming, you are no 
match for a modern compiler

○ Modern Compilers are just too good at optimization
■ There was a time when humans outperformed compilers

● Those days are long gone now…
● However, you should be able to read assembly code

○ To figure out what your machine is doing
○ To guess the C code

● By the end of this lab, you should be able to freely translate 
assembly and C
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Diving into the Code!
See code: https://github.com/shinwookim/asm-demo 
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https://github.com/shinwookim/asm-demo


Hello World! x86 edition
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#include <stdio.h>
int main(void)
{
   puts("Hello World!");
   return 0;
}

.LC0:
   .string "Hello World!"
main:
   pushq   %rbp
   movq    %rsp, %rbp # rsp = stack pointer
   movl    $.LC0, %edi # push func args
   call    puts # call a function
   movl    $0, %eax # eax = return register
   popq    %rbp # prepare to return
   ret  # return

text (code) segment:

55 48 89 E5 BF 00 00 00 00 E8 00 00 00 

00 B8 00 00 00 00 5D C3

data segment:

48 65 6C 6C 6F 2C 20 57 6F 72 6C

// Symbol table and other info omitted

Linker Executable



Debugging Assembly

● Recall that GDB worked on executables
○ You ran gdb mdriver and not gdb mdriver.c

● Having the source was nice
○ We used the -g flag when compiling
○ which allowed us to use layout src to view the code during execution

● …but not necessary
● What if we don’t have a source file ? (or the program was compiled without -g flag)

○ We can still run GDB!
○ Won’t be able to see the source code ⇒ We need to inspect assembly code

Reading symbols from a.out...

(No debugging symbols found in a.out)
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Displaying the assembly with disas

● Suppose we are in paused in a 
breakpoint

● We can view the assembly code 
around our current memory address 
using disas

○ Memory address that is held by the 
program counter

● But how do we set a breakpoint
○ if we don’t have the code?

● Surely, we need a way to view ASM
○ Without first setting a breakpoint right?
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● The layout asm 
command displays the 
assembly of the entire 
program

○ You can scroll through the 
code and identify the 
memory addresses to set 
breakpoints

● But what if your 
program is Huuuuge?

○ That’s gonna be a lot of 
scrolling

Displaying the assembly with layout asm



Let’s put the asm in a file ⇒ Now we can ctrl+f
objdump -d program > program.s

● GNU provides a tool called object dump for unix-like systems
○ Let’s you inspect information from object files
○ The -d flag disassembles the program and displays the .code section
○ The > flag redirects your standard I/O output to a file
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USER@thoth:$ objdump -d a.out
a.out:     file format elf64-x86-64
Disassembly of section .init:
0000000000001000 <_init>:
    1000: f3 0f 1e fa          endbr64
    1004: 48 83 ec 08          sub    $0x8,%rsp
    1008: 48 8b 05 d9 2f 00 00 mov    0x2fd9(%rip),%rax        # 3fe8
    100f: 48 85 c0             test   %rax,%rax
    1012: 74 02                je     1016 <_init+0x16>
    1014: ff d0                call   *%rax
    1016: 48 83 c4 08          add    $0x8,%rsp
    101a: c3                   ret
…



GDB Assembly Edition

● Back to GDB…
● You can still set breakpoints

○ Not at specific lines of code…but at specific instructions (which are stored in 
memory)

○ break *0x000055555555515b
○ Why the *?
○ *main+24

■ You can set breakpoints at function offsets
■ Get this from GDB’s layout asm

● You can still step through your code
○ Again, not stepping through lines of code, but through CPU instructions
○ Using stepi instead of step

■ nexti instead of next
■ Continue
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GDB Assembly Edition

● Examining Memory
○ We can print values stored at memory address or at registers
○ print/format expr

■ Indicate registers with $ (NOT %)
■ To print a value stored in a memory address use *
■ format tells us how to interpret values at that memory location

● d: decimal
● x:hex
● t: binary
● f: floating point
● i: instruction
● c: character

■ p $rdi displays the content at %rdi in a decimal format
○ x MEM_ADDR prints memory content

● Just because you print it as decimal does not mean that the value is a decimal
● Interpretation of values depends on the context (which you need to provide)

○ info registers lets you see all registers at once
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Need help with GDB?
See (fmr) TA Gavin’s GDB videos on Canvas!
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#include <stdio.h>

int main(void)

{

   for (int i = 0; i < 10; i++)

   {

       printf("%d", i);

   }

   return 0;

}

C Control Structures → Assembly
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0x0000000000001155 <+12>:   movl   $0x0,-0x4(%rbp)

0x000000000000115c <+19>:   jmp    0x117b <main+50>

0x000000000000115e <+21>:   mov    -0x4(%rbp),%eax

0x0000000000001161 <+24>:   mov    %eax,%esi

0x0000000000001163 <+26>:   lea    0xe9a(%rip),%rax

0x000000000000116a <+33>:   mov    %rax,%rdi

0x000000000000116d <+36>:   mov    $0x0,%eax

0x0000000000001172 <+41>:   call   0x1050 

<printf@plt>

0x0000000000001177 <+46>:   addl   $0x1,-0x4(%rbp)

0x000000000000117b <+50>:   cmpl   $0x9,-0x4(%rbp)

0x000000000000117f <+54>:   jle    0x115e <main+21>



#include <stdio.h>

int main(void)

{

   int i = 0;

   while (i < 10)

   {

       printf("%d", i);

       i++;

   }

   return 0;

}

C Control Structures → Assembly
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0x0000000000001155 <+12>:   movl   $0x0,-0x4(%rbp)

0x000000000000115c <+19>:   jmp    0x117b <main+50>

0x000000000000115e <+21>:   mov    -0x4(%rbp),%eax

0x0000000000001161 <+24>:   mov    %eax,%esi

0x0000000000001163 <+26>:   lea    0xe9a(%rip),%rax

0x000000000000116a <+33>:   mov    %rax,%rdi

0x000000000000116d <+36>:   mov    $0x0,%eax

0x0000000000001172 <+41>:   call   0x1050 

<printf@plt>

0x0000000000001177 <+46>:   addl   $0x1,-0x4(%rbp)

0x000000000000117b <+50>:   cmpl   $0x9,-0x4(%rbp)

0x000000000000117f <+54>:   jle    0x115e <main+21>



#include <stdio.h>

int main(void)

{

   for (int i = 0; i < 10; i++)

   {

       printf("%d", i);

   }

   return 0;

}

C Control Structures → Assembly
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0x0000000000001155 <+12>:   movl   $0x0,-0x4(%rbp)

0x000000000000115c <+19>:   jmp    0x117b <main+50>

0x000000000000115e <+21>:   mov    -0x4(%rbp),%eax

0x0000000000001161 <+24>:   mov    %eax,%esi

0x0000000000001163 <+26>:   lea    0xe9a(%rip),%rax

0x000000000000116a <+33>:   mov    %rax,%rdi

0x000000000000116d <+36>:   mov    $0x0,%eax

0x0000000000001172 <+41>:   call   0x1050 

<printf@plt>

0x0000000000001177 <+46>:   addl   $0x1,-0x4(%rbp)

0x000000000000117b <+50>:   cmpl   $0x9,-0x4(%rbp)

0x000000000000117f <+54>:   jle    0x115e <main+21>
Wait….why is the assembly code the same?



for loops == while loops!
Your CPU treats them the same way!

* do-while loops also work the same way (Write a short program and inspect the assembly!)
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#include <stdio.h>

int main(void)

{

   int input;

   scanf("%d", &input);

   if (input > 10) printf("Big");

   else printf("Not Big");

   return 0;

}

C Control Structures → Assembly
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11bf: 8b 45 f4             mov    -0xc(%rbp),%eax

11c2: 83 f8 0a             cmp    $0xa,%eax

11c5: 7e 16                jle    11dd <main+0x54>

11c7: 48 8d 05 39 0e 00 00 lea    0xe39(%rip),%rax        

11ce: 48 89 c7             mov    %rax,%rdi

11d1: b8 00 00 00 00       mov    $0x0,%eax

11d6: e8 a5 fe ff ff       call   1080 <printf@plt>

11db: eb 14                jmp    11f1 <main+0x68>

11dd: 48 8d 05 27 0e 00 00 lea    0xe27(%rip),%rax        

11e4: 48 89 c7             mov    %rax,%rdi

11e7: b8 00 00 00 00       mov    $0x0,%eax

11ec: e8 8f fe ff ff       call   1080 <printf@plt>



Conditional statements 
works as expected
Who knew that if-else executed different based on 
conditions?
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Our real first assembly 
code analysis
Looking through a real program!

Special thanks to Jake Kasper for providing slides & code
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0000000000001149 <main>:

1149:f3 0f 1e fa          endbr64

114d:55                   push  %rbp

114e:48 89 e5             mov   %rsp,%rbp

1151:48 83 ec 20          sub   $0x20,%rsp

1155:89 7d ec             mov   %edi,-0x14(%rbp)

1158:48 89 75 e0          mov   %rsi,-0x20(%rbp)

115c:bf 05 00 00 00       mov    $0x5,%edi

1161:e8 23 00 00 00       call   1189<increment>

1166:89 45 fc             mov    %eax,-0x4(%rbp)

(…)

C Control Structures → Assembly
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#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}
Prefix increment
Increments first, then returns



#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

C Control Structures → Assembly
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0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

C Control Structures → Assembly

40

%rbp needs maintains the current stack frame
- To preserve the previous stack frame
- it gets pushed onto the stack



0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

C Control Structures → Assembly
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%edi is our first argument register, so we’re 
moving the value of our argument (num) into the 
current stack frame Why -0x4? 



0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

C Control Structures → Assembly
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Increment the value of the argument we just 
stored in the stack



0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

C Control Structures → Assembly
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Move our data we’ve been editing in the stack, to 
our return register



0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

C Control Structures → Assembly
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Pop the stack frame from the stack, as we’re 
about to return from the current function scope, 
and this will load the previous stack frame back 
to %rbp



0000000000001189 <increment>:

1189:f3 0f 1e fa          endbr64

118d:55                   push %rbp

118e:48 89 e5             mov  %rsp,%rbp

1191:89 7d fc             mov  %edi,-0x4(%rbp)

1194:83 45 fc 01          addl $0x1,-0x4(%rbp)

1198:8b 45 fc             mov  -0x4(%rbp),%eax

119b:5d                   pop  %rbp

119c:c3                   ret

#include <stdio.h>

int main(int argc, char **argv)

{

   int myNum = increment(5);

   printf("My num is %d\n", myNum);

   return 0;

}

int increment(int num)

{

   return ++num;

}

C Control Structures → Assembly
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Return to caller
What about the return value?
It’s already in the return register(%eax)



Let’s inspect increment() with GDB
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Set a breakpoint at the start of the 
assembly for increment using the *



Tracing through the code w/ GDB
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After running, we’ve hit the breakpoint 
at increment

Let’s read the assembly line by line 
using ni (`next instruction`), though we 
can skip ahead a few lines until we get 
to the more important function details



Tracing through the code w/ GDB
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This is the line in which our stack frame 
pointer, %rbp, is being updated to 
contain the current stack address



Tracing through the code w/ GDB
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We’ve now executed the instruction to 
add the current stack pointer to %rbp

We are also about to execute the line 
to put the argument register’s contents 
into the stack frame, so let’s check the 
value of the argument register:

p $rdi → 

This makes sense, as we passed 5 into 
our function in our C code



Tracing through the code w/ GDB
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Now we stored the argument register 
value into our stack frame. To check 
that this update actually changed our 
stack frame, let’s print the integer that 
lies below the stack pointer:

x/-4bx $rbp → Read the previous 4 
bytes

x/-1w $rbp → Read the previous 
word (word is the size of an integer)

We can see both of these led us to the 
value 5 being stored in the stack frame



Tracing through the code w/ GDB
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At this point, we’ve run the line to 
increment the value in the stack frame, 
and are waiting to execute this line.

To see if this change was made, let’s 
again print out the values:

x/-4bx $rbp → Read the previous 4 
bytes as hex

x/-1wx $rbp → Read the previous 
word (word is the size of an integer) as 
hex

Since the value changed to 6, the 
increment was successful, and we can 
see where that change occurred.



Tracing through the code w/ GDB
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%eax, the return register, should 
contain the value 6 that we want to 
return to the user. Let’s see:

p $rax → 

%eax now contains the accurate return 
value from our function, so we can 
return to the previous caller after 
adjusting the stack.



Lab 4
Assembly Lab: ASM!
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Now, it’s your turn!

● In lab 4, you will practice:
○ Reading assembly
○ Recognizing common patterns
○ Using gdb to debug assembly code + inspect memory!

● Part A: Investigating the code!
○ Reading simple functions

■ Similar to what we just did
■ https://godbolt.org/z/9c4Efqvoo

○ Deep dive into control flow, raise operations, hidden arguments
○ The Test.

■ Can you read assembly code tell me what it does?
● Gradescope submission

● Part B: Inspecting memory
○ Can you debug an executable by looking at assembly code and using gdb?

■ Gradescope submission
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https://godbolt.org/z/9c4Efqvoo
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