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In this supplemental material, we first provide an additional procedure in our algorithm that effectively deals with the
singular matrices. Next, we briefly show the scaling aspect of our algorithm. Then, we show the accuracy results for two
additional cognitive tests. Lastly, we demonstrate how we rotate the “knob” to see the global change of the brain connectivity
with an interactive visualization provided as an html script (index.html).

1. Singularity Correction
In the paper, we have been assuming that H in (16) derived from the newly represented constraint is nonsingular, allowing

us to perform inversions in the subsequent steps. However, even if the initial H is nonsingular, we cannot guarantee to
maintain its nonsingularity throughout the iterations. Thus, we now relax that assumption in the previous procedures to
consider singular H in the subproblems.

First, we factor out the submatrix of our interest, MSS of size s× p, from (16) and rewrite it as(
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Then, iff VS· + M−1
SSM

T
S̄SVS̄· is nonsingular, H will be nonsingular for any submatrix MSS . Thus, to apply the singularity

correction, we rearrange the columns of MSS to get a new submatrix containing the maximal set of linearly independent
columns of the subproblem adjacently. First, assume w.l.o.g. that
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for a s× r nonsingular matrix U and a r × (p− r) matrix C. Then, for T , the indices of the columns of U , we have
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which allows us to write (1) as follows:
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Treating C as a fixed constant, the equality (1) can be reduced to consider only the linearly independent columns T of the
submatrix U as (
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and (4) is true iff the above equation is true. Thus, given U ∈ Rs×r such that UTMSSU = HT T , the new feasible iterates
for linearly independent columns T and their complement columns T̄ respectively are
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We note that the singularity correction is able to preserve the feasibility of the new iterate by first observing that.
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Thus, for any MSS , we show it is exactly the same as (4), reaffirming the next iterate feasibility. Note that we still require
that MSS to be positive definite for any S, but this can be guaranteed by showing that
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2. Scaling of Stochastic Block Coordinate Descent
Below, Table 1 shows the average runtimes of the Stochastic Block Coordinate Descent (SBCD) without a regularizer for

various n × n random matrices which essentially solves for the solutions of the generalized eigenvalue problems. This also
gives a rough estimate of the runtime of the entire framework which involves computing multiple SBCD operations for all
the partitions.

n 100 500 1000 3000 5000 7000 10000 12000
runtime (sec) 0.32 0.44 2.31 34.95 125.78 428.71 979.92 1372.83

Table 1: The average runtime of 10 SBCD operations (without a regularizer) for solving V ∈ Rn×p given a n× n matrix X
for p = 20. The iteration terminated when the objective value is with < 5% of the true objective value of GEVP.

3. Additional Cognitive Tests: Quantile Prediction Results
We also perform the quantile prediction experiments using two additional cognitive scores: Trail Making Test and Wech-

sler Memory Scaling - Revised Logical Memory II Test (WMSR). Both tests are designed to measure different cognitive
functionalities and are often used for detecting neurological disorders such as Alzheimer’s disease [1, 2]. As in the cognitive
tests in the main paper (RAVLT and MMSE), the scores are normalized to account for the other nuisance covariates (age
and gender) that could potentially contribute to the cognitive test scores. We have used the exact same setup as in the main
paper for these tests show in Table 2 and Table 3 respectively. We observe that the overall accuracies of the both setups are
lower than the cognitive tests (RAVLT and MMSE) in the main paper. Nonetheless, the coupled bases could achieve higher
quantile prediction accuracies in many setups compared to the non-coupled cases.

K
Non-coupled Coupled

j = 1 {1, 2, 3} j = 1 {1, 2, 3}
2 61.90 41.27 71.43 66.67
3 42.86 33.33 42.86 41.27
4 28.57 28.57 47.62 34.92

Table 2: Prediction accuracy (%) of Trail Making Test quantiles on j = 1 time point and j = {1, 2, 3} time points. K is the
number of quantiles.

K
Non-couple Coupled

j = 1 {1, 2, 3} j = 1 {1, 2, 3}
2 47.62 39.68 66.67 61.90
3 47.62 28.57 47.62 41.27
4 33.33 20.63 42.86 38.10

Table 3: Prediction accuracy (%) of WMSR Test quantiles on j = 1 time point and j = {1, 2, 3} time points for K quantile
setups.
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Figure 1: Left: the initial evolution stage of the top connectivities. Right: the final evolution stage of the top connectivities.

4. Interactive Brain Connectivity Evolution Visualization
In this section, we demonstrate the visualization of the brain connectivity evolution that we have found using our RAVLT

cognitive score based coupling. First, we partitioned the subjects into 20 quantiles based on their RAVLT scores. Then, we
have computed the coupled bases across the partitions and based on those bases, we selected the 50 edges that change the
most across the partitions. The left and right images of Fig. 1 show the reconstructed fiber tracts of those top 50 edges of the
brain connectivities, allowing us to visualize the anatomical structures of the connectivities.

We have provided an interactive html script (index.html) to demonstrate the ability to visualize the global change of
the tract colors by turning a knob. In the script, we start with the left image of Fig. 1 where the evolution begins (left end of
the slider) and gradually evolve towards the right image of Fig. 1 where the change ends. Note that this is just a simulation
to show the possible visualization of the significant tracts that we have extracted. In the future, once we are able to control
the colors of the individual tracts to reflect their connectivity strengths, we will be able to meaningfully show the local-level
evolution across the quantiles and intuitively understand both local and global evolution of the brain connectivities given any
covariate we desired to see the effects of.
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