A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer

Seong Jae Hwang Maxwell D. Collins Sathya N. Ravi Vamsi K. Ithapu Nagesh Adluru Sterling C. Johnson

OBJECTIVE

Multi-view statistical analysis of brain imaging data.

MOTIVATION: MULTI-VIEW DATA

- Common to see datasets with multiple views (e.g., photos views)
- In many cases, there is additional side or even partially available information which may be expensive.
- Need a general purpose tool for multi-view datasets whether the set is the set of the views are partial.

HIGH LEVEL SETUP

- Use Regularized Generalized Eigenvalue Problem (R-GEP) as a bla incorporate the following information:
- 1. Primary view (e.g., 3D fractional anisotropy) of the dataset of intere Tensor Imaging).

2. Secondary view (e.g., brain connectivity network) of the same data 3. Supplementary data (e.g., cerebrospinal fluid) partially available from

expensive sources such as genotype.

indicates (i, j)connectivity strength of i^t j^{th} brain regio

Figure : DTI image (top left) showing tensor directionality, followed by the FA image (top connectivity matrix (bottom).

PRELIMINARY: OPTIMIZATION ON MANIFOLDS

- Spectral analysis of the similarity/kernel matrix M by via eigendecompetition
- Ordinary eigenvalue problem formulation where $tr(\cdot)$ denotes the trace

Finds p eigenvectors $V \in \mathbb{R}^{N \times p}$ corresponding to the first p smallest eigenvectors $V \in \mathbb{R}^{N \times p}$ corresponding to the first p smallest eigenvectors. \lor $V^T V = I$ imposes an implicit optimization over the Grassmann manifold

GENERALIZED EIGENVALUE PROBLEM (GEP)

The Generalized Eigenvalue Problem (GEP) involves a matrix pencil { is often referred to as a *mass matrix*:

$$\min_{V \in \mathbb{R}^{N \times p}} f(V) := \operatorname{tr}(V^T M V) \quad \text{s.t. } V^T D V = I$$

- Finds p eigenvectors $V \in \mathbb{R}^{N \times p}$ corresponding to the first p smallest eigenvectors $V \in \mathbb{R}^{N \times p}$ corresponding to the first p smallest eigenvectors. with respect to *D*.
- D is derived from a secondary view as a generalized Stiefel manifold c International Conference on Computer Vision (ICCV) 2015

	REGULARIZED GENERALIZED EIGENVALUE F
with tags). ailable	 n': a subset of the original subjects with supplement S: similarity matrix of the subjects in n'. α: leading eigenvector S, or the "weights" on the su V_{n',1}: first eigenvector of M restricted to the set n'. R-GEP formulation using ℓ₁ norm: min tr(V^TMV) + λ V_{n',1} - α ₁
here some	ALGORITHM: STOCHASTIC BLOCK COORDIN
	Algorithm 1 Stochastic block coordinate descent on G
ack-box to est (3D Diffusion aset of interest. om more	Require: $T: GF_{N,p} \to \mathbb{R}, D \in \mathbb{R}^{N \times N}, V_0 \in GF_{N,p}(D)$ 1: for $t = 1,, T$ do 2: Select rows $\mathcal{I} \subseteq \{1,, N\}$ 3: $U_0 \leftarrow V_{\mathcal{I}} - D_{\mathcal{I}\mathcal{I}}^{-1} D_{\overline{\mathcal{I}}\mathcal{I}} V_{\overline{\mathcal{I}}}$. 4: $[Q \ QR] \leftarrow U_0$ for Q nonsingular 5: Take $G \in \partial_{V_{\mathcal{I}}} f(V)$ 6: $G' \leftarrow G_{\mathcal{I}\mathcal{J}} + G_{\mathcal{I}\overline{\mathcal{J}}} R^T$ 7: Construct a descent curve Y on $GF_{i,p}(D_{\mathcal{I}\mathcal{I}})$ throug 8: Pick step size τ_t satisfying Armijo-Wolfe condition 9: $V_{UA} \leftarrow Y(\tau_t)$
	9: $V_{t+1} \leftarrow T(T_t)$ 10: end for SUBPROBLEM FEASIBILITY AND SINGULARIT • $\mathcal{I}, \overline{\mathcal{I}}$: a subset of selected <i>i</i> and non-selected (fixed) • Given any orthogonal $U \in \mathbb{R}^{i \times r}$, a new iterate satisfy $V_{\mathcal{I}.} = D_{\mathcal{I}\mathcal{I}}^{-\frac{1}{2}} U P^{\frac{1}{2}} - D_{\mathcal{I}\mathcal{I}}^{-1} D_{\mathcal{I}\mathcal{I}}^{T}$ • Assume w.l.o.g., for a $i \times r$ nonsingular matrix Q an $V_{\mathcal{I}.} + D_{\mathcal{I}\mathcal{I}}^{-1} D_{\mathcal{I}\mathcal{I}}^{T} V_{\overline{\mathcal{I}}.} = [Q \ Q \ Q \ P_{\mathcal{I}\mathcal{I}} = U - D_{\mathcal{I}\mathcal{I}}^{-1} D_{\mathcal{I}\mathcal{I}}^{T} V_{\overline{\mathcal{I}}.}]$
	DESCENT CURVE CONSTRUCTION
s the ^h and ons	► Differentiate $f \circ V(U)$ w.r.t. U , where V is related to $\frac{\partial}{\partial U} f \circ V(U) = 2(M_{\mathcal{I}\mathcal{I}} V_{\mathcal{I}} + M_{\mathcal{I}\overline{\mathcal{I}}} V_{\overline{\mathcal{I}}})$ ► Pick a subgradient $G \in \partial_{V_{\mathcal{I}}} f \circ V(U)$ and then perfor $G' = G_{\mathcal{I}\mathcal{J}} + G_{\mathcal{I}\overline{\mathcal{J}}} R^T$ ► For $A = G' U_0^T - U_0 G'^T$, curve Y as a function of τ b $Y(\tau) = \left(I + \frac{\tau}{2} A D_{\mathcal{I}\mathcal{I}}\right)^{-1} \left(I - \frac{\tau}{2}\right)^{-1}$
right) and the	
	M
osition. functional: (1) igenvalues of <i>M</i> .	
Ια.	EXPERIMENTS: BRAIN IMAGING DATA
[<i>M</i> , <i>D</i>] where <i>D</i> (2) igenvalues of <i>M</i>	 Wisconsin Alzheimer's Disease Research Cente 102 middle-aged and older adults (58 healthy, 44 Primary view: 3D volumetric Fractional Anisotrop (possibly losing information) the degree of diffusion Secondary view: anatomical connectivity of region Tensor Images (DTI) using fiber counting procedure
constraint.	 Supplementary view: 7 cerebrospinal fluid (CSF) proteins. Informative but partial (60 of 102 subjects)

University of Wisconsin - Madison

ROBLEM (R-GEP)	EXPE	RIMENTS:	SPEC	TRAL ANA	LYSIS	ON BF	RAIN IN	IAGING	DATA		
tary information.	► R-G	EP Setup			_						
· · · /	 M: similarity matrix from FA in subject space. D: CC^T where C^{N×r} is the subject space factor matrix of rank r of connectivity tend 										
ojects in <i>n</i> '.	• D. • a:	leading eig	envecto	r of the cova	ariance r	natrix of	f CSF in	subject	space.		110
	Con	nparison of	f classif	ication/reg	ression	powers	s agains	st three	method	ds	
s.t. $V^T D V = I$ (3)	1. B	aseline mod	del with	primary view	v (FA) or	nly.		agut a ra			
	2. m 3. P	CA-avg mo	del whe	re the prima	rv and s	econda	rv sourc	e kerne	Is are a	eraged	_
ATE DESCENT	► Exp	erimental F	Result		J		J			0	
F _{N,p}	Intro	ducing add	itional s	ources of inf	formatio	n alway	s increa	ses the	perform	ance (6	3.
	 accuracy for baseline to > 91% for R-GEP). Same is the case with regression results Table 1 (0.68 correlation coefficient from baseline to > 0.78 for R-GEP). Analysis Based on the Incorporating secondary and incomplete priors increase performance, Analysis 										
	and our R-GEP model combines these information sources in a meaningful way offering good improvements.										
gh U_0 in the direction of $-G'$											
		6.62			<u> </u>		C		4	$\mathbb{O}^{\mathbb{Z}_{2}}$	
			10		100	1					
						1-1				1	
Y CORRECTION					6						
row indices of v respectively.				1				1	SY X		
V_{-} (4)		Jer			<u></u>				1		
d a $r \times (n - r)$ matrix R		78.00	5		C.n.	18					
QR]. (5)		SV-			- V	1					
$U = P_{\mathcal{T},\mathcal{T}}$, the following are feasible:	Figure : F	- Feature sensiti	ivitv. First	column shows	s the FA ir	nade. Se	cond colu	mn shows	s overlavs	s of the w	eic
$\mathbf{R} - D_{\mathcal{I}\mathcal{I}}^{-1} D_{\bar{\mathcal{I}}\mathcal{I}}^T V_{\bar{\mathcal{I}}\bar{\mathcal{J}}}.$ (6)	assigned l	by baseline lir	near kerne	el on this FA in	nage. Las	t column	shows ov	erlays fror	n the bas	e R-GEP	' C
		areen (Red) c	orrespond	as to smaller (I	arger) we	ignis.					7
(1 by (4))	a	Baseline	PCA	PCA-avo	(GEP (2	2)	R	-GEP ((3)	
(7)					<i>r</i> = 1	5	10	<i>r</i> = 1	5	10	
(7)	3	63.41	85.71	85.60	86.62	85.71	85.71	90.34	88.53	86.53	
m the singularity correction on G:	5	63.41	82.60	81.69	85.41	85.41	86.32	89.55	89.34	87.34	
(0) w tha Crank-Nicoleon-like design is	7	63.41	84.30	80.69	84.30	84.30	84.30	86.43	88.43	87.53	
	10	63.41	82.49	83.49	82.39	84.21	86.23	86.53	86.43	89.32	
$AD_{II} U_0. \tag{9}$	13	63 41	83.32	85 62	86 14	84 23	88 14	89 23	90.05	88 23	
$-\nabla I(V)$				00.02							
	a	Baseline	PCA	PCA-avo		GEP (2	2)	R	-GEP ((3)	
$\mathcal{P}_{\Omega}(V - \gamma_t \nabla f(V))$					<i>r</i> = 1	5	10	<u>r = 1</u>	5	10	
	3	0.679	0.718	0.647	0.719	0.718	0.718	0.745	0.771	0.758	
$Y(\tau)$	5	0.679	0.719	0.614	0.726	0.737	0.735	0.769	0.746	0.749	
	7	0.679	0.707	0.610	0.707	0.707	0.713	0.763	0.785	0.734	
	10	0.679	0.656	0.622	0.656	0.742	0.719	0.741	0.762	0.754	
	12	0 679	0 717	0 654	0 730	0 765	0 745	0 737	0 757	0 754	
r (ADBC) Detect		ealthy ve diec		sification accu	Jracy (top) and req	ression or	orrelation		t (hottom	ו)
diseased).	(10-fold cross validated) using GEP and R-GEP, compared to the baseline linear classifier and the PCA										
y (FA) imaging data summarizing	setup. <i>p</i> is the PCA rank and <i>r</i> is tensor rank.										
of water in each voxel.	ACKNOWLEDGMENT										
S.	SJH was supported by a University of Wisconsin CIBM fellowship (5T15LM007359-14). We acknowledge support from NIH grants AG040396 and AG021155. NSE RI 1116584 and NSE CAREER award 1252724										
scores measuring disease related		\sim 1 1/1/ \wedge \Box \Box \cap /	10 MOU4U			· · · · · · · · · · · · · · · · · · ·	Maiaman		nt (DON LI		

) scores measuring disease related and cannot infer brain regions.

Vikas Singh 🔰

ISOr.

8.4% ts in

ghts case

UW ADRU (AGU33514), UW ICTR (TULTRRU25011), Waisman Core grant (P30 HD003352-45), UW CPCP (AI117924) and NIH grant AG027161.