Analysis and Design of Finite State Machines

Finite State Machines

The general class of circuits in which the output depends on past behavior are called **sequential circuits**

In most cases, a **clock signal** is used to control the operation of a sequential circuit (**synchronous sequential circuit**).

Synchronous sequential circuits are realized using combinational logic and flip-flops.

Sequential circuits are also referred to as Finite State Machines (FSM)

FSM Design Example

Design a 3-bit synchronous Gray Code up/down counter using D Flip-Flops and gates

1. Sequence

Q ₂					
Q_1					
Q_0					
State					

2. Up/Down Control

3. Synchronous

State Transition Diagrams

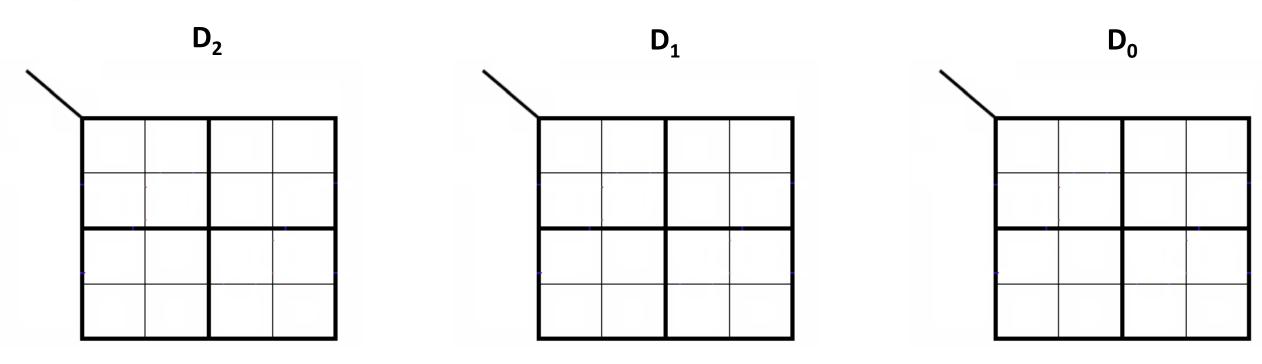
The State of the circuit is defined by the Q outputs of the flip-flops.

State transition Diagrams show states and possible from one state to another

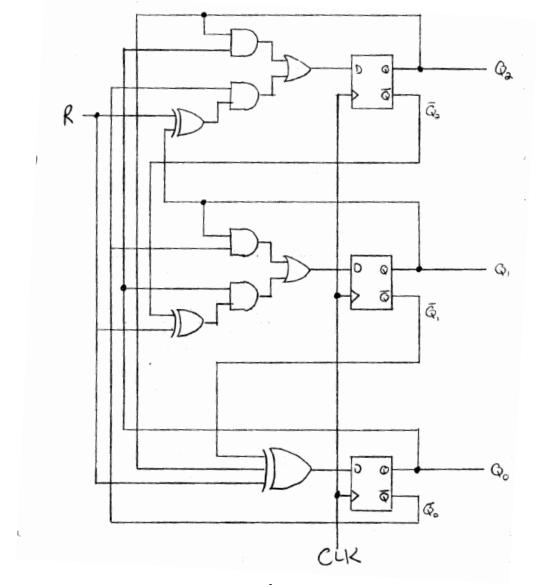
State Transition Table

State Transition Tables are truth tables that show for each combination of state and inputs, what the Next State will be.

Present state - Next state*


	, Present state			i Next State			
R	Q_2	Q_1	Q_o	Q_2	Q_1	Q_0	

For a counter, the output is the same as the state


For D Flip Flops, Q at the next state is equal to the value of D. Therefore, the Next State Columns show what the D inputs should be in this case

Next State Feedback Logic

We need to determine logical expressions for each flip-flop in terms of external inputs and the present state

FSM Logic Implementation

Schematic for 3 Bit Up/Down Gray Code Counter

Finite State Machines

Memory: Flip-flops to store state values

<u>State Logic</u>: Logic network that takes the present state, inputs and produces signals that will drive the circuit to the next state

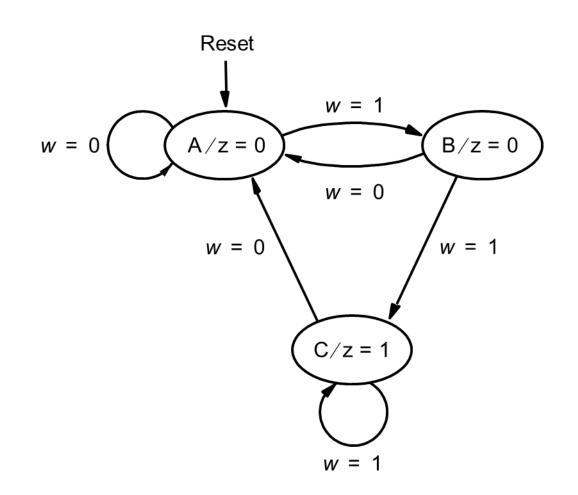
Output Logic: Produces Outputs Based on Present State (and possibly inputs)

Moore Machine → Outputs depend only on **present state** (not inputs)

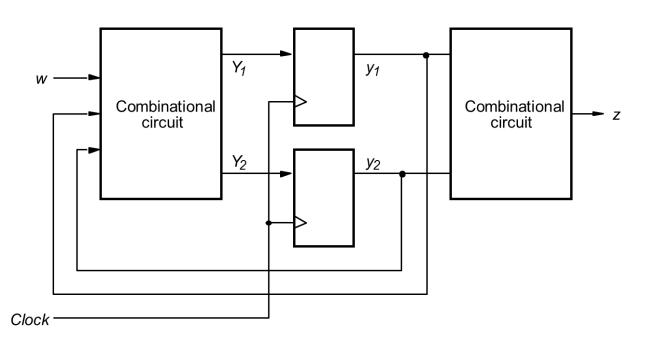
Mealy Machine \rightarrow Outputs depend on both the **present state AND inputs**

1. Specifications

Design a circuit to meet the following specifications:

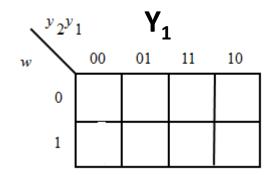

- 1. inputs w,reset,clock, one output z
- 2. All changes in the circuit occur on the positive edge of the clock signal
- 3. The output z is equal to 1 if during the immediately preceding two clock cycles the input w was equal to 1. Otherwise the value of z is equal to 0
- 4. resetn = 0 puts the circuit into its default state where z = 0 (Active Low Asynchronous Reset)

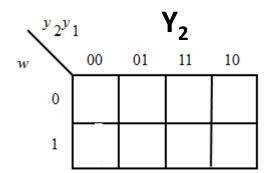
Clock Cycle	t0	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10
w	0	1	0	1	1	0	1	1	1	0	1
Z											


2. State Transition Diagram

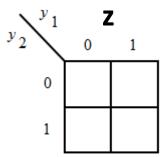
3. Draw the State Table

Present state	Next state	Output z
A		
В		
С		

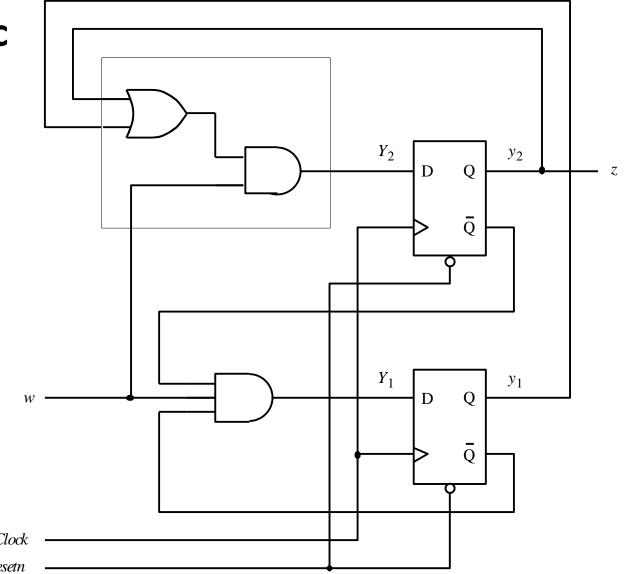

4. State Assignment

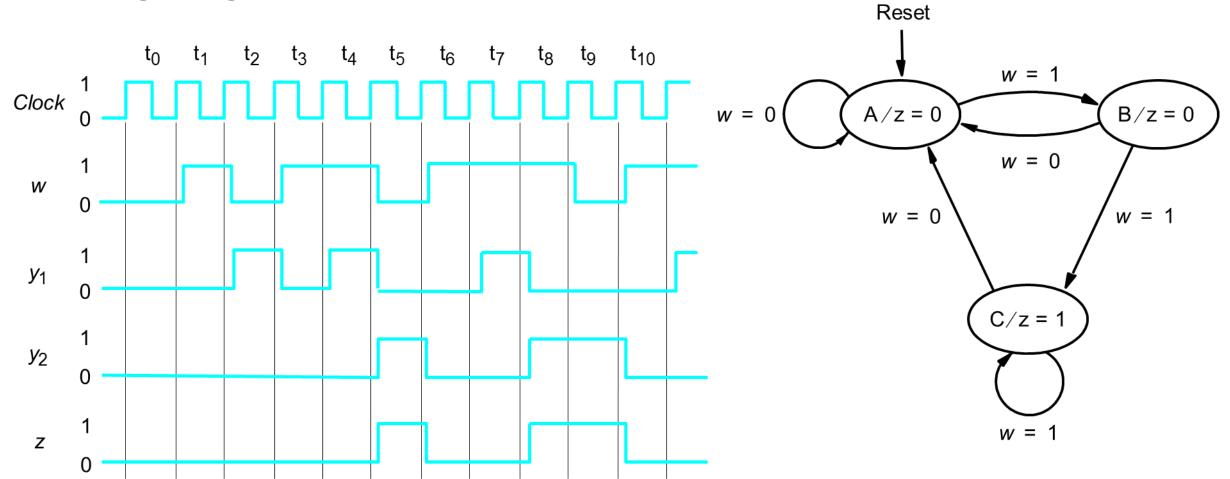


Present	Next stat			
state	w = 0	w = 1	Output	
<i>y</i> ₂ <i>y</i> ₁	y_2y_1	<i>Y</i> ₂ <i>Y</i> ₁	Z	


5. Derive Next-State and Output Expressions

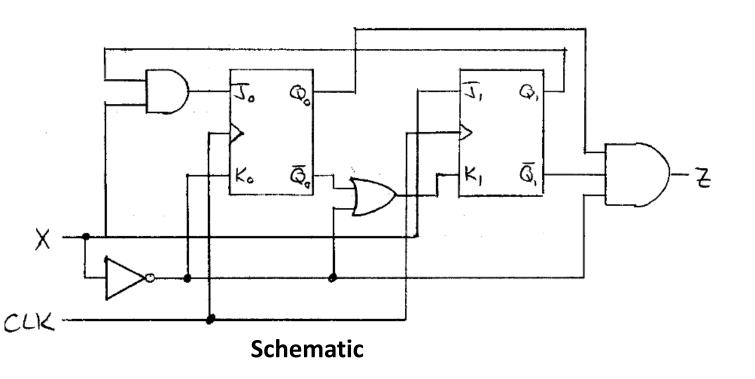
Next State Expressions




Output Expressions

6. Draw the schematic

6. Timing Diagram Verification



FSM Analysis Example: Determine how the sequential circuit below operates

1. FSM Type

2. State Logic

3. Output Logic

4. State Transition Table

Include "Excitations": Show flip-flop inputs produced by state logic, use them to determine Next State

Input	, PS	Next State	NS		Output	
X	$Q_1 Q_0$	$J_1 K_1$	$J_o K_o$	Q_1	Q_0	Z

FSM Analysis Example

5. State Diagram

Mealy Notation → Input / Output on transistions

6. Behavioral Description

From any State, go to State 0 if X = 0

Can only reach State 2 from State 0 when X = 1

Can only reach State 1 from State 2 when X = 1

Reach State 3 from either State 1 or State 3 when X = 1

Z = 1 only when in State 1 and X = 0

7. I/O Example

X 01001101101110011001 **Z** 000001001000000000000