Process Management: Fork-Exec Model
CS 0449: Introduction to System Software

CsS0449 TEACHING ASSISTANTS

School of Computing
and Information

n.iversity o)
sJ Pittsburgh

Process Management

The Linux Fork-Exec model

Creating new processes & programs

e fork-exec model (Linux)

o fork() copies the current process

= Creating a “child” process that is a duplicate of the memory and
state of its parent process
o exec”()replaces the current process’s code and address space with the
code for a different program

= Family: execv, execl, execve, execle, execvp, execlp

o fork() andexec() are system calls

e Other system calls for process management

o getpid() getsprocessid

o exit(int) endsthe currentprocess
= Argumentis known as the exit code
= We can have processes that are no longer running, but not yet

deallocated (Zombie processes)

o wait() yields the process and returns only when the child process ends
» Returnvalue of wait () is the process id of the child that exited
= Specify which child to wait for usingwaitpid(pid_t)

University of ‘
&9 Pittsburgh | S

Ve

Process 1
\

\
o

Creating new processes & programs

Vs

Process 2
“Memory” “Memory”
Stack Stack
Heap fork Heap
Data ()> ‘ Data
Code Code
A
IICPU” llCPUH
| Registers | | Registers |
exec*() | Chrome.exe

: creating new processes

e pid_t fork(void)
o Returns O to the child process
o Returns child’s process ID (PID) to the parent process

e Childis almostidentical to parent:

o Child gets an identical (but separate) copy of the parent’s address space
o Child has a different PID than the parent

e forkis unique (and often confusing) because it is called once
but returns “twice”

University of ‘
2 Pittsburgh | S

Understanding

University of ‘ »
2 Pittsburgh | S

pid _t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");

}

Understanding fork

Process X Process Y (child)
pid_t pid = fork(); pid_t pid = fork();
if (pid == 0) { if (pid == 0) {
printf("hello from child\n"); printf("hello from child\n");
} else { } else {
printf("hello from parent\n"); printf("hello from parent\n");
} }

University of
e Pittsburgh | %

Understanding fork

Process X (parent)

pid_t pid = fork();

if (pid == 0) {
printf("hello from

} else {
printf("hello from

}

child\n");

parent\n");

Process Y (child)

pid_t pid = fork();

if (pid == 0) {
printf("hello from

} else {
printf("hello from

}

child\n");

parent\n");

» pid_t pid = fork();

if (pid == 0) {
printf("hello from

} else {
printf("hello from

}

pid = Y

child\n");

parent\n");

pid_t pid = fork();

if (pid == 0) {
printf("hello from

} else {
printf("hello from

hello from parent

University of
e Pittsburgh | %

}

pid = 0

child\n");

parent\n");

hello from child

Which one appears first?

Modeling with process graphs

e A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program
o Each vertexis the execution of a statement
o a— b means ahappens beforeb
o Edges can be labeled with current value of variables
o printf vertices can be labeled with output
o Each graph begins with a vertex with no in edges

University of ‘
9 Pittsburgh

Fork example

void forkl() {
int x = 1;
pid_t pid = fork();
if (pid == 0)
printf("Child has x = %d\n", ++x); // child only
else
printf("Parent has x = %d\n", --x); // parent only
printf("Bye from process %d with x = %d\n", getpid(), x); // both

e Both processes continue/start execution after fork
o Child starts at instruction after the call to fork (storing into pid)

e (Can’t predict execution order of parent and child

e Both processes start with x=1
o Subsequent changes to x are independent

University of
e Pittsburgh | %

Modeling with process graphs

void forkl() {
int x = 1;
pid_t pid = fork();

if (pid == 0) printf("Child has x = %d\n", ++x);
else printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);
}
C e ¢ 8C P 8P
child . P BP C BP Aclong as C comes before BC
X=2 Qﬂd _Bye C P BCBP and Pcomes before BP
= printf printf CP BPBC
C 8C BPP
P RP P BCC 8P } Not poscible!
Parent Bye

printf printf

University of
9 Pittsburgh

PEV: Is the following sequence of outputs possible?

void nestedfork() {
printf("LO\n");
if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");
}

}
printf("Bye\n");

University of ‘ »
2 Pittsburgh | S

Seq 1:
LO
L1
Bye
Bye
Bye
L2

Are the following sequences of outputs possible?

void nestedfork() { Seq 1:
printf("LO\n");
if (fork() == @) { Lo
printf("L1\n"); L1

if (fork() == 0) {
printf("L2\n"); Bye

} Bye
} Bye 2 e Bchcss3
printf("Bye\n"); / prt prist
| Bye, .

’——30——7\ Y -) YW‘U) 2

LO Bye
'Y .——————-;l
PT:AT‘F ‘sz‘(Frln“"F } Proces l

University of ‘ »
2 Pittsburgh | S

Fork bombs

e A Fork bomb (AKA rabbit virus, or wabbit)
o is adenial-of-service attack
o Wherein a process continually replicates itself to deplete available
system resources
o while(true) { fork(); }

o :(){ :|:& };: < Thisisall you need for afork bomb
o https://enwikipedia.org/wiki/Fork bomb

e Try experimenting on your own machine
o Preferably on a virtual machine
o Worst case scenario, you just reboot your machine!

e [hatbeing said, if you fork bomb Thoth, your access to it will

be revoked
o And you will need access for other courses (e.g., 1550)

https://en.wikipedia.org/wiki/Fork_bomb

Lab 5: Loading &
Forking

Executables and Plugins

Now, it’s your turn!

e Inlab 5, you will practice:
a. Learnhow libraries are loaded dynamically
b. Learn how processes are created
= Using fork(),exec()
= Andwait()
e Threeparts
a. Plugging your codel!
FORK!
c. Gradescope Questions

Collaboration on thic lab ic allowed and encouraged!

University of ‘ »
2 Pittsburgh | S

Part A: Plugging your code!

e Read the handout on how function pointers work
o A function pointer is a variable that stores the address of a function that can later be
called through that function pointer.
e return_type (*pointer_name)(list,of,argument, types);
o 1long int (*f_ptr)(int, int);
o Really useful for general purpose functions!

= A sort function that can work on any data type
« Works as long you pass in a function that can compare two values of that type

void gsort(void *base, size_t n_elem, size_t elem_size, int(*compare)(const void *, const void *));

NG J

e

int compare_ascending(const void *vall, const void *val2) { // Compares integers

If I want to use gsort() On a
different data type (e.g.,
Strings), all I need to do is,
swap out the comparison function!

return *(const int *)vall-*(const int *)val2;

}

University of
& Pittsburgh |

Part A: Plugging your code!

-
'H-H
\&/

Build a program that accepts a plugin name /* sample Plugin */

as a parameter and executes that plugin. e etz
o Plugin file will have the name plugin-name.so }

o All Plugin support
« 1int initialize()

« int run()

printf("Initializing plugin\n");

int run() {
printf("Running plugin\n");

) ¥
« int cleanup()
o Your program should be run as int cleanup() {
- S ./program p]_ugj_n_name printf("Cleaning plugin\n");
¥
Create plugln_manage r . C that // Create a shared object
o reads the first argument - you may need to gec plugin.c -o plugin.so -shared
format your argument (eg >0 plugln - To dynamically link libraries you will need to get familiar with
. /p]_ugj_n . SO) difen.h functions (see lecture slides for examples)
o Loads the shared object Dynamic linking requires the -1d1 flag when
. . ili ith
o Runsinitialize(),run(),andcleanup() inthat CONpEIING WEER 9ee

order (gcc plugin_manager.c .. -1dl1)

University of

Pittsburgh | &t

Part B: FORK!

e Forking allows us to expand our programs to multiple processes
o But how can processes communicate with one another?
- That iS’ hOW do We Synchronize processes? .This is often known as interprocess communication

e Signals are primitive standards that can be sent to processes
o By other processes, the OS, etc.0

e For example, when you kill a program withctrl + c,the shell
sends the SIGINT signal to that process

o Which usually terminates the program
e When you get a segmentation fault, the OS usually sends the
SIGSEGV signal to the process

e However, we can capture the signals to do something else
o For example, on when the user tries to kill the process (SIGINT) print “No!” and
keep running

University of ‘
& Pittsburgh |

Part B: FORK!

-
'H-H
\&/

Create a program run_on_demand.c

that:

o When it receives signal SIGUSRT,
s Fork-execs ls

o Whenitreceives signal SIGUSR2,
s Fork-execsls -1 a

When CTRL + cis pressed, the

program should print
o “lLeaving gracefully”
o Then exit

Remember to synchronize the
processes

o Printing order should be respected
o The process chould ‘wait” until the 1s ic complete

University of

Pittsburgh | &

Sample Output
Received signal <signal number>.
Running <command>.

<1ls output>

Done!

Sample Output
Received ber>.
Received s i mber>.

Running <comm
<1ls output>
<1ls outputy
Done!

Done!

Testing with signals

e How can we test signals?
e Signals are sent by processes...so we can create a wrapper
program that tests our run_on_demand program
o Forexample: e Or we can do so manually:

Open up two terminals
_— pid t pid = fork(); In terminal 1, run run_on_demand

O

o

sseudo-coge if (pid == @) // child process o Interminal 2, manually send signals
exec("./run_on_demand"); = S kill -s SIGUSR1 pid
else // parent process = How dowe know pid?
kill(pid, SIGUSR1); //send = S ps ux getsyou the pid of
SIGUSR1 to child all process (that you are
running)

' Plttsburgh

Part C: Gradescope Questions

e Fork tracing questions + extra
e Good exam practicel!

Colloboration on thic lab ic allowed and encouraged!
= You must submit:

1. plugin_manager.c
2. run_on_demand.c
3. Answer questions on Gradescope

University of ‘
9 Pittsburgh

Project |V

Writing Your Own Shell

abridged

» The strtok() function can help tokenize strings
» #include <string.h>

» char *strtok(char *str, const char *delim);

o Breaks string str into a series of tokens using the delimiter delim.

o Returns a pointer to the next token, or NULL if there are no more tokens.
» Calledin one of two ways:

1. strtok(-, d) // starts processing a new string

2. strtok(-, d) // continue processing a string

Unive.@ BERittSburah.-.CS 0449

A example

#include <stdio.h> $./strtok_example
#include <string.h> I

int main(){

char str[] = "I:love-programming";
char delim[] = "-:";
char *token;

token = strtok(str, delim);
- What will be printed?

printf("%s\n", token);

return 0;

A example

#tinclude <stdio.h>

#include <string.h> $./strtok_example
int main(){ I
char str[] = "I:love-programming"; T @ But the second token should be ove”
= "I: - ;
char delim[] = "-:";

char *token;

token = strtok(str, delim);
printf("%s\n", token);
token = strtok(str, delim);

printf("%s\n", token); - What will be printed?
return 0;

A example

#tinclude <stdio.h>

#include <string.h> $./strtok_example
int main(){ I
" . love
char str[] = "I:love-programming"; How can we print the remaining token?
char delim[] = "-:";

char *token;

token = strtok(str, delim);
printf("%s\n", token);

token = strtok(NULL, delim);

printf("%s\n", token); - What will be printed?
return 0;

example

char* s = “See the red fox”;

char* s =| S e e t h e r e d f o) X \0

char* t = strtok(s, " ");

char* s =] S e e \@ | t h e r e d f o) X \0
t char* t = strtok(NULL, " ");

char* s =| S e e | \@ | t h e | \@| r e d f 0 X | \@
t char* t = strtok(NULL, " ");

char* s =| S e e | \@| t h e [\@| r e d | \e | f o) x | \o

char* t = strtok(NULL, " "); :

char* s =| S e e | \@| t h e [\@| r e d | \e | f o) x | \@

char* t = strtok(NULL, " "); t

» strtok() changes the string that has ‘been parsed!

Univergity BERittSbirah..CS 0449

idem-po-tent

» The strtok() function exhibits some weird behavior
o strtok() changes the string that has been parsed
o Replacing the character in place with a null terminator (' \6")
» strtok() produces different results when called multiple times
o It's a non-idempotent function
s Which has side effects.

» Incomparison, functions that have no side effects are called idempotent.

; // Assignment operations are
; // idempotent

; // Calling it multiple times
; // always produces the same result

X X X X X

I | VI [A |

NNNNDN
-

gh.~.CS 0449

#NOTES-AND-BUGS

» Be cautious when using these functions. If you do use them, note
that:

o These functions modify their first argument.
o These functions cannot be used on constant strings.
o Theidentity of the delimiting byte is lost.
» Forinstance, if you try
o strtok(“String Constant”, delim)
o Segmentation fault! (attempting to write to a literal)

Unive.@ BERittSburah.-.CS 0449

Still unsure? Read the man pages!

S man strtok

» What arguments does the function take?
o read SYNOPSIS

» What does the function do?
o read DESCRIPTION

» What does the function return?
o read RETURN VALUES

» What errors can the function fail with?
o read ERRORS

» |s there anything | should watch out for?
o read NOTES

» | wantanexample

o read EXAMPLES
o https://pitt.edu/~shkl1l48/teaching/CS0449-2234/code/strtok.c.html

Unive@ BERittSburah.-.CS 0449

https://sites.pitt.edu/~shk148/teaching/CS0449-2234/code/strtok.c.html

TopHat Questions

i University of
Pittsburgh |

