
CS0449 TEACHING ASSISTANTS

x86 Assembly Language
CS 0449: Introduction to System Software

Assembly Language
Because decoding 1s and 0s is hard

2

What we are building towards…

3

gcc hello.c

cpphello.c

C source

Preprocessed

hello.c

Preprocessed
source

hello.o

Object
files

hello

Executable

Preprocessor
gcc -E hello.c

ld

Linker
gcc -u hello hello.o

Compiler
gcc -c hello.c

cc1

Any additional libraries
get “linked” in here (e.g.,
stdio.h)

Assembly code

hello.s

gcc -S hello.c

4

Level of
abstraction

Very
abstract

Not
abstract

Application level (Word, Zoom, Firefox)

car *c = malloc(sizeof(car));
c->miles = 100;
float mpg = get_mpg(c);
free(c);

High-level language level (C, Java)

get_mpg:
pushq %rbp
movq %rsp,

%rbp
...
popq %rbp
ret

Assembly language level
(x86)

Machine language level
01110100000110001000110100000
10000000010100010011100001011
00000111111010000111111000100
11100001010001001110000101000
10100010

Operating system level (Linux, Windows, macOS)

Hardware
level

Moving down the ladder of abstractions

What is assembly?
➔ Assembly language is a human-readable textual

representation of machine language

5

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

011101000001100010001101000
001000000001010001001110000
101100000111111010000111111
100000111111010000111111100

Relatively Easy for us to understand

Easy for computer
to understand

Assembly acts as a
translator between

high-level code and
machine code

High-level language
(C, Java)

Machine language

Enter x86

➔ In CS447 Computer Organization & Assembly, you used MIPS
◆ Which was based on a Reduced Instruction Set Computer (RISC) ISA

● Small number of instructions
● Simple instructions

➔ Now, we use x86 asm

6

Intel 8086
Released 1978

Intel i9-10900K
Released 2020

x86 assembly language

➢ Epitome of Complex Instruction Set Computer (CISC)
○ Lots of instructions and ways to use them

■ Hundreds of instructions
➢ Designed for humans to write

○ From way back when programmers used to program in assembly language
○ A time before compilers or high-level languages

➢ Complex (multi-step) instructions
○ Instruction to search a string for a character
○ F2XM1 computes 2x - 1

■ Computes the exponential value of 2 to the power of the source operand minus 1. The source operand is located in register ST(0) and the
result is also stored in ST(0). The value of the source operand must lie in the range - 1.0 to +1.0. If the source value is outside this range, the
result is undefined.

➢ Fewer instructions to write the same program
○ compared to RISC

7

But why use asm, if I can just code in C?

● Any C source can be compiled to assembly
○ gcc -S <SOURCE>.c
○ Not really helpful

● But what if we don’t have the source code?
○ such as a .exe program you downloaded from the web

● You can disassemble any compiled program to emit the
assembly

● What can you do with this?
○ Examine behavior of a program
○ Reverse engineering!

8

But why use asm, if I can just code in C?
Assembly is good for:

➔ Understanding the machine
◆ You get to see what exactly the CPU is

doing
➔ Better optimization of routines

◆ Think you’re better than a compiler?
➔ Programming hardware-dependent

routines
◆ E.g., compilers, operating systems,…

➔ Reverse-engineering and code
obfuscation
◆ malware/driver analysis…

Knowing assembly will enhance your
code!

9

Assembly is bad for:

➔ Portability is lost
◆ Code only works for a particular

architecture, or processor
➔ Obfuscate the code

◆ Not everyone can read assembly
● But you can!

➔ Debugging is hard
◆ Most debuggers are lost when

hitting assembly
● But not GDB!

➔ Optimizations is tedious
◆ Tbh, you can’t beat a modern

compiler

Use it with caution and sparsity!

One code, two assembly
● Assembly language is simply a textual representation of machine language

⇒ Multiple representations for the same machine language

10

AT&T Syntax Intel Syntax

● Developed by AT&T (duh)
● Used by GNU Assembler (gas)
● Opcode appended by type:

○ b – byte (8 bit)
○ w – word (16 bit)
○ l – long (32 bit)
○ q – quad (64 bit)

● First operand is source
● Second operand is destination
● Dereferences are denoted by ()

● Developed by Intel (duh)
● Used by Microsoft (MASM), intel, NASM
● Type sizes are spelled out:

○ BYTE – 1 byte
○ WORD – 2 bytes
○ DWORD – 4 bytes (double word)
○ QWORD – 8 bytes (quad word)

● First operand is destination
● Second operand is source
● Dereferences are denoted by []

Keeping track of the registers

● Like in MIPS, x86 has calling conventions
○ The C Application Binary Interface (ABI)
○ Like MIPS, certain registers are typically used for returns values, args, etc

● The ABI is not defined by the language, but rather the OS
○ Windows and Linux (UNIX/System V) have a different C ABI

● In our x86-64 Linux C ABI,
○ %rdi, %rsi, %rdx, %rcx, %r8, %r9 are used to pass arguments (like the

a registers in MIPS)
■ Remaining arguments go on the stack

○ A function callee must preserve %rbp, %rbx, %r12, %r13, %r14, %r15
(like the s registers in MIPS)

○ %rax (overflows into %rdx for 128-bits) stores the return value (like v0, v1 in
MIPS)

● Reference manual provides extra information

11

12

13

14

15

16

17

18

19

Will I have to write assembly code for this course?

● No! No matter how good you are at programming, you are no
match for a modern compiler

○ Modern Compilers are just too good at optimization
■ There was a time when humans outperformed compilers

● Those days are long gone now…
● However, you should be able to read assembly code

○ To figure out what your machine is doing
○ To guess the C code

● By the end of this lab, you should be able to freely translate
assembly and C

20

Diving into the Code!
See code: https://github.com/shinwookim/asm-demo

21

https://github.com/shinwookim/asm-demo

Hello World! x86 edition

22

#include <stdio.h>
int main(void)
{
 puts("Hello World!");
 return 0;
}

.LC0:
 .string "Hello World!"
main:
 pushq %rbp
 movq %rsp, %rbp # rsp = stack pointer
 movl $.LC0, %edi # push func args
 call puts # call a function
 movl $0, %eax # eax = return register
 popq %rbp # prepare to return
 ret # return

text (code) segment:

55 48 89 E5 BF 00 00 00 00 E8 00 00 00

00 B8 00 00 00 00 5D C3

data segment:

48 65 6C 6C 6F 2C 20 57 6F 72 6C

// Symbol table and other info omitted

Linker Executable

Debugging Assembly

● Recall that GDB worked on executables
○ You ran gdb mdriver and not gdb mdriver.c

● Having the source was nice
○ We used the -g flag when compiling
○ which allowed us to use layout src to view the code during execution

● …but not necessary
● What if we don’t have a source file ? (or the program was compiled without -g flag)

○ We can still run GDB!
○ Won’t be able to see the source code ⇒ We need to inspect assembly code

Reading symbols from a.out...

(No debugging symbols found in a.out)

23

Displaying the assembly with disas

● Suppose we are in paused in a
breakpoint

● We can view the assembly code
around our current memory address
using disas

○ Memory address that is held by the
program counter

● But how do we set a breakpoint
○ if we don’t have the code?

● Surely, we need a way to view ASM
○ Without first setting a breakpoint right?

24

25

● The layout asm
command displays the
assembly of the entire
program

○ You can scroll through the
code and identify the
memory addresses to set
breakpoints

● But what if your
program is Huuuuge?

○ That’s gonna be a lot of
scrolling

Displaying the assembly with layout asm

Let’s put the asm in a file ⇒ Now we can ctrl+f
objdump -d program > program.s

● GNU provides a tool called object dump for unix-like systems
○ Let’s you inspect information from object files
○ The -d flag disassembles the program and displays the .code section
○ The > flag redirects your standard I/O output to a file

26

USER@thoth:$ objdump -d a.out
a.out: file format elf64-x86-64
Disassembly of section .init:
0000000000001000 <_init>:
 1000: f3 0f 1e fa endbr64
 1004: 48 83 ec 08 sub $0x8,%rsp
 1008: 48 8b 05 d9 2f 00 00 mov 0x2fd9(%rip),%rax # 3fe8
 100f: 48 85 c0 test %rax,%rax
 1012: 74 02 je 1016 <_init+0x16>
 1014: ff d0 call *%rax
 1016: 48 83 c4 08 add $0x8,%rsp
 101a: c3 ret
…

GDB Assembly Edition

● Back to GDB…
● You can still set breakpoints

○ Not at specific lines of code…but at specific instructions (which are stored in
memory)

○ break *0x000055555555515b
○ Why the *?
○ *main+24

■ You can set breakpoints at function offsets
■ Get this from GDB’s layout asm

● You can still step through your code
○ Again, not stepping through lines of code, but through CPU instructions
○ Using stepi instead of step

■ nexti instead of next
■ Continue

27

GDB Assembly Edition

● Examining Memory
○ We can print values stored at memory address or at registers
○ print/format expr

■ Indicate registers with $ (NOT %)
■ To print a value stored in a memory address use *
■ format tells us how to interpret values at that memory location

● d: decimal
● x:hex
● t: binary
● f: floating point
● i: instruction
● c: character

■ p $rdi displays the content at %rdi in a decimal format
○ x MEM_ADDR prints memory content

● Just because you print it as decimal does not mean that the value is a decimal
● Interpretation of values depends on the context (which you need to provide)

○ info registers lets you see all registers at once

28

Need help with GDB?
See (fmr) TA Gavin’s GDB videos on Canvas!

29

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 10; i++)

 {

 printf("%d", i);

 }

 return 0;

}

C Control Structures → Assembly

30

0x0000000000001155 <+12>: movl $0x0,-0x4(%rbp)

0x000000000000115c <+19>: jmp 0x117b <main+50>

0x000000000000115e <+21>: mov -0x4(%rbp),%eax

0x0000000000001161 <+24>: mov %eax,%esi

0x0000000000001163 <+26>: lea 0xe9a(%rip),%rax

0x000000000000116a <+33>: mov %rax,%rdi

0x000000000000116d <+36>: mov $0x0,%eax

0x0000000000001172 <+41>: call 0x1050

<printf@plt>

0x0000000000001177 <+46>: addl $0x1,-0x4(%rbp)

0x000000000000117b <+50>: cmpl $0x9,-0x4(%rbp)

0x000000000000117f <+54>: jle 0x115e <main+21>

#include <stdio.h>

int main(void)

{

 int i = 0;

 while (i < 10)

 {

 printf("%d", i);

 i++;

 }

 return 0;

}

C Control Structures → Assembly

31

0x0000000000001155 <+12>: movl $0x0,-0x4(%rbp)

0x000000000000115c <+19>: jmp 0x117b <main+50>

0x000000000000115e <+21>: mov -0x4(%rbp),%eax

0x0000000000001161 <+24>: mov %eax,%esi

0x0000000000001163 <+26>: lea 0xe9a(%rip),%rax

0x000000000000116a <+33>: mov %rax,%rdi

0x000000000000116d <+36>: mov $0x0,%eax

0x0000000000001172 <+41>: call 0x1050

<printf@plt>

0x0000000000001177 <+46>: addl $0x1,-0x4(%rbp)

0x000000000000117b <+50>: cmpl $0x9,-0x4(%rbp)

0x000000000000117f <+54>: jle 0x115e <main+21>

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 10; i++)

 {

 printf("%d", i);

 }

 return 0;

}

C Control Structures → Assembly

32

0x0000000000001155 <+12>: movl $0x0,-0x4(%rbp)

0x000000000000115c <+19>: jmp 0x117b <main+50>

0x000000000000115e <+21>: mov -0x4(%rbp),%eax

0x0000000000001161 <+24>: mov %eax,%esi

0x0000000000001163 <+26>: lea 0xe9a(%rip),%rax

0x000000000000116a <+33>: mov %rax,%rdi

0x000000000000116d <+36>: mov $0x0,%eax

0x0000000000001172 <+41>: call 0x1050

<printf@plt>

0x0000000000001177 <+46>: addl $0x1,-0x4(%rbp)

0x000000000000117b <+50>: cmpl $0x9,-0x4(%rbp)

0x000000000000117f <+54>: jle 0x115e <main+21>
Wait….why is the assembly code the same?

for loops == while loops!
Your CPU treats them the same way!

* do-while loops also work the same way (Write a short program and inspect the assembly!)

33

#include <stdio.h>

int main(void)

{

 int input;

 scanf("%d", &input);

 if (input > 10) printf("Big");

 else printf("Not Big");

 return 0;

}

C Control Structures → Assembly

34

11bf: 8b 45 f4 mov -0xc(%rbp),%eax

11c2: 83 f8 0a cmp $0xa,%eax

11c5: 7e 16 jle 11dd <main+0x54>

11c7: 48 8d 05 39 0e 00 00 lea 0xe39(%rip),%rax

11ce: 48 89 c7 mov %rax,%rdi

11d1: b8 00 00 00 00 mov $0x0,%eax

11d6: e8 a5 fe ff ff call 1080 <printf@plt>

11db: eb 14 jmp 11f1 <main+0x68>

11dd: 48 8d 05 27 0e 00 00 lea 0xe27(%rip),%rax

11e4: 48 89 c7 mov %rax,%rdi

11e7: b8 00 00 00 00 mov $0x0,%eax

11ec: e8 8f fe ff ff call 1080 <printf@plt>

Conditional statements
works as expected
Who knew that if-else executed different based on
conditions?

35

36

Our real first assembly
code analysis
Looking through a real program!

Special thanks to Jake Kasper for providing slides & code

37

0000000000001149 <main>:

1149:f3 0f 1e fa endbr64

114d:55 push %rbp

114e:48 89 e5 mov %rsp,%rbp

1151:48 83 ec 20 sub $0x20,%rsp

1155:89 7d ec mov %edi,-0x14(%rbp)

1158:48 89 75 e0 mov %rsi,-0x20(%rbp)

115c:bf 05 00 00 00 mov $0x5,%edi

1161:e8 23 00 00 00 call 1189<increment>

1166:89 45 fc mov %eax,-0x4(%rbp)

(…)

C Control Structures → Assembly

38

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}
Prefix increment
Increments first, then returns

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

C Control Structures → Assembly

39

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

C Control Structures → Assembly

40

%rbp needs maintains the current stack frame
- To preserve the previous stack frame
- it gets pushed onto the stack

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

C Control Structures → Assembly

41

%edi is our first argument register, so we’re
moving the value of our argument (num) into the
current stack frame Why -0x4?

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

C Control Structures → Assembly

42

Increment the value of the argument we just
stored in the stack

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

C Control Structures → Assembly

43

Move our data we’ve been editing in the stack, to
our return register

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

C Control Structures → Assembly

44

Pop the stack frame from the stack, as we’re
about to return from the current function scope,
and this will load the previous stack frame back
to %rbp

0000000000001189 <increment>:

1189:f3 0f 1e fa endbr64

118d:55 push %rbp

118e:48 89 e5 mov %rsp,%rbp

1191:89 7d fc mov %edi,-0x4(%rbp)

1194:83 45 fc 01 addl $0x1,-0x4(%rbp)

1198:8b 45 fc mov -0x4(%rbp),%eax

119b:5d pop %rbp

119c:c3 ret

#include <stdio.h>

int main(int argc, char **argv)

{

 int myNum = increment(5);

 printf("My num is %d\n", myNum);

 return 0;

}

int increment(int num)

{

 return ++num;

}

C Control Structures → Assembly

45

Return to caller
What about the return value?
It’s already in the return register(%eax)

Let’s inspect increment() with GDB

46

Set a breakpoint at the start of the
assembly for increment using the *

Tracing through the code w/ GDB

47

After running, we’ve hit the breakpoint
at increment

Let’s read the assembly line by line
using ni (`next instruction`), though we
can skip ahead a few lines until we get
to the more important function details

Tracing through the code w/ GDB

48

This is the line in which our stack frame
pointer, %rbp, is being updated to
contain the current stack address

Tracing through the code w/ GDB

49

We’ve now executed the instruction to
add the current stack pointer to %rbp

We are also about to execute the line
to put the argument register’s contents
into the stack frame, so let’s check the
value of the argument register:

p $rdi →

This makes sense, as we passed 5 into
our function in our C code

Tracing through the code w/ GDB

50

Now we stored the argument register
value into our stack frame. To check
that this update actually changed our
stack frame, let’s print the integer that
lies below the stack pointer:

x/-4bx $rbp → Read the previous 4
bytes

x/-1w $rbp → Read the previous
word (word is the size of an integer)

We can see both of these led us to the
value 5 being stored in the stack frame

Tracing through the code w/ GDB

51

At this point, we’ve run the line to
increment the value in the stack frame,
and are waiting to execute this line.

To see if this change was made, let’s
again print out the values:

x/-4bx $rbp → Read the previous 4
bytes as hex

x/-1wx $rbp → Read the previous
word (word is the size of an integer) as
hex

Since the value changed to 6, the
increment was successful, and we can
see where that change occurred.

Tracing through the code w/ GDB

52

%eax, the return register, should
contain the value 6 that we want to
return to the user. Let’s see:

p $rax →

%eax now contains the accurate return
value from our function, so we can
return to the previous caller after
adjusting the stack.

Lab 4
Assembly Lab: ASM!

53

Now, it’s your turn!

● In lab 4, you will practice:
○ Reading assembly
○ Recognizing common patterns
○ Using gdb to debug assembly code + inspect memory!

● Part A: Investigating the code!
○ Reading simple functions

■ Similar to what we just did
■ https://godbolt.org/z/9c4Efqvoo

○ Deep dive into control flow, raise operations, hidden arguments
○ The Test.

■ Can you read assembly code tell me what it does?
● Gradescope submission

● Part B: Inspecting memory
○ Can you debug an executable by looking at assembly code and using gdb?

■ Gradescope submission

54

https://godbolt.org/z/9c4Efqvoo

References

Jonathan Misurda’s CS0449
Jake Kasper’s CS 0449 Recitation Slides (Spring 2023)
Gavin Heinrichs-Majetich’s CS 0449 Recitation Slides (Fall 2022)
Martha Dixon’s CS 0449 Recitation Slides (Fall 2020)
Randal Bryant & David R. O'Hallaron’s Computer Systems: A Programmer's Perspective
Carnegie Mellon University’s 15-213: Introduction to Computer Systems (Fall 2017)

55

