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TENSOR-TRAIN DECOMPOSITION∗
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Abstract. A simple nonrecursive form of the tensor decomposition in d dimensions is presented.
It does not inherently suffer from the curse of dimensionality, it has asymptotically the same number
of parameters as the canonical decomposition, but it is stable and its computation is based on low-
rank approximation of auxiliary unfolding matrices. The new form gives a clear and convenient
way to implement all basic operations efficiently. A fast rounding procedure is presented, as well
as basic linear algebra operations. Examples showing the benefits of the decomposition are given,
and the efficiency is demonstrated by the computation of the smallest eigenvalue of a 19-dimensional
operator.
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1. Introduction. Tensors are natural multidimensional generalizations of ma-
trices and have attracted tremendous interest in recent years. Multilinear algebra,
tensor analysis, and the theory of tensor approximations play increasingly important
roles in computational mathematics and numerical analysis [8, 7, 9, 5, 14]; see also the
review [26]. An efficient representation of a tensor (by tensor we mean only an array
with d indices) by a small number of parameters may give us an opportunity and
ability to work with d-dimensional problems, with d being as high as 10, 100, or even
1000 (such problems appear in quantum molecular dynamics [28, 40, 27], stochastic
partial differential equations [1, 2], and financial modelling [35, 41]). Problems of such
sizes cannot be handled by standard numerical methods due to the curse of dimen-
sionality, since everything (memory, amount of operations) grows exponentially in d.
There is an effective way to represent a large class of important d-dimensional tensors
by using the canonical decomposition of a given tensor A with elements A(i1, . . . , Ad)
[19, 6]:1

(1.1) A(i1, i2, . . . , id) =
r∑

α=1

U1(i1, α)U2(i2, α) . . . Ud(id, α).

The minimal number of summands r required to express A in form (1.1) is called
the tensor rank (or the canonical rank). The matrices Uk = [Uk(ik, α)] are called
canonical factors. For large d the tensor A is never formed explicitly but represented
in some low-parametric format. The canonical decomposition (1.1) is a good candidate
for such a format. However, it suffers from several drawbacks. The computation
of the canonical rank is an NP-hard problem [20], and the approximation with a

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section March 10,
2009; accepted for publication (in revised form) June 19, 2011; published electronically September 22,
2011. This work was supported by RFBR grant 09-01-00565 and RFBR/DFG grant 09-01-91332, by
Russian Government contracts Π940, Π1178, and Π1112, by Russian President grant MK-140.2011.1,
and by Priority Research Program OMN-3.

http://www.siam.org/journals/sisc/33-5/75228.html
†Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street 8, Moscow,

Russia (ivan.oseledets@gmail.com).
1In this paper, tensors are denoted by boldface letters, i.e. A; their elements by a normal letter

with MATLAB-like notation, i.e., A(i1, i2, . . . , id); and matricizations of a tensor by a normal letter
with a suitable index.
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fixed canonical rank in the Frobenius norm can be ill-posed [10]; thus the numerical
algorithms for computing an approximate representation in such cases might fail.
Also, even the most successful existing algorithms [12, 4, 3] for computing the best
low-tensor-rank approximation are not guaranteed to work well even in cases where a
good approximation is known to exist. It is often the case that they encounter local
minima and are stuck there. That is why it is a good idea to look at the alternatives
for the canonical format, which may have a larger number of parameters but are much
better suited for the numerical treatment.

The Tucker format [36, 8] is stable but has exponential in d number of parameters,
O(dnr+rd). It is suitable for “small” dimensions, especially for the three-dimensional
case [22, 30, 23]. For large d it is not suitable.

Preliminary attempts to present such new formats were independently made in
[32] and [18] using very different approaches. Both of these approaches rely on a hier-
archical tree structure and reduce the storage of d-dimensional arrays to the storage of
auxiliary three-dimensional ones. The number of parameters in principle can be larger
than for the canonical format, but these formats are based entirely on the singular
value decomposition (SVD). In [32] an algorithm which computes a tree-like decom-
position of a d-dimensional array by recursive splitting was presented, and convincing
numerical experiments were given. The process goes from the top of the tree to its
bottom. In [18] the construction is entirely different; since it goes from the bottom
of the tree to its top, the authors presented only a concept and did not present any
numerical experiments. Convincing numerical experiments were presented in [15] half
a year after, and that justifies that new tensor formats are very promising. The tree-
type decompositions [32, 18, 15] depend on the splitting of spatial indices and require
recursive algorithms which may complicate the implementation. By carefully looking
at the parameters, defining the decomposition, we found that it can be written in a
simple but powerful matrix form.

We approximate a given tensor B by a tensor A ≈ B with elements

(1.2) A(i1, i2, . . . , id) = G1(i1)G2(i2) . . . Gd(id),

where Gk(ik) is an rk−1 × rk matrix. The product of these parameter-dependent
matrices is a matrix of size r0 × rd, so “boundary conditions” r0 = rd = 1 have
to be imposed. Compare (1.2) with the definition of a rank-1 tensor: it is a quite
straightforward block generalization of the rank-1 tensor. As will be shown in this
paper, one of the differences between (1.2) and the canonical decomposition (1.1) is
that the ranks rk can be computed as the ranks of certain auxiliary matrices. Let us
write (1.2) in the index form. Matrix Gk(ik) is actually a three-dimensional array,
and it can be treated as an rk−1 × nk × rk array with elements Gk(αk−1, nk, αk) =
Gk(ik)αk−1αk

.
In the index form the decomposition is written as2

(1.3) A(i1, . . . , id) =
∑

α0,...,αd−1,αd

G1(α0, i1, α1)G2(α1, i2, α2) . . . Gd(αd−1, id, αd).

Since r0 = rd = 1 this decomposition can also be represented graphically by a linear
tensor network [21, 39], which is presented in Figure 1.1 for d = 5. This graphical

2We will make abuse of the notation: by Gk(ik) we denote an rk−1 × rk matrix, present in the
definition of the tensor train format, depending on the integer parameter ik. Along the same lines,
by Gk(αk−1, ik, αk) we will denote the elements of the matrix Gk(ik). The precise meaning will be
clear from the context.
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i1α1 α1 α1i2α2 α2 α2i3α3 α3 α3i4α4 α4 α4i5

Fig. 1.1. Tensor-train network.

representation means the following. There are two types of nodes. Rectangles contain
spatial indices (i.e., the indices ik of the original tensor) and some auxiliary indices αk,
and a tensor with these indices is associated with such kind of nodes. Circles contain
only the auxiliary indices αk and represent a link : if an auxiliary index is present
in two cores, we connect it. The summation over the auxiliary indices is assumed;
i.e., to evaluate an entry of a tensor, one has to multiply all tensors in the rectangles
and then perform the summation over all auxiliary indices. This picture looks like a
train with carriages and links between them, and that justifies the name tensor train
decomposition, or simply TT-decomposition. The ranks rk will be called compression
ranks or TT-ranks, three-dimensional tensors Gk—cores of the TT-decomposition
(analogous to the core of the Tucker decomposition). There are more general types
of tensor networks, represented as graphs; however, only few of them possess good
numerical properties. The TT-format (also known in other areas as a linear tensor
network (LTN) or a matrix product state (MPS); cf. [21, 39]) has several features
that distinguish it from the other types of networks, and the corresponding numerical
algorithms will be presented in this paper. Our main goal is to represent tensors in
the TT-format and perform operations with them efficiently. Not only are the exact
decompositions of interest, but also the approximations (which are more common in
scientific computing) with a prescribed accuracy ε. (This means replacing the initial
tensor A with its approximation B in the TT-format such that ||A− B||F ≤ ε||B||F
holds.)

Thus, approximate operations have to be performed with such tensors which
reduce the storage while maintaining the accuracy. To do that, we need to answer
the following questions:

• How to compute the ranks rk (or approximate ranks with a prescribed accu-
racy ε) for a given tensor A?

• If a tensor is already in the TT-format, how to find the optimal TT-ranks
rk, given the required accuracy level ε? (This is similar to rounding in the
finite-precision computer arithmetic, but instead of digits we have a nonlinear
low-parametric approximation of a tensor.)

• How to implement basic linear algebra (addition, scalar product, matrix-by-
vector product, and norms) in the TT-format?

• How to convert from other tensor formats, like the canonical decomposition?

2. Definition of the format and compression from the full array to the
TT-format. Let us establish basic properties of the TT-format. A d-dimensional
n1 × n2 × · · · × nd tensor A is said to be in the TT-format with cores Gk of size
rk−1 × nk × rk, k = 1, . . . , d, r0 = rd = 1, if its elements are defined by formula (1.3).
It is easy to get a bound on rk. Each αk appears only twice in (1.3), and thus it is
bounded from below by the rank of the following unfolding matrix of A:

(2.1) Ak = Ak(i1, . . . , ik; ik+1 . . . id) = A(i1, . . . , id);

i.e., the first k indices enumerate the rows of Ak, and the last d − k the columns
of Ak. (On the left side of (2.1) there is an element of Ak in row (i1, . . . , ik) and
column (ik+1, . . . , id), whereas on the right side there is an element of A in position
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(i1, . . . , id).) The size of this matrix is (
∏k

s=1 ns)× (
∏d

s=k+1 ns), and in MATLAB it
can be obtained from the tensor A by a single call to the reshape function:

Ak = reshape

(
A,

k∏
s=1

ns,
d∏

s=k+1

ns

)
.

Moreover, these ranks are achievable, as shown by the following theorem, which also
gives a constructive way to compute the TT-decomposition.

Theorem 2.1. If for each unfolding matrix Ak of form (2.1) of a d-dimensional
tensor A

(2.2) rankAk = rk,

then there exists a decomposition (1.3) with TT-ranks not higher than rk.
Proof. Consider the unfolding matrix A1. Its rank is equal to r1; therefore it

admits a dyadic (skeleton) decomposition

A1 = UV �,

or in the index form

A1(i1; i2, . . . , id) =

r1∑
α1=1

U(i1, α1)V (α1, i2, . . . , id).

The matrix V can be expressed as

V = A�
1 U(U�U)−1 = A�

1 W,

or in the index form

V (α1, i2, . . . , id) =

n1∑
i1=1

A(i1, . . . , id)W (i1, α1).

Now the matrix V can be treated as a (d − 1)-dimensional tensor V with (α1i2) as
one long index:

V = V (α1i2, i3, . . . , id).

Now consider its unfolding matrices V2, . . . , Vd. We will show that rankVk ≤ rk holds.
Indeed, for the kth mode the TT-rank is equal to rk; therefore A can be represented
as

A(i1, . . . , id) =

rk∑
β=1

F (i1, . . . , ik, β)G(β, ik+1, . . . , id).

Using that, we obtain

Vk = V (α1i2, . . . , ik; ik+1, . . . , id)

=

n1∑
i1=1

rk∑
β=1

W (i1, α1)F (i1, . . . , ik, β)G(β, ik+1, . . . , id)

=

rk∑
β=1

H(α1i2, . . . , ik, β)G(β, ik+1, . . . , id),

where

H(α1i2, . . . , ik, β) =

n1∑
i1=1

F (i1, . . . , ik, β)W (i1, α1).

D
ow

nl
oa

de
d 

12
/2

4/
19

 to
 1

73
.1

67
.2

55
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TENSOR-TRAIN DECOMPOSITION 2299

Row and column indices of Vk are now separated and

rankVk ≤ rk.

The process can be continued by induction. Consider V and separate the index
(α1, i2) from others:

V (α1i2, i3, . . . , id) =

r2∑
α2=1

G2(α1, i2, α2)V
′(α2i3, i4, . . . , id).

This yields the next core tensor G2(α1, i2, α2) and so on, up to Gd(αd−1, id), finally
giving the TT-representation.

Low-rank matrices rarely appear in practical computations. Suppose that the
unfolding matrices are of low rank only approximately, i.e.,

(2.3) Ak = Rk + Ek, rankRk = rk, ||Ek||F = εk, k = 1, . . . , d− 1.

The proof of the Theorem 2.1 is constructive and gives an algorithm for computing
the TT-decomposition using d sequential SVDs of auxiliary matrices. This algorithm
will be called the TT-SVD algorithm. It can be modified to the approximate case,
when instead of exact low-rank decomposition, the best rank-rk approximation via
the SVD is computed. Then, the introduced error can be estimated.

Theorem 2.2 (see [29]). Suppose that the unfoldings Ak of the tensor A satisfy
(2.3). Then TT-SVD computes a tensor B in the TT-format with TT-ranks rk and

(2.4) ||A−B||F ≤
√√√√d−1∑

k=1

ε2k.

Proof. The proof is by induction. For d = 2 the statement follows from the
properties of the SVD. Consider an arbitrary d > 2. Then the first unfolding A1 is
decomposed as

A1 = U1ΣV1 + E1 = U1B1 + E1,

where U1 is of size n1 × r1, has orthonormal columns, and ||E1|| = ε1. The ma-
trix B1 is naturally associated with a (d − 1)-dimensional tensor B1 with elements
B(α1i2, i3, . . . , id), which will be decomposed further in the TT-SVD algorithm. This

means that B1 will be approximated by some other matrix B̂1. From the properties
of the SVD it follows that U�

1 E1 = 0, and thus

||A−B||2F = ||A1 − U1B̂1||2F = ||A1 − U1(B̂1 +B1 −B1)||2F
= ||A1 − U1B1||2F + ||U1(B1 − B̂1)||2F ,

and since U1 has orthonormal columns,

(2.5) ||A−B||2F ≤ ε21 + ||B1 − B̂1||2F .

The matrix B1 is easily expressed from A1,

B1 = U�
1 A1,
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and thus it is not difficult to see from the orthonormality of columns of U1 that the
distance of the kth unfolding (k = 2, . . . , d− 1) of the (d− 1)-dimensional tensor B1

to the rkth rank matrix cannot be larger then εk. Proceeding by induction, we have

||B1 − B̂1||2F ≤
d−1∑
k=2

ε2k,

and together with (2.5), this completes the proof.
From Theorem 2.2 two corollaries immediately follow [29].
Corollary 2.3. If a tensor A admits a canonical approximation with R terms

and accuracy ε, then there exists a TT-approximation with TT-ranks rk ≤ R and
accuracy

√
d− 1 ε.

Corollary 2.4. Given a tensor A and rank bounds rk, the best approximation
to A in the Frobenius norm with TT-ranks bounded by rk always exists (denote it by
Abest), and the TT-approximation B computed by the TT-SVD algorithm is quasi-
optimal:

||A−B||F ≤ √
d− 1||A−Abest||F .

Proof. Let ε = infC ||A −C||, where the infimum is taken over all tensor trains
with TT-ranks bounded by rk. Then, by the definition of the infimum, there exists a
sequence of tensor trains B(s) (s = 1, 2, . . . ) with the property lims→∞ ||A−B(s)||F =
ε. All elements of the tensors B(s) are bounded; hence some subsequence B(st)

converges elementwise to some tensor B(min), and unfolding matrices also converge:

B
(st)
k → B

(min)
k , 1 ≤ k ≤ d. Since the set of matrices of rank not higher than rk is

closed and rankB(st) ≤ rk, thus rankB
(min)
k ≤ rk. Moreover, ||A−B(min)||F = ε, so

B(min) is the minimizer. It is now sufficient to note that εk ≤ ε, since each unfolding
can be approximated with at least accuracy ε. The quasioptimality bound follows
directly from (2.4).

From Theorem 2.2 it immediately follows that if singular values of unfolding
matrices are truncated at δ, the error of the approximation will be

√
d− 1δ, and to

obtain any prescribed accuracy ε the threshold δ has to be set to ε√
d−1

. Finally, an

algorithm for constructing the TT-approximation with prescribed (relative) accuracy
is given as Algorithm 1 below. The computed TT-ranks are actually δ-ranks3 of
the unfoldings, where to achieve the required relative accuracy ε one has to select
δ = ε√

d−1
||A||F .

Remark. The number of parameters in the tree format of [32] as well as for the
H-Tucker format in [18, 15] is estimated as

O(dnr + (d− 2)r3).

It is easy to modify the TT-decomposition to reduce (d−2)nr2+2nr to dnr+(d−2)r3

by using an auxiliary Tucker decomposition [36] of the core tensors Gk. Gk is an
rk−1×nk×rk tensor, and it is not difficult to prove that its mode-2 rank is not higher
than tk, where tk is the Tucker rank (mode rank) [36] of A along the kth mode.
Therefore each Gk can be replaced by an nk × tk factor matrix and an rk−1 × tk × rk
auxiliary three-dimensional array. However, for the simplicity of the presentation we

3For a given matrix A its δ-rank is defined as the minimum of rankB over all matrices B satisfying
||A−B||F ≤ δ.
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Algorithm 1. TT-SVD.

Require: d-dimensional tensor A, prescribed accuracy ε.
Ensure: Cores G1, . . . , Gd of the TT-approximation B to A in the TT-format with

TT-ranks r̂k equal to the δ-ranks of the unfoldings Ak ofA, where δ = ε√
d−1

||A||F .
The computed approximation satisfies

||A−B||F ≤ ε||A||F .

1: {Initialization}
Compute truncation parameter δ = ε√

d−1
||A||F .

2: Temporary tensor: C = A, r0 = 1.
3: for k = 1 to d− 1 do
4: C := reshape(C, [rk−1nk,

numel(C)
rk−1nk

]).

5: Compute δ-truncated SVD: C = USV + E, ||E||F ≤ δ, rk = rankδ(C).
6: New core: Gk := reshape(U, [rk−1, nk, rk]).
7: C := SV �.
8: end for
9: Gd = C.

10: Return tensor B in TT-format with cores G1, . . . , Gd.

omit this step from our decomposition, but places will be pointed out where it can be
used to reduce the computational complexity.

Throughout the paper we use the tensor-by-matrix multiplication referred to as
the mode-k contraction or the mode-k multiplication. Given an array (tensor) A =
[A(i1, i2, . . . , id)] and a matrix U = [U(ik, α)], we define the mode-k multiplication
result as a new tensor B = [B(i1, . . . , α, . . . , id)] (α is on the kth place) obtained by
the contraction over the kth axis:

B(i1, . . . , α, . . . , id) =

nk∑
ik=1

A(i1, i2, . . . , id)U(α, ik).

We denote this operation as follows:

B = A×k U.

3. Rounding in TT-format. A full (dense) tensor can be converted into the
TT-format with help of the TT-SVD algorithm described in the previous section.
However, even computing all entries of the tensor is an expensive task for high di-
mensions. If the tensor is already in some structured format, this complexity can be
reduced. An important case is the case when the tensor is already is given in the
TT-format, but with suboptimal ranks rk. Such tensors can appear in the following
context. As will be shown later, many basic linear algebra operations with TT-tensors
(addition, matrix-by-vector product, etc.) yield results also in the TT-format, but
with increased ranks. To avoid rank growth one has to reduce ranks while maintaining
accuracy. Of course, this can be done by the TT-SVD algorithm. But if the tensor
is already in the TT-format, its complexity is greatly reduced. Suppose that A is in
the TT-format,

A(i1, i2, . . . , id) = G1(i1)G2(i2) . . . Gd(id),
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but with increased ranks rk. We want to estimate the true values of ranks r′k ≤
rk while maintaining the prescribed accuracy ε. Such a procedure will be called
rounding (it can be also called truncation or recompression), since it is analogous to
the rounding when working with floating point numbers, but instead of digits and
mantissa we have a low-parametric representation of a tensor. First, try to compute
r′1 and reduce this rank. The corresponding unfolding matrix A1 can be written as a
product

(3.1) A1 = UV �,

where

(3.2) U(i1, α1) = G1(i1, α1), V (i2, i3, . . . , id;α1) = G2(α1, i2)G3(i3) . . . Gd(id),

where the rows of U are indexed by i1, whereas the rows of V are indexed by a
multi-index (i2, . . . , id).

A standard way to compute the SVD of A1 using the representation of form (3.1)
is the following. First, compute QR-decompositions of U and V ,

U = QuRu, V = QvRv,

assemble a small r × r matrix

P = RuR
�
v ,

and compute its reduced SVD:

P = XDY �,

where D is an r̂× r̂ diagonal matrix and X and Y are r× r̂ matrices with orthonormal
columns. r̂ is the ε-rank of D (which is equal to the ε-rank of A1). Finally,

Û = QuX, V̂ = QvY,

are matrices of dominant singular vectors of the full matrix A1.
The U matrix for A1 is small, so we can compute its QR-decomposition directly.

The V matrix, however, is very large, and something else has to be done. We will
prove that the QR-decomposition of V can be computed in a structured way, with
the Q-factor in the TT-format (and R is small, and can be stored explicitly). The fol-
lowing lemma shows that if the TT-decomposition cores satisfy certain orthogonality
properties, then the corresponding matrix has orthogonal columns.

Lemma 3.1. If a tensor Z is expressed as

(3.3) Z(α1, i2, . . . , id) = Q2(i2)Q3(i3) . . . Qd(id),

where Qk(ik) is an rk−1 × rk matrix, k = 2, . . . , d, rd = 1 (for fixed ik, k = 2, . . . , id,
the product reduces to a vector of length r1, which is indexed by α1), and the matrices
Qk(ik) satisfy orthogonality conditions

(3.4)
∑
ik

Qk(ik)Q
�
k (ik) = Irk−1
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(by Is we denote an s × s identity matrix), then Z considered as an r1 ×∏d
k=2 nk

matrix Z with orthonormal rows, i.e.,

(ZZ�)α1,α̂1
=

∑
i2,...,id

Z(α1, i2, . . . , id)Z(α̂1, i2, . . . , id) = δ(α1, α̂1).

Proof. It is sufficient to see that

ZZ� =
∑

i1,...,id

(
Q(i1)Q2(i2) . . . Qd(id)

)(
Q(i1)Q2(i2) . . .Qd(id)

)�
=

∑
i1,...,id−1

(
Q1(i1) . . . Qd−1(id−1)

)(∑
id

Qd(id)Q
�
d (id)︸ ︷︷ ︸

Ird

)(
Q�

d−1(id−1) . . . Q
�
1 (i1)

)

=
∑

i1,...,id−1

(
Q1(i1) . . . Qd−1(id−1)

)(
Q�

d−1(id−1) . . .Q
�
1 (i1)

)
= · · · =

∑
i1

Q1(i1)Q
�
1 (i1) = Ir1 ;

i.e., summations over ik vanish due to the orthogonality conditions (3.4).
Using Lemma 3.1, we can design a fast algorithm for the structured QR-decompos-

ition of the matrix V from (3.1) in the TT-format. The algorithm is a single right-
to-left sweep through all cores. The matrix V can be written as

V (i2, . . . , id) = G2(i2) . . . Gd(id).

Equivalent transformations of this representation have to be performed to satisfy
orthogonality conditions. First, Gd(id) is represented as

Gd(id) = RdQd(id),

where Qd(id), considered as an rd−1×nd matrix (recall that rd = 1), has orthonormal
rows. This can be done by considering Gd as an rd−1×nd matrix and orthogonalizing
its rows. Then,

V (i2, . . . , id) = G2(i2) . . . G
′
d−1(id−1)Qd(id),

where

G′
d−1(id−1) = Gd−1(id−1)Rd.

Suppose that we already have a representation of form

V (i2, . . . , id) = G2(i2) . . . Gk(ik)Qk+1(ik+1) . . . Qd(id),

where matrices Qs(is) satisfy orthogonality conditions (3.4) for s = k + 1, . . . d, and
we want to transform this representation into an equivalent one that satisfies (3.4) for
s = k. In order to do that, G′

k(ik) is represented as a product

(3.5) G′
k(ik) = RkQk(ik),

with some matrix Rk that is independent of ik and

(3.6)
∑
ik

Qk(ik)Q
�
k (ik) = Irk .
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Equations (3.5), and (3.6) can be written in the index form:

G′
k(αk−1, ik, αk) =

∑
βk

R(αk, βk)Qk(βk−1, ik, αk)

and ∑
ik,αk

Qk(βk−1, ik, αk)Qk(β̂k−1, ik, αk) = δ(βk, β̂k).

Thus, Qk and Rk can be computed via the orthogonalization of the rows of the matrix
G obtained from the reshaping of the tensor Gk with elements Gk(αk−1, ik, αk) into
a matrix of size rk−1 × (nkrk), since the second equation is just the orthogonality
of the rows of the same reshaping of the tensor Qk. After this decomposition has
been computed, the core Gk−1(ik−1) is multiplied from the right by Rk, yielding the
required representation.

We have presented a way to compute the QR-decomposition of V using only
the cores Gk of the TT-decomposition of A, and the Q-factor was computed in a
structured form. To perform the compression, we compute the compressed SVD and
contract two cores containing α1 with two small matrices. After the first mode was
compressed, we can do the same thing for each mode, since for an arbitrary k we can
use the same algorithm to compute the structured QR-decompositions of the U and
V factors (the algorithm for U is the same with slight modifications), matrices Ru

and Rv, singular values, the reduced rank, and matrices X and Y which perform the
dimensionality reduction. However, we can avoid making these decompositions every
time for every mode from scratch by using information obtained from previous steps.
For example, after we reduced the rank for A1, we modify cores G1 and G2, but cores
G3, . . . , Gd stay the same and satisfy orthogonality conditions (3.4). Therefore, to
compress in the second mode, we just have to orthogonalize G1 and G2. This can be
realized by storing the R-matrix that appears during the orthogonalization algorithm.
In fact we do the following: for A1 we compute the reduced decomposition of form

A1 = U1V
�
1 ,

where the matrix U1 has orthonormal columns, and compress V1, and so on. Since
this is equivalent to the TT-SVD algorithm applied to a structured tensor, the sin-
gular values have to be cut off at the same threshold δ = ||A||F ε√

d−1
as in the full

tensor case. The only thing that is left is an estimate of the Frobenius norm. That
can be computed from the tensor directly in the TT-format, and we will show how to
compute it in the next sections. The formal description of the algorithm is presented
in Algorithm 2. A MATLAB code for this algorithm is a part of the TT-Toolbox. By
SVDδ in Algorithm 2 we denote the SVD with singular values that are set to zero if
smaller than δ, and by QRrows we denote the QR-decomposition of a matrix, where the
Q-factor has orthonormal rows. The procedure SVDδ(A) returns three matrices U , Λ,
V of the decomposition A ≈ UΛV � (as MATLAB svd function), and the procedure
QRrows returns two: the Q-factor and the R-factor. The notation Gk(βk; ikβk) means
that the tensor Gk is treated as a matrix with βk−1 as a row index and (ikβk) as a
column index. In MATLAB it can be done via a single call to the reshape function.

Let us estimate the number of operations required by the algorithm. For sim-
plicity, assume that rk ∼ r, nk ∼ n. The right-to-left sweep requires successive
QR-decompositions of nr × r matrices which cost O(nr3) operations each, in total
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Algorithm 2. TT-rounding.

Require: d-dimensional tensor A in the TT-format, required accuracy ε
Ensure: B in the TT-format with TT-ranks r̂k equal to the δ-ranks of the unfoldings

Ak of A, where δ = ε√
d−1

||A||F . The computed approximation satisfies

||A−B||F ≤ ε||A||F .

1: Let Gk, k = 1, . . . , d, be cores of A.
2: {Initialization}

Compute truncation parameter δ = ε√
d−1

||A||F ///////////////.
3: {Right-to-left orthogonalization}
4: for k = d to 2 step −1 do
5: [Gk(βk−1; ikβk), R(αk−1, βk−1)] := QRrows(Gk(αk−1; ikβk)).
6: Gk−1 := Gk ×3 R.
7: end for
8: {Compression of the orthogonalized representation}
9: for k = 1 to d− 1 do

10: {Compute δ-truncated SVD}
[Gk(βk−1ik; γk),Λ, V (βk, γk)] := SVDδ[Gk(βk−1ik;βk)].

11: Gk+1 := Gk+1 ×1 (V Λ)�.
12: end for
13: Return Gk, k = 1, . . . , d, as cores of B.

O(dnr3) operations. The compression step requires SVDs of (nr)× r matrices, which
need O(nr3) for each mode. The final estimate is

O(dnr3)

operations for the full compression procedure. By additionally using the Tucker format
and applying the TT-decomposition only to its core, we can reduce the complexity to

O(dnr2 + dr4),

where the first term is just the price of d sequential QR-decompositions of Tucker
factors.

3.1. From canonical to TT. The conversion from the canonical decomposition
to the TT-format is trivial. The tree structure of [32] led to some difficulties, requiring
a recursive algorithm based on the computation of Gram matrices. Here we just have
to rewrite the canonical format of form

A(i1, . . . , id) =
∑
α

U1(i1, α) . . . Ud(id, α)

in the TT-format by using Kronecker delta symbols:

A(i1, . . . , id)

=
∑

α1α2...αd−1

U1(i1, α1)δ(α1, α2)U2(i2, α2)δ(α2, α3) . . . δ(αd−2, αd−1)Ud(id, αd−1).D
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Table 3.1

Compression timings (in seconds) for d-dimensional Laplace-like tensor.

n = 2 n = 1024

d = 4 8.0 · 10−4 d = 4 2.3 · 10−3

d = 8 1.6 · 10−3 d = 8 2.2 · 10−2

d = 16 3.8 · 10−3 d = 16 2.4 · 10−1

d = 32 1.0 · 10−2 d = 32 2.3 · 100
d = 64 5.1 · 10−2 Out of memory Out of memory
d = 128 4.4 · 10−1 Out of memory Out of memory

In the matrix form it looks like

A(i1, . . . , id) = Λ1(i1)Λ2(i2) . . .Λd(id),

where

Λk(ik) = diag(U(ik, :)), k = 2, . . . , d− 1, Λ1(i1) = U(i1, :), Λd(id) =
(
U(id, :)

)�
.

Λk(ik) are diagonal matrices for each fixed ik, except for k = 1 and k = d. Then
we can compress the resulting TT-tensor by using the rounding procedure described
above. For example, consider a discretization of the d-dimensional Laplace operator
of form

(3.7) Δd = Δ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗Δ,

where ⊗ is the Kronecker product of matrices and Δ is a standard second-order
discretization of the one-dimensional Laplace operator with the Dirichlet boundary
conditions (up to a scaling constant which is not important for us):

Δ = tridiag[−1, 2,−1].

Now let describe how we use the TT-format here. The rows of the matrix Δd can be
naturally indexed by a multi-index (i1, i2, . . . , id) and its columns by a multi-index
(j1, j2, . . . , jd). To make it a tensor, each pair (ik, jk) is treated as a one long index, and
(3.7) transforms into a rank-d canonical representation. This tensor is a tensor from
⊗dV , where dim V is a two-dimensional vector space. Because all two-dimensional
vector spaces are isomorphic, the computations can be done in the space ⊗d

R
2 for

“Laplace-like” tensors of form

(3.8) A = a⊗ b⊗ · · · ⊗ b + · · ·+ b⊗ · · · ⊗ a.

For such tensors all TT-ranks are equal to 2, since they can be can be approximated
by a tensor of rank 2 with arbitrary precision [3].

The Laplace operator is often encountered in the applications, so it may be use-
ful to derive a special algorithm for it. To approximate the Laplace operator, we
do the following: for a tensor of form (3.8), derived from the Laplace operator in d
dimensions, the TT-representation with TT-ranks rk = d is obtained by using the
canonical-to-TT transformation. Then Algorithm 2 is run. The results are presented
in Table 3.1. Not surprisingly, the approximation error here is of the order of machine
precision, since all TT-ranks are equal to 2. The computational timings depend only
on n and d but not on actual vectors a and b. Note that in Table 3.1 the case n = 1024
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is treated directly, without exploring the isomorhism to n = 2, to illustrate the nu-
merical complexity while working with large mode sizes. In practical computations
this should not be done, and the problem should be reduced to the case n = 2 directly.

The time to compress a 32-dimensional operator is of the order of a second,
and taking into account that for Laplace-like operators we need to compress only a
2×2×· · ·×2 core tensor, this dimension can be as high as 128. The only restriction at
this point is a memory restriction (not for the TT-format but for storing intermediate
arrays), and it can be passed by using a machine with a larger amount of memory. As
in [32], all ranks involved are equal to 2, and the tensor is represented by a set of (d−2)
arrays of sizes 2×n×2 and two n×2 matrices. If Tucker format is used additionally, the
number of parameters will be reduced to O(2dn+8(d−2)) for a d-dimensional Laplace-
like operator (compare to O(d2n) in the canonical format4). Another interesting
example is the discretization of the second-order differential operator of form

(3.9) LP =
d∑

i,j=1,i<j

σij
∂2P

∂xi∂xj
,

(3.10) A =
d∑

i,j=1,i<j

σijWiWj ,

where Wi is acting only in the ith mode:

Wi = I ⊗ · · · × Bi︸︷︷︸
i

⊗ · · · ⊗ I.

The matrix Bi is a discrete analogue of the gradient operator. If Bi is an m × m
matrix, then the tensor product of matrices gives an md ×md matrix, which is then
transformed into anm2×m2×· · ·×m2 d-dimensional tensor, just as in the Laplace-like
case. The general form of such tensors can be written as

(3.11) A =

d∑
i,j=1,i<j

σij

⎛⎝c⊗ · · · ⊗ a︸︷︷︸
i

⊗c⊗ · · · ⊗ b︸︷︷︸
j

⊗c⊗ · · · ⊗ c

⎞⎠ ,

where a, b, c are some vectors of length n. For any a, b, c, A is a tensor of canonical

rank at most d(d−1)
2 . For σij = 1 this is an electron-type potential considered in

[3], and it was proved there that such a tensor can be approximated by a rank-3
tensor with arbitrary precision. Analogous estimates for the case of general σij are
unknown currently, but we can provide experimental results and give a bound on the
TT-ranks of such tensors. The results are quite interesting: It appears that the ranks
depend only on d. We will call matrices of form (3.10) Scholes-like matrices (and
corresponding tensors of form (3.11). Scholes-like tensors) since they appear in the
Black–Scholes equation for multiasset option pricing [33].

For example, for d = 19 the ranks are given in Table 3.2. The coefficients σij

were taken at random, and we did not observe any dependence on them. (There are
special cases where the rank is smaller, but for the general case these ranks should
be the same, since we observe that decompositions are exact.) The initial canonical

4Of course, to store the Laplace-like tensor only 2n parameters are needed for the vectors a and
b. However, the TT-format is intended for performing fast arithmetic operations with such tensors.
In the arithmetic operations the ranks (canonical or TT) are crucial, since the special structure of
factors will be destroyed.
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Table 3.2

TT-ranks for different modes.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rank 2 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 2 2

rank was 171, so the TT-ranks are much smaller than the canonical rank. Based on
numerical experiments, we can conjecture that the highest rank is ≈ d

2 . To prove this
conjecture, consider the unfolding Ak of the Scholes-like tensor: The matrix[

c⊗ · · · ⊗ c,
k∑

i,j=1,i<j

σijc⊗ · · · ⊗ a⊗ · · · ⊗ b⊗ · · · ⊗ c,

a⊗ c · · · ⊗ c, . . . , c⊗ · · · ⊗ c⊗ a

]

spans the columns of this unfolding, and therefore the rank is bounded by rk ≤ 2+ k.
A similar reasoning for the rows of each unfolding leads to rk ≤ 2 + min{k, d − k},
which is a sharp bound for the observed ranks. The maximum is obtained when
k ≈ d− k, i.e., rk ≈ d

2 .
All Tucker ranks are equal to 3 (only three basis vectors in each mode); therefore

an estimate for the storage of the Scholes-like operator is O(dn) + O(d2) instead of
the O(d3n) parameters for the canonical format and O(dn) +O(d3) for the combined
CP and Tucker format. (The situation is the same as for the Laplace-like tensors:

The storage of the canonical format reduces to to d(d−1)
2 + 3n if identical vectors are

stored only once, but this special structure can be destroyed during the subsequent
arithmetic operations with such tensors.)

4. Basic operations.

4.1. Addition and multiplication by a number. Arithmetic operations in
the TT-format can be readily implemented. The addition of two tensors in the TT-
format,

A = A1(i1) . . . Ad(id), B = B1(i1) . . . Bd(id),

is reduced to the merge of cores, and for each mode, sizes of auxiliary dimensions are
summed. The cores Ck(ik) of the sum C = A+B are defined as

Ck(ik) =

(
Ak(ik) 0

0 Bk(ik)

)
, k = 2, . . . , d− 1,

and

C1(i1) =
(
A1(i1) B1(i1)

)
, Cd(id) =

(
Ad(id)
Bd(id)

)
,

for border cores. Indeed, by direct multiplication,

C1(i1)C2(i2) . . . Cd(id) = A1(i1)A2(i2) . . . Ad(id) +B1(i1)B2(i2) . . . Bd(id).

The multiplication by a number α is trivial; we just scale one of cores by it. The
addition of two tensors is a good test for the rounding procedure. If we sum a vector
t given in the TT-format with itself, the ranks are doubled, but the result should be
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compressed to 2t with the same ranks as for t. In our experiments, such rounding
was performed with an accuracy which is of the order of the machine precision. The
addition of two vectors requires virtually no operations, but it increases the TT-ranks.
If the addition has to be done many times, then rounding is needed. If the rounding
is applied after each addition (to avoid rank growth), it costs O(nr3d) operations for
each addition. If an auxiliary Tucker decomposition of the tensor is used and only the
core of the decomposition is in the TT-format, then the computational complexity of
the rounding step is reduced to

O(dnr2 + dr4).

4.2. Multidimensional contraction, Hadamard product, scalar product,
and norm. In the TT-format many important operations can be implemented in a
complexity linear in d. Consider the multidimensional contraction, i.e., evaluation of
an expression of the form

W =
∑

i1,...,id

A(i1, . . . , id)u1(i1) . . . ud(id),

where uk(ik) are vectors of length nk. This is a scalar product of A with a canonical
rank-1 tensor:

W = 〈A,⊗d
i=1uj〉.

Note that such summation appears when an integral of a multivariate function is
computed via a tensor-product quadrature. In this case, the tensor A consists of
function values on a tensor grid, and uk are (one-dimensional) quadrature weights.
Let A be in the TT-format,

A = G1(i1) . . . Gd(id).

Then,

W =

(∑
i1

u1(i1)G1(i1)

)(∑
i2

u2(i2)G2(i2)

)
. . .

(∑
id

ud(id)Gd(id)

)
.

Introduce matrices

Γk =
∑
ik

uk(ik)Gk(ik).

The matrix Γk is an rk−1 × rk matrix, and

W = Γ1 . . .Γd.

Since Γ1 is a row vector and Γd is a column vector, evaluating W reduces to the
computation of matrices Γk and evaluating d matrix-by-vector products. The total
number of arithmetic operations required is O(dnr2). Again the Tucker format can
be used to reduce the number of operations if r < n. The implementation is rather
straightforward and requires

O(dnr + dr3)
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operations for a single contraction. If we want to compute the elementwise (Hadamard)
product of two tensors A and B,

C = A ◦B,

i.e., elements of C are defined as

C(i1, . . . , id) = A(i1, . . . , id)B(i1, . . . , Bd),

the result will be also in the TT-format, with TT-ranks ofA andBmultiplied. Indeed,

C(i1, . . . , id) = A1(i1) . . . Ad(id)B1(i1) . . . Bd(id)

=
(
A1(i1) . . . Ad(id)

)
⊗
(
B1(i1) . . . Bd(id)

)
=
(
A1(i1)⊗B1(i1)

)(
A2(i2)⊗B2(i2)

)
. . .
(
Ad(id)⊗Bd(id)

)
.

This means that the cores of C are just

Ck(ik) = Ak(ik)⊗Bk(ik), k = 1, . . . , d.

Using the Hadamard product, one can compute the scalar product of two tensors,
which is important in many applications. For two tensors A,B it is defined as

〈A,B〉 =
∑

i1,...,id

A(i1, . . . , id)B(i1, . . . , id) =
∑

i1,...,id

C(i1, . . . , id),

where C = A◦B. Thus, the scalar product can be computed by taking the Hadamard
product and then by computing the contraction with vectors of all ones, i.e., uk(ik) =
1. The ranks of the product are O(r2); thus the complexity is equal to O(dnr4).
However, it can be reduced. Recall that the computation of the contraction is reduced
to the computation of the product

W = Γ1 . . .Γd,

where in this case

Γk =
∑
ik

Ak(ik)⊗Bk(ik).

Since Γ1 is a row vector, W can be sequentially computed by a sequence of matrix-
by-vector products:

vk = vk−1Γk, k = 2, . . . , d, v1 = Γ1.

Here vk is a row vector of length r
(A)
k r

(B)
k . Consider the computation of vk when vk−1

is known:

vk = vk−1Γk = vk−1

∑
ik

Ak(ik)⊗Bk(ik) =
∑
ik

pk(ik),

where

pk(ik) = vk−1

(
Ak(ik)⊗Bk(ik)
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is a vector of length r
(A)
k r

(B)
k . If all TT-ranks involved are of order r, then for each ik

the computation of pk(ik) can be done in O(r3) operations due to the special structure
of the matrix Ak(ik) ⊗ Bk(ik); thus vk can be computed in O(nr3) operations, and
the cost of the scalar product is O(dnr3). If the Tucker format is used for both of the
operands, the complexity is

O(dnr2 + dr4).

Using the dot product, the Frobenius norm

||A||F =
√
〈A,A〉

and the distance between two tensors

||A−B||F
can be computed. Indeed, it is sufficient to subtract two tensors A and B (this
would yield a tensor with TT-ranks equal to sum of TT-ranks of A and B) and
compute its norm. The complexity is also O(dnr3) for the TT-format, and O(dnr2 +
dr4) if the Tucker format is used. Algorithm 3 contains a formal description of how
the multidimensional contraction is performed, and Algorithm 4 contains a formal
description of how the dot product is computed in the TT-format.

Algorithm 3. Multidimensional contraction.

Require: Tensor A in the TT-format with cores Ak and vectors u1, . . . , ud.
Ensure: W = A×1 u

�
1 . . .×d u

�
d .

1: for k = 1 to d do
2: Γk =

∑
ik
Ak(ik)uk(ik).

3: end for
4: v := Γ1.
5: for k = 2 to d do
6: v := vΓk.
7: end for
8: W = v.

Algorithm 4. Dot product.

Require: Tensor A in the TT-format with cores Ak, and tensor B in the TT-format
with cores Bk.

Ensure: W = 〈A,B〉.
1: v :=

∑
i1
A1(i1)⊗B1(i1).

2: for k = 2 to d do
3: pk(ik) = v(Ak(ik)⊗Bk(ik)).
4: v :=

∑
ik
pk(ik).

5: end for
6: W = v.

4.3. Matrix-by-vector product. The most important operation in linear alge-
bra is probably the matrix-by-vector product. When both the matrix and the vector
are given in the TT-format then the natural question is how to compute their product.
When talking about “vector in the TT-format” we implicitly assume that a vector of
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length N = n1 . . . nd is treated as a d-dimensional tensor with mode sizes nk, and this
tensor is represented in the TT-format. Matrices acting on such vectors of length N
should be of size M ×N ; for simplicity assume that M = N . Elements of such ma-
trices can be indexed by 2d-tuples (i1, . . . , id, j1, . . . , jd), where (i1, . . . , id) enumerate
the rows of M and (j1, . . . , jd) enumerate its columns. A matrix M is said to be in
the TT-format if its elements are defined as

(4.1) M(i1, . . . , id, j1, . . . , jd) = M1(i1, j1) . . .Md(id, jd),

where Mk(ik, jk) is an rk−1 × rk matrix. i.e. (ik, jk) is treated as one “long index.”
Such permutation of dimensions is standard in the compression of high-dimensional
operators [37, 17, 16]. It is motivated by the following observation, first mentioned in
[38] for the two-dimensional case. If all TT-ranks are equal to 1, then M is represented
as a Kronecker product of d matrices,

M = M1 ⊗M2 ⊗ · · · ⊗Md,

and that is a standard generalization of a rank-1 tensor to the matrix (operator) case
[3, 4, 37]. Suppose now that we have a matrix M in the TT-format (4.1) and a vector
x in the TT-format with TT-coresXk and entriesX(j1, . . . , jd). The matrix-by-vector
product in this situation is the computation of the following sum:

Y (i1, . . . , id) =
∑

j1,...,jd

M(i1, . . . , id, j1, . . . , jd)X(j1, . . . , jd).

The resulting tensor will be also in the TT-format. Indeed,

Y (i1, . . . , id) =
∑

j1,...,jd

M1(i1, j1) . . .Md(id, jd)X1(j1) . . . Xd(jd)

=
∑

j1,...,jd

(
M1(i1, j1)⊗X1(j1)

)
. . .
(
Md(id, jd)⊗Xd(jd)

)
= Y1(i1) . . . Yd(id),

where

Yk(ik) =
∑
jk

(
Mk(ik, jk)⊗Xk(jk)

)
.

A formal description is presented in Algorithm 5.

Algorithm 5. Matrix-by-vector product.

Require: Matrix M in the TT-format with cores Mk(ik, jk), and vector x in the
TT-format with cores Xk(jk).

Ensure: Vector y = Mx in the TT-format with cores Yk.
for k = 1 to d do
Yk(ik) =

∑
jk
(Mk(ik, jk)⊗Xk(jk)).

end for

The TT-ranks for Y are the product of ranks for the matrix and for the vector.
The computation of Yk can be realized as a matrix-by-matrix product. The summation
over jk is equivalent to the product of a matrix of size r2n×n (obtained fromMk(ik, jk)
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by reshaping and permuting the dimensions) by a matrix of size n×r2 (obtained from
Xk(jk)). The complexity of such a matrix-by-matrix product is O(n2r4), and for the
total matrix-by-vector product in the TT-format, O(dn2r4). However, almost every
time one has to approximate the result afterwards to avoid rank growth. Application
of the TT-rounding algorithm requires O(dnr6) operations. If n is large, the Tucker
format can be used to approximate both the matrix and the vector. The Tucker
format for a matrix means that the matrix is first approximated as

M ≈
∑

α1,...,αd

G(α1, . . . , αd)U1(α1)⊗ U2(α2) . . .⊗ Ud(αd),

where Uk(αk) is an n × n matrix, and the TT-decomposition is applied to the core
G; see [31], where a detailed description for the three-dimensional case is given. It
can be shown that in this case the product can be performed in O(dn2r2 + dnr4 +
dr8) operations. This gives reduced complexity if n ≥ Cr2 for some constant C.
However, in practice, the O(r8) term can be time consuming (starting from r ≥
20 on modern workstations). The situation is the same with the Tucker format,
and several techniques have been proposed to evaluate the matrix-by-vector product
quickly [13, 34, 31]. The idea is to avoid formation of the product in the TT-format
exactly (which leads to huge ranks) but to combine multiplication and rounding in
one step. Such techniques can be generalized from the Tucker case to the TT-case,
and that is a topic of ongoing research. The expected complexity of this algorithm
(with the assumption that the approximate TT-ranks of the product are also O(r)),
is O(dn2r4) if the Tucker decomposition is not used, and O(dn2r2 + dr6) if it is used.

5. Numerical example. Consider the following operator:

(5.1) H = Δd + cv
∑
i

cos(x− xi) + cw
∑
i<j

cos(xi − xj),

the one considered in [3, 4], where the canonical format was used. We have chosen the
simplest possible discretization (3-point discretization of the one-dimensional Lapla-
cian with zero boundary conditions on [0, 1]). After the discretization, we are left
with an nd × nd matrix H and are looking for the minimal eigenvalue of H :

Hx = λx, ||x||2 = 1, λ → min.

First, the matrix H is approximated in the matrix TT-format (4.1),

H(i1, . . . , id, j1, . . . , jd) = H1(i1, j1) . . . Hd(id, jd).

This representation is obtained from the canonical representation of H , which is easy
to get. As discussed before, Δd can be represented as a canonical rank-d tensor, and
moreover, its TT-ranks are equal to 2. The same is true for the “one-particle” inter-
action cv

∑
i cos(x−xi), which becomes a Laplace-like tensor after the discretization.

The two-particle term cw
∑

i<j cos(xi−xj) gives TT-ranks not higher than 6. Indeed,

cos(xi − xj) = cos(xi) cos(xj) + sin(xi) sin(xj),

and each summand, due to results of [3, 4], can be approximated by a rank-3 tensor
to arbitrary precision. In our numerical experiments, we represent this term in the

canonical format with d(d+1)
2 terms, and then convert to the TT-format. After the
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Table 5.1

Results for the computation of the minimal eigenvalue.

n 8 16 32 64
λmin 2.41 · 103 2.51 · 103 2.56 · 103 2.58 · 103
δ 6 · 10−2 2.7 · 10−2 7 · 10−3 —
Average time for one iteration (sec) 3 · 10−2 3.6 · 10−2 5 · 10−2 6.2 · 10−2

transformation from the canonical representation to the TT-format, we get H in
the TT-format with TT-ranks not higher than 2 + 2 + 6 = 10. Now we have to
find the minimal eigenpair of the matrix H . A starting guess has been chosen to
be the eigenvector corresponding to the smallest in magnitude eigenvalue of the d-
dimensional Laplace operator Δd. It is well known that it has the form

X(i1, . . . , id) = sin
πi1
n+ 1

. . . sin
πid
n+ 1

;

i.e., it corresponds to a rank-1 tensor.
After that we applied a simple power iteration to the shifted matrix Ĥ = cI −H,

where the shift c was chosen to make the smallest eigenvalue of H the largest in
magnitude eigenvalue of the shifted matrix. It is easy to see that the identity matrix
has the canonical rank 1; thus its TT-ranks are equal to 1 also, and the TT-ranks of
Ĥ are no more than 1 + 10 = 11, and basic linear algebra in the TT-format can be
used.

We have taken d = 19 and the one-dimensional grid sizes n = 8, 16, 32, 64; there-
fore the maximal mode size for the matrix has been 642 = 4096. The matrix was
compressed by the canonical-to-TT compression algorithm, and then the power iter-
ation was applied. After each matrix-by-vector multiplication the TT-ranks of the
approximate solution increase, and the rounding is performed. The final algorithm
looks like

v := Tε(Hv), v =
v

||v|| ,

where Tε(Hv) is the result of the application of the TT-rounding algorithm to the
vectorHv with the truncation parameter ε. This is surely not the best method for the
computation of the smallest eigenpair; it was used just to test the rounding procedure
and the matrix-by-vector subroutine. The parameters cv, cw in (5.1) were set to
cv = 100, cw = 5. The computed eigenvalues for different n are given in Table 5.1.
By “time for one iteration” we mean the total time required for the matrix-by-vector
product and for the rounding with the parameter ε = 10−6. δ is the estimated error of
the eigenvalue of the operator (i.e., the model error), where for the exact eigenvalue we
take the eigenvalue computed for the largest n (here it is n = 64). We can see that the
eigenvalue stabilizes. To detect convergence of the iterative process for the discrete
problem, we used the scaled residual, ||Ax−λx||/|λ|, and stopped when it was smaller
than 10−5. The number of iterations for the power method was of order 1000− 2000;
we do not present it here. The TT-ranks for the solution were not higher than 4 in all
cases. Note that for these small values of n timings, for one iteration grow very mildly
when increasing n; it is interesting to explain the nature of this behavior. Table 5.1
shows the “internal convergence” of the method with increasing grid size. We can
check that the computed structured vector is indeed an approximate eigenvector by
looking at the residue. The problem of checking that it indeed delivers the smallest
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eigenvalue (not some other eigenvalue) is difficult and is under investigation, as well
as comparison with full tensor solves for small dimensions.

6. Conclusion and future work. We have presented a new format that can be
used to approximate tensors. In some sense the TT-format (1.3) is just another form
of writing the tree format of [32] or the subspace approach of [18, 15]: the same three-
dimensional tensors as defining parameters, the same complexity estimates. However,
the compact form of the TT-format gives a big advantage over the approaches men-
tioned above. It gives a clear way for a stable and fast rounding procedure. It is based
entirely on a sequence of QR and SVD decompositions of matrices and does not re-
quire any recursion. Its implementation required only about 150 lines of MATLAB
code,5 compared to several thousands of code lines in C and Fortran for the recursive
TT-format. It also allows fast and intuitive implementation of the basic linear al-
gebra operations: matrix-by-vector multiplication, addition, dot product, and norm.
We showed how to apply these subroutines to compute the smallest eigenvalue of a
high-dimensional operator. This is a simplified model example, but it confirms that
the TT-format can be used for the solution of high-dimensional problems efficiently.

There is great room for improvement and further development. Ideas presented in
this paper, have already been applied to the solution of different problems: stochastic
partial differential equations [25], high-dimensional elliptic equations [24], and elliptic
equations with variable coefficients [11]. The ongoing work is to apply the TT-format
for the solution of Schroedinger equation in quantum molecular dynamics, with pre-
liminary experiments showing it is possible to treat Henon–Heiles potentials [28] with
d = 256 degrees of freedom.
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[2] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of
stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–
825.

[3] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc.
Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.

[4] G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions,
SIAM J. Sci. Comput., 26 (2005), pp. 2133–2159.

[5] R. Bro, PARAFAC: Tutorial and applications, Chemometrics Intell. Lab. Syst., 38 (1997),
pp. 149–171.

[6] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scal-
ing via n-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970),
pp. 283–319.

5MATLAB codes are available at http://spring.inm.ras.ru/osel.

D
ow

nl
oa

de
d 

12
/2

4/
19

 to
 1

73
.1

67
.2

55
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2316 I. V. OSELEDETS

[7] P. Comon, Tensor decomposition: State of the art and applications, in Mathematics in Signal
Processing V, J. G. McWhirter and I. K. Proudler, eds., Oxford University Press, Oxford,
UK, 2002.

[8] L. de Lathauwer, B. de Moor, and J. Vandewalle, A multilinear singular value decompo-
sition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[9] L. de Lathauwer, B. de Moor, and J. Vandewalle, On best rank-1 and rank-
(R1, R2, . . . , RN ) approximation of high-order tensors, SIAM J. Matrix Anal. Appl., 21
(2000), pp. 1324–1342.

[10] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approxima-
tion problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–1127.

[11] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and E. E. Tyrtyshnikov, Tensor
Structured Iterative Solution of Elliptic Problems with Jumping Coefficients, Preprint 55,
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, 2010.

[12] M. Espig, Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Di-
mensionen, Ph.D. thesis, Fakultat fur Mathematik und Informatik, University of Leipzig,
Leipzig, Germany, 2007.

[13] S. A. Goreinov, I. V. Oseledets, and D. V. Savostyanov, Wedderburn Rank Reduction and
Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case, ArXiv preprint
arXiv:1004.1986, 2010.

[14] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large
systems in tensor product structure, Computing, 72 (2004), pp. 247–265.

[15] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2029–2054.

[16] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-
dimensional nonlocal operators. I. Separable approximation of multi-variate functions,
Computing, 76 (2006), pp. 177–202.

[17] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-
dimensional nonlocal operators. II. HKT representation of certain operators, Computing,
76 (2006), pp. 203–225.
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