Optimization of
Finite State Machines (ll)

State Minimization

State minimization is the process of eliminating redundant
states

For a complex FSM, the designers initial choice of states will
often result in more states than are necessary

By eliminating states, we can reduce the number of flip-
flops required and simplify the Next State and Output Logic

State Minimization Definitions

Equivalent States: Suppose that A and B are two states in a FSM.
States A and B are equivalent if for every possible input sequence, the
same output sequence will be produced regardless of whether A or B
was the initial state

k-Successor: Suppose a FSM is in state X. If the input is k and that
input results in a transition to state Y, then Y is said to be a “K-
successor” of X

0-Successor: If the FSM is in state X and an the application of the input of k =0 causes
the FSM to transition to state Y, then State Y is a O-Sucessor of State X

1-Successor: If the FSM is in state X and an the application of the input of k =1 causes
the FSM to transition to state Y, then State Y is a 1-Sucessor of State X

State Minimization Procedure

If State A and State B are equivalent, then their corresponding
k-successors must also be equivalent

Rather than trying to show which states are equivalent, we eliminate
redundant states by determining which states are not equivalent

We do this by breaking the collection of states into partitions

Partition: A partition consists of a grouping states. The statesin a
partition may be equivalent, but the states in one grouping are
definitely not equivalent to the states contained in another partition

State Minimization Example

Next state Output Step 1: Create an initial partition that contains
z all of the states in a single grouping

Present
state

w=0 w=1

P,=(ABCDEFG)

QMmO Ow»
MM Ww T O W
Qao@mmA
S OO = O =

State Minimization Example

Next state

Present Output
state w=0 w=1 Z
A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Step 2: Separate states that produces different outputs

P,=(ABCDEFG)

P,=(ABD)(C EFG)

*Note that its not possible for any state from the first group is equivalent to any state in the second group

State Minimization Example

Next state Output Step 3: Determine the 0,1 successors for each grouping

w0 w1 | p =(ABCDEFG)

Present
state

P,=(ABD) (C EFG)

QmmOaOw»
zslieslieslive e BwMve
Q0 oOoammAa
R R

State Minimization Example

Next state Output Step 4: Determine equivalent states

Present

state. | =0 w=1 “ P1=(ABCDEFG)

P,=(ABD) (C EFG)
Y N\
(BDB) (C F G)

P, =

For the grouping (ABD), all of the 0-sucessor states (BDB) are also contained in a singular partition grouping within P,

QMmO Ow»
MM Ww T O W
Qao@mmA
S OO = O =

For the grouping (ABD), all of the 1 —successor states (CFG) are also contained in a singular partition grouping within P,

Since all of the k-successors for the group (ABD) fall in a common group for each k, then we can assume that states A, B and
D are equivalent, therefore states A, B and D should remained grouped together in the next partition P,

State Minimization Example

Present Next state Output
state w=0 w=1 Z
A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Step 4: Determine equivalent states

P
P,

P

(ABCDEFG)

(ABD) (CEFG)
Y\
(FFEF) (ECDG)

For the grouping (CEFG), all of the O-sucessor states (FFEF) are also contained in a single partition grouping within P,

For the grouping (CEFG), all of the 1 —successor states (ECDG) are NOT contained in a single partition grouping within P, This
means that at least one of the states in the grouping (CEFG) is NOT equivalent to the others

State F must be different from States C, E and G because its 1 sucessor is D, which is in a different block than C, E, and G

State F MUST be unique, since it is in a block by itself

State Minimization Example

Step 4: Repeat partitioning process

Present Next state Output

state | 1, =0 =1 z P3 - (ABD)(CEG)(F)
v N
(BDB) (C F G)

QmmOaOw»
zslieslieslive e BwMve
Q0 oOoammAa
R R

P, =

For the grouping (ABD), all of the 0-sucessor states (BDB) are also contained in a single partition grouping within P,

For the grouping (ABD), all of the 1 —successor states (CFG) are NOT contained in a single partition grouping within P; This
means that at least one of the states in the grouping (ABD) is NOT equivalent to the others

State B must be different from States A, D as State Bs 1 sucessor is F, is in a different block than Cand G

State B MUST be unique, since it is in a block by itself

State Minimization Example

Step 4: Repeat partitioning process

Next state Output

v—0 w-1_* | P,=(ABD)(CEG)(F)
0‘/ \il
(FFF) (ECG)

Present
state

QmmOaOw»
zslieslieslive e BwMve
Q0 oOoammAa
R R

P, =

The 0 and 1 successors of (CEG), (FFF) and (ECG) can both be found in single groupings within P3, therefore states C, E and G
can still be assumed to be equivalent and can remain intact in the next partition P,

State Minimization Example

Step 4: Repeat partitioning process

Present Next state Output

state |, =0 =1 z P4 = (AD)(B)(CEG)(F)

QmmTaOwp
esleslesMvellesBwllve

QO OQmmAO
SCoOOo R~ O~ -

P, =

The 0 and 1 successors of (AD), (BB) and (CG) can both be found in single groupings within P,, therefore states AD can still be
assumed to be equivalent and can remain intact in the next partition P

The 0 and 1 successors of (CEG), (FFF) and (ECG) can both be found in single groupings within P,, therefore states CEG can
still be assumed to be equivalent and can remain intact in the next partition P

Since P, = P; and no new groupings can be formed, the states in each remaining grouping are equivalent

State Minimization Example

Next state Output

Present

Nextstate Output
state

Present
=0 w=1 z
W w state | w=0 w= 1 z

QmmOaOw»
zslieslieslive e BwMve
Q0 oOoammAa
R R

Original State Table Minimized State Table

P; = (AD)(B)(CEG)(F)

The state transition Table can be re-written, using just one of the equivalent states to
represent each grouping

State Minimization Example

Design a sequential circuit to control coin-operated vending machine:
The machine accepts nickels and dimes (D, N)

It takes 15 cents for a piece of candy to be released from
the machine (Output = 1)

If 20 cents is deposited, the machine will not return the
change, but will credit the buyer with 5 cents and wait
for the buyer to make a second purchase

FSM Controller for coin operated vending machine

State Minimization Example

Present Next state Output

state. | py =00 01 10 11 z
S1 SI S3 S2 - 0
S2 S2 S4 S5 - 0
S3 S3 S6 S7 - 0
S4 S1 — — - 1
S5 S3 - - = 1
S6 S6 S8 S9 - 0
S7 S - - - 1
S8 ST - - - 1
S9 S3,. - - = 1
State Transition Table with Don’t Cares Included (-)

FSM Controller for coin operated vending machine

Note: Don’t cares included in states S4,55,57,58,5S9 because there is no
need to check for D and N because the machine is to another state in an
amount of time that is too short for a new coin to have been inserted

State Minimization Example

Present Next state Output
state DN =00 01 10 11 z Pl‘esent NeXt State Output

S1 SI S3 S2 - 0 state | py =00 01 10 11 z
S2 S2 S4 S5 - 0

S3 S3 S6 ST - 0 S1 S1 S3 S2 - 0
24 g; - -~ } S2 S2 S4 S5 — 0

5 N N n J—

S6 S6 S8 S9 - 0 S3 S3 82 54 0
S7 o) R] S4 S1 — — — 1
S8 SI - - 1 S5 S3 — — — |
S9 3 - - 1

Minimized State Table

P. = (S1)(S3)(S2,56)(54,57,58)(S5,59)

Extra Credit Homework Problem: Use the minimization procedure to show how to get from the original state
table to P5 and the minimized state table. Extra credit is to be turned separately from HW 9 and is due by the
evening of Friday April 24t. Score on the extra credit will be used to replace your worst quiz score. You MUST
show all work to receive full credit and explain how you decided which states were redundant.

Original State Table

State Minimization Example

Original State Diagram Minimized State Diagram

Course Wrap up: What Did You Learn?

Binary Numbers Optimization of Logic Functions
Logic Gates Combinational Building Blocks
Boolean Algebra Arithmetic Circuits

Synthesis of Logic Circuits Sequential Logic Circuits

Implementation Technology Finite State Machines
Digital Design CAD Tools Optimization of FSMs

Course Wrap up: What Can You Do With What

You Learned?

PCWrteCond

PCWrie

Cid'p_ﬂ: ’!\L.I':L
lorD
ALUSKB
MenRead | Control
\ ALUSICA
MamWrse
MamioReg [&l RagWnta)
IRWrae RagDst /0
— Jump
@ /e \'. 2 address [1
Instruction [25-0] 2% Lion2 1 [31-9] 2
Ingzruction N 1
P [31-26] L | PC31-28)
M Inezruction Read 0)
u | Address [25-21) register 1 o g :! |
"*Q’ Inetruction Read data 1 ‘A L X | a3
< | Memory [20-16) | register2 _ Zero
MemData Instruction | M Reglsters ALU ALULL § ol AL uout e
[16-0] | [Instruction | u s WNte Read — result
| Write [15-11] | X | |reqister o 2/+B 0 M| _-
caln Instruction "-\!_/ e el 1M -~
register AN Write u
0 data *12x
instruction 5 3 J
[15-0] X e y i
o)\
! Memory [— /‘6 ‘.‘ \ % /‘\\
data ~ . Sign |21 nm 1 | [i
m'm S | m I '..\b-" 2 J contro
| / S
Ny —
Instructon [5-0|

MIPS 32 bit Multicycle CPU Datapath

K& xcE _/.'

Course Wrap up: What Will You Learn Next?

DESIGN ENTRY

Schematic capture VHDL

Synthesis

Functional simulation

No]
%corre ot?

Yes

Physical design

Timing sitmlation

Chip configuration

Digital Design Flow

