
CS0449 TEACHING ASSISTANTS

Concurrency and Synchronization
(How to Avoid the Dangers of

Threading)
CS 0449: Introduction to System Software

This almost the time for final exams…

2

▶ Final Exam Schedule on
PeopleSoft
○ During finals week
○ Report to scheduled

location

Course News

▶ Project 4 - Due: 17:59 Friday, 1st December, 2023
▶ Lab 7?

○ Virtual Memory & Scheduling
▶ Project 5

○ Threads & Concurrency

3

Threads
Achieving Concurrency without fork()s

4

5

Processes and Threads

6

Data Data FilesFiles

Register Stack Register

Stack

Register

Stack

Register

Stack
Code

Code

Single-threaded process Multi-threaded process

Thread

Threads can
share data!

Posix Threads (pthread) — POSIX.1c

▶ POSIX: Portable Operating System Interface
○ Standard to unify the program and system calls that many different operating systems

provide
○ Provides us a ‘standard library’ to help create and manage threads
○ #include <pthread.h>

○ int pthread_create(pthread_t threadID,

FLAGS, void *(*function)(void *),

void *restrict arg);

○ int pthread_join(pthread_t thread, void **retval);

▶ Other libraries exist
○ Win32 Threads for Windows
○ C11 Threads - not popular, not fully portable Thanks Microsoft

■ C++11 Threads - popular and widely used

7

pthread_create()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p) //function to be executed by the thread
{
 printf("Hello from thread %d\n", *(int *)p);
}

int main()
{
 pthread_t thread; //variable to store thread ID
 int id, arg1, arg2; //variables for thread IDs and arguments
 arg1 = 1; //set the argument for the 1st thread

//create the 1st thread
 id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);
 arg2 = 2; //set the argument for the 2ed thread
 do_stuff((void *)&arg2); //call the function directly for the 2ed thread
 return 0;
}

8

Output

▶ Hello from thread 2

9

pthread_create()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p)
{
 printf("Hello from thread %d\n", *(int *)p);
}

int main()
{
 pthread_t thread;
 int id, arg1, arg2;
 arg1 = 1;
 id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);
 arg2 = 2;
 do_stuff((void *)&arg2);
 return 0;
}

10

When the process exits, all threads are canceled. Here, the
process exited before the second thread got to print its
message

pthread_yield()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p)
{
 printf("Hello from thread %d\n", *(int *)p);
}

int main()
{
 pthread_t thread;
 int id, arg1, arg2;
 arg1 = 1;
 id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);

pthread_yield();
 arg2 = 2;
 do_stuff((void *)&arg2);
 return 0;
}

11

Output

▶ Hello from thread 1

Hello from thread 2

▶ pthread_yield() relinquishes the CPU
○ Allowing another thread to assume the CPU
○ Technically deprecated, but still portable and widely used!

⇒ You shouldn’t use it in your own code, but you may encounter it in the wild!

12

pthread_join()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p)
{
 printf("Hello from thread %d\n", *(int *)p);
}

int main()
{
 pthread_t thread;
 int id, arg1, arg2;
 arg1 = 1;
 id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);

pthread_join(thread, NULL);
 arg2 = 2;
 do_stuff((void *)&arg2);
 return 0;
}

13

Output

▶ Hello from thread 1

Hello from thread 2

▶ pthread_join(thread, NULL) waits until thread terminates

14

Linking the pthread library

▶ At compile time, need to link the POSIX thread library to your code
▶ Using -pthread option to gcc
▶ gcc -o thread_program source.c -pthread

○ Writing a Makefile might be useful here…

15

Synchronization
The Dangers of Threading

16

Race Condition: A Refrigerator Analogy

17

▶ Alice and Bob are roommates living in a dorm
○ They share one refrigerator in the kitchen

▶ Alice wakes up at 9:30 AM
○ She checks the refrigerator for milk and sees that

there is none
○ She goes out to the store to get milk

▶ While Alice is at the store, Bob wakes up
○ He checks the refrigerator for milk and sees that there

is none
○ He goes out to the store to get milk

▶ At 1 PM, Alice returns from the store
○ And places the milk in the fridge

▶ At 1:30 PM, Bob returns from the store
○ And tries to place the milk in the fridge
○ But there’s already another milk in the fridge!

Synchronization

▶ What went wrong?
▶ Bob and Alice did not communicate!

▶ Some shared resource (refrigerator)
▶ Time delay between checking the condition (looking inside the refrigerator)
▶ And taking an action (placing milk inside refrigerator)

18

4 20956

Race Conditions Animated

19

1 8 5 6 ?tail = A[] =

A[tail] = 20;
tail++;

enqueue()

A[tail] = 9;
tail++;

Thread A Thread B

thread
switch

Synchronization

▶ What went wrong?
▶ The threads did not communicate!

○ Same problem may occur with processes!

▶ Some shared resource (array)
▶ Time delay between checking some condition (loading the tail)
▶ And the action (updating the tail)

○ Preempted during this delay!

▶ Scheduling can be random and preemption can happen at any time
▶ Need some way to synchronize the threads

○ Need help from the operating system

20

Fixing Race Conditions: A Refrigerator Analogy

21

▶ Alice and Bob are roommates living in a dorm
○ They share one refrigerator in the kitchen

▶ Alice wakes up at 9:30 AM
○ She checks the refrigerator for milk and sees that

there is none
○ Alice locks the fridge
○ She goes out to the store to get milk

▶ While Alice is at the store, Bob wakes up
○ He attempts to check the refrigerator for milk, but the

refrigerator is locked
○ He waits until Alice comes back and unlocks the

fridge
▶ At 1 PM, Alice returns from the store

○ Places the milk in the fridge
○ And unlocks the refrigerator for Bob

▶ Now, Bob can check the refrigerator
○ And enjoy his milk!

atomic

atomic

Mutex

▶ MUTual EXclusion
▶ A mutex is a lock that only one thread can acquire
▶ All other threads attempting to access the resource protected by a locked

mutex will be blocked
▶ #include <pthread.h>
▶ int pthread_mutex_init(pthread_mutex_t, NULL)

○ Creates a new unlocked mutex

▶ int pthread_mutex_lock(pthread_mutex_t*)
○ Waits until it can lock the mutex

▶ int pthread_mutex_unlock(pthread_mutex_t*)
○ Unlocks the mutex

22

456 20 9

Fixing Race Conditions Animated

23

1 8 5 6tail = A[] =

lock(&mutex);
A[tail] = 20;
tail++;
unlock(&mutex);

enqueue()

lock(&mutex);
A[tail] = 9;
tail++;
unlock(&mutex);

Thread A Thread B

thread
switch

mutex =

Mutex at the Gas Station Bathroom

24

▶ The toilet is like a shared object that can be accessed by multiple threads.
▶ The lock on the door is like a mutex, and the line of people outside

represents threads.
▶ The lock on the door is the toilet's mutex: it ensures that only one person can

get inside.

▶ A popular real-life example of a mutex
involves toilets.

▶ When a person enters a toilet partition, they
lock the door from the inside.

45 20

Deadlocked

25

1 8 5 6tail =

lock(&mutex);
A[tail] = 20;
tail++;
unlock(&mutex);

A[] =

enqueue()

lock(&mutex);
A[tail] = 9;
tail++;
unlock(&mutex);

Thread A Thread B

thread
switch

mutex =

Never Runs!

Be careful with synchronization primitives

▶ “A set of processes are deadlocked if each process in the set is waiting for
an event only another process in the set can cause”

26

Semaphore at the Gas Station Bathroom

27

▶ Instead, the keys are called semaphores.
▶ A semaphore enables two or more (two in this example) threads (people) to

use a shared resource (gas station bathroom) simultaneously.
1. If two keys (semaphores) are available, the value of the semaphore is 2.
2. If one key is available, the value of the semaphore is 1.
3. If no keys are available, that means that two tasks (people) are currently

working (in the bathroom). Hence, the value of the semaphore is 0.
○ The next task (person) must wait until a semaphore becomes available (i.e. a task finishes,

and the semaphore is incremented by 1).

▶ Now suppose that there are two bathroom
stalls instead of one.

▶ Since bathroom entry is no longer exclusive,
this is not a mutex scenario.

Semaphores

▶ A special counter used for synchronization
○ Essentially counties the number of free resources

▶ Down (wait) reduces the counter
○ Denoting that a resource is being used
○ Waits if the counter is 0

▶ Up (signal) operation increases the counter
○ Denoting that a resource is now free

▶ #include <semaphore.h>
▶ int sem_init(sem_t*, 0, unsigned int initial_value);

○ Creates a semaphore with the given initial value. (The second argument means it the
semaphore data is in shared memory. If non-zero, it can’t be seen by other threads.)

▶ int sem_wait(sem_t*);
○ Decrements counter unless it is 0 in which case it waits.

▶ int sem_post(sem_t*);
○ Increments counter.

28

Semaphores & Nomenclature

▶ There are no “official definitions” for each synchronization primitive
○ Different texts and implementers have slightly different implementations and associated

characteristics

▶ Edsger W. Dijkstra P() and V()
○ Legendary Computer Scientist (Dijkstra's algorithm,...)

▶ Andrew Tanenbaum down() and up()
○ Modern Operating Systems - Influential for Linux

▶ Abraham Silberschatz wait() and signal()
○ Operating Systems Concept - The ‘Dinosaur’ Book

▶ POSIX sem_wait() and sem_post()

29

while (s == 0) wait;
s--;

s++;

Condition Variables
A condition under which a thread executes or is blocked

30

Condition Variables

▶ Condition Variables are used to wait for a particular condition to become
true

▶ wait(condition, lock): release lock, put thread to sleep until condition
is signaled; when thread wakes up again, re-acquire lock before returning.

▶ signal(condition, lock): if any threads are waiting on condition, wake
up one of them. Caller must hold lock, which must be the same as the lock
used in the wait call.

▶ broadcast(condition, lock): same as signal, except wake up all
waiting threads.

31

Condition Variables

▶ Essentially a queue of waiting threads
▶ Thread B waits for a signal on CV before running

○ wait(CV, …);

▶ Thread A sends signal() on CV when time for B to run
○ signal(CV, …);

32

Condition Variables at the DMV

▶ Consider PennDOT (DMV)
○ Which serves two functions:

1. Title work
2. License renewal

▶ Critical resource: representative; threads: people
in line

▶ When a title-works window representative comes to
the window after a break, a condition
‘title_window_ready’ is satisfied.

▶ The title representative could look for the next ticket
(for title work) and signal the customer to come to
the window.

▶ Here we have two condition variables,
title_window_ready & license_window_ready.

▶ These conditions satisfy if one customer is handled
and now the representative is ready to handle next
customer.

33

The Bridge Problem

▶ Consider a narrow bridge that can only allow three vehicles in the same
direction to cross at the same time.

▶ If there are three vehicles on the bridge, any incoming vehicle must wait as
shown below.

34

The Bridge Problem

▶ When new cars get to the bridge, have them wait

35
if(new car from left) wait(left, bridgelock)

The Bridge Problem

▶ When a vehicle exits the bridge, we have two cases to consider.
▶ Case 1: there are other vehicles on the bridge

○ Shown below
○ In this case, one vehicle in the same direction should be allowed to proceed

▶ Case 2: the exiting vehicle is the last one on bridge.

36if(bridge.numCars != 0) signal(left, bridgelock)

The Bridge Problem

▶ Case 2 is more complicated and has two subcases.
▶ In this case, the exiting vehicle is the last vehicle on the bridge.
▶ If there are vehicles waiting in the opposite direction, one of them should be

allowed to proceed. This is illustrated below:

37

if(bridge.numCars == 0 && rightCars != 0)
signal(right, bridgelock)

The Bridge Problem

▶ Or, if there is no vehicle waiting in the opposite direction, then let the waiting
vehicle in the same direction to proceed.

38

if(bridge.numCars == 0 && rightCars == 0)
signal(left, bridgelock)

Problem with the Bridge Problem

▶ Consider Case 1: there are other vehicles on the bridge
○ Shown below
○ In this case, one vehicle in the same direction should be allowed to proceed

▶ But what if there are infinite number of vehicles on the left?
○ Will the vehicles on the right ever get to go?

39if(bridge.numCars != 0) signal(left, bridgelock)

Starvation

▶ Starvation describes a situation where a thread is unable to gain regular
access to shared resources and is unable to make progress.

▶ This happens when shared resources are made unavailable for long periods
by "greedy" threads.

40

Live Lock

▶ A Livelock is when two tasks are actively signaling the other to go and
making no progress.

▶ Example: Two friends at a dinner table with only one spoon
○ A tells B to use the spoon and eat first
○ B tells A to use the spoon and eat first
○ A tells B to use the spoon and eat first
○ …
○ No one gets to eat

▶ Aside: This is a weird example…
○ Why are you at a dinner table with only one spoon?
○ Why doesn’t one of them go and get another spoon?

▶ Many ‘classical IPC problems’ are built around weird premises 1550

○ Dining Philosopher Problems
○ Sleeping Barber Problem

41

So many more synchronization primitives…

▶ Mutex 449

▶ Semaphore 449

▶ Condition Variables 449

▶ Signals 449, Tanenbaum

○ Interrupts can be used to synchronize with appropriate handlers
▶ Binary Semaphores 1550

○ Special case of semaphores where the value can either be 0 or 1
▶ Events Tanenbaum, Nutt

○ Similar to condition variables, but without the mutex
▶ Barriers 1550

▶ Monitors 1550

○ Declares a region of code to be critical
▶ Atomic Machine Instructions (test-and-set-lock) 1550

○ Hardware supported primitive
▶ Spinlocks, Readers–writer lock, Read-copy-update,... 1550

▶ AND Synchronization Nutt p. 222

42

Labs & Projects
cs0449.gitlab.io/sp2023/

43

Lab

▶ Virtual Memory
▶ Scheduling
▶ Questions on GradeScope

○ You may work in pairs!
■ Select group member on GradeScope

44

Project

▶ Part I: Protection
○ The pi.c (provided on website) program works when we run it as a single threads

■ But produces …interesting… results when multi-threaded
○ Identify the issue and fix it!

■ Hint: Synchronization Primitives
○ Make sure that you do so in a performant manner!

▶ Part II: Synchronization Primitives
○ Implement your own synchronization primitive so that it works with the provided code

■ Semaphore: sem.c
■ You can use and adapt existing synchronization primitives to create your own

Semaphores

▶ Part III: Virtual Memory

45

Referred Sources

▶ Dr. Jonathan Misurda’s CS 0449: Introduction to System Software
○ University of Pittsburgh

▶ Dr. Henning Schulzrinne’s Operating System Resources
○ Columbia University

▶ Dr. C.-K. Shene’s Multithreaded Programming with ThreadMentor
○ Michigan Technological University

▶ Allen B. Downey’s The Little Book of Semaphores
▶ Andrew S Tanenbaum’s Modern Operating Systems 4th Ed.
▶ Gary Nutt’s Sistemas Operativos (Operating Systems 3rd Ed.)
▶ Abraham Silberschatz’s Operating System Concepts 8th Edition

46

