
CS0449 TEACHING ASSISTANTS

Process Management: Fork-Exec Model
CS 0449: Introduction to System Software

Process Management
The Linux Fork-Exec model

2

Creating new processes & programs
● fork-exec model (Linux)

○ fork() copies the current process
■ Creating a “child” process that is a duplicate of the memory and

state of its parent process
○ exec*()replaces the current process’s code and address space with the

code for a different program
■ Family: execv, execl, execve, execle, execvp, execlp

○ fork() and exec() are system calls
● Other system calls for process management

○ getpid() gets process id
○ exit(int) ends the current process

■ Argument is known as the exit code
■ We can have processes that are no longer running, but not yet

deallocated (Zombie processes)
○ wait() yields the process and returns only when the child process ends

■ Return value of wait() is the process id of the child that exited
■ Specify which child to wait for using waitpid(pid_t)

3

Process 2

“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

fork()

Creating new processes & programs

Chrome.exeexec*()

Process 1

“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

fork(): creating new processes

● pid_t fork(void)
○ Returns 0 to the child process
○ Returns child’s process ID (PID) to the parent process

● Child is almost identical to parent:
○ Child gets an identical (but separate) copy of the parent’s address space
○ Child has a different PID than the parent

● fork is unique (and often confusing) because it is called once
but returns “twice”

Understanding fork()

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Understanding fork

7

Process X
(parent) pid_t pid = fork();

if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Process Y (child)
pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Understanding fork

8

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid = Y pid = 0

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Process X (parent) Process Y (child)

hello from parent hello from child

Which one appears first?

Modeling fork() with process graphs

● A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program

○ Each vertex is the execution of a statement
○ a → b means a happens before b
○ Edges can be labeled with current value of variables
○ printf vertices can be labeled with output
○ Each graph begins with a vertex with no in edges

Fork example

● Both processes continue/start execution after fork
○ Child starts at instruction after the call to fork (storing into pid)

● Can’t predict execution order of parent and child
● Both processes start with x=1

○ Subsequent changes to x are independent

10

void fork1() {
 int x = 1;
 pid_t pid = fork();
 if (pid == 0)

printf("Child has x = %d\n", ++x); // child only
 else

printf("Parent has x = %d\n", --x); // parent only
 printf("Bye from process %d with x = %d\n", getpid(), x); // both
}

11

void fork1() {
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) printf("Child has x = %d\n", ++x);
 else printf("Parent has x = %d\n", --x);
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

Modeling fork() with process graphs

As long as C comes before BC
and P comes before BP

C BC P BP
P BP C BP
C P BC BP
C P BP BC
C BC BP P
P BC C BP Not possible!

Seq 1:
L0
L1
Bye
Bye
Bye
L2

PEV: Is the following sequence of outputs possible?

void nestedfork() {
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

Are the following sequences of outputs possible?

13

void nestedfork() {
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

Seq 1:
L0
L1
Bye
Bye
Bye
L2 NO!

Fork bombs 💣
● A Fork bomb (AKA rabbit virus, or wabbit)

○ is a denial-of-service attack
○ wherein a process continually replicates itself to deplete available

system resources
○ while(true) { fork(); }

● :(){ :|:& };: ← This is all you need for a fork bomb
○ https://en.wikipedia.org/wiki/Fork_bomb

● Try experimenting on your own machine
○ Preferably on a virtual machine
○ Worst case scenario, you just reboot your machine!

● That being said, if you fork bomb Thoth, your access to it will
be revoked
○ And you will need access for other courses (e.g., 1550)

https://en.wikipedia.org/wiki/Fork_bomb

Lab 5: Loading &
Forking
Executables and Plugins

15

Now, it’s your turn!

● In lab 5, you will practice:
a. Learn how libraries are loaded dynamically
b. Learn how processes are created

■ Using fork(), exec()
■ And wait()

● Three parts
a. Plugging your code!
b. FORK!
c. Gradescope Questions

16

Collaboration on this lab is allowed and encouraged!

Part A: Plugging your code!

● Read the handout on how function pointers work
○ A function pointer is a variable that stores the address of a function that can later be

called through that function pointer.
● return_type (*pointer_name)(list,of,argument,types);

○ long int (*f_ptr)(int, int);
○ Really useful for general purpose functions!

■ A sort function that can work on any data type
● Works as long you pass in a function that can compare two values of that type

void qsort(void *base, size_t n_elem, size_t elem_size, int(*compare)(const void *, const void *));

int compare_ascending(const void *val1, const void *val2) { // Compares integers

 return *(const int *)val1-*(const int *)val2;

}

If I want to use qsort() on a
different data type (e.g.,
Strings), all I need to do is,
swap out the comparison function!

Part A: Plugging your code!
● Build a program that accepts a plugin name

as a parameter and executes that plugin.
○ Plugin file will have the name plugin-name.so
○ All Plugin support

■ int initialize()
■ int run()
■ int cleanup()

○ Your program should be run as
■ $./program plugin-name

● Create plugin_manager.c that
○ reads the first argument - you may need to

format your argument (e.g., “plugin” →
./plugin.so)

○ Loads the shared object
○ Runs initialize(), run(), and cleanup() in that

order

/* Sample Plugin */

int initialize() {

 printf("Initializing plugin\n");

}

int run() {

 printf("Running plugin\n");

}

int cleanup() {

 printf("Cleaning plugin\n");

}

// Create a shared object

gcc plugin.c -o plugin.so -shared

To dynamically link libraries you will need to get familiar with
 dlfcn.h functions (see lecture slides for examples)

Dynamic linking requires the -ldl flag when
compiling with gcc

(gcc plugin_manager.c … -ldl)

Part B: FORK!

● Forking allows us to expand our programs to multiple processes
○ But how can processes communicate with one another?

■ That is, how do we synchronize processes? ←This is often known as interprocess communication
● Signals are primitive standards that can be sent to processes

○ By other processes, the OS, etc.0
● For example, when you kill a program with ctrl + c, the shell

sends the SIGINT signal to that process
○ Which usually terminates the program

● When you get a segmentation fault, the OS usually sends the
SIGSEGV signal to the process

● However, we can capture the signals to do something else
○ For example, on when the user tries to kill the process (SIGINT) print “No!” and

keep running

19

Part B: FORK!

● Create a program run_on_demand.c
that:

○ When it receives signal SIGUSR1,
■ Fork-execs ls

○ When it receives signal SIGUSR2,
■ Fork-execs ls -l a

● When CTRL + c is pressed, the
program should print

○ “Leaving gracefully”
○ Then exit

● Remember to synchronize the
processes

○ Printing order should be respected
○ The process should “wait” until the ls is complete

20

Sample Output

Received signal <signal number>.

Running <command>.

<ls output>

Done!

Sample Output

Received signal <signal number>.

Received signal <signal number>.

Running <command>.

<ls output>

<ls output>

Done!

Done!

Testing with signals

● How can we test signals?
● Signals are sent by processes…so we can create a wrapper

program that tests our run_on_demand program
○ For example:

pid_t pid = fork();

if (pid == 0) // child process

 exec("./run_on_demand");

else // parent process

 kill(pid, SIGUSR1); //send

SIGUSR1 to child

This is
pseudo-code

● Or we can do so manually:
○ Open up two terminals
○ In terminal 1, run run_on_demand
○ In terminal 2, manually send signals

■ $ kill -s SIGUSR1 pid
■ How do we know pid?
■ $ ps ux gets you the pid of

all process (that you are
running)

Part C: Gradescope Questions

● Fork tracing questions + extra
● Good exam practice!

⇒ You must submit:

1. plugin_manager.c
2. run_on_demand.c
3. Answer questions on Gradescope

22

Collaboration on this lab is allowed and encouraged!

Project IV
Writing Your Own Shell

23

man strtok abridged

▶ The strtok() function can help tokenize strings
▶ #include <string.h>
▶ char *strtok(char *str, const char *delim);

○ Breaks string str into a series of tokens using the delimiter delim.
○ Returns a pointer to the next token, or NULL if there are no more tokens.

▶ Called in one of two ways:
1. strtok(str, d) // starts processing a new string
2. strtok(NULL, d) // continue processing a string

24

University of Pittsburgh - CS 0449

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

 char str[] = "I:love-programming";

 char delim[] = "-:";

 char *token;

 token = strtok(str, delim);

 printf("%s\n", token);

 return 0;

}

25

University of Pittsburgh - CS 0449

What will be printed?

$./strtok_example

I

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

 char str[] = "I:love-programming";

 char delim[] = "-:";

 char *token;

 token = strtok(str, delim);

 printf("%s\n", token);

 token = strtok(str, delim);

 printf("%s\n", token);

 return 0;

}

26

University of Pittsburgh - CS 0449

What will be printed?

$./strtok_example

I

🤔 But the second token should be “love”I

A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

 char str[] = "I:love-programming";

 char delim[] = "-:";

 char *token;

 token = strtok(str, delim);

 printf("%s\n", token);

 token = strtok(NULL, delim);

 printf("%s\n", token);

 return 0;

}

27

University of Pittsburgh - CS 0449

What will be printed?

$./strtok_example

I
love

How can we print the remaining tokens?

A strtok() example

28

University of Pittsburgh - CS 0449

S e e t h e r e d f o x \0 …char* s =

S e e \0 t h e r e d f o x \0 …char* s =

S e e \0 t h e \0 r e d f o x \0 …char* s =

S e e \0 t h e \0 r e d \0 f o x \0 …char* s =

S e e \0 t h e \0 r e d \0 f o x \0 …char* s =

char* t = strtok(s, " ");

t

t

t

t

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

t → NULL
▶ strtok() changes the string that has been parsed!

char* s = “See the red fox”;

idem· po· tent

▶ The strtok() function exhibits some weird behavior
○ strtok() changes the string that has been parsed
○ Replacing the character in place with a null terminator ('\0')

▶ strtok() produces different results when called multiple times
○ It’s a non-idempotent function

■ Which has side effects.
▶ In comparison, functions that have no side effects are called idempotent.

x = 2; // Assignment operations are
x = 2; // idempotent
x = 2;
x = 2; // Calling it multiple times
x = 2; // always produces the same result

29

University of Pittsburgh - CS 0449

▶ Be cautious when using these functions. If you do use them, note
that:

○ These functions modify their first argument.
○ These functions cannot be used on constant strings.
○ The identity of the delimiting byte is lost.

▶ For instance, if you try
○ strtok(“String Constant”, delim)
○ Segmentation fault! (attempting to write to a literal)

man strtok #NOTES-AND-BUGS

30

University of Pittsburgh - CS 0449

Still unsure? Read the man pages!

$ man strtok

▶ What arguments does the function take?
○ read SYNOPSIS

▶ What does the function do?
○ read DESCRIPTION

▶ What does the function return?
○ read RETURN VALUES

▶ What errors can the function fail with?
○ read ERRORS

▶ Is there anything I should watch out for?
○ read NOTES

▶ I want an example
○ read EXAMPLES
○ https://pitt.edu/~shk148/teaching/CS0449-2234/code/strtok.c.html

31

University of Pittsburgh - CS 0449

https://sites.pitt.edu/~shk148/teaching/CS0449-2234/code/strtok.c.html

32

TopHat Questions

