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Abstract
Given p € (1, 2], the unique L? solutions of backward stochastic differential equations with jumps (BSDEJs)
allow us to extend the notion of g—evaluations, in particular g—expectations, to the jump case with LL? domains.
We explore many important properties of the extended g—evaluations including optional sampling, upcrossing
inequality, Doob-Meyer decomposition, generator representation and Jensen’s inequality. Most of these results
are important for the further development of jump-filtration consistent nonlinear expectations with IL” domains
in [95].
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1 Introduction

Let pe(1,2] and T € (0,00). Given a Lipschitz generator g, [94] showed that for each p—integrable terminal data &,
the real-valued backward stochastic differential equation with jumps (BSDEJ)

T T
Y; :£+/ g(s,Yg,Zs,Ug)ds—/ Zs dB f/ / Us(z)Ny(ds,dz), t€0,T] (1.1)
t t (t7T] X

that is driven by a Brownian motion B and an independent X —valued Poisson point process p admits a unique
LP—solution (Y¢, Z¢, U¢). In particular, the process Y¢ can be regarded as the so-called “(conditional) g—expectation”
of & E,¢|F]:=YE, t€[0,T]. The g—expectation {&y[&| Ft]}ecjo, ) can be further generalized as g—evaluations
{575277[5}}7 < by considering BSDEJ with random horizon. Such a g—evaluations are closely related to a large class
of coherent or convex risk measures for p—integrable financial positions (which may not be square-integrable) in a
market with jumps.

In this paper, we show that as nonlinear expectations with LP domains under jump filtration (the filtration
generated by B and Poisson random measure N, ), the g—evaluations inherit many important (martingale) properties
from the classic linear expectations such as optional sampling, upcrossing inequality, Doob-Meyer decomposition,
Jensen’s inequality and etc. Most of these results will assist us to study finance markets with jumps using nonlinear
evaluation criteria or risk measurement.

The well-known Allais paradox suggests people to develop a nonlinear-expectation version of the von Neumann-
Morgenstern’s axiomatic system of expected utilities, a fundamental notion in the modern economics. Motivated
by such a generalization, Peng [77), [80] introduced the concepts of g—expectations and g—evaluations via backward
stochastic differential equations (BSDEs). These two seminal works and some following research ([30] [15] 22, [8T], [86]
among others) show that the g—evaluations are closely related to axiom-based coherent and convex risk measures
(see [ [39]) in mathematical finance: When the generator g is positively homogeneous or convex in (y, z), then
pf (£) :=E,4|—&| F] defines a coherent or convex risk measure. Reversely, under certain domination condition (see (4.1)
of [30]), a coherent or convex risk measure {p; };c[o,7] with L? domain under Brownian filtration can be represented
by some g—expectation or the solution of a BSDE with generator g and square-integrable terminal data £.

Lin [67] and Royer [87] extended the g—expectations to the jump case and obtained a Doob-Meyer decomposition
for g—expectations with L2 domains under jump filtration. Under a similar domination condition to (4.1) of [30], [87]
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also showed that a risk measure with .2 domain is still a g—expectation in a financial market with jumps. On the
other hand, Ma and Yao [68] generalized the g—evaluations to the quadratic case (i.e. the generator g has a quadratic
growth in z) while Hu et al. [45] derived a representation of convex risk measures by quadratic g—expectations under
a different domination condition. Recently, [54] even extended the quadratic g—expectations to the jump case
and demonstrated that the corresponding martingale properties still hold, such as Doob-Meyer decomposition and
downcrossing inequality. Based on these features, they provided a dual representation for dynamic risk measures
with jumps.

The present paper starts with a strict comparison theorem for LP—solutions of BSDEJs (Theorem under
an additional condition (A3) in u. Theorem together with the uniqueness result of BSDEJs in ILP sense implies
that the corresponding g—evaluations with L? domains under the jump filtration inherits “strict monotonicity ”
“constant preserving”, “time-consistency”, “zero-one law”, “translation invariance”, “convexity”, “positive homo-
geneity” ((gl)f(g7)) from linear expectations and thus preserves some classic martingale properties such as optional
sampling, upcrossing inequality and Doob-Meyer decomposition (Proposition Proposition Theorem . In
particular, the proof of the Doob-Meyer decomposition for g—supermatingales also depends on a monotonic limit
theorem of p—integrable jump diffusion processes with jumps (Theorem as well as an a priori ILP—estimate of
a generalized BSDEJ (Proposition [1.3).

Moreover, we explore other nice properties of g—evaluations: Using a result of [94], we can represent a generator
g as the limit of the difference quotients of the corresponding g—evaluations (see Proposition , which gives
rise to a reverse comparison theorem of BSDEJs (Theorem [5.1)). Proposition also establishes an equivalence
between the convexity (resp. positive homogeneity) of g in (y, z,u) and the convexity (resp. positive homogeneity) of
g—evaluations, as well as an equivalence between the independence of g on y—variable and the translation invariance
of g—evaluations (Proposition [5.2). When the generator is convex in (z,u), we can use the comparison theorem of
BSDEJs again to derive Jensen’s inequality of g—evaluations (Theorem [5.2)).

Main Contributions.

Given U € UZ _, unlike the case of Brownian stochastic integrals, the Burkholder-Davis-Gundy inequality is not ap-
plicable for the p/2—th power of the Poisson stochastic integral f(o 4 S YsUs(2)Ny(ds, dx), t€[0,T7] (see e.g. Theorem

pa
VIL92 of [34]): i.e. E{ sup (f(o i1y YSUS(JJ)Np(ds,dJ:)) 2] cannot be dominated byE[(f(o 112 |YsP Ut (@) 2Ny (dt
te[0,T) ’ ’

d;zc))ﬂ. So to derive an a priori LP estimate for BSDEJs, we could not follow the classical argument in the
proof of [16, Proposition 3.2], neither could we employ the space U*P := {U: E[(fo S| Ui(2)|?v(dz)dt) ] < oo}
or the space U2P .= {U E[(f(oT S |Us() 2Ny (dt, da:)) } < oo} (Actually one may not be able to compare

P
B[ Joom S |Un@) PNy (dt, o)) ¥ | with B[(fy [y lUn(@)Pr(dzyt) ®]).
In [94], we started with a generalization of the Poisson stochastic integral for a random field U € UP by construct-
ing a cadlag uniformly integrable martingale MU := f(o a3 U Np(ds dx), t €10,T), whose quadratic variation

[MY, MY is still S0 Jx|Us (@) 2N, (ds, dz), t €0, T] In derlvmg the key L?—type inequality (see Lemma 3.1 of [94])
about the difference Y Y —Y? of two p—integrable solutions to BSDEJs with different parameters, our delicate
analysis showed that the variational jump part Z(\YSV)— Yo [P = p(|Ys—|P71, AY5>) in the dynamics of |Y|P will

eventually boil down to the term EfonXth (z) —UZ(z)[Pv(da)dt, which justifies our choice of UP over U%? or U2?
as the space for jump diffusion. The estimation course of the variational jump is full of analytical subtleties, but we

managed to overcome them by utilizing some new techniques and special treatments (see (5.11)—(5.21) of [94] for
details).

In the present paper, we developed these techniques to handle similar (bur more complicated) technical hurdles
when we are deriving the a priori LP—estimate for a special BSDEJ in Proposition 4.3 E (see - or when
we are measuring the LP—distance of an increasing sequence of jump diffusion processes Y” from its limit Y in

Theorem- (see (A.40)—(A-47) or (A.57)—(A.60))). As aforementioned, both Proposition and Theorem are

crucial in proving the Doob-Meyer decomposition for g—supermatingales (our main Theorem [4.1]).




1. Introduction 3

Our analysis in the paper also heavily relies on the follow inequality

E[[MU7MU]§]:EK/OT/X|Ut(x)|2u(dx)dt)g}<E/(0’T]/X|Ut(x)|pr(dt,dx):E/OT/X|Ut(x)|pu(dx)dt

Although many of our results look similar to those with L.? domains in the non-jump case ([30]) or in jump case
([87]), we have to do more delicate analysis to overcome various technical subtleties raised in the L”—jump case. For
instance, to demonstrate the monotonic limit theorem (Theorem , we nontrivially extend Lemma 2.3 of [7§] to
the L?—jump case, see Lemma [A4]

All martingale properties of g—evaluations in ILP—jump case, especially the Doob-Meyer decomposition and the
monotonic limit theorem, will play important roles in our study of a general class of jump-filtration consistent non-
linear expectations £ with LP —domains, which encompasses many coherent or convex time-consistent risk measures
p = {pt}tefo,r)- Under certain domination condition, we show in [95] that the nonlinear expectation £ preserves
many important (martingale) properties of linear expectations (including optional sampling and Doob-Meyer decom-
position), and thus can be represented by some g—expectation. Consequently, one can utilize the BSDEJ theory
to systematically analyze the risk measure p with L —domains and employ numerical schemes of BSDEJs to run
simulation for financial problems involving p in a market with jumps.

In another of our accompany paper [93], we analyze a BSDEJ with a p—integrable reflecting barrier £ whose
generator ¢ is Lipschitz continuous in (y, z,u). We show that such a reflected BSDEJ with p—integrable parameters
admits a unique IL? solution, and thus solves the corresponding optimal stopping problem under the g—expectation or
some dominated risk measure with L —domain: the Y —component of the unique solution is exactly the Snell envelope
of process £ under the g—expectation and the first time it meets £ is an optimal stopping time for maximizing the
g—expectation of reward £ or minimizing the risk measure of financial position £.

Relevant Literature.

The backward stochastic equation (BSDE) was introduced by Bismut [12] as the adjoint equation for the Pon-
tryagin maximum principle in stochastic control theory. Later, Pardoux and Peng [76] commenced a systematical
research of BSDEs. Since then, the BSDE theory has grown rapidly and has been applied to various areas such
as mathematical finance, theoretical economics, stochastic control and optimization, partial differential equations,
differential geometry and etc, (see the references in [38], B31]).

1) Li and Tang [90] introduced into the BSDE a jump term that is driven by a Poisson random measure independent
of the Brownian motion. These authors obtained the existence of a unique solution to a BSDEJ with a Lipschitz
generator and square-integrable terminal data. Then Barles, Buckdahn and Pardoux [19] [7] showed that the well-
posedness of BSDEJs gives rise to a viscosity solution of a semilinear parabolic partial integro-differential equation
(PIDE) and thus provides a probabilistic interpretation of such a PIDE. Later, Pardoux [75] relaxed the Lipschitz
condition of the generator on variable y by assuming a monotonicity condition on variable y instead. Situ [89] and
Mao and Yin [96] even degenerated the monotonicity condition of the generator to a weaker version so as to remove
the Lipschitz condition on variable z.

2) During the development of the BSDE theory, some efforts were made in relaxing the square integrability on the
terminal data so as to be compatible with the fact that linear BSDEs are well-posed for integrable terminal data
or that linear expectations have L' domains: El Karoui et al. [38] showed that for any p—integrable terminal data,
the BSDE with a Lipschitz generator admits a unique LP—solution. Then Briand and Carmona [14] reduced the
Lipschitz condition of the generator on variable y by a strong monotonicity condition as well as a polynomial growth
condition on variable y. Later, Briand et al. [I6] found that the polynomial growth condition is not necessary if one
uses the monotonicity condition similar to that of [75].

We analyzed L solutions of multi-dimensional BSDEJs under a monotone condition in [94], while Kruse and
Popier [61], 63] studied a similar LP—solution problem of BSDE under a right-continuous filtration which may be
larger than the jump filtration:

T
Y;:§+/ f(s,YS,ZS,Us)ds—/ ZsdB, / / Np (ds,dx) / dM,, tel0,T], (1.2)
t t (t,T)

where M is a local martingale orthogonal to the jump filtration. Also, Klimsiak studied LL? solutions of reflected
BSDEs under a general right-continuous filtration in [57].
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3) The researches on BSDEs over general filtered probability spaces have recently attracted more and more attention.
A series of works [I8] 36, [38] 17, 20, [66], 21] are dedicated to the theory of BSDEs but driven by a cadlag
martingale under a right-continuous filtration that is also quasi-left continuous. Lately, [13} [74] removed the quasi-
left continuity assumption from the filtration so that the quadratic variation of the driving martingale does not need
to be absolutely continuous. On the other hand, based on a general martingale representation result due to Davis and
Varaiya [32], Cohen and Elliott [25], 26] discussed the case where the driving martingales are not a priori chosen but
imposed by the filtration; see Hassani and Ouknine [44] for a similar approach on a BSDE in form of a generic map
from a space of semimartingales to the spaces of martingales and those of finite-variation processes. Also, Mania and
Tevzadze [69] and Jeanblanc et al. [48] studied BSDEs for semimartingales and their applications to mean-variance
hedging.

As to BSDEs driven by other discontinuous random sources, Xia [92] and Bandini [6] studied BSDEs driven by
a random measure; Confortola et al. [28] [29] considered BSDEs driven by a marked point process; [73} 5] [84] [42]
analyzed BSDEs driven by Lévy processes; [2], 88 53] discussed BSDEs driven by a process with a finite number of
marked jumps.

4) There are also plenty of researches on quadratic BSDEJs:

To study the exponential utility maximization problem with an additional liability, Becherer [10] extended Koby-
lanski [60]’s monotone stability approach to a jump-diffusion model and obtained a unique bounded solution to a
related BSDE driven by a random measure whose generator may not be Lipschitz continuous in w. Becherer et al.
[11] recently generalized this result for random measures of infinite activity with a non-deterministic compensator.
Meanwhile, Morlais [70] utilized a similar monotone stability approach and dynamic programming to show that a
special quadratic BSDEJ with bounded terminal data has a unique solution, whose Y component is the value process
of an exponential utility maximization problem with jumps. Morlais [71] even obtained an existence result for such
quadratic BSDEJs with exponentially integrable terminal data.

For general quadratic BSDEJs with unbounded terminal data, Ngoupeyou [72] and El Karoui et al. [37] extended
Barrieu and El Karoui [8]’s quadratic semimartingales approach to the jump case. They managed to obtain an
existence result for quadratic-exponential BSDEJs (i.e. quadratic BSDEJs whose generators have a exponential
growth in «) with unbounded terminal data. Also, Jeanblanc et al. [49] described the value process of a utility
optimization problem under Knightian-uncertainty in a jump setting as a class of quadratic-exponential BSDEJs.
When generators of quadratic-exponential BSDEJs are allowed to be locally-Lipschitz, Fujii and Takahashi [40]
provided a sufficient condition for the Malliavin’s differentiability of such BSDEJs with bounded terminal data while
[3] could still employ [60]’s monotone stability approach to show the wellposedness of such BSDEJs.

As to different methods on quadratic BSDEJs, Kazi-Tani et al. [51] [54] exploited the fixed-point approach as
in Tevzadze [91] and an exquisite splitting technique to demonstrate the wellposedness of quadratic-exponential
BSDEJs with bounded terminal data and applied this result to study the related nonlinear expectations; Laeven and
Stadje [64] took a duality approach to characterize the value of an optimal portfolio valuation problem as the unique
solution to a BSDEJ with a convex generator which has at most quadratic growth in z.

5) It is worth mentioning that [53, 52] recently made a very interesting development of second-order BSDEs with
jumps, and provided a probabilistic interpretation for the related fully-nonlinear PIDEs.

For topics of BSDEJs in other directions, see Cohen and Elliott [23] 24 27] for BSDEs driven by Markov chains;
see Kharroubi et al. [56] for (minimal) solutions to BSDEs with constrained jumps and related quasi-variational
inequalities; see Aazizi and Ouknine [I] for a class of constrained BSDEJs and its application in pricing and hedging
American options; see Klimsiak and Rozkosz [58], [59] for a general (non-Markovian) BSDE and a related semilinear
elliptic equation with measure data whose operator is associated with a regular semi-Dirichlet form; see [62] [43]
for BSDEJs with singular terminal data and their applications to optimal position targeting and a non-Markovian
liquidation problem respectively; see also [65], (41}, [35] for numerical simulation of BSDEJs among other.

The rest of the paper is organized as follows: We introduce some notations in Section [1.1} In Section [2| after
making basic assumptions on generator g, we review some properties of IL? solutions to BSDEJs with generator
¢ (including the wellposedness result, the martingale representation theorem as well as an a priori estimate), and
prove a strict comparison theorem for these P solutions. In Section [3} we define the g—evaluation with domain P
under jump filtration according to the wellposedness of BSDEJs with generator g in LLP sense. Then we show that
the g—evaluation preserves many basic properties of linear expectations. In Section [d] we obtained some martingale
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properties of the g—evaluation such as optional sampling, upcrossing inequality and Doob-Meyer decomposition.
Section || discuss some other fine properties of g—evaluations including a generator representation via g—evaluations,
some of its consequences and Jensen’s inequality of the g—evaluations. The proofs of our results are relegated to
Section @ We generalize [79]’s monotonic limit theorem for p—integrable jump diffusion processes with jumps in the
appendix as it is interesting in its own right.

1.1 Notation and Preliminaries

Throughout this paper, we fix a time horizon T € (0, 00) and let (2, F, P) be a complete probability space on which
a d—dimensional Brownian motion B is defined.

For a generic cadlag process X, we denote its corresponding jump process by AX; := X;— X;_, t € [0,7T] with
Xo- := Xo. Given a measurable space (X, Fx), let p be an X'—valued Poisson point process on (€2, F, P) that is
independent of B. For any scenario w € €, the set Dy, of all jump times of path p(w) is a countable subset of
(0,77 (see e.g. Section 1.9 of [46]). We assume that for some finite measure v on (X, Fx), the counting measure
Ny(dt,dx) of p on [0,T] x X has compensator E[Ny(dt,dz)] = v(dz)dt. The corresponding compensated Poisson
random measure Np will be denoted by Np (dt,dx):=N,(dt, dx)—v(dz)dt.

For any t€[0,T], we define sigma-fields

FP =o{Bys <t} FY =0 {Ny((0,s], A);s <t, A € Fu}, Fe=a(FPUF))

and augment them by all P—null sets of 7. Clearly, the jump filtration F = {F;};cjo,7] is complete and right-
continuous (i.e. satisfies the usual hypotheses, see e.g., [82]). Denote by & (resp. 2 ) the F—progressively measurable
(resp. F—predictable) sigma-field on [0,7]x €, and let T be the collection of all F—stopping times. For any 7€ T,
we set Tr:={yeT:y>71, P—as.}.

Recall that a uniformly integrable cadlag martingale M is said to be a BMO (“Bounded Mean Oscillation”)
martingale if there exists C' >0 such that for any 7€ 7T

E[[M,M]r — [M,M];|F;] <C and |AM.]><C, P-as.

The following spaces of functions will be used in the sequel:
1) For any pe[1,00), let L% [0, T be the space of all measurable functions ¢ : [0,T] — [0, 00) with fo (v( (1)) dt < co.
2) For p € (1,00), let LP := LP(X, Fx,v;R) be the space of all real-valued, Fy—measurable functions u with
lul| Lz := (fX|u(a:)|p1/(da:))% <o0. For any uy,us € LP, we say uj =us if uj () =us(x) for v—a.s. z € X.
3) For any sub-sigma-field G of F, let L°(G) be the space of all real-valued, G—measurable random variables and set

« 19) = {€ 1°0)  I€llunio) = { B} < oo} or amy pe (1,0

o 17(G) = {£ € 1°(0) : €l 1) = esssup [e(w)] < oo}

4) Let D° be the space of all real-valued, F—adapted cadlag processes, and let K° be a subspace of DY that includes
all F—predictable cadlag increasing processes X with Xy =0.
5) Set Z3 :=L2 _([0,T]x, P, dtx dP; R%), the space of all R?—valued, F—predictable processes Z with fOT|Zt|2 dt
<00, P—a.s.
6) For any p € [1,00), we let
o DP:= {XE]D)O: |1 X |lpe == {E[Xf]}% <oo}7 where X, := s[up ]|Xt| < 00.
tel0,T
o KP:=K°NDP={K €K’: E[K}]<oo}.

1
o 727 = {Z €72 ¢ || Z|lper = {E[(fOT|Zt|2dt)f} } < oo}. For any Z € Z>?, the Burkholder-Davis-Gundy

inequality implies that
{sup‘/ ]<cp { / |Z|ds }<oo (1.3)
telo,T

for some constant ¢, >0 depending on p. So { fotZSdBS}te[o ) is a uniformly integrable martingale.
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o UY = LL.([0,T)xQx X, PR F,dt x dP X v(dz); ]R) be the space of all & ® Fy—measurable random fields

U:[0,T]xQxX —TR such that fo S |U (@) [Pr(de) dt—fo U]} dt <00, P—as.
o UP: {UGUIOC NUllwr = {E S [ |U:(x)|Pv(d)dt} > <oo}_Lp([o TIxQx X, P@ Fa,dt x dPx v(dz); R).

For any U €U}, . (resp. UP), it holds for dt x dP—a.s. (t,w) € [0, T]x €2 that U(t,w) € LE. According to Section 1.2
of [94], we can define a Poisson stochastic integral of U:

/0 t]/ 2N, (ds,dz), 1 €[0T, (1.4)

which is a cadlag local martingale (resp. uniformly integrable martingale) with quadratic variation [MY, MY];, =
Joo.qJ2Us(z )|* Ny (ds, dz), t€[0,T]. The jump process of MY is AM (w)=1(ep, ., U (t,w,pr(w)), t€(0,T]. For
any U €UP, an analogy to (5.1) of [94] shows that

loc

E[(/ /|Ut(x)|2Np(dt7dx E <E//|Ut )dt, V0<t<s<T. (1.5)
(t,s]J X
o We simply denote DP x Z2P xUP by SP.

As usual, we set 27 :=(—z)V0, 1 :=zV0 for any x €R, and use the convention inf ) := co. Given p € (0, c0),

the following two inequalities will be frequently applied in this paper:

(i) For any a,beR, |aT—b*|<|a—b|. (1.6)

n n

n p
(i4) For any finite subset {ay, -+ ,a,} of (0,00), (1 AnP~? Z al < (Zai) <(1vnrh Zaf. (1.7)

i=1 =1

Also, we let ¢, denote a generic constant depending only on p (in particular, ¢ stands for a generic constant depending
on nothing), whose form may vary from line to line.

2 L? Solutions of BSDEs with Jumps

From now on, we fix p€(1,2] and set ¢:= 27 >2.
A mapping g: [0,T]x QxRxR%x LE — R is called a p—generator if it is @ B(R)@ B(RY) @ B(LE)/B(R)—
measurable. For any 7€ 7T,

gr(t,w,y, 2,u) =lpcrwy 96w,y 2,u), VY (tw,y,z,u)€[0,T]xQ xRxR¥x LP

is also Z@B(R)@B(R?)® % (LF)/%(R)—measurable.
We say a p—generator g is convex in (y, z,u) if it holds P—a.s. that for any (¢,«)€(0,T)x[0,1] and (y;, 2, u;) €
RxRIxLP, i=1,2

g(t, ayr+(1—a)y2, ez + (1= )z, aur + (1—a)uz) <ag(t,yi, 21, ur)+(1—a)g(t, ya, 22, u2). (2.1)
Also, we say a p—generator ¢ is positively homogeneous in (y, z,u) if it holds P—a.s. that
g(t,qy, az,au)=ag(t,y, z,u), V(t,a)e(0,T)x[0,00), ¥ (y,z u) ERxRIx LE. (2.2)

x UP

loc

Definition 2.1. Given p € (1,2], let £ € L%(Fr) and g be a p—generator. A triplet (Y,Z,U) € D° x Z2

loc
called a solution of a backward stochastic differential equation with jumps that has terminal data £ and genemtor g

(BSDEJ(f,g) for short) if fOT|g(s,YS,Z5,Us)|ds<oo, P—a.s. and if (1.1) holds P—a.s.
We shall make the following standard assumptions on p—generators g:
(A1) [)lg(¢.0.0,0)|dt € L7 (Fr).
(A2) There exist two [0, 00)—valued, %[0, T|® Fr—measurable processes 5, A with fOT (BfVA?)dt € L>(Fr) such
that for dt x dP—a.s. (t,w)€[0,T]x

’g(taw7ylazlau)_g(t7way27z27u)|Sﬁ(t7w)|y1_y2|+A(t;w)|zl_22|7 v(ylazl)a (yQ;ZQ)ERXRda VUELIIZ
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(A3) There exists a function b: [0, T]x Qx RxR%x LE x L, — L4 such that
(i) his ZRB(R)2B(RY)@B(LE)RB(LE)/B(LL)—measurable;
(ii) There exist x1 € (—1,0] and kg >—k; such that for any (¢, w,y, 2, u1, ug, ) € [0, T] x QxR xR x LE x L2 x X

K1 < (b(t7w7y7zau1au2))('x) < K23

(iii) It holds for dtxdP—a.s. (t,w) € [0,T]x £ that

g(t7w>y7Zaul)_g(t7w7y7zau2)§/ (ul(m)_UQ(‘r))'(h(t7w7y727u1ﬂu2))(‘r) V(d.’l?), V(y7z7u1,UQ)€RXRdXL€XL€. (23)
X

We refer to Z:=(f, A, k1, k2) as a p—coefficient set.

Remark 2.1. Let pe(1,2] and let g be a p—generator.

(1) By (A3) (ii), (ii4) and Holder’s inequality, (A2) and (A3) imply

(A2%) There exist two [0,00)—wvalued, LB[0,T]|®Fr—measurable processes 3, A with fOT (BEVAZ)dt € L°°(Fr) such
that for dt xdP—a.s. (t,w)€[0,T]x

l9(t,w,y1, 21, u1) — g(t, w, ya, 22, u2)| < Bt w) (Jyr —ya|+[Jur —usl p) +A(t,w) |21 — 22|, ¥V (ys, 2i,ui) ERXRIX LY, i=1,2.

(2) If g satisfies (A2°) and fOT\g(t, 0,0,0)|dt <oo, P—a.s., then an analogy to Remark 2.1 of [9])] shows that for any
(Y, Z,U)eD' xZ x UL . one has fOT|g(s,Y5, Zs,Us)|ds <o, P—a.s.

(3) If g satisfies (A1), (A2) (resp. (AQ’)), then g(t,w,y, z,u) :=—g(t,w, —y, —z, —u), (t,w,y,z,u) €[0,T]x xR x
RIx LP and g,, Y7 €T are also p—generators satisfying (A1), (A2) (resp. (AQ’)). If g further satisfies (A3), so
do g and g..

(4) We need the assumption “k1>—1"in (A3) (ii) for a strict comparison theorem of BSDEJs (Theorem[2.9) and
the upcrossing inequality of g—supermartingales (Proposition . Actually, it is necessary for the Doléans-Dade
exponentials & (M) in and &(MP) in to be strictly positive martingales (see e.g. [50]), which then

allows us to apply Girsanov Theorem to change probabilities in the proofs of Theorem[2.9 and Proposition [{.2
For simplicity, we set C:= I fOT (1 \/,Bf\/Af)dtHLw(}.T), and let C be a generic constant depending on T, v(X), p,

C (and k9 if necessary), whose form may vary from line to line.

For IL? solutions of BSDEs with jumps, we first quote a wellposedness result, the corresponding martingale
representation theorem as well as an a priori estimate from Remark 4.1, Proposition 3.1, Corollary 4.1, Corollary 2.1
and Lemma 3.1 of [94].

Theorem 2.1. Given p € (1,2], Let g be a p—generator satisfying (A1) and (A2’). For any & € LP(Fr), the
BSDEJ (&, g) admits a unique solution (YE’Q, 789, Ug’g) €SP, which satisfies

T p
1YL, + 1129950 + HUﬁng{[’;ng[mu(/o |g(t,0,0,0)|dt) } (2.4)
In particular, for any 7 € T and & € LP(F,), the unique solution (YE’QT,Z@QT,UE*QT) of the BSDEJ (&, g;) in SP
satisfies that P{Yf’g’ =Y59, telo, T} =1 and that (Zf’gf, Uf’g’) =1<ny (Zf’gf, Uf’g’), dtxdP—a.s.

Remark 2.2. Given p€ (1,2], let g be a p—generator satisfying (A1) and (A2’). It holds for any & € LP(Fr) that
P{Y 9 = -y, %9, Vtel0,T]}=1.

Corollary 2.1. Let pe(1,2]. For any & € LP(Fr), there exists a unique pair (Z,U) € Z*P xUP such that P—a.s.
t
El¢|F) = Bl +/ 7.dB, +/ / U.(x)Ny(ds,dz), t€[0,T).
0 (0,8 Jx

Proposition 2.1. Let pe(1,2]. Fori=1,2, let & € L°(Fr), g* be a p—generator, and (Y, Z*, U?) be a solution of
BSDEJ (&;,9%) such that Y'—Y?2€DP. If g* satisfies (A2’), then

T
||Yliy2’|[p»p+||zlizz||p +HU17U2H€W SCE|:|§1£2|;D+(/O |gl(t7yvt2th27Ut2)92(t7)/t27Zt23Ut2)|dt)p:|' (25)

72:p



g—Evaluations with ILP Domains under Jump Filtration 8

Moreover, we have the following strict comparison theorem for BSDEJs, which will play a key role in the paper.

Theorem 2.2. Let pe (1,2], 7€ T and v € T,. Fori=1,2, let & € LY(Fr), let g* be a p—generator, and let
(Y%, Z8 U be a solution of BSDEJ (&;,g%) such that Y1—Y? € DP and that Y,y1 SY,YQ, P—a.s. For eitheri=1 ori=2,
if g° satisfies (A2), (A3), and if g*(t, Y™, Z2 7 U™ < g?(t, Y274, 2271 UR™), dtxdP—a.s. on |7,7[, then it
holds P—a.s. that Y,* <Y} for any t € [1,7]. If one further has Y.} = Y2, P—a.s., then

(i) it holds P—a.s. that Y1 =Y? for any t € [1,7];

(i1) it holds dt xdP—a.s. on |1,7] that (Z},U})=(Z2,U?) and g*(t, Y}, Z}, U})=g*(t, Y}, Z{, U}), i = 1,2.

)

3 g—Evaluations with . Domains

The wellposedness result of BSDEs with jumps in L? sense (Theorem [2.1)) gives rise to a nonlinear expectation, called
g—evaluations with LP domains, which generalizes the one introduced in [(7] and [80]:

Definition 3.1. Given p € (1,2], let g be a p—generator satisfying (A1), (A2’), and let T € T, v € Tr. Define
g—evaluation £7_: LP(F,)— LP(F;) by

£1,E1:=YE9, VE€ IN(F,).

If y=T, we call E[E|F7] = 5f7T[£] the (conditional) g—expectation of & € LP(Fr) at time 7. By Theorem it
holds for any £ € LP(F,) that

1{.,.:,”575.7’7[5] = 1{.,.:,”,}/',,_5’5"Y = 1,{7.:,y],Y,$’57W = 1{,,.:,),}1/7&«"9T = 1{7.:,),}57 P—a.s. (3.1)
Lemma 3.1. Given pe(1,2], let g be a p—generator satisfying (A2’) and that dtxdP—a.s.
g(t7y7070):0, vyG]R (32)

For any T€T and y€T,, it holds for any § € LP(F,) that &2 [§] = &;[&|F+], P—a.s. In particular, when g=0, the
g—evaluation degenerates to the classic linear expectation: for any T€T and y€T,, it holds for any { € LP(F,) that
&2, [€] = E[¢|F+], P—a.s.

Let p€(1,2] and let g be a p—generator satisfying (A1) and (A2’). One can deduce from the uniqueness result
and the comparison theorem of LP—solutions to BSDEJs (Theorem and as well as Lemma that the
g—evaluations with L? domains possess the following basic properties (cf. [81]): Let 7€ 7T, v€7; and £ € LP(F,).
(g1) “Strict Monotonicity”: If g further satisfies (A3), then for any n€ LP(F,) with { <5, P—a.s. one has & _[¢] <
&2 [nl, P—a.s.; Moreover, if it further holds that £7_ [{]=E2_[n], P—a.s., then {=7, P—as.

(g2) “Constant Preserving”: Under (3.2)), if £ is 7, —measurable, then &2 [€]=¢, P-as.

(g3) “Time Consistency”: For any (€7 with 7<( <, P—as., it holds P—a.s. that &7 [59 (€] =¢€4.,[¢].

(g4) “Zero—One Law”: For any A € F,, we have 147 [14§] =14EY [¢], P—as.; In addition, if ¢(¢,0,0,0) =0,
dt xdP—a.s., then £7_[14£]=14E2_[¢], P—a.s.

(g5) “Translation Invariance”: If g is independent of y, then &2_[§+n]=EZ_ [{]+n, P—a.s. for any n€ LP(F;).

(g6) “Convexity”: If g is convex in (y, z,u), then & _ [aé+(1—a)n] <a&f  [([H(1-a)El [n], P—a.s. for any n€ LP(F,)
and a €0, 1].

(g7) “Positive Homogeneity”: If g is positively homogeneous in (y,z,u), then £2_[af] = a&f [¢], P—a.s. for any
a€l0,00).

Now, let us consider two specific p—generators satisfying (A1)—(A3) and their corresponding g—evaluations:

Example 3.1. Given pe(1,2], let E be a p—coefficient set. The functions

(1]

9= (t,w,y, z,u) = B(t,w)|y|—|—A(t,w)|z|—f{1/ ’U,_(J?)l/(da?)—FIig/ ut (x)v(dr),
X X
g (t7w7y7 Z’ u) :: 7gE(t7w7 7y’ 72’ 7u)7 v(t7("')7y7 Z’ u) 6 [07 T] XQXRXRdXLZIj

(11

are two p—generators satisfymg (A1)—(A8) with respect to the same coefficient set =, where u* (x) = (u(z))*. Then
ETE’A/ ::57?; and Ei =&9.

9., YTET, VYET; are two g—evaluations with LP domains.
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In light of the comparison theorem for BSDEJs (Theorem , we can bound the variation of a g—evaluation by
g=—evaluation and §=—evaluation as follows.

Proposition 3.1. Given pe(1,2], let g be a p—generator satisfying (A1)—(A3) with respect to some p— coefficient
set E. For any 1€T, Vy€T; and §,n€ LP(Fr), it holds P—a.s. that ?iy[f—n] <EY_[E]-EL I <EZ[E—n).

— T

4 g—Martingales

Let g be a p—generator satisfying (A1) and (A2’). We can define martingales with respect to the g—evaluations that
have LLP domains under jump filtration.

Definition 4.1. Given p€e(1,2], let g be a p—generator satisfying (A1) and (A2’). A real-valued, F—adapted process
X is called a g—submartingale (resp. g—supermartingale or gfmartingale) if for any 0<t<s<T, E[|XsP]<oco and
E (X > (resp. < or=) Xy, P—a.s.

The g—martingales retain many classic properties such as “optional sampling”, “upcrossing inequality” and
“Doob-Meyer decomposition”.

Let us start with the optional sampling theorem of g—martingales, which is important for the Doob-Meyer
decomposition of g—martingales (Theorem [4.1]).

Proposition 4.1. (Optional Sampling) Given p€(1,2], let g be a p—generator satisfying (A1)—(A3). Let X be a
g—submartingale (resp. g—supermartingale) with E[XY] <oo and let T€T, y€T,. If X is right-continuous or if T,
7 are finitely valued, then £2_[X,] > (resp. <) X, P—a.s.

The proof of Proposition depends on the following lemma.

Lemma 4.1. Given p€(1,2], let g be a p—generator satisfying (A1) and (A2°). Let T€T taking values in a finite
set {0=t1 < -<t,=T} withn>2. If t; <t <s<t;41 for some i€{l,---n—1}, then for any £ € LP(Frps)

E"f/\t,‘l’/\s[d = 1{TSti}§ + 1{T2ti+1}5gs[§]7 P—a.s. (41)

To present the upcrossing inequality of g—martingales, we recall the notion of number of upcrossings: Given a
real-valued process X and two real numbers a < b, for any finite subset D= {t; <--- <t} of [0,T], we define the
“number of upcrossings” Up(a,b; X (w)) of interval [a,b] by the sample path {X;(w)}iep as follows: Set m’:=[%|
and 7g:=—1. For i=1,--- ,m/, we recursively define

Toi—1(w) ;= min{t € D: t > 19;_9(w), X¢(w) < a} At,, € T and

Toi(w) ;= min{t € D: t > 191 (w), Xy (w) > b} Aty €T, (42)

with the convention min () =oc. Then Up(a,b; X (w)) is set to be the largest integer ¢ such that 7o;(w) <t,,. To wit,
Up (a,b; X (@) =Y Lryyw)<tn}-
i=1

Proposition 4.2. (Upcrossing Inequality) Given p€(1,2], let g be a p—generator satisfying (A1)—(A3) with respect
to some p— coefficient set 2, and let X be a g—supermartingale with E[XY] <oo. For any real numbers a<b and any
finite subset D={t1 <---<t;,} of [0,T], the upcrossing number Up(a,b; X) of interval [a,b] satisfies

635 _ tm ‘a|635
E[ln(1+UD(a,b;X))} gln{ba&itm {(Xtm—a)’Jr/ 9(5.0,0,0)[ds |+
- 0

+1}+;é+(/<;21n(1+/€1))1/(X)T.

—a

The Doob-Meyer decomposition of g—martingales will play a crucial role for representing jump-filtration consistent
nonlinear expectations with domain LP(Fr) by g—expectations in our accompanying paper [95].

Theorem 4.1. (Doob-Meyer Decomposition) Given p € (1,2], let g be a p—generator satisfying (A2). Assume
2p_
that g also satisfies (A3) with fOTAf‘pdt € L>®(Fr) if pe (1,2), or with A = kp € [0,00) if p=2. If X €DP is
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a g—supermartingale (resp. g—submartingale) and if EfOT lg(t,0,0,0)[Pdt < oo, then there exist unique processes
(Z,U,K)€Z*?P xUP xKP such that P—a.s.

T
Xt:XT+/ 9(8, X5, Zs,Us)ds— / Z,dB, / / Np (ds,dz)+Kr—K; (resp. —Kr+K;), t€[0,T]. (4.3)
t (.1

The proof of Theorem relies on a monotonic limit theorem of jump diffusion processes over D? (see Theorem
1A 1)) as well as the following a priori LP—estimate to a special BSDEJ:

Proposition 4.3. Given p € (1,2] and £ € LP(Fr), let g be a p—generator and let X be a real-valued, F—adapted
cadlag process with XT€DP. Let (Y, Z,U,K)eDPxZ2 xUl xKP satisfies that P—a.s.

loc loc

T
Ytzf‘f‘/ g(S,}/svzs;Us)dS‘i‘KT_Kt_/ ZsdBs / / 2)Ny(ds,dzx), te[0,T]
: (t7)

t (4.4)

T
/ l{Yt—>Xt—}th:0'
0

If there exist three [0, 00)—valued, &[0, T|®Fr—measurable processes f, 3, A with fOTftdteLP(]-'T), fOT (BEVA?)dte
L>°(Fr) such that

’9(75, Yi, Zi, Ut)| Sft“‘ﬁt(‘}/tl‘i'HUtHLﬁ)+At|Zt‘7 dtxdP—a.s., (4.5)

then (Z,U)€Z*? xUP and
P P T P
VI 121, 1018, +ElrEL<CE 16+ ([ )"+ (x2]. (1.6

5 Other Fine Properties of g—Evaluations

In this section we will extend some fine properties of g—evaluations to the jump case with LP domains. These
properties have been explored for different reasons under Brownian filtration, and thus form an important ingredient
of the nonlinear-expectation theory.

In light of Proposition 4.1 of ArXiv version of [94], we can first represent generators g as the limit of the difference
quotients of the corresponding g—evaluations:

Proposition 5.1. Given pe(1,2] and k,>0, let g be a p—generator satisfying (A1) and

(A2”) there exists some [0,00)—wvalued, B0, T|® Fr—measurable process [ with foTﬁgdt € LY (Fr) such that for
dtxdP—a.s. (t,w)€[0,T]x

|lg(t,w,y1, 21, u1) — g(t,w, Yo, 22, u2)| < B(t, w)|y1 —y2|+ kg (|21 — 22|+ lur —uallzz), ¥ (¥i, 25, u) ERXRIXLE, i=1,2.
Let (t,y,2,u)€[0,T)xRxRIx LE such that

lim g(s y,z,u)=g(t,y,z,u), P—a.s. andE{ sup |g(s,y,0,0)\p} < oo for some §=04(t,y) € (0, T—t]. (5.1)
st sE€[t,t+8]

Then it holds P—a.s. that g(t,y,z,u) = 11%1+’(5t e [y—|—V(t t—l—e,z,u)] y), where V (t,s,z,u) := z(Bs — B) +
e—
frets]f){ Np(dT’ dl‘) VSE(t7T]‘
A simple application of Proposition [5.1] gives rise to the following reverse to Theorem [2.2]

Theorem 5.1. (A Reverse Comparison Theorem of BSDEJs) Given p € (1,2], kg >0 and i = 1,2, let g; be a
p—generator satisfying (A1) and (A27). Let (t,y,z,u)€[0,T)xRxRIx LE such that both g, and go satisfy , If
there exists 6(t,y) € (0, T—t] such that E7,[¢] < ELL[E], P—a.s. for any s€ (t,t+0(t,y)] and § € LP(F,), then it holds
P—a.s. that g1(t,y, z,u) < ga(t, y, z,u).
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As other consequences of Proposition we have the following reverse (g5)—(g7) properties of g—evaluations,
which show that the convexity (resp. positive homogeneity) of g in (y, z,u) is equivalent to the convexity (resp.
positive homogeneity) of g—evaluations and that the independence of g on y—variable is equivalent to the translation
invariance of g—evaluations.

Proposition 5.2. Given p€ (1,2], assume that LP is a separable space. Let g be a p—generator such that for some
kg >0, (A2) holds with Ay=krg, Yt€[0,T] and that for P—a.s. we

g(t,w,y, z,u) is right continuous in t€[0,T) for any (y,z,u) € RxRIx LE. (5.2)

(1) If g also satisfies (A1), (A2”) and if for any (t,y) € [0,T) xR, E[ sup 9(s,4,0,0)[P| < oo for certain
SE[t,t+0]
d=4(t,y) € (0, T—t], then g is convex (resp. positively homogeneous) in (y, z,u) if and only if

EL ] is a convex (resp. positively homogeneous) operator on LP(F) for any 0<t<s<T. (5.3)
(2) If g also satisfies (3.2) and (A3), then g is independent of y if and only if
E e+ =E5 el +e, VEe[0,T], VEELP(F), VeeR. (5.4)

What next is a Jensen’s inequality of g—evaluations with P domains. Before discussing it, we recall some basic
features of convex functions (see [85] for the related notions): Let f: R—R be a convex function and 2 €R. One has

{f(/\l") S Af(@)+(1=2f(0), if Ae[0,1],

) > () + (1-NFO),  if A€ (0,1)°=(~00, 0]U1, 00). (55)

Also, the subdifferential 0f(z) of f at  is the interval [f’ (), f} (z)], where f’ (z) and f/ (z) are left—derivatives
and right—derivatives of f at x respectively.

Theorem 5.2. (Jensen’s Inequality) Let f: R—R be a convexr function. Given p € (1,2], let g be a p—generator
independent of y such that (A2), (A3) hold and that

9(t,0,0)=0, dtxdP—a.s. (5.6)
Given €T and y€T,, let £ € LP(F,) such that E[|f(£)|P] <oo and that Of (E2,[¢]) N (0,1)¢ # 0, P—a.s. If
it holds for dtxdP—a.s. (t,w) €], that g(t,w, z,u) is convex in (z,u) ERIx LP, (5.7)

then f(€2.,1€]) <&2.[(€)], P—a.s.

6 Proofs

6.1 Proofs of Section [2
Proof of Remark (1): We can deduce that for dt xdP—a.s. (t,w)€[0,T]x

|9(t7w7y,Z,Ul)—g(t7w7ya2’,u2)| S HQ/X |U1($)—U2($)|V(d.’1})

1
Ko (V(X)) 7 lur—uallpz, Y (y, 2, u1, u2) ERXREX LY x L2, (6.1)

IN

So one can take f;:=f;V (/@2 (V(X))%), vitel0,T).
(2) Let (Y, Z,U)eD!xZ% . xUL . Fix n€N. Define

loc loc*

t t t
Tn :=inf {t €[0,T] :/ |g(s,0,0,0)|d8+/ |Z5’2ds+/ / |Us(x)|p1/(dm)ds>n}/\T€T.
0 0 0oJx
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Holder’s inequality and (A2’) imply that

Tn

E{/ |9(t,Yt,Zt,Ut)|dt}§E/ (\g(t,0,0,0)|+ﬂt|Yt|+At|Zt|+5tHUt||L’;)dt
0

l 1
<n+E[ /(1\/,5; dt} E/ A2dt E/ | Z,|? dt E/ ﬁ,?dt ’ / 1T dt)p
0

<n+C|Y ||pr + (nC) 403 Ci <

M\»—l

which shows that [ |g(t, Yz, Z;, Up)|dt < oo except on a P—null set A, Since fOT|g(t, 0,0,0)|dt < oo, P—a.s. and since
(Z,U)eZ2 <UL | there exists a P—null set Ny such that for any weN¢, m,(w) =T for some n=n(w)€N. Now, for

loc?

any w e Nﬂ{ N, one can deduce that fo lg(t, w, Yy (w), Zt(w),Ut(w))|dt:f07“(w)|g(t,w,Y}(w),Zt(w),Ut(w))|dt<oo.
neNU

(3) Let 7€ T. If g satisfies (A1), (A2) (resp. (A2)), then g and g, are clearly Z@B(R)®B(RY)@2B(LY)/B(R)—
measurable functions satisfying (A1), (A2) (resp. (A2)).

Assume further that g satisfies (A3). Then g, satisfies (A3) with (f)T(t, W, Y, 2, U1, 'U,Q)) (7):=1grcrw) (f)(t7 W, Y, 2, U1,
u2)) (7)€ [k1, k2], ¥ (t,w,y, 2, u1, us, ) € [0, T]xQAXRXRIXLEx L2 x X. On the other hand, for any (t,w,y, 2, u1,uz) €
[0, T] x QxRxRYx L2 x LP, one can deduce that

loc

g(t7w7 Y, =z, ul)—ﬁ(t,w, Y, =z, UQ) = g(t’ w, —Y, —=2, _’U’Q)_g(t’ W, —Y, —=%, —Ul)

/X (—uz(z)+ur (@) (b(t,w, —y, —2, —uz, —u1)) (z)v(dw). (6.2)

IN

So g satisfies ) with (b(t,w,y, 2, u1,u2)) (@)= (b(t,w, —y, —2, —uz, —u1)) (z) € [k1, k2], Yo €X. The ZRABR)®
%(R@@%’(L’;)@%(Lﬁ)/%([/?,) —measurability of mapping b easily implies that of mappings b, and b. O

Proof of Theorem Let £ € LP(Fr). Under (A1) and (A2’), the wellposedness of BSDEJ (¢, g) directly follows
from Remark 4.1 of [94]. By (A2’), it holds dt xdP—a.s. that

(6,9, 280, U5)| < 1g(t,0,0,0)] + B (Y |+ ([T, ) + Ael 269

So we see that the condition (3.1) of [94] holds for (&1, f1,Y!, Z, UY)=(§,9,Y59,259,U%9), (&, f2, Y2, 22, U?) =
(0,0,0,0,0) and (g¢, @y, Ay, Ty, Ty) = (\g(t,0,0,0)|,ﬂt,At,ﬂt, ), t€[0,T]. Then Lemma 3.1 and Corollary 4.1 of [94]
yields (2.4) and the remaining conclusion. O

Proof of Remark Given £ € LP(Fr), let (Y, Z,U) €SP be the unique solution of BSDEJ (£, g). Multiplying —1
to BSDEJ (€, g) shows that (-Y, —Z, —U) €SP solves BSDEJ (—¢, 7). Then we see from Remark [2.1] (3) and Theorem
] that P{Y,59=—¥,%7, vie[0,T]}=1. O

Proof of Proposition By (A2%), it holds dt x dP—a.s. that
|gl (ta Y;fl’ Ztlv Utl)_QQ(tv Yt2a Zt27 Utz)‘ < |gl (tv Yf» Zt27 Uf)_gz(tv Yt2’ Zt2’ Ut2)|+ﬁt(|yt1 _Y;£2|+||Utl _Uz£2||LP(l/)) +At}Zg _Zt2|a

which shows that the condition (3.1) of [04] holds for (&;, f;, Y?, Z¢, U =(&,4¢%, Y, Z%,U%), i=1,2 and (g¢, @y, Ay, Ty, Ti) =
(1g*(t, Y2, Z2, UR)— g*(t, Y2, Z, UR)|, B, A¢, Bt,0), t€[0,T]. Then Lemma 3.1 of [94] gives rise to (2.5). O

Proof of Theorem Without loss of generality, we suppose that g' satisfies (A2), (A3) and that
gt (t, Y2 Z2 U <g*(t, Y72, Z2,U?), dtxdP—a.s. on |r,7[. (6.3)
1) Set (Y, Z,U):=(Y'-Y? Z' - 72 U'-U?) and consider the following F—progressively measurable processes:

Y, v zEUb) — gt (t, Y2,z UL t
ag = 1{1@#0}9( t 4t t)ytg( t 4t t)7 @t::€f0a5d5>07 and

1 t,Yz,Zl,Ul _ 1 t,YQ,Z2,U1
b, = 1{2#0}9( t o4 t|)Zt|g( t o4t t)Zt7 vt e [0,7].
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By (A2), it holds dt x dP—a.s. that

|at| < 6t and |bt‘ < At' (64)
Define $;:=h(t,Y?, Z2, U}, U?) and
t
Mt::/ bsst+/ /ﬁs(z)Np(ds,dz), Vtel0,T]. (6.5)
0 (0,8 x

Since E[(fo AZdt)? —I—fo I 19e(x |pu(dx)dt} < C5Bu(X)T < 00, we see from (T.3) and (T4) that M is a uniformly in-
tegrable martingale. For any (€T, (6.4) and (A3) (ii) again yield that AM (¢(w),w) =1{¢(w)eD, 19 (C(w),w,p({(w),w)) €

[k1, k2], YweQ, and that
T 2
EU |bs|2d8+/ /\m(x)y Np(ds,da:)‘}}]
¢ .11/ x

E[/{T|bs|2ds+/:/){}ﬁs(x)|2u(da:)ds‘]-}] < C+r2(X)T < .

Thus, M is a BMO martingale. In virtue of [50], the Doléans-Dade exponential of M

E[[M, M)y — [M, M]¢|F¢]

E(M) =M=z TT (1+AM,)e M >0, te[0,7] (6.6)

0<s<t

is a uniformly integrable martingale, where M¢ denote the continuous part of M.
Define a probability measure @ by 5 dQ = &r(M), which satisfies dg |}_ =&(M), Vte€[0,T]. The Girsanov’s

Theorem (e.g. [T, 82]) then shows that BQ =B, — fob ds, t €10,T] is a @Q—Brownian motion and ]VQ(t,A) =
Np (t, A) f(o 9 fX v(dz)ds, t€]0,T], A€ Fx is a Q—compensated Poisson random measure. By (6.4] .,

0. < eJo Bedt < eé, P—a.s. and thus Q—a.s. (6.7)
Now, we fix 0<¢t<s<T and n € N. Define v, :=inf {re[r,T]: [[|Z, *dr'+ [ [, |Uw (2)|Pv(dz)dr’ >n} Ay €T,
and set 1= (TVE)AYn, Gn:=(TVs)A7y,. Applying It6’s formula to ©,Y, on [(,,sn]= [7,7n] N[t, 5] yields that

g ~
O, Y:, =0.Y., / O, (gr—a, Y, )dr— / 0, Z,dB, /c /@TUT(x)Np(dr,dx), P-as. (6.8)
W7§w

n

where g,.:=g¢*(r,Y,}, ZL U —g?(r, Y2, Z2,U?). By (A3) (iii) and (6.3), it holds dr x dP—a.s. on |7, ~[ that
Qr:arYrJFerr+gl(Ta era sz Uﬁ)fgz(r, Yr27 Z?a Urz) SarYr+err+/ 97 (@)U (x)v(dx).
X

Plugging this inequality back into leads to that
Oc, Y, <O, Y,, —(ME—MP+. 4]~ 4"), P-as. and thus Q—as., (6.9)

where M?:= [Lie(rq] }@T/ZT/dBr, and " : f(o r]fxl{r (]} OrUp (2 ) C(dr', dzx), re0,T).
We can deduce from the Burkholder-Davis-Gundy inequality, (1.5 . ) and . that

Eq| suwp [Mp["+ sup |4 }<CPEQ[</ 10,212, 2dr)” + / ]/X|@r|2|Ur<w>QNp<dndx>)2]
T T’Y?‘L

r€[0,T) r€[0,T (7,
~ In % Tn ~ »
<c,e?“Eqg [(/ |Zr|2dr) +/ / |Ur(m)pu(dx)dr} <cpeP? (n? 4+n) <oo
T T X

thus M"™ and .#™ are two uniformly integrable Q—martingales. Taking conditional expectation Eg[ |F¢, ] in
yields that Q—a.s.

O, Y, <Eq[O.Y.,

Ferl =1, <(rvisan} BQ [0, Yo, [ Fy | 10 > (rvi it B [Oc, Yoo [ Frviyay | :=nt 405 . (6.10)
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As (Z,U)€Z2 xUP

loc loc?

a N, €N such that

one has fOT(\ZT|2+||UTH1£5)dr<oo, P—a.s. and thus Q—a.s. So for Q—a.s. we) there exists

for any n > N, vn(w) = v(w) and thus n}(w) = 0. (6.11)
It follows that lim ni =0, @—a.s. On the other hand, the first equality in (6.11]) also shows that lim O Y, =
n—oo n—roo
O(rviyryY(rviyny and lim O Yo =0 ryg)ay Y(rvs)ny, @—a.s. even though the process Y may not be left-continuous.
n—oo

For any n €N, (6.7) shows that |0, Y | < eéY*7 P—a.s. Since a slight extension of [83, Proposition A.1 (a)] shows
that E[&2(M)] <oo, we can deduce from Holder’s inequality that

Eol¥.] = El6r(M)Y.] < |160(M)| agen) | lo» < . (6.12)

As n — oo in (6.10]), a conditional-expectation version of dominated convergence theorem and (6.11]) yield that

O(rviyn Yirveny < lim EQ [0 Y, [ Frviyny] = Eq[OveymYirvan | Firvns],  Q-as. (6.13)

Taking s = T shows that ©viyryYrviyny < Eqg [®7Yv|}—(7vt)/\'y] <0, Q@—a.ss. and thus P—a.s. It follows that
Yirviyny < 0, P—a.s. By the right continuity of processes Y! and Y2, it holds P—a.s. that Y,! <Y}? for any t€[r,].
2) Suppose further that Y! =Y?, P—a.s. For any ¢t € [0,T], as O (rviyayY(rviyny <0, @—a.s., applying with
(t,s) = (0,t) shows that 0 = @T(YTl —YTQ) < Eg [@(Tvt)/\’yY(T\/t)/\’y|fT] <0, @—-as. So Eg [@(T\/t)/\yY(T\/t)/\,y} =
Eqg [EQ [@(Tvt)MY(TW)A,ﬂ.FT” =0, which happens only if Y y4)r, =0, P—a.s. since O(ryyay > 0. Using the right
continuity of Y, Y2 again shows that P{Y;! =Y?, Vt€[r,7]} =1. It then follows from that P—a.s.

(TVEt)Ay

(TVEt) Ay
/ (gl(T‘7YT,1,27}7Ug)—g2(T,Y;27Z72,,UE))dT‘=/

T

(2!~ 2%)dB,+ /( o /X (U () U2 () Ny (dr, dz), t€[0,T).
T,(TVEt) Ay

As continuous finite-variational processes, continuous martingales and discontinuous (jump) martingales are of
different natures, any two of them only intersect at 0. So it holds dt xdP—a.s. on |7,v] that Z} = Z2 and U} (z) =
UZ(x), dt xdP xv(dx)—a.s. on on ]J1,7] x X Since the latter is equivalent to U} = U?, dtxdP—a.s. on ]7,v], we
further see that dt xdP—a.s. on |7, 7]

g &Y 2L UN=g2(t, Y2, Z2,U?) and thus ¢'(t,Y{, Z) U =g*(t,Y{, Z) U}, j=1,2. O

6.2 Proofs of Section [3]

Proof of Lemma Let v € T. Tt suffices to show that the unique solution (Y, Z,U) = (YEvQW,ZE’gW7 UE’QV)
of BSDEJ (¢, g,) is also the unique solution of BSDEJ (¢,g) in 7 Set M, := [j ZodBq+ [y [ Us(2) Ny (ds, d),
te]0,T]. Since (Zt, Ut) =1<q} (Zt,Ut), dt xdP—a.s. by Theorem [2.1} we can deduce from (3.2) that P—a.s.

T T
Y, = £+/ 1{5<'y}g(8a}/sazsaUs)ds_MT+Mt:§+/ 1{s§7}g(575/saZsaUs)dS_MT+Mt
t t

T T
= §+/ 9(37K71{s§7}Z57l{sgﬂ/}Us)ds_MT+Mt:£+/ g(s,Y&Zs,Us)ds—MT—kMt, te [OvT]v
t t

which shows that (Y, Z,U) is the unique solution of BSDEJ (¢, g). O
Proof of (gl)—(g7):
1) Let g satisfies (A3) and let n € LP(F,) with £ <7, P—a.s. Applying Theorem with ¢! = g2 = g, yields that
P{Yf’g"’ <Y,"", Vte[r,4]}=1. In particular, £2_[¢] =Y <y =&2_[n], P-as.

Moreover, if it further holds that Y9 = E9_[€] = &4 [n] = Y, P—as., Theorem again shows that
P{Y/% =Y"" Vte[r,4]} =1. Then Theorem [2.1] implies that ¢ = V5% = Y397 = Y19 = y19 = P-as.,
proving (gl).

2) Let g satisfies (3.2). For any & € LP(F,) C LP(F,), Lemmaand (3.1) imply that £2_ [§] =&, [§|F-]=E2  [¢] =€,
P—a.s., proving (g2).
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3) Set (Y, Z,U) = (Y&9, 289, U9 and (¥, Z,U) == (Y19, 279, U9¢) with n:=EL_[¢] € LP(F;). We define
?t 5:1{t<<}yt+1{t2<}}/t and (Zt,Ut) = 1{t§(} (Zt,ut)+1{t><} (Zt, Ut)7 Vte [O,T] One can deduce that (?, 7, U)
belong to SP and that P—a.s.

T T
Yeve = §+/ 9+(8,Ys, Z5, Us)ds— / ZsdB; / / )Ny (ds, da)
vt vt (CVE,T]

- €+/<Vt 2 (8,Y s, Zs, Uy )ds— /CWZ dB, /MT/ 2)N,(ds,dz), te[0,T). (6.14)

Let t€[0,T]. Since Theorem [2.1{shows that (Z,,Us)=1(s<c}(Zs,Us) =1(5<c1(Zs, Us), dsxdP—a.s., taking t=(
in (6.14) yields that

T T
Vent = 77+/ ey 9(5, Vs, Zs,Us)ds — / ZsdBy / / Np(ds dzx)
GAL ¢AL (¢AE,T)

C — —
= YC +/ 1{5<'y}g( U )dS / Z dB; / / Np dS dx)
CAE CAt (¢ALC]
T JR— ~
= £+/ 94(8,Y s, Z —/ /Us(x)Np(ds,dx), P—a.s. (6.15)
(Nt nt, T/ X

Multiplying 1¢;>¢y to (6.14) and multiplying 14,y to (6.15)) leads to that

T
Y, = lpcayVitlpsa Y = {—i—/ gW(S,VS,ZS,US)ds—/ Z.dB; / / Np (ds,dz), P-as.
t t t,T]

Then we see from the right continuity of process Y that P—a.s.

T
7t=§+/ gy(sys,?sﬁs)ds—/ Z B, / / 2)Ny(ds,dz), te€0,T).
t t (t,T]

So (? Z U) solves BSDEJ (£, gy). By uniqueness, one has P{?t =Y;, t€]0, T]} =1. In particular, applying (3.1))
Wlth ( f) (T C 8g [5]) ylelds that gg,v[f] = YT = YT = 1{T<C}y7+1{T:C}YC = 1{T<<}gf,c[’lﬂ +1{T:C}gg,'y[£} =
&2 €2 [€)], P-as. Hence (g3) holds.
4a) le A€ F,. Set (Y1, Z',U'):= (Y59,259 U9 ) and (Y2, 2% U?) = (Y1a89r, Z1abgy [1a&9v). Given
i =1,2, applying Corollary with € =14Y € LP(F,) shows that there exists a unique pair (Zi,ui) € Z%P x P
such that P—a.s., YV} := E[lAYj\ft] = E[14Y}] +f0 ZidB; +f(0t [y Ui Np(ds dx), t €[0,T]. We deﬁge ?z =
Ly Vit lusn1aYy, (Z,,0,) i= Lpary (25U + 1 s 14(Z],UY), Vi€ [07T]7 and can deduce that (Y',Z",T")
belong to SP.

For any t € [0,T], since {r < t} € F,, we see that AN {r <t} € F; and thus AN {r <t <~} € F. Then
{1A1{7§t<7}}te[0 7) is an F—adapted cadlag process. It follows that

galt,w,y,z,u):=liea} Lir(w)<t<y @9t w,y, z,u),  V(t,w,y,2z,u) €0, T]xAxR xRYx LP
is a Z0B(R)@B(R?)@%(Lt)/%B(R)—measurable mapping that satisfies (A1) and (A2).
Given t€[0,T], multiplying 14 to the BSDEJ (£, g,) over period [rVt,T] yields that

T T
14}, = 1A§+/ 1A1{S<W}g(s,Ysl,Zsl7Usl)ds—/ lAZdeS—/ /1AU51(:E)Np(ds7d:v)
T (7Vvt,T]

Vit TVt
T

= 1A€—|—/ 1A1{Tgs<7}g(571AY.51,1AZ81,1AU51)(18 / Z dB / / dS dx)
TVL TVt,T)

T
1Ag+/ 9a(s,Y}, 2., U, )ds— / Z.dB, / / 2)Ny(ds,dz), P—a.s. (6.16)
TVt TVt,T]

i\
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Similarly, multiplying 14 to the BSDEJ (14¢, g+) over period [rVt, T yields that
gA(s,?i,Zi,Ui)ds_/

Fix i=1,2. The right continuity of process Y, (6.16)) and (6.17) shows that P—a.s.

T T

1aY7,, =148 +/

TVt

Z2dB,— / / U2 (x)N,(ds,dz), P-as. (6.17)
t TVt,T

4

T . . .
14Y, vt_1A§+/ 94 (.Y, Z,,U,)ds— / Z.dB, / / 2)Ny(ds,dz), te[0,T). (6.18)
t TVt,T)|

TV

Let t€[0,T]. Since Yi=E[14Y}|F;|=14Y}, P—a.s. taking t=7 in (6.18) yields that

=V / ZldB, / /Z/{Z Np(ds dr)=1,Y"— / ZdB / / )N, (ds, dz)
(TAt,T] (TAt,T]

T . . .
= 1A§+/ ga(s, Y., Z.,U)ds— / Z.dB, / / )N, (ds,dz), P—as. (6.19)
TNt TN, T

A

Multiplying 1{;>-1 to (6.18)) and multiplying 1.,y to (6.19) leads to that

—i ; ; r - T P

V=1 Vi+1lp>n1aY) = 1A£+/ ga(s,Y 4, Z, Us)ds—/ ZSdBS—/ / U,(x)Ny(ds,dx), P—a.s.
t t t,7)J x

The right continuity of process Y then implies that P—a.s.

T S
?1:1A§+/ gA(s,?;Z;,U;)dS_/ Z.dB, / / 2)Np(ds,dz), te[0,T].
t t t,T)
Thus both (Y',Z',T") and (Y°,Z° Uz) solve BSDEJ (14¢, g.4). By uniqueness, one has P{Y, =Y}, t€[0,T]} =1.
It follows that 14£2 [¢]=14Y} = Y Y =14Y?=1,&7 [14€], P—aus.

4b) Next, suppose that ¢(¢,0,0,0) =0, dt xdP—a.s. Set (Y, Z,U):= (Yf’gv,Zg’gv,Ug’QV). Since n:=14Y; € LP(F,),
Theorem n shows that the BSDEJ (7, g,) admits a unique solution (¥, Z,U) € SP. We define Y, := Ty Vet
Lo 1aYs, (Z0,Ur) :=1p<ry (2, Un) + 1120y 14(Z1, Uy), V1€[0,T). Like (Y',Z',U"), the processes (Y, Z,U) also
belong to SP.

Given t€[0, T, similar to (6.16]), multiplying 14 to the BSDEJ (¢, g,) over period [7V¢,T] again yields that

T T
]-AYT\/t = 1A§+/ ]-Ag’Y(SaY:%ZS;Us)dS_/

Vit TVt

1AZSdBS—/ / 14U, ()N, (ds, d)
(vt T]

T
= 1A§—‘r/ g,Y(S,lA}/S,].AZS,lAUS)dS / Z dBg / / Np dS dl‘)
T (TVvt,T]

Vit

T
= 1A§+/ 9+(8,Y 5, Z5, U, )dsf/ Z,dB, / / Np (ds,dz), P-as.
TVt (rVvt,T]

By the right continuity of process Y, it holds P—a.s. that

T T
1AYM=1A5+/ gw(s,?s,zs,ﬁs)ds—/ ZSdBS—/ /Us(x)Np(d&dx), te[0,7). (6.20)

TVt TVt (TVvt,T]
Let t€[0,T]. Taking t=7 in (6.20) and using an analogy to (6.15) yield that

T

Vent = 77+/ 1{s<.,.}g(s,ys,Zs,Us)dS / Z,dBs / / Np (ds, dz)
TAL TN, T
=14Y, —|—/ 1{5<A{}g(8,?s,75,ﬁs)d8 / Z dB; / / Np dS dx)
TAL (TAt,T]

T
= 1A§+/ 94(8,Y 5, Zs,Ug)ds— / 7 ,dB, / / Np (ds,dz), P-—a.s. (6.21)
TAL (TAL,T]

A
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Multiplying 1>} to (6.20) and multiplying 1.,y to (6.21)) leads to that
— T — — —
Yt = 1{t<7}yt+1{t27_}114}/t = 1A€+/ g,Y(S,YS,ZS, Us)ds—/ Z dB / / Np dS dl‘) P—a.s.
t t (,T]

The right continuity of process Y then shows that P—a.s.

T
?t=1A§+/ gv(s,Ys,Zs,Us)ds—/ 7.dB. / / (ds,dx), te0,T).
t t (t,T7]

So (? A U) solves BSDEJ (14€,¢,). By uniqueness, one has P{?t = Ytl“f’g”, t e [O,T]} = 1. It follows that
2. [1a]= VS 2V =1,Y, = 1484 [€], P—a.s., proving (g4).
5) Assume that ¢ is independent of y. Set (Y, Z,U):= (Y§’97, 7897, U5’97) and let ne€ LP(F;). In light of Theorem
the BSDEJ (Y, 47, g-) admits a unique solution (¥, Z,U) € SP. We define Y, := 1y Vi + 15,3 (Y;+n) and
(Z4,U4) :==1< (Z0,Uy)+ 14501 (Z4, Uy), VE€[0,T). One can deduce that (Y, Z,U) belong to SP.
Given t€[0,T], adding 7 to the BSDEJ (&, g,) over period [7V¢,T] again yields that

T T
Yovi+n = §+17—|—/ g,y(s,ZS,US)ds—/ ZsdB, / /U Np(ds dzx)
TVt TVi (Tvt,T]

T
=£+n+/ 9y (8,24, Us)ds— / Z .dB, /( / 2)Ny(ds,dz), P—as.
T TVtT

Vi

By the right continuity of process Y, it holds P—a.s. that

T
YTvt—i-?y:f—i—n—i—/ 9+(5,Z5,Us)ds— / 7 +d B / / Np (ds,dz), te]0,T]. (6.22)
(TVvt,T]

TVt

Let t€[0, 7). Since Theoremshows that (Zs,Us) =1(5<r(Z6,Us) =11<+1(Zs,Us), dsxdP—a.s., taking t=7

in (6.22) yields that
T
Vine = YT+7]+/ lseryg(s, Zs,Us)ds— / Z,dB, / / Np (ds, dx)
TAL (TAL,T]
= YT-|—77—|—/ 151 9(s, Z5,Us)ds— / Z,dBy / / Np (ds,dx)
TAL (TAt,T]
T J— —
= £+n—|—/ G(8,Zs,Ug)ds— / 7 ,dB, / / Np (ds,dx), P-as. (6.23)
TAL (TAL,T]
Multiplying 1(;>,} to (6.22)) and multiplying 1.,y to (6.23)) leads to that
— T — —
Yi=1pen Vit1lpsn (Yi+n) = £+n+/ g+(s, ZS,US)ds—/ Z,dB, / / Np (ds,dzx), P-—a.s.
t t (t,T)

The right continuity of process Y then shows that P—a.s.

T
7t=§+n+/ 9v(8,Z5,Us)ds— / Z+dB / / 2)Ny(ds,dzx), te0,T).
t t,T)

So (777,U) solves BSDEJ (£ +1,g,). By uniqueness, one has P{?t = Yf‘m’g”, t e [O,T]} = 1. It follows that
Egﬂ[f—kn]:YfM’g” =Y, =Y, +n=E¢_[¢]+n, P—a.s. Therefore, (g5) holds.

6) Assume that g is convex in (y,z,u) and let n € LP(F,), a €[0,1]. We set (Y1, Z1,U) = (Y597, 259 US97),
(Y2,22,U%) := (Y79, 2797, UM97) and (Y, Z,U) == (aY'+(1-a)Y? aZ'+(1-a)Z?,aU' + (1 - a)U?). As
gr:=ag, (t, Y, ZL U+ (1—a)g, (t, Y2, Z2,U?), t€]0,T] is an F—progressively measurable process, one can regard
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it as a special p—generator. It holds P—a.s. that

T
Y, = ozYtl—&—(l—a)Yt2 = af—i—(l—a)n—i—/ (agv(&Ysl,Zsl,Usl)—l—(l—a)gw(s,Yf,ZSQ,USQ))ds
t

T ~
,/t (ozZler(loz)Zf)st/(tT/ (aUl(z)+(1—a)UZ(z))N,(ds, dz)

af—i—(l—a)n—l—/tTgsds—/t 7 4dBy /tT/ Np (ds,dzx), te€]0,T).

Since the convexity of g in (y, z,u) shows that P{g,y (t Yy, Zy, Ut) <g, VE€(O, T)} =1, an application of Theorem
R.2]with (¢', Y, 21, UY) = (g, Yaf+<1 gy ot (A=em.gy gett=eim.gy) and (g2,Y?, 7 ,U%)=(g,Y,Z,U) yields
that P{YaEJF (=emay 7, vielr 7]} =1. Hence, we obtain £2_ [af+(1—a)n] = YO“&(1 g LY =a&d_[¢]+
(1-a)& [n], P-as.

7) Next, assume that g is positively homogeneous in (y, z,u). Let a€[0,00) and set (Y, Z,U):= (Y’f’gV, Z597 UEvQW).
It holds P—a.s. that

T T
aY; = &§+/ &g.y(s,Ys,ZS,Us)dsf/ astBsf/ /&Us(z)Np(ds,dz)
t T

t

t

T T
= &é—l—/ gv(s,&Ys,&ZS,&US)dS—/ &stBs—/ /&Us(x)Np(ds,dx), t € 0,77,
t t,T]

which shows that (aY,aZ,aU) € SP solves BSDEJ (&€, g,). Thus, P{Ytaf’gW =aY;, t€[0,7]} =1. In particular,
9 [a€] =YL 4" =aY, =agy [¢], P—as. O

Proof of Example [3.1} 1) Since (1.6)) and Holder’s inequality imply that
[ Ju@) = @lvtdo) < [ (@) = vata)|vldo) < (4(2)

we see that u— [, u*(z)v(dz) is a continuous function on L?. It follows that g= and g= are two Z@%B(R)®A(R*)®
B(LE)/%(R)—measurable mappings. Clearly, g= and g= satisfy (A2) with coefficients (3,A), and g=(-,0,0,0) =
g=(-,0,0,0)=0.

2) To verify (A3) for g%, we let (t,w,y, 2,u1,u2) €[0, T x AXRxRIX LE x LE. As

g (tw,y, z,u) — g (t,w,y, 2, ug) = 7111/)((ul_(x)fu2_(x))l/(dx)Jrlig/X(ui"(x)—u;'(:c))y(dx)
= /X[/ﬁ (w1 (z)—ua(z)) + (ke —k1) (uf (z) —ug (z))]v(dz), (6.24)

g~ satisfies (2.3)) with (f)n(t,w,y, z,ul,ug))(x) ::/ﬁ—l—l{ul(x#w(m)}(/@g—m)% VzeX. Clearly, h,(t,w,y, 2, ur, uz)

is a real-valued, Fy—measurable function. Since

Q=

lugr —uzllLe, Vui,uzell,

at<b™ for any a,b€R with a <b, (6.25)

u+ Tr)—u .
we can deduce from ) that r1 < (he(t,w,y, 2, w1, u2)) (@ )—Iil+1{ul($)¢u2(w)}(ﬁgfﬁl)% < ko, which
implies that b, (¢, w,y, z, ul,ug)eLg

It remains to show that the mapping b,; is 9@%(R)®%(Rd)®%(L€)®%(L§)/%(LZ)—measurable: let (t,w,v, z,
uy,u2) €[0, T)x QxRxRIx LEx LP, let A>0 and define f)(a):=% 2" A1, a€R. For any u€elLkl, and (|1.6) show

that the function (¢} (u))(z):= fi (ul(z)fu(x))wiu(x VaeX takes values in [0, 1], so ¢} ( )€
A

ui(z)—u(z)
We first show that ¢} is a continuous mapping from L2 to LY. Fix ¢ >0 and set 6 =0(\,¢):= ?8(21/()())_%. Let

u, € LE with [[i—u| pz <5(1/2)% (¢/2)71. Since

uy () —ut (@) UT(@")—@*(:U)‘ _ ‘(W(HJ)—W(w))(m(w) (@) +(uf () =t (2)) (u(z) —(z))
u(z) —u(z)  w(r) - u(z) (ur(2) —u(@)) (u1 (z) —u(z))
o Ju@) —u(@)||u (z) —u(@) |+ |u (2) —u(@)||u(z) —u(z)| _
B |ur (z) —u(@)||u () —u(z)]
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and since the Lipschitz coefficient of fy is no larger than 1/, one can deduce from (1.6) that for any x € {|u—u|<d}

() (x)— (¥ (1)) ()| = ur—u)(x uf(z)—u*(x)_uf(x)—ifr(x) wr—u)(z))— wr—a) (x M
63 @) ()= (63 @) () =] 5 (w0 (LI I (5 (s ) () SO
(1 () —u(@))* Ju(@)—T()] 1 3,3
<2 3 |ul(x)7u(x)|—|—X|u(x)—u(m)|Sf’u(aﬁ)—u(w)’<7

It follows that

~ q 35\ ¢ 35\ @ 20
X {|7—ul<s} {i—u|>3}
or [[(3 (u)) = (o3 (u HLq <e. This shows that
the mapping ¢3" is uniformly continuous from L? to LY and thus #(L?)/%(L%)—measurable. (6.26)

For any ue€ LY, we define a function ¢™ (u) € LY by

u+ x)—u'(x
((i)ul(u))( )= lim (¢>\ (u ))(m)zl{m(x)—u(xbo}u

A—0 U1($)—’U,(J¢) 6[_171}, Vrek.

. . w w T w w q
In light of the bounded convergence theorem, ;IE)I})H%\I (u) =" (W)l 74 _;\ll&) S |83 (w)(@) — (¢ (u)) (2)| v (dz) =

Namely, ¢** (u) is the limit of {¢}" (u) in LY. Tt then follows from (6.26]) that the mapping ¢*! is .@(L{j)/%(LZ)f
measurable.
Define (¢"(u))(x) := 1{u1(x),u(z)<0}% €[-1,1], Yue LP, Yz € X. One can similarly show that

Faso

(E“l is also a ZA(LP)/PB(L1)—measurable mapping. Consequently, the mapping u — b (¢, w,y, z,u1,u) is again
PB(LP)/PB(LT)—measurable. Symmetrically, the mapping v — b (t,w,y, z,u,ug) is B(LY)/HB(L1)—measurable.
Putting them together yields the expected measurability of .

3) Similar to (6.2)), we see from that for any (¢,w,y, z,u1, us) €[0, T] x QxRxRYx LP x LP

gE(t,w, Yy 2, ul)—§5(t, W, Y, Z, Uz) :/ (—uz(x)—l—ul (x)) . (b,i(t,w, —y, —Zz, —Us, —ul))(x)u(dx).

X

So g= satisfies (2.3) with (b, (t,w,y,z,u1,u2))(x) = (hu(t,w, —y, —2, —uz, —u1))(z) € [m,@] Va € X. Clearly, the
mapping b, is also ZRB(R)@B(RY)@B(LL)RPB(LL)/B(LY)— measurable Therefore, g= also satisfies (A3). O

Proof of Proposition Fix 7€ T, Vy € T, and &,m € LP(Fr). Set (V' ZLu') = (1’57-‘“,Z&-‘“,Uf’g”)7
(V2,22,U%) = (Y797, 2790 U9 and (Y3, 23,U%) = (YE195, 26195 UE195). The 2 ® B(R)® B(RY) @
B (Lﬁ)/,@(R)—measurability of g, the & —measurability of process V2, the g/i—measurability of process Z? and
the Z@F ¢ —measurability of random field &2 imply that the mapping

gt w,y, 2,u) = g(t,w,y+Y2(t,w), 2+ Z2(t, w), u+U?(t, w)) =g (t,w, V2 (t,w), Z2(t, w), U (t, w)),
V(tw,y,z,u) €0, T]xQxRxRx LE is also @ B(R)0B(R?)@%(LP)/%(R)—measurable.
For (7,7, U) = (Y12 222 Y -U?)eSP, it holds P—a.s. that

T
?tzg—n+/ L (905, V1, Z1,UY) — g(s, V2, 22,U2))ds / Z.dB, / / )Ny (ds, dz), t€[0,T].
t (t,T]

Namely, (Y, Z,U) solves the BSDEJ ({—1,7,,). We can deduce from (A2) and (A3) that dt xdP—a.s.
y(ta?taztvvt):g(tvygaztl’utl)*g(tvyt??thvuf):g(taytlaZtlvul) (t ytazfa )+g(t ytvzt27 ) g(t7y3a2t27ut2)
BT +AIZ+ | Tila): (008,92, 22U UD) @ (do)
X

g5t|?t|+At|z\+K2/Xﬁj(a:)u(dx)—m/XU;(x)u(d@ (Y0 Z0,T,).
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Since g% also satisfies (A2) and (A3) by Example applying Theorem with (7,7) = (0,T), (Y, Z1,U') =
(Y,Z,U) and (Y2, 22,U%) = (3, Z3,U3) yields that P{Y}-V}=Y, <Y}, Vt€[0,T]}=1. In particular,

E9 [ €2, =Y~ V?<VP=€Z [e~n], P-as. (6.27)

Multiplying —1 to BSDEJ (nff,gs) shows that (fYr’*g’ng, fZ"*E’ng, 7U777§,g$) is the unique solution of BS-
DEJ (g—n,gf). So P{—Ytn_g’g; :Yf_mﬁ;, Vte [O,T]}:l, which together with (6.27)) implies that

£9_[6]—E9 In] = — (€2 ] &2, [€]) > —€5 [1—€] =~V % = vETM ZF5 [e—y), P-as. O

6.3 Proofs of Section [4]

Proof of Lemma Let t; <t < s <ty for some i € {1,---n—1} and let £ € LP(F,rs). Set (Y, Z,U) :=
(YE,QTAS’ Z69mns, Uﬁ,ng) and (f/’ 27 (7) — (Y&vgs’nggs,Ué:’gs).

Let t' € [t,s]. Since {7 <t;} = {7 >t;41}° € Fy, C Fy, and since (Z,,U;) = L1p<rnsy(Zp, Ur), dr xdP—a.s. by
Theorem multiplying 1(,<;,; and 177>, ) to BSDEJ (f,ng) over period [t', T'] respectively yields that P—a.s.

T T
1<y Yo = 1{Tgti}§+/ Tir<ty rarnsyg(r; YmZmUr)d?‘—/ 1r<ir<rasy ZrdB,
t’ t’

—/(f/ T]/Xl{,,-<ti}1{T<TAS}UT (x)j\vfp (d’l‘, dl‘) = 1{T§ti}f, (6.28)

and that P—a.s.

T T
1{7’21&,;_,_1}}/;’ = 1{72t,;+1}€+/ 1{7‘Zti+1}1{r<T/\s}g(T7 Yr7 Z’r7 Ur)dr_/ 1{T2ti+1}1{T§T/\S}ZT‘dBT
t’ t’

_/(t' T]/Xl{wti“}1{T<TAS}UT($)]\7P (dr,dx)

1>ty ZrdBy— / /X 1(r5t,001Ur(@)Np(dr,dz).  (6.29)

(5]

t

= l{thHl}f“i’/ l{rthl}g(rv Y., Z,, Ur)dri/
t/
Also, an analogy to (6.28]) shows that P—a.s.

l{Tgti}i}t’:l{‘rﬁti}g_"/t, l{TSti}g(T,ﬁ,Zﬁfjr)d’r‘—/ l{TSti}ZrdBr_/(tl ]/ 1{7.Sti}(7r($)]vp(d’l”,d$). (630)

t/

Next, set (Vr, Z0Uy) == 1irciy (Voo Zos Un) + 1 irstnoy (Ve Zo,Uy), V7 € [t,s]. As YV, € LP(F;), Theorem
shows that the BSDEJ ()}, g;) admits a unique solution (%, 2, %) € SP. Define Y, := 1.1y % + 151 Vrs and
(Z:,U,) =1y (20, U )+1{t<,.<é}(ZT,U ), Yre[0,T]. One can deduce that (Y, Z,U) belong to SP.

For any t' € [t,T], adding (6.29) to (6.30) yields that

S

S
Yo = Vone=LireiyVonat Liystosy Yine=C + / o(r Yy, 20Uy )dr— / Z,dB, - / | / U (2) N, (dr, dz)
t'As t'As t'As,s

T
= §+/ gs(ravTa7T7UT)dr / Z dB / / Np dT d.%') P—a.s. (631)
v (t,T]
On the other hand, for any te [0,%), as Theorem [2.1|shows that Y=Y, =% =%, P—a.s., we have

¢ ¢
Y-V, = %—-% = / gt(r,%,%,@/T)dr—/ Q‘”TdBT—/ /OZ/T(x)Np(dr, dr)
3 3 iadx

t
/\g(ra?raj'r‘avr)dr / Z dB, / / Np d’F dx) P—a.s.
t
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Taking ¢/ =t¢ in (6.31)) yields that

T
Y;= §+/A gs(r,YT,ZT,UT)dr—/ Z,.dB, / / 2)Ny(dr,dz), P—as. (6.32)
i t (4,7

By the right-continuity of Y, we see from and - that P—a.s.

T
?tlzf—i—/ 9s(r,Y o, Z,, U, )dr — / Z,.dB, / / 2)Ny(dr,dx), t €[0,T),
% % 1]

which shows that (Y, Z,U) solves BSDEJ (¢, g5). It follows that & [¢] = Y9 =Y, =), P—as. Then applying
(6.28) with t'=t¢, we see from Theorem again that P—a.s.

E i insll] =Yoot =Yi=1 Yo+ Lirn VY = L1 - L 3V = Lr<a 1 - L, 60 L€ U

Proof of Proposition Let us only consider the g—submartingale case, as the other cases can be derived
similarly.
1) Assume first that v takes values in a finite set {0=t; <---<t,=T}.

If t €[ty T), shows that &%, . [X,]|=Y " =Y; "9 =€9_[X,]=X, =X, n;, P—a.s. Then let us inductively
argue that for any ¢ € [0, 77,

E9 a1 X3 = Xyni, P—as. (6.33)

Suppose that for some i€ {2,---,n}, (6.33) holds for each t € [t;,T]. Given t€[t;_1,t;), the (gl), (g3) properties of
g—evaluations and (4.1)) imply that

8’3/\t,'y[XV] :&%t,mti [&%ti,w [X’YH Zggm,mti [X’Y/\ti] = 1{'Y§ti—l}X'Y/\ti +1{72ti}5£q,t7; [X'Y/\t'i]’ P-as. (634)
Since {y>t;} ={y<ti_1}°€F:,_, CFy, the (g4) of g—evaluations and the g—submartingality of X show that P—a.s.

Lo & [Xone ] =120 €8 Lzt Xone = 100 €04, (L am e X | = 120y €70, [X0] 2 1o Xe =150 X

Putting it back to (6.34) proves (6.33|) for any ¢ € [t;—1,T]. This completes the inductive step. Hence, (6.33]) holds
for any t€10, 7.
If 7 is also finitely valued, for example in {0=s1 <---<s,, =T}, then we see from (6.33)) that P—a.s.

£, [X, =Y 00 =Y = Zl{r sy Yans! Zl{f 18 2 Kn] 2D S Lrmsy Kyns, =Xyne =Xo.
j=1

2) Next, assume that X is right-continuous but 7, 7y are general stopping times. Set (Y, Z,Y):= (YXW’% , Z%3:97 UXWgW).
2" 2"
7=T,i=0,---,2" and define 7, :=>";_, Lon <rcmytiand =300 Tyn  cqaymy 81 €T,
Let m,n €N with m >n and set (Y", ZmY"):= (YX% G ZXomoIvm U Xom 9 ) Since T,, <7 <Yn, Part 1 shows
that Y =& _ [X,, |>X,, , P—as. As lim | 7,,=7, the right continuity of processes Y and X implies that
m—o0

For any neN, we set ¢} :=

vl

Y= lim Y > lim X, =X,, P-as. (6.35)
T m—oo T T mSoo
By Proposition [2.1]
n n p ’Yn p
B[y =Y, P|<|[y"-Y|?, <CE |X%—X7|P+(/ yg(t,Yt,Zt,Ut)|dt) : (6.36)
il

Also, (A1)—(A3), (6.1), (1.7) and Hélder’s inequality implies that
T p T 1 p
B\ ([ lateviozevy|ar)”| <[ ([ (|g<t,o7o7o>|+5t|m+At|zt|+@<u<x>>a||Ut||L5)dt) ]
0 0

T p ~p ~Pp yd
<4P1E[(/ |g(t,0,0,0)|dt> +CaTYP+CE / |Z] 2dt) +rb (v ?/ Uz dt]<oo
0
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Since E[X¥]<oo and since lim | 7, =7, letting n— oo in (6.36]), we can deduce from the right-continuity of X and
n— oo

the dominated convergence theorem that lim E [|Y"—Y [P]=0. So there exists a subsequence {n;}nen of N such

that Y; = lim Y"1, P—a.s. It then follows from ) that Y, = hm Y > X, P-as. or &_[X,]>X,, P-as. O

i—00

Proof of Proposition We simply denote g?:=g(t,0,0,0), t€[0,T].
1) Like Part 1 in the proof of Theorem we first construct an equivalent probability QD to P.

Let i€ {1,---,2m’} and let 7; be the finitely valued F—stopping time as defined in . We set (Y, 20, U):=
(Y Xriotri | ZXr9m UXrio9mi). Since (Z],U})=1p<ry (2, U}), dtxdP—a.s. by Theorem it holds P—a.s. that

inAt:XTi+/ g(s, Y1, ZL Ubds— / Z;'st—/ /U;’(:c)ﬁp(ds,d:c), vt el[o,T). (6.37)
Ti At TiNt (Tint, i)

, t, Y ZE Ui —g(t,0, 28, Ui ; t,0, 2L, Ul —g(t,0,0,U}) .
Clearly, ai:: 1{}77&0}9(7 to“ty t;ig(v » “to t)7 bi: 1{2;760}9(7 » it r;lpg(a ) YUy t)ZZ7 \VltE[O,T] are two
t t ;

t
F—progressively measurable processes. By (A2), it holds dt xdP—a.s. that
lal| < B; and |bl| < A, (6.38)

Also, setting $¢:=h(¢,0,0,0,U;), t€[0,T], we can deduce from (A2), (A3) (iii) that dt x dP—a.s.

9(t, Y, 21, Up) =g =Y/ 461 Z;+9(t,0,0,U;) —g(t,0,0,0) > aiYHbiZZJr/ Hi(@)U; (z)v(dx). (6.39)
X

Similar to (6.5)), MtD::fOT(Z?Z 1{36(71-,1,71-]}bi)stJrf(o,T [e(2m l{se(nfl,n]}fjé(x))ﬁp(ds,dac), tel0,7] is
h

a uniformly integrable martingale. For any (€T, we see from (6.38)) and (A3) (ii) that

2m’

Z Lic)e(ris @)m @} (9 (W), w, p(¢(w),w)) ‘ <k, VweL,

=1

|AMP(C(),0)|=Licrenyn

and that

B|[MP, MP], - [MP,M7] |F.|=

E / (Zl{SG(n 1T1]}|b ’ >d8+/ / (Zl{se (Ti— 171}‘5{) ’ ) dS d.’L’)

g

2m/’ 2m/’
l/ (Z Lise(ry,my |04 )ds—l—/ / (Zl{se(n L3 |95 ()] ) (dx)ds|F, | <C+rsv(X)T <oo.
Thus, MP is a BMO martingale. In virtue of [50], the Doléans-Dade exponential of M?
E(MP) =M =3 M7 TT (14 AMP)e2M >0, te[0,T) (6.40)

0<s<t

is a uniformly integrable martingale, where M P> denote the continuous part of MP.

Define a probability measure QP by % := & (MP), which satisfies —’F = &(MP), Vt € [0,T]. The
Girsanov’s Theorem shows that BD = Btffg(zl?;nl, Lise(ri 1,myb8)ds, t €[0,T] is a QP —Brownian motion and

]\prD(t,A) Np(t A) fo t]fX( il 1/ Lise(r 1 rp95(@))v(dz)ds, t €[0,T], A€ Fx is a QP —compensated Poisson

random measure.
. R -
2) Next, we show that (b—a)Ego [Up(a,b; X)] SezcEQD {|a|C’+(Xtma)+/O |gg|d5} (6.41)
By (6.38), the F—adapted continuous process OF :=exp { fot( Z?;nll 1{se(n,1,n]}ai)d5}, t€[0,T)] satisfies that

- <eJo Bds < ipf 0P < sup ©F < eJo Bads <e P—as. and thus QP—a.s. (6.42)
t€[0,T] te[o T
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Let i€ {1, -+ ,2m’} and n€N. We define v/ :=inf {t€[0,T7]: fot\Z;|2d5+f0th|U§(9:)\pz/(d:z:)ds>n}/\T€T. Applying
Itd’s formula to ©OPY}! over period [1;_1 A7, 7;A7L], we can deduce from (6.37) and (6.39) that

T; /\”/ib

_ _ i o _
eP  .Y¢ —-02, V! .+/ @f(g(s,Y;,Z;,U;)—a;Y;)ds—/ oPZzidB,

Tim 1 AYE S T 1 AYE TINYE T NYE ) )
i—1A\Yy, Ti—1/\V;,

- / / OPU (2) N, (ds, dx)
(Timi AYE TNy X

‘ AT, , , . .

> @TDZ,M;Y;M%—F/ 0P4¢%s— (MEP—ME™ + " — 5" ), P—a.s. and thus QP —a.s., (6.43)
Ti— 1AV}

where My™ = [[1(,<,1yOP Z1dBP and 4" := [ [ 1 (a<rsyOPUL(@) NP (ds, d), t €[0, T]. Then the Burkholder-

Davis-Gundy inequality, (1.5)) and (6.42)) imply that

, , T , 2 , P
Ego| sup |[My"[P+ sup ’,///tz’”‘p] §cpEQD[(/ (@E)2|Z;|2ds) +/ /(@?)ﬂUg(x)pu(dm)ds]gcpepc(n2—|—n)<oo.
0 o Jx

te[0,T) t€[0,T7]

So both M®™ and .#*" are two uniformly integrable Q¥ —martingales. Taking conditional expectation Eqo[|Fr_iayi ]

in (6.43)) yields that

@'D Y

Tic1AVh

) Ti—l/\'yf,, ) Ti/\’le
A T /O OPg¢lds>Ego {@QMY;L_Mﬁ /0 @?ggds‘fmw], QP —a.s. (6.44)

Set nP, =P Y}

i Ayt Y pmi -0Px, —f:imi 0P¢%s. Doob’s martingale inequality shows that

EQD{ sup |EQD[77?“|]-}H25}§EQD[|n5n}, Ve>0. (6.45)

te[0,T)

As (Zi,U") € Z2PxUP, we have fOT(|Z§|2+HU§|II£p)ds<oo, P—a.s. and thus QP —a.s. So for QP —a.s. w € there
exists a N! = NP €N such that

vi(w) =T for any n > N. (6.46)

: D ; _ oD vi : D ; _oDPyi @D
It follows that nh_)néo@Ti—l/\'YfLY;i—l/\’Yfl =0, Y  and nh_)rrgo@TiM%inM% =0.Y! =0.X;,, Q—as. even though

Y? may not be left-continuous. In particular, the second limit together with (6.46]) further shows that lim n? =0.
n—oo -’
Since [}, <e® (Y,f+X*+fOT|g2\ds), VneN by (6.42)), an analogy to (6.12)), (1.7) and (A1) show that

. T . : T P *
EQD{Y;+X*+/ |gg|ds}§3qHéoT(MD)HLq(fT){E[(Y:)p+Xf+(/ |gS|ds) ” < 00.
0 0

Letting n— oo in (6.45)), we can deduce from the dominated convergence theorem that lim QD{ sup ’EQ‘D [773,)71 |]—'t]}

n—oo

t€[0,T]
> 5} =0, Ve>0or { sup |EQD [nfn|ft]|}neN converges to 0 in probability Q. Hence, there exists a sequence
t€(0,T]
{n;}jen such that lim sup |Ego [n?nj\ftH:O, QP —a.s. By (6.44)), it holds QP —a.s. that
J=0 ¢€[0,T] ’

Ti Ti—l/\’Yf,.
D D D i 7D D
EQD |:®7'iXTi+/ 68 ggds‘f‘n1/\"/fzj:| = 9771_1/\7;'L.YT11:_1/\7; . +/ @8 ggds_EQD [ni,nj “7:7'1'—1/\7}'%]
0 J 7 0

<P Y!

Ti—l/\'yflj Ti—1/N\Y,

Ti—l/\'YiL.
5_+/ ]@nggdS+ sup ’E@D[?]fm\ftn, VjeN.
7 0 te[0,T]

As j— 00, we see from ([6.46) and the right continuity of process Ego [0F X, + [["©P¢lds| ], t€[0,T] that

Ti—

Ti . 1 Ti—1
Ego {@Qxfﬁ Gfggds‘}'n_l}<@2_1in_1+/ @fggdsg@g_lxﬂ_l+/ 0P¢%s, QP —a.s. (6.47)
0 0 0
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)

In the second inequality above, we used the g—supermartingality of X: X, _, >&¢  _[X,]=Y! |, P—as. and
thus QP —a.s.

Leti=1,--- ,m'. As XTM >b on {Tgi<tm},
1{T2i—1<t7n}(XT2i _a’) = 1{7'27‘,<tm} (XT2i _a)+1{72i—1<tm,:‘r2i}(Xtm _a’) > 1{T2i<tm,} (b_a’) _1{T21,—1<tm:‘l'27:}(Xtm _a’)_'

Also, since X,,,_, <a on {73;_1 <t }, we can deduce from (6.47) that QP —a.s.

T24

1{"’2171<75m}®7?2,:710’Z 1{7'2@'71 <tm}®2i,1X7’2zz—1 ZE‘QD |:1{T2@'1 <tm} (6 XT27 +/ 6?92d5> T2i—1:|
T2i—1

T2

ZEIQD |:@?21 (1{7—21'—1<t7n}a+1{7—2i<t1n}(b_a’)_1{T2i—1<t1n:7—2i}(Xtm _a)_> +1{7—2i71<t'm} GDQSdS‘szil] .

T2i—1

Taking Ego[ ] then yields that

~ T2
(b_a’)EQD [1{T2i<t'rn}@21j:| SEQD |:1{72i1<tm}a(@7'21 1 621) +1{7—2i71<t7n:7'2i}@7,1')2i (Xtm _a)7+ec/ gg|d8:| .

T2i—1

Since ©F, 02 = [ ©Pa'ds, (6.42) and (6.38) implies that

(b—a)e CEgo [1(ry,<1,y] < (0-0)Ego [1(r,,<1,,108,]

T2i

~ T2i
SecEQD [1{T2il<tm}|a 65d8+1{72i71<t1ﬂ:7'2i}(Xtm_a’)_+/ Igg|d8:|
T2i—1 T2i-1

Summing up over i€ {1,--- ,m’}, we obtain (6.41)).

3)In this step, we show that Ego[¢] <€65[itm [§], VEeLP(F,). (6.48)

— m

To see this, we let £€ LP(Fy,,) and (Y, Z,U):= (Y59, 2890 U950 ). AS Topm =tm, (6:38) and (A3) (ii) show that

2m’ 2m’ 2m’
ZS(Z 1{se<n1,n]}f’§> +/XUs(J?)(Z 1{se<n1,n]}ﬁi(x)) v(dx) SAs|Zs+/X<Z Lse(rir,mly (52U (@) = k1 Ug (x)))V(dl‘)
i=1 i=1 i=1
< AS|ZS|+I€2/ U:(x)u(dac)—m/ U; (x)v(dz) holds dsxdP—a.s. on [0,t,,] x Q. (6.49)
X X

_ Let k€N and define v, :=inf {te(0,7]: [}|1Zdst [ [|Us(z)[Pr(dz) d5>k}/\T€T Set ¢y i=eo” ™ sgn(Ye)Bads <
eY, t€[0,T). Applying Ito’s formula to ¢;Y; over period [0,7;], we can deduce from (6.49) that

N " M| Zulds— /%/qbs Ju(de)ds+ ks /W/wﬁ (2)v(dz)ds

Yk
—| .28, / / 6,Us ()N, (ds, dz)
0 (0,7k]

2m’
Z¢’Yk +/ (bs s(zl{se(ﬂ 1,71]}5 )d5+/ /¢s s )(Zl{se(n1,71]}ﬁ;(x)>y(dx)d5
i=1
Yk
— | ¢sZ.dB, / /¢>S ()N, (ds, dz) = ., Yy — Mb—ttl,  P—as. or QP —a.s., (6.50)
0 (0,7x]

where MY} := fotl{sgw}gzﬁsstBf and .2} = f(o t]fxl{sgw}gﬁsUS(x)N,?(ds, dz). The Burkholder-Davis-Gundy in-
equality and (|1.5) imply that

p Y ~
EQD[ sup |Mf|p+ sup |///f|p} <CpEQD|: / 2| Z, \er)z /k/qﬁf\Ur(xﬂpu(d:r)dr §cpepc(k%+k)<oo,
X

r€l0,T] r€l0,T]
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thus M and .# are two uniformly integrable QP —martingales. Taking expectation Ego[ ] in (6.50) yields that
g(;:;tm [f] = YO 2 EQD I:(yb’yk Y’Yk] Z eicEQD l:Y'Yk] . (651)

As (Z,U) € Z*P xUP, one has fOT(|ZS\2+||US||1£p)ds < oo, P—as. and thus QP —a.s. So for QP —a.s. we ) there
exists a K, € N such that vy, (w) =T for any k> K. It follows that klim Y., =Yr=¢, QP —as. even though the process
—00
Y may not be left-continuous. An analogy to (6.12) yields that Ego [Y.]=E[&r(MP)Y, ] <||&0(MP)|| Lazm Y [lor <
oo. Then letting k— oo in (6.51]), we obtain (6.48]) from the dominated convergence theorem.
Now, taking & = (X3, —a)‘—i—f(fm |9%|ds in (6.48) and setting 7 :=1+Up(a,b; X), one can deduce from (6.41]),
Jensen’s inequality, (6.38) and (A3) (ii) that
e3C H tm 020 N tm
v (a5, [~ [ lablas] ) 2 14 5 (Gt B [ (X~ [ lablas]
b—a v 0 b—a 0

> Boo bl = Elér (7)) zexp (B[t MP- L0070+ 3 (11 +a012) - an?) ||
0<s<T

tm

> exp {E[lnn—; A2ds+ (In(14r1) — k2) Ny ((0, 8], X)} } > exp {E[lnn] —%5+(ln(1—|—/<;1) — KQ)V(X)T}.

0

Then the conclusion follows. O

1
Proof of Proposition We set p:= (2p’4p(p71)) ? and define processes

A p—1 .1 /t

a; = B¢+ +—p 98 + —pPv(X) and A;:=p|[ asds, t€[0,T].
p—1 P P 0

Then Ca:=||Ar| (2 < (p+a+(p—1)p~9) C+pPr(X)T.

The process Y has two jumps sources: the jump times of the stochastic integral MY are totally inaccessible, while
the jumps of the F—predictable cadlag increasing process K are exhausted by a sequence {(, }nen of F—predictable
stopping times (i.e. {(t,w)€[0,T]xQ: AK;(w)>0} is a union of graphs [(,] and these graphs are disjoint on (0,7,
see e.g. “Complements to Chapter IV” of [34] or Proposition 1.2.24 of [47] for details). In particular, one can deduce
that for P—a.s. we

Litep, o, }AK: (w)=0 and AYi(w)=1gep, U (twpi(W) —1pgp, 1 AK(w), Yiel[0,T]. (6.52)

Since the cadlag increasing process K and the Poisson stochastic integral MY jump countably many times along
their P—a.s. paths, so does process Y: i.e.

{t €10,T]:Yi_(w) # Yi(w)} is a countable subset of [0,T] for P—a.s. w € . (6.53)

1) Fix neN and define 7, := inf {t € 0,T]: fy (1Z + U5, ) ds > n} AT € T. For any ¢ € (0, 1], the function
ve(x):= (|x|2+€)%, x €R has the following derivatives of its p—th power:

Dyl(x) =ppt~*(z)z and D?(x) =ppl~?(z) + p(p—2)p? " (z) 2* = p(p—1)pL > (2). (6.54)

Now, let us fix (t,e) €[0,T]x(0,1]. Applying Itd’s formula (see e.g. Theorem VIIL.27 of [34] or Theorem I1.32 of
[82]) to process e?s P (Y;) over the interval [, At,T,] yields that

1 Tn
eAT,,LAt(pg(YTnAt)+§/ ets D2 P (Y,)| Zo|2ds+ Z oAs (SOJEJ(YS)_@ZE’(st)—D@?(YS,)AYS)
T/t SE(Tn Aty Tn]

=edm @l (Y, )+p / et [P 2(Ys) Ys g(s, Vs, Zs, Us) —as? (Ys) | ds

Tn A\t

+p/ et P (Y, )Y_dK—p(MPE—MP+ M}~ M}), P-as., (6.55)

n /At
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n. n,e _ Tn/\S n. n,e _
where M := M= [ et o?=2(Y,_)Y,_Z,dB, and M7 : =M% =Jo, MS]fX " P 2(Y,_)Y,_U,(z)N,(dr,dz),
Vs€[0,T]. Similar to (5.10) of [94], we can deduce from Taylor s Expansmn Theorem and (6.54)) that P—a.s.

PP (Ya) =@ (5, Yo ) = D (5, Y, ) AY, > p(p—1)|AY, | / (1—a)gl ™ (Yo +aAY; ) dov. (6.56)

When |Y,_| <|AY,], one has ¢=2(Y._ +aAY.) > ((|Va_ |+a|AYa])24¢) 2 ' > (4/AYL[24e) 21 > 202 (|AY, 2 42) 2
Vael0,1]. So it follows from (6.56]) and (6.52)) that for P—a.s. weQ

> MO (V) - (Ve (@) - D (Yo () A, (@)

SE(Tn (W) AL, T (w)]

_ w 2 2
> p(p=1) Y gy wiianene @AY (@) (A ()P +e) ®

SE€(Tn (WAL, T (W)]

_ 2 T
> 2P 3p(p—1) Z Ly, @) Uswpe @)} €U (8,0, pa(@)| " (U (5,0, ps () [*+¢)

€D (w)N(Tn (WAL, T (w)]
B 2
= or 3p(p—1)</( ]/Xl{nswm}eAﬂUs(xﬂ (1U:(@)]*+e)
AN

Also, (4.5) and Young’s inequality imply that P—a.s.

p
2

“IN, (ds, dm)) (). (6.57)

PP (Ys) Y g(s, Yas Zs, Us) S22 (Y)Yl (Fs B (Vs |+ 1 Usll L) +As] Zs)
SFo @7 (Ye) +Bapb (Y )+Ass0€‘2( IYallZo| + B2 (Vo) Ul
_ 1 _ p—1 1
et 00+ (Bt 2o 2151 ) 20+ L VI 4 L UL or e s€[0.7]
Since an analogy to (5.12) of [94] shows that ||Us ||}, <@P(Ye_ )v(X)+ 1)y, _|<jv. @)} [Us(2)[Pr(dz) for any s€[0,T],
we see from ([6.53)) that P—a.s.

_ p—1
ok 2(}2)}@9(5,}/;»Z57Us) < fspP™ I(YS)JFGSCPIEJ(YS)JFT‘PE 2(YS)|ZS|2

“r;@p/ 1{‘y57‘§|Us(m)‘}|Us(x)|pv(dl‘) for a.e. SE[O,T]. (6.58)
X

The function ¢ (z) :=2p?~2(z) =x(2®+ )1, 2 € R has strictly positive derivative Lop(z) = (x2+5)§72((p7
1)a?+¢e) >0, so it satisfies ¢(z) <¢(z+) < (2T)P~!, Yz €R. Then one can deduce from the flat-off condition in ([4.4)
that P—a.s.

Tn

/ A 2(Y, Yo dKo= [ gy ex. ye (Yo )dK, < / 1{YS,SXS,}€AS¢(XS—)szSGCA/ (X )UK,

n /At Tn /At Tn At 0

Plugging this inequality together with (6.54)), (6.57)), (6.58)) back into (6.55)) yield that

Tn

At p s 2
Ao [ et izpaseg [ [ i gepe 0@ (0@

n At (Tn AL, 0]

2

Ny(ds,dx)
< 7754—@’”/ /Xlﬂyr‘S‘US(wN}BAS|Us(x)‘pV(d1‘)dS—p (MT—Mt—FMT—Mt), P—as.,
T/l

where 7§ =n;"° :=e%4 (@?(Ym)—i—pf:"/\t PP (Y, fsds—l—pfm XFe- 1dK) SinceE[ sup wg(}g)} SE[ sup |Ys|p]—|—
" SE[OvT] SE[OvT]

g% =|Y|h,+e% <oo by (I.7), Young’s inequality implies that

Elf] < ec“E[ sup @E(V2)+p, sup o2 ( / fods+pIr, sup <X:>“}
S€[0,7y] s€[0,7,] s€[0,75]

IN

T p
eCAE[p sup w?(Ys)Jr(/ fsds) +(p—1) sup (Xi)"”f?] <00
s€[0,77] 0 s€[0,7]
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Then using similar arguments to those that lead to (5.24) of [94], we can obtain that

Bl sw i+ ([T1220) % [ ] w@lpuans| <c g, (6.50)
( 0 ) 0 X

s€[0,75]

where 7, :=E[|Y, [P+ ( [ fods)" + [T (XE )P~ 1dK,].
2) Since it holds P—a.s. that YOfYtJrfo $,Ys, Zs,Ug)ds+ K — fOZ dBs foﬂfx ©)Ny(ds, dz), Vte(0,T], @)
and Holder’s inequality imply that P—a.s.
K, <2 sup |Yt|+/ (Fot Be Yol A Ze 4 B, UL 1 ds+]/ Z,dB, \/ | U) Ry (s, o
t€[0,7x] (0,7n]
Y Tn % q n 5
S/ fsds+(2+C) sup |Yi|+ §</ |Zs|2ds) —|—</ Bgds)q(/ /|Us(sc)|p1/(d3:)ds)p
0 t€[0,7n) 0 0o Jx
Tn At
/ ZsdBs / / Np (ds, dz)|.
0 (0,7 AE]

Taking p—th power and then taking expectation in , one can deduce from (|1.7)), the Burkholder-Davis-Gundy

inequality, and that
T » R -
6" PE[K? ] < E[(/O fsds) }+(2+C) E[ sup Yt|} (02 )E </O \Z, |2ds> ]
(/0 T”]/ |Us(2))? N, (ds, dx)) ]

t€[0,75]
T P
(/ fsds> + sup Yt|p+(/ |Z |2ds> +/ /\U )Pr(dz)d
0 €[0,7] 0

1-p
<C <

+ sup (6.60)

te[0,T]

+ sup
te[0,T)

+5§E/ /|Us(x)|p1/(dx)ds+cpE
0o Jx

<CE

E[K? ]+CA,,

with A :=E[|Y,, [P+ ( fOTfsds)p—&—(X;")p]. It follows that E[KZ | <CA, and thus that 7, <CE[KE |+CA, <CA,.
Then we see from (6.59) that

sup VP ([ 12Pas) [ U @rvanas e,

s€[0,7]

E <C,. (6.61)

As (Z,U) e Z . x U} , it holds for all w € Q except on a P—null set A that 74(w) =T for some n=n(w) €N,

For any weN°¢, lim Y (7, (w),w) =Y (T,w)=¢(w) and li_>m K(1p(w),w)=K(T,w) although the paths Y.(w), K.(w)
n— oo n [0.9)

may not be left-continuous. Therefore, letting n— oo in (6.61]), we can deduce (4.6]) from the monotone convergence

theorem and the dominated convergence theorem. O

Proof of Theorem 1) Let X first be a g—supermartingale. Fix n€N. Clearly,
g (t,w,y, z,u) = g(t,w,y, z,u) + n(X(t,w)—y), Y (t,w,y, z,u) € [0, T]x AXRxRYx LP

defines a Z® B(R) ® B(R?) @ 2 (LF) /%(R)—measurable mapping that satisfies (A3) automatically. By (L.7) and
Holder’s inequality E[(IOT\gn(t,O,O,Oﬂdt)p} <2r-'E[T fOT\g(t,O,O,O)|pdt+(nT)pr] < 00, so (A1) holds for g.
Also, (A2) implies that for dt xdP—a.s. (t,w)€[0,T]x

|gn(taw7y13Zlvu)_gn(taw7y2aZ27u)‘ S |g(t7w7y1aZlau)_g(taw7y2aZ27u)|+n|y1_y2|
< (B(t,w)+n) [y —y2| +A(,w)[21—22], ¥ (y1,21), (y2, 22) ERXRY, VueL?.

Hence, g™ satisfies (A2) with 8" :=f;4n, t€[0,T], which is a [0, co)—valued, 20, T|®Fr—measurable process with
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I fOT(ﬁf)thHLw(]_.T) <2¢-! (H foT/BgdtHLw(}‘T)—"an) < 00. Then we know from Theoremthat the BSDEJ (X1, g™)
admits a unique solution (Y, Z™, U™)€SP.

1a) We first show that P{Y;"<X,, Vt€[0,T]}=1. (6.62)

Let ¢ € N. In light of the Debut Theorem (see e.g. Theorem IV.50 of [33]), 7/ :=inf{t€[0,T]: Y* > X;+1/i} AT
defines an F—stopping time. As Y! = Xp, P—a.s., the F—stopping time 7 :=inf{t € [/, T]: Y;* < X;} satisfies
7' <yP<T, P—a.ss. And the right continuity of process Y —X implies that

Y <Xy, P-as. (6.63)

In light of Theorem [2.1] the unique solution (Y™, Z",U") € S of BSDEJ (Y%, g,n) satisfies Y0 = Y = Y74,
P—a.s. Since Y* > X over perlod [77,77), it holds P—a.s. that

gn(s’y*sn’Z‘?, Usn) :9(57}/‘9”72‘?3 U:)"’n(XSfYtsn)Sg(s,}/snvz?v Usn) =gyr (S7Y9n7 Z;na U?)v VSG( Ti Vi )

Since g, also satisfies (A2) and (A3) by Remark (3), applying Theoremwith (r,7)= (7,40, (YY, ZL, U=
(Yn, Z" U™ and (Y?,22,U%)=(Y", Z",U"), we can deduce from (6.63]), the monotonicity (gl) of g—evaluations,
the g—supermartingality of X as well as Proposition that

Vi S V=0 o [Yn] <€ o [Xon] < Xop (6.64)

Ti Vs

holds except on a P—null set N/*. For all w € Q except on a P—null set ./\~fn, the paths V" (w)— X.(w) is right-
continuous. Given we {7 <T}NNE, the definition of 77* and the right-continuity of the paths ¥™(w)—X.(w) imply
that Y (7" (w),w) > X (77*(w),w) +1/i. Comparing this inequality with shows that {r" <T}NN¢ Cc N, and
it follows that {7 <T} C N, UN".

Taking union over i €N yields that

{Y" > X,, for some t€[0,T)} = éJN{Y;" >X;+1/i, for some t€[0,T)}C EJN{TZ-” <T}CJ\~/nU< gN/\fZ">
So P{Y;" <X, Vte[0,T)}=1, which together with P{Y]'=Xr}=1 proves (6.62)).
1b) Then K} ::nfot (Xs=Y)ds, t€[0,T] is an F—adapted, continuous increasing process with K'=0. By (1.7)),
E[(Kp)P] < an[(foT(XS—YS”)ds)p] <27 1 (nT)PE[XE+(Y]")P] <oo. So K™ € KP. We also see from (6.62) that
P{Y2 <X, Vt€[0,T]} =1 or P{1yn >x, y =0, Vt€[0,T]} =1, which shows that (4.4) holds with g=g and

(Y, Z,U K, &)= (Y", Z",U" K" Xr) €DP x Z*P x UP x KP x LP(Fr). Since Remark (1) implies that g satisfies
(4.5) with f,=|g(t,0,0,0)|, an application of Proposition yields that

T
Y™ 150+ 127|720 + 10" 150+ E( K%)p]SCE[XTM(/O g(t,0,0,0>|dt)p+<X:)”] <Cay, (6.65)

where the constant C does not depend on n and a, := E[ X+ fOT|g(t,O,O, 0)[Pdt]. Since g satisfies (A2), (A3), we
can deduce from Holder’s inequality, (1.7)), (6.1) and (6.65)) that

T T
E/ |g”(t,1@",2f,Uf)|pdt=E/ lg(t, Y, Z UM +n(X, =Y, dt
0 0
T
Sﬁ”’l E/ [(ﬂf+np)IYt"\”+Af|Z?\”+H§(V(X))§||Uﬁllig+lg(t70,0,O)IP]dt+inE[Xf]}

T 2l
<67 1{<c+nPT>||Yn|Dp+H / A ” B[ ([ 1zeea) ] o) / 07 5t + (100 T |

<C<1+nP+H/ A "dtH N +/<a’2’)ax<oo for pe(1,2),
Le(Fr)
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and similarly that
T T
n n n n 2 n n n
E/ lg"(t, ", 2, Ul dt§6{E/ [(BF+n?) [V P+ RR 27+ r50(X) | U] II%3+Ig(t70,0,0)|2]dt+n2TE[X3]}
0 0
N T T
SG{(C+n2T)Y”||fy+m2AE/ |Zf|2dt+n§u(X)E/ ||Uf||igdt+(1+n2T)aX}SC(1+n2+/€%+/€§)aX<oo.
0 0

By (6.62)) again, it holds P—a.s. that g™ (t,Y,®, Z,U*) < g"*ti(t,Y;*, Z, UP) for any t€[0,T]. Since g"*! satisfies

(A2) and (A3), Theorem implies that P{Y;* <Y/"*' Vv¢€[0,7T]} =1. In light of Theorem Y;:= lim Y,",
n—o0

t €10, T defines a process of DP satisfies (A.4)), and there exist (g, Z,U, K) E]Lp([O, T|x, P, dtxdP; ]R) X Z2PxUPxKP

such that (A.5) holds P—a.s. and that (A.6]) holds for any we (2/p,2). According to the proof of Theorem the

process g is the weak limit of processes {g(t, Yr, Zz, Utn)}te[o AL n€eN in IU’([QT] xQ, ﬁ,dtde;R).

Let we (2/p,2) and set p:=E&7 €(1,p). Holder’s inequality, (A2), (A3), (6.1) and (1.7) imply that

T T 0
B[ ot ¥r 2 0p) a0, ¥e 20 e < 5071 {ﬂfm—n%%Afo—Zti@MS( [0 -vi@vlan)* far
0 X

= {/|Z” Zt\wdt) }
L°° .FT)

+327 1k ( e 1E/ /|Ut (x)|%v(dz)dt for pe(1,2), (6.66)

< 30" lE/ BE(Y,—Y,")edt+3¢~ 1H/ AP gt

and similarly that

T T
B[ lo(e. Y 20,07) 6 Vi, 2 Uit < 301 / BE(Y,— V") edt+30 kg / AR
0

130 R (W(X))e 1 B / / U™ (2) — Uy (@) |2w(d)dt. (6.67)

Since YY" < X~Y,!, dt xdP—a.s. by the monotonicity of {Y"},cn and since E fOT B (XY, )edt< || fOTdet’|Loo(]__T)~
E[(XF+YhHe]<|| fOTl\/BgdtHLOO(FT) - E[1+(X+Y)P] <00, letting n — oo in and (6.67)), we can deduce from
the dominated convergence theorem and that nlLIr;OEfoT|g(t,§Q", zZr,ur) —g(t, Yy, Zy, Ut)|gdt =0. Then pro-
cesses {g (t, Y, Zr, U }te 0.1] n €N strongly converge and thus weakly converge to process {g(t,Y}, Zy, Ut)}te[(),T]
in Le([0,T]xQ, 2, dt x dP; R) However, the weak convergence of {g(t,Y;", Z}, Utn)}te[o,T] s to g in LP([0,T] x
Q, P, dt x dP;R) implies that {g(t, VAL Utn)}te[o,T] ’s also weakly converge to g in ILQ([O,T] xQ, P dt x dP;R).

So by the uniqueness of the weak limit of processes {g(t, Y, Zr, Utn)}te[o ok neN in LQ([O,T] xQ, P, dtde;]R),

we obtain
gt :g(t,Yt,Zt,Ut), dtxdP—a.s. (668)

Given ne€N, (6.62)), Holder’s inequality and (6.65)) show that

T =

T

ogE/O (X, —Y;")dt= %E[K:?] < %{E[(K;ﬁ)?]}% < %C{E[Xf] 1 (6.69)
Since it holds P—a.s. that X;—Y;* < X,~Y;!, Vt& [0, 7] by the monotonicity of {Y"},cy and since E fOT(Xt—Ytl)dtS
TE[X+Y} | <TE[1+(X}+Y}!)?] <oo, letting n — oo in (6.69), we know from the dominated convergence theorem
that E fOT(Xt—}Q)dtanLn;o E[](X;—Y;")dt=0. This equality and imply that X,—Y; =0, dt xdP—a.s., which
together with the right-continuity of processes X —Y yields P{X;=Y;, Vt€[0,7]} =1. Putting it and back
to le~ad~s to for the case of g—supermartingale.

1c) Let (Z, U, K) €7Z%P xUP xKP be another triplet of processes such that P—a.s.

T
Xt:XT+/ g(s,Xs,Zs,Us)ds—/ Z,dB, / / 2)Np(ds, dz)+Kr—K,, te[0,T).
t t tT
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Subtracting it from (4.3]) yields that P—a.s.

t
/ [g(s,Xs,ZS,Us)fg(s,XS,ZS,Us)]ds+Kt7Kt / (Z Z st+/ / ))Np(ds dx), t€[0,T]. (6.70)
0 0,t]

An analogy to (6.52)) shows that for P—a.s. we {2
L(ep, o} (AK (W)~ AK (w)) =0 and 0=1pcp, (Ut w, pe(w) = Ut w, p:(w))) = Litgp, o, ) (MK (w) — AR (w)), Yte[0,T],

which implies that P—a.s., AK, = AK,;, Vt € [0,T] and Uy(z) = Ut( ), V(t,z) €[0,T]xX. It then follows from
that P—a.s., fg (9(s, Xs, Zs, Ug) —g(s, XS7ZS,U ) ds+Kf— K¢= fo (Z, —Z, )dBs, Yte(0,T], where K¢ (resp.
K¢) denotes the continuous part of K (resp. K). Since the set of continuous martingales and that of continuous
finite-variation processes only intersect at constants, one can deduce that Z; = Zt, dtxdP—a.s. and thus that
P{K;= Ktc, vtel0,T]}=1.

2) Next, let X be a g—submartingale. For any 0<t<s<T, Remark shows that —X; > —&/ [X,]= —y; Xt =
Y;_XS’ES = é’gs[—Xs], P—a.s. So —X is a g—supermartingale. By part 1, there exist unique processes (Z,U,K) €
Z2P xUP x KP such that P—a.s.

T
-X; = —XT+/ q(s, —Xs,fs,ﬁs)ds—/ Z,dB, / / Np (ds,dz)+Kr—K;
t t (T

T
,XT,/ g(s,Xs,fZS,fUS)dsf/ Z.dB, / / Np (ds,dx)+Kr—K;, t€[0,T].
t t (7]
Then (Z,U,K):=(~Z,~U, K)€Z*? xUP xKP are the unique processes satisfying that P—a.s.
T
Xt:XT+/ g(s,Xs,ZS,US)ds—/ ZsdBs / / Np (ds,dx)—Kr+K;, t€l[0,T]. O
t t (+,T]

6.4 Proofs of Section [B

Proof of Proposition 1) Assume that g also satisfies (Al), (A2”) and that for any (¢,y) € [0,T) xR,

E[ sup |g(s,y,0, 0)|p} < oo for certain §=4(¢, y) € (0,T—t]. The necessity of (5.3]) directly follows from (g6)—(g7)
s€lt,t+d)
of g—evaluations with ILP domains.

To show the sufficiency of (5.3)), we let (t,a,a) € (0,7)x[0,1] x [0,00) and (y;,z;,u;) € RxRIx LB, i =1,2.
Proposition and (5.3]) show that

g(t, ay1+(1—a)ys, az1+(1— )z, au1+(1—a)u2)

1
:61_1>r(r)1+g (5f,t+s [a(yr +V (¢, t+e, 21,u1)) + (1—a)(y2+V (E, t+e, 22, u2))| — (ay1+(1—a)y2))

1 1
<a lim f(Etg)He [yl +V(t, t+e, 21, ul)] —y1)+(1—a) lim 7(55,”8 [yg—H/(t, t+e, ZQ,UQ)] —y2)

e—=0+¢ e—=0+¢

:O‘g(ta2/17Zlau1)+(1_04)9(tay27227u2)7 P—a.s.,

and that

L .1 ~ ~
g(t7ay17azlyau1) = sl—l>1’(r)l+g(ggt+€ [Oé(yl +V(t7t+57zlaul)):| _ayl)

= &Elirgl+é (Sgtﬁ [y1+V (¢, t+e, 21,u1)| —y1) =ag(t, y1,21,u1), P-as.
Then (A2”) and the separability of LP imply that for any ¢t € (0,7T), it holds P—a.s. that holds for any o €0, 1]
and (y;, zi,u;) ERXRYx LP, i=1,2 and it holds P—a.s. that holds for any a€[0,00) and (y, z,u) ERxRYx LP.
Moreover, we see from that P—a.s., holds for any (¢, )€ (0,T)x[0,1] and (y;, 2, u;) ERxRIXLE i=1,2,
and that P—a.s., holds for any (¢,&)€ (0,7)x[0,00) and (y, z,u) ER xR x L.
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2) Next, assume that g also satisfies and (A3). The necessity of directly follows from (g5) of g—evaluations
with LP domains.

To see the sufficiency of , we fix ¢ € R. By 7 g is also Lipschitz in u with coefficient ko (V(X))
Clearly, ¢¢(t,w,y, z,u) == g(t,w,y—c, z,u), ¥ (t,w,y,z,u) € [0,T]x AxRxRIx [P is still a @ B(R)2B(R))
B(LP) /% (R)—measurable mapping that satisfies (A2), and that is Lipschitz in u.

Let t€[0,T), £ € LP(F;) and set (Y, Z,U):= (Y*7¢9t Z8=9¢ [4¢9t) Adding ¢ to BSDEJ ({—c, g;) shows that
Vs:=Y,+ec, s€(0,T] satisfies that

.o\»—A

T T
Vo=t [ Lpcng @00 200~ [z, [ / )N (dr,dz), Vs € [0,T].
s s (s,T]

Namely, (Y, Z,U) €SP satisfies BSDEJ (¢, gf). By uniqueness, it holds P—a.s. that E'Sq; [€]=Y: =Y, +c=E] [ —c]+c,
Vs€[0,t]. In particular, taking s=0, we see from (5.4]) that

S [€)=E8 e~ +e=EL,le), Vtel0,T], Ve LP(F,). (6.71)

Next, let t€[0,7), s€(t,T] and £ € LP(F;). We set A:={&7 [¢ <€g:[§]}6}}. Using (6.71) with (¢,£)=(s,14¢)
and (t,€)=(t, 1,455; [€]) respectively, we can deduce from (g3) and (g4) that

€5 (1AL 1)) = &8, €. 11ad]] = €5 ,[1a8] = &7 [148] = €7, [1a€7,[€)] = €7, [LaEl.[€]], P-as.

As 148/ €] < 1A57£:[§], P—a.s., the strict monotonicity (gl) of g—evaluation implies that 14€/,[¢] = 1A5g;[§],
P—a.s. It follows that P{&/ [¢] < 53;[5]} =0. Similarly, one can get P{&{ [¢] > E,f:[f]} =0. So Ef’;[{] =&7.[€],
P—a.s. In light of Proposition it holds for any (¢, z,u) €[0, T)xRYxLP that g(t, ¢, z,u)=g%(t, c, z,u) =g(t,0, z,u),
P—a.s. So one can deduce from (A2), and the separability of L that for any t €[0,T), it holds P—a.s. that
g(t,y,z,u)=g(t,0,z,u), ¥ (y, z,u) ERXRI<LE. Then implies that P—a.s. g(t,y, z,u)=g(¢,0, z,u), V(t,y, z,u) €
[0, T)xRxREx LE. O

Proof of Theorem Since both f’ and f{ are non-decreasing functions by the convexity of f, ¢ (z) :=
1 <oy fL(2) + 1 (@)>03f4(x), € R is also a non-decreasing function and thus Borel-measurable on R. Then

n::w(é'fﬁ[f]) defines a F,—measurable random variable that satisfies

n(€ - &2, [€]) < f(&) — f(E2,18)- (6.72)
Fix n €N and set A, :={|2 [£]|+|n| <n} € Fr. As 1an& 1a, f(§) € LP(F,) and 14 €L [€], 14, f(E2,1E]) €
L>(F,), (6.72)), (g1) and (gb) imply that P—a.s.
&9 Man&l—1anEL [E1=E2 [1an(§—E2,[€)] <L [1a, f(€)—1a, f(EL,1E)] =E2,[1a, f(E)] —1a, f(EL,[E]). (6.73)

Set (Y, Z,U)=(Y*97, 2597, U%97). Applying Corollary with €=14, n Y, € LP(F;) shows that there exists a
unique pair (Z",U™) € Z*P xUP such that P—a.s.

t
Yt”::E[lAnnYA}"t]:E[lAnnYT]—i—/ ngBs—&—/ /Ug(x)Np(ds,dx), te(0,T).
0 0.4] Jx

We define Y, := 1pen Y +14>71a,0Y7, (7?,??) =1 (20, UP) + 1esry1a,m (Ze, Up), V€ [0,T], and can
deduce that (?n,in,ﬁn) belong to SP.

For any ¢ € [0,T], since 14,7 is Fr—measurable, we see that n14,1;<s} is F;—measurable. It follows that
{ma, 1<icp }te[o,T] is an F—adapted cadlag process and g :=n1a, 1{;<t<419(t, Z,Uy), t€[0, T is a F—progressively
measurable process. In particular, we can regard g™ as a special p—generator.

Given t €0, 7], multiplying 14, 7€ F; to the BSDEJ (£, g,) over period [7Vt,T] yields that

4

T
1An,77§+/ geds— / 7. dB, / / 2)N,(ds,dz), P—as.
TVt TVt,T]

T T
14,070 = 1A,,J7§+/ 14,m9(s, Zs,Us)ds— / 14,mZsdBs / ]/ 14, 0Us(2) Ny (ds, dz)
TVt (rvt,T



g—Evaluations with ILP Domains under Jump Filtration 32

By the right continuity of process Y, it holds P—a.s. that

T
1An77YTvt:1A,,77§+/ grds— / 7" dB, / / Np (ds,dzx), t€]0,T). (6.74)
(TVvt,T]

TVt

Let t€[0,T]. Since Y*=E[14,nY;|F:]=14,nY>, P—as. taking t=7 in (6.74) yields that

Yo, =Y"— / Z7dBg / /U" N,D (ds,dz)=14,nYr / Z dB, / / Np (ds, dx)
TAL,T] TAL,T]

T
= lAnanr/ guds— / 7. dB, / / Np (ds,dz), P-—a.s. (6.75)
TAL TALT]

Multiplying 1{;>,} to (6.74) and multiplying 1.,y to (6.75)) leads to that
—n T
Y, =14 Y +1lp>nlanY; = 1An77§+/ g;‘ds—/ 7" dB, / / Np (ds,dz), P-aus.
t t (7]

The right continuity of process Y" then implies that P—a.s.

T
??:1,4,”77&/ g?ds—/ 7" dB, / / Np (ds,dzx), t€]0,T).
¢ t (t,T)

Hence (Y",Z",U") solves BSDEJ (14,7&,g").
As (x)€(0,1)¢ for any z € R with df(z)N(0,1)¢#0, one can deduce that ne (0,1)¢, P—a.s. Then (5.7) and an
analogy to (5.5)) imply that ng(¢, Z, Uy) < g(t,nZ,nU;) dt xdP—a.s. on |7,v[. And we further see from (5.6]) that

g? = 1An77 g(ta Zt7 Ut) S 1Ang(t’ 77Zt7 UUt) :g(tv 1AnnZt7 1An77Ut) =0~ (t77:7ﬁ?)

holds dt xdP—a.s. on |7,~v[. Applying Theoremwith (9, 9%)=(g", g,) and i =2 yields that P{14,nY; = Y, <
Ytl“"n&’g”, Vte[r,7]} =1. In particular, we have 14,74 [(]=14,nY; < YA 69 — &4 [1a,n¢l], P—as., which
together with (6.73]) shows that

1a, f(EL[€)) <L [1a, F(O)] =Y T Poas, (6.76)
In light of Proposition
E [|Y71Anf(§),gw —y (€0 ‘P} < HYlAnf(E)vg'y —y F(€).94 ng <CE[|1a, f(&)—F(©)IF], (6.77)

where the constant C does not depend on n. Since lim T 14, =1, P—as. and since E[|f(£)|P] <oo, letting n — oo

in , we can deduce from the dominated convergence theorem that lim F [|Y1A" (©).9, —YTf(é)’g” ﬂ =0. Then

n—oo

we can find a subsequence {n;};en of N such that lim YT Ani F(&)9v —y/© 97 P—a.s. Eventually, letting i — oo in
1—00
(676), we obtain f(£9. [€]) = lim 14, f(£9,[€]) < lim v /9 oy @O _go_ [5()], P-as. 0
’ 1—>00 B ’ 1—00 ’

A Appendix: A Monotonic Limit Theorem of jump diffusion processes
over D?

In this appendix, we will extend the monotonic limit theorem of [T9] to jump diffusion processes over DP, which is
crucial for the decomposition of g—supermartingale (Theorem [4.1).
Fix pe(1,2]. We consider a series of jump diffusion processes {Y"},¢cn in form of

t t
Yt":YO"—/ bgds—Kp+/ ngBs+/ /U:(x)zv,,(ds,dx), Vielo,T], (A1)
0 0 0,t]J X
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where

i) {@",z", U")}nEN is bounded in LP ([0, T] xQ, &, dt x dP;R) x Z*P x UP, i.e. there exists a Cy >0 such that

T v
(E/ |b?|pdt> +HZ”||ZQP+||UW’H[UP S Cﬁ, VHEN, (AZ)
0

(ii) For any ne€N, K™ is an F—adapted, continuous increasing process with K§ =0 and K7€ LP(Fr);
(iii) Y™ is an increasing sequence that is bounded above by some X € DP, i.e. P{Y;* <Y <X, Vt € [0,T]} =1
for any neN.

The Burkholder-Davis-Gundy Inequality, , Holder’s inequality as well as imply that

E[(Y)P] <57 eoE

T t P T
iperrt [ prdse gy ([ 1zepas) e [ f Ug(x)pu(da;)ds]@o, (A3)
0 0 0 X

which shows that Y €DP. It follows from (iii) that {Y"}, ey is bounded in D? (supHY"HDp <Y Yo+ X || pe <oo>.
neN
Define a [—o0, co]—valued, F—optional process Y;:= lim Y;*, t€[0,T]. The monotone convergence theorem and
n—oo
(iil) imply that
P{Y,=lim 1 Y"<X,, Vt€[0,T]}=1. (A.4)
n—oo

So one can regard Y as a real-valued, F—optional process.

Our generalized monotonic limit theorem of jump diffusion processes over DP is stated as follows:

Theorem A.1l. Given p € (1,2], let assumptions (i)—(iii) hold. Then Y belongs to DP and has the following
decomposition: There exists (b, Z,U, K) GILP([O, TIxQ, P, dt xdP; R) X Z2P xUP xKP such that P—a.s.

t
Yt:YOf/ beds — Ky + / Z,dB, +/ / 2)N,(ds,dz), Yte0,T], (A.5)
0 (0]

and that for any we (2/p,2)

V}LH;OE[(/OTMQ—stds : / /\U" S(2)| v (dw)d] 0. (A.6)

Moreover, if Y has only inaccessible jumps, then K is a continuous process and

hmE[(/T|Z" Z,|2ds)® / /|U” )|py(dx)ds} 0. (A7)

n—oo
Before proving this theorem, let us first cite two auxiliary results from [9] and [79] respectively.

Lemma A.1. (Lemma A.8 of [9]) Let K be a real-valued, F—optional process with P—a.s. right upper semi-
continuous paths (i.e., it holds P—a.s. that Ki(w) > @Ks(w), for any t € [O,T)), If K; < K,, P—a.s. holds

for any T€T and v€T,, then K is an increasing process.

Lemma A.2. (Lemma 2.2 of [T9]) Let {Y" }nen be a sequence of real-valued, F—adapted cadlag processes, let J be a
real-valued, F—adapted cadlag process, and let K be an F—adapted increasing process with Ko=0 and with K < oo,
P—a.s. If it holds P—a.s. that hm T Yir=Ji—K; for any t€[0,T], then K is also an cadlag process.

The demonstration of Theorem also relies on the following extensions of Lemma A.1 and Lemma 2.3 of [79).

Lemma A.3. Let p € (1,2], K € KP and 6 > 0. There exists a finite number of F—predictable stopping times
O=1o<m <7< - <7n <7n41=T such that 7, <Ti+1 on {7, <T} fori=1---N and that

N
Sl Yk
1=0

SE(Ti,Tit1)

< 6. (A.8)
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N

Proof: Set a:= (5/3)ﬁ (E[KR]) #@=D. As process K :=K;— Z AK Ak, >a}, t € [0,T] retains only those
s€(0,t]

jumps of K whose sizes are smaller than «, one can deduce from Hoélder’s inequality that

> AK?

s€(0,T

E < " ' EK7 < o?" (E[KE))" = §/3. (A.9)

> <AK§>P] <o’ 'E

s€(0,T

Set v0 := 0. For any j € N, we inductively define v; := inf {t € (yj-1,T] : AK, > Oé}/\T, and (1.7) implies
P . : .
that 3., 7y (AK)P < (X,e(y, ) AKs)" < K7, P—as. Since jlggoi Y se(r; ) (AK)P=0, P—as. the dominated

convergence theorem implies that lim | E [Z (AK)?]=0. So one can find an /€N such that
J

oo s€(v;,T)

E[ > (AKS)”} <6/3. (A.10)
s€(ve,T)

In light of Proposition 1.2.24 of [47] (see also “Complements to Chapter IV” of [34]), the jumps of F—predictable
cadlag process K are exhausted by a sequence {7; };en of F—predictable stopping times, i.e. £:={(t,w)€[0,T]xQ:
AK(w)>0} is a union of graphs [7;] and these graphs are disjoint on period (0, 7).

As E[KE] < oo, there exists a A=A(d) >0 such that E[14K%]<d/3 holds for any A € Fr with P(A) <\. Let
j=1,--- L. For any n € N, define AJ := {’y] € U [7: } {we: yj(w)=7;(w) for some i€ {1, -+ ,n}}€Fr. Since
lv;lcr= U [[TZ]] we see that lim 1 A7, =1, there exists n; €N such that P(A% )>1—\/.

i—00 J

[
Set 19:=0, N:= nllax S and A:= ﬂ AJ Also, we reset yoy1:=T and 7n41:=T. Given we A:= _ﬂlA{lj, as

i= =
viw)e{n(w), -+ 7, (W)} {r(w), -, 7n(w)} for any j=1,--- ¢, we have that

N

.U0<Ti(w)77—i+1(w)) = (0, T)\{Tl(w)ﬂ T 77—N(w)} c (0, T)\{lyl(w% T 7’75((“))} =

1=

~

U, (3 (@), %11(@))-

¢ _
Since P(AC) = (jé ( ) ) ; (( %j)C) < X and since AK;=AK¢ for any Sejg;(’}/j,’)/j+1), we can deduce

from (1.7 and (A.10) that
N
E|Y ) (AK)P

1=0 se(1i,7i41)

N

(Y ¥ ak)

1=0 s€(7i,Tit1)

Z Y. (AKY+ Y (MK

J=0 s€(vj,7j+1) s€(ve,T)

<E +E

1
14y Y. (AKYP

J=0 s€(vj,vj+1)

< E[1a-KY]+E <§6+E

> (AK;")?] <4 O

s€(0,T
Lemma A.4. Let p € (1,2], K €KP and €,0 > 0. There exists a finite sequence of F—predictable stopping times
O=10<1W <1 <M< - <Tn<YN<TN+1=T such that

N

N
ZE[<Ti+1_'Yi)+(Ti+1_%‘) |<e and ZE
=0 i=0

(NS}

Y (MK

SE(Ti,7i]

< 0. (A.11)

Proof: According to Lemma (A.8) holds for a finite number of F—predictable stopping times 0=7p <73 <79 <
- <75 <7n41=1T such that

7 <Tit1 ON {Ti<T} for i=1---N. (A.12)

Let ¢ = 0,---,N. The PFA Theorem or foretelling Theorem (see e.g. Theorem IV.77 of [33]) shows that
the F—predictable stopping time 7,41 can be approximated by an increasing sequence {(} }nen of F—predictable
stopping times: i.e. lim 1 (! =7;,1, P—a.s., and for any n€N,

n—oo

CZL <Ti+1, P—a.ss. on {Ti+1 >O}. (Al?))
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So one can find an n(i) €N such that £ |:(Ti+1 — Cfl(i)) + (Ti+1 — Cfl(i)) %] < Ni—i—l Consequently, the F—predictable
stopping times v;:=7; V Q H STig1, 0=0- N satisfy the first inequality of (A.11]).

For P—a.s. w e, if Tl( ) <T and for i =0,--- , N, (A.12)) shows that 7;,.1(w) > 7;(w) > 0. Then we see from
(A.13) that ¢,y (w) <Ti+1(w) and thus ;(w) <711 (w). It follows from (A.8) that

N N
DE| Y (AK <Y E| Y (AK)P| <6 .
i=0 s€(Ti,vi) 1=0 SE(Ti,Tit1)

Proof of Theorem For neN, we set &, := fOT Z}dB;. The Burkholder-Davis-Gundy inequality and condition
(i) imply that E|[|¢,|P] <c, E {( fOT | Z2dt) %} =cp|| 2™}, <cpCF, which shows that {£,}nen is a bounded sequence
in LP(Fr). As LP([0,T]xQ, &, dt xdP;R), LP(Fr) and U are reflexive spaces, we know from e.g. Theorem 5.2.1

of [97] that {(b",&,, U")}nGN has a weakly convergent subsequence (we still denote it by {(b™, &y, U")}neN) with
limit (b,§,U)eLP([0 T]XQ P, dtxdP; R)XLP(]-"T)XUP By Corollary (2.1), there exists (Z,l) € Z*PxUP such that

P-as., E[¢|F]=F +f0 Zs st+f0t] S s z)Ny(ds, dz), Vte[0,T).
T
1) Let ®€Z*9. We first show that le E O.(Z — Zy)dt = 0. (A.14)
n oo 0

Define a martingale M := fot ®,dBs, t€[0,T]. The Burkholder-Davis-Gundy inequality shows that

E[(M2)7] gch[(/oT |<I>S|2ds)g} <00 (A.15)

for some ¢, >0, thus M € LY(Fr).
Fix n € N and define I'}" := fg( —Z)dBs f(Ot S s 2)Ny(ds,dz), t € [0,T]. The Burkholder-Davis-Gundy
inequality and (1.5)) imply that

E[(T7)P] gcpE[(/Ong_zsst)g+/OT/qus(x)\pu(dx)ds] < o0. (A.16)

Also, integrating by parts yields that P—a.s.

t t
M?rg:/o (FZ<I>S+M;I’(Z§‘—ZS))dBS—/Ot/Mf’ils(x)Np(ds,dx)+/o O,(Z0—Zs)ds, te€[0,T). (A.17)

For any i €N, we set (" :=inf {t € [0,T] : fot|<1> \2d8+fg|Z?—Z8\2d8+fng ’ﬂs(m)‘pu(dx)ds > i} AT € T and
Y= [N (Trd, 4+ ME (20— Z,))dB, f 0.cr i o MU (2 )Np(ds dz), t€[0,T]. Applying the Burkholder-Davis-
Gundy mequauhty7 we can deduce from (1.7 ., - and Holder’s inequality that

o i|FZ<I>S|2ds L i|Mf(Z§st)|2ds %+ " |M;I’ils(x)|p1/(dx)ds
() ) +(), )
cpE{(Ff)p(/ |®,| ds)g (Mf)”(/ |22, ds) "+ (M) / /|u )P (da)d ]

e {iF B[]+ (i+i%) (B[(MP)7]) 7 } < oo. (A.18)

IN

E[ sup |T?’i|p}
t€[0,T)

IN

IN

So Y™ is a uniformly integrable martingale. Taking t=¢" in (A.17) and then taking expectation yield that
&4
E[M&T?] :E/ ®,(Z—Zs)ds. (A.19)
e 0

As (®,2"—Z,U) € Z*1x Z*P x UP, it holds for all w € Q except on a P—null set N, that ((w)="T for some
i=i(n,w)€N. For any weN¢, one has

lim I"((" (w), w) =T"(T', w) =&n(w) = (W) + El¢] =&n(w) —E(w), (A.20)

71— 00
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although the path I'(w) may not be left-continuous. Since Hoélder’s inequality, and (| show that
1
E[MET?) < {E[(M®))} 7 {E[(T7)]}? <00 and that E [T ||z - Zt|dt<E[ N |<I>t|2dt (s |Z” Zt|2dt) ] <

{E[(fOT D, |2dt)? ] }E X {E[(foT | Zp —Z,)2dt) % ] } <00, letting i — o0 in (A.19), we can deduce from the dominated

convergence theorem and (A.20) that E[MZ (&, —¢)] = E[METh] = EfOTtI’t(Zf—Zt)dt. As M2 € LY(Fr), letting
n— 00, we obtain (A.14)) from the weak convergence of &,’s to £ in LP(Fr).
2) Define a real-valued, F—optional process

K, =Yy—Y,— /bds+/ZdB +/ / 2)N,(ds,dz), te[0,T). (A.21)
(0,4]

In this step, we show that K, is a weak limit of KI'’s in LP(F;) for any T€T.
The Burkholder-Davis-Gundy inequality, (1.7), Holder’s inequality and (|1.5) imply that

T T » T
E[K}]<c,E {(Y,})p+Xf+Tp1/ |be|Pdt + (/ |Zt|2dt> ’ +/ / |U; (x)|p1/(dx)dt] <00. (A.22)
0 0 o Jx
Let 7€ T and n€ L4(F,) C L?(F,). We know from the regular martingale representation theorem that there exists

(Z",U") € Z*2 x U? such that P—a.s., M} := E[n|F] = fTAtZ"dB —l—f(o At] [0 Np(ds dx), Yte€[0,T).
Similar to (A.16]), the Burkholder-Davis-Gundy 1nequahty7 and (|L.5)) imply that

E[(MZ)”]gcp{(E[n])p+E[(/oT|Z§st % //\Uﬂ )[Pudz)d ]} (A.23)

Given weQ, we denote the countable set Dy by {t;(w)}ien. For any JEN, (1.7) shows that

Zl{m(w U7 (t5(w), w, e, () (W |<<Zl{t<7(w>}\U"( )M»Ptj(w)(w))f) << > 1{tST(w>}\U”(t7w,pt(w))|2>

j=1 t€Dy ()

—( /OT/|U” 2N, (dt, dx))%( ).

Letting J— oo on the left-hand-side yields that

/or/w?7 N (dt, dz)) > Lpsrwp U (tw,pe(w ))|q§ /OT]/|U" )[* Ny (dt, dz))%( ).

tED()

Then (|1.7)), the Burkholder-Davis-Gundy inequality and the Doob’s martingale inequality imply that
p|([N1zpas) s [ [ wroiman)| <e|( [zt [ ] wrops.m)]
0 (0,711 x 0 0,7]/x
=B{[M", M7} <& E[(M2)7] < E[M|7] =" B [J]7] < o (A.24)
for some Eq >0, thus {(1{t§T}Ztna 1{t§T}Utn) }te[O,T] c 724 qu. N
Fix n€N. An analogy to (A.16)) shows that the process I'? ::fg(Z;L—Zs)st+f(o 9% (Ur(z)—Us(z)) Ny(ds, dz),
€10,T] is of DP. Also, integrating by parts yields that P—a.s.
TAL t
MJT} = / ZNZr— )ds+/ (1{S<T}FQZQ+M;7(ZQ—ZS))dBSJr/O /X (Ls<r TP UM (@) + MU (@) —Us(2))) Ny (ds, dz)
t
/ / U (@) (U (x) —~Us(2)) Ny (ds, dz), ¢ € [0,T]. (A.25)
0,7At]

For any i €N, we set

t t
¢/ :=inf {tG[O,T]:/ (l{séT}\Zg|2+|Zg—ZS|2)ds+// (l{ng}|Us77(w)|p+|Us"(x)—Us(x)|p)1/(dm)ds>i}/\TET,
0 0 Jx
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and T = [ (1 oey THZ0+ M(Z0 — Z.))dB, + Jownngr (s T8 Ul (@) + MUUZ () = Uy (2))) Ny (ds, de),
t€[0,7]. An analogy to (A.18)) and (A.24) imply that

e ScpE[(fz:)p( [z ey ([ @y [T [ e
L/ L/|U“ )Py(d@ds}<cp@+45){E[@f)ﬂ (E[(M27) ) <oc.

So T™i is a uniformly integrable martingale. Taking t=¢! in (A.25) and then taking expectation yield that

_ B
BlMyTn] =8 /0 1(oery 2020~ 2,)ds+ E /0 /X 1oery U () (U2 (@)~ Us () v(da)ds. (A.26)

As { (1< 20 1<y UY) }tG[O € Z%1xU? and (Z"—Z,U"—U) € Z*>P x UP, it holds for all w € Q except on a
P—null set \,, that ¢/ (w)=T for some i’ =i'(n,w) € N. For any weN®, we have

lim M7 (¢ (w),w) = M"(T,w)=n(w) and lim I"(¢!(w),w)=T"(T,w),

1—00 71— 00

although the paths M”(w) and I'"(w) may not be left-continuous. Since Hélder’s inequality and (A.23) show
1 ~ 1 1 1
that E[MIT™] <{E[ My} {E[(T7)?]} 7 < oo, that EfOT|Z"||Z"—Zt|dt<E[(fOT|Zt”|2dt)2 (fOT|Zt"—Zt|2dt)2} <

T 5 T n z T
{E[(J512at) 2]} {BI(J5 12p-2:[ar) 2]} <ooand that E f;] fX|U’7 WU @)Uy (@) v(da)dt < (E [ [ U7 ()]
v(dz)dt) @ (E [y [xlUP (:c)fUt(a:)|py(dw)dt)% <00, letting i — oo in (A.26)), we can deduce from the dominated conver-
gence theorem E [nI'%] :EfOTl{tST}Zf(Zf—Zt)dt+E fOfol{th}Utn(x) (U (x)—Uy(2))v(dz)dt. Since { (1< 27,
l{tST}Ut”) }te[o 7] €Z%1x U4, letting n— oo, we see from (A.14) and the weak convergence of U™’s to U in UP that

lim E[nl] =0. (A.27)

n—oo
For any ® € LP([0,T]x €, 2,dt xdP;R), we define f,(®):=FE|n fOT ®,dt]. As ne LY(F,), we see from Holder’s

1
. T » 1 .
Inequality that | f, (®)|< Hn”Lq(fT){E[(fo |<I>t|dt)p]} <T4 ||77||Lq(]:T)||<I>||M([07T1X979’dtde;R). So fy, is a bounded
a linear functional on Lp([O T xQ, P, dt x dP; R) In light of Riesz’s representation theorem, there exists a ¥ €

L([0,T] xQ, 2, dt x dP;R) such that f,(®)=E [, W, ®,dt, ¥ eL’([0,T]xQ, Z,dt xdP;R). It then follows from
the weak convergence b™’s to b in L” ([0, 7] x Q P, dtx dP;R) that

T T
o [77 | <b?—bt>dt} = Jim £y ({2un) 0 =0} ) = B B [ Losn Bulty—byde=0. (4.28)

Moreover, since |Y§' —Yo—Y"+Y;| <2(Y}' + X,) and since E[|n|(Y}+X.)] < ||nllraz.) (1Y lpr +[| X [|pr) < oo by
Holder’s inequality, the dominated convergence theorem and condition (iif) imply that lim £ [n(Yq—Yo—Y+Y;)] =0,
which together with (A.27) and (A.28]) leads to that

lim E[n(K!'-K,)] = lim En(Yy—Yo-Y"+Y,)] — lim E {n /O (b?bt)dt} + lim E[nI't] =0.
Hence, K™’s weakly converge to K, in LP(F;) for any 7€ 7.
3) By the right-continuity of Y™’s, it holds for P—a.s. w € 2 that
lim Y = i inf Ys(w)=1i nf 1 Y (w)> 1 li inf Yo"
slig (w) nLH;OT se(t,(tirn2*")/\T} (w) TLI—EEOT s€E(t, (tirQ nYAT] mgnoo/r ( )7mgnoo/r nLH;oT Se(n(tinzfn)/\T} (w)

= lim 1 lm Y (w) = lim 1 Y" () = Yi(w), Vi€ [0,T).

m— o0 S\‘t m—0o0

So process Y has P-a.s. right lower semi-continuous paths, which together with the right-continuity of process
{fOZ dB, —l—f(o . fx Np (ds,dx) }t€[0 oo shows that process K has P—a.s. right upper semi-continuous paths.
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Let 7€T and v€7,. For any n€N, since K™ is an increasing process, it holds P—a.s. that
KI<KZ}. (A.29)

We claim that K, < K,, P—a.s.: Assume not, i.e. the P—measure of set A:= {KT > Kv} € Fr strictly larger than
0, it would follow that E[14K,| > E[14K,]. However, one can deduce from part (2) and (A:29) that EF[14K,|=
lim E[IAKf] < lim E[IAK,’Y‘] = E[IAKW]. An contradiction appears. Thus, K; < K., P—a.s. Then Lemma
n—r 00 n—oo

shows that K is an increasing process. Applying Lemma with V" =YY" and J; = Yo—fotb ds—!—fotZ dBs+
f(o 4 S Us Np (ds,dx), t€[0,T], we see from and . ) that both Y and K are cadlag processes and
thus that E[Yp] <2 IE[(YHP+ XP] < oc0.

The monotonicity of & implies that Y; := Yt—Yo—i-f(fbsds, t€1[0,7T] is a cadlag supermartingale. By and

Hoélder’s inequality, E {ﬁp } <3P LBV TP fOT\bt\pdt] < 00o. In virtue of Theorem VIL.12 of [34] (or Theorem

I11.3.8 of [82]), there exist a uniformly integrable cadlag martingale M and an F—predictable cadlag increasing
process K with K (0) = 0 such that P—a.s.

Y, =M, - K, tel0,T]. (A.30)
By the supermartingality of f/, @t\ = ﬁ—E{?ﬂft}, t € [0,7] is a nonnegative cadlag supermartingale whose
corresponding Doob-Meyer decomposition is U =4 — K with ////t\ = ]\/J\t —E[f/ﬂ]—}}. Since (|1.7)) and Doob’s
martingale inequality show that E[@\*p] < 21’1E[}7*p + sup }E[?ﬂft]’p} < 2p*1E{?*p+qp|}7T|p] < 00, we can

t€[0,T)
deduce from the estimate (VIL.15.1) of [34] that

E[f{ﬂ <p’E [@71)} < o0, (A.31)

so K €KP. It follows from (A.30) and (T.7) that E[Z\?}f] < 2p—1E{}A§p+I?¢pp] < o00. An application of Corollary
again yields that for some (2, lA]) €7Z*? xUP, it holds P—a.s. that

t
Mt:E{MT}ft] :/ ZSdBS+/ /Us(x)Np(ds,dx), tel0, 7).
0 (0,4 Jx

Putting it back into (A.30]), we obtain that P—a.s.

t t
—Kt+/ stBS+/ /Us(x)Np(d&dx):Yt:—Kt—i—/ ZSdBS+/ /Us(x)Np(ds,dx), te[0,7].  (A.32)
0 0, 0 0,

Comparing the continuous martingale parts of both sides gives that
Z,=7,, dtxdP-as. (A.33)

We will eventually see that K=K.
4) Fix w € (2/p,2) and A > 0. As K € KP, Lemma and (1.7) imply that there exists a finite sequence of
F —predictable stopping times 0= <y <1 <11 < <7y <Yy <7n+1 =71 such that

>, (AR

s€(Ti,vil

b

XN:(TiH—wi)JF(ZN:(TM—%))2]<A and ZE

=0 =0

E < A=) (A.34)

where N depends on A.

Fix neN and set (y" Zn Z/{") (Yn-Y,Zz"~2Z,U"-0). Subtracting A.32)) from and using yields
that P-as., fo (b7 —bs)ds — (K" — Kt)+f0 Z'dBs + fOt] Ul Np(ds dm) We [0,7]. An analogy to
and the contlnulty of K” show that for P—a.s. wefd

Lien, ) AK: (w)=0 and AYV(w)=1gep, U" (L, w,pe(w))+1ugp, ) AKH(w), Yte[0,T].  (A.35)
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Since the cadlag increasing process K and the Poisson stochastic integral MY" jump countably many times along
their P—a.s. paths, an analogy to (6.53)) shows that

{t€]0,T]: Y (w) # Y{'(w)} is a countable subset of [0, T] for P—a.s. w € Q. (A.36)
Next, fix i € {0, - - (t,e) €[0,7] % (0,1] and let ¢.(-) be the function defined in (6.54]). We see from (1.7)

N},
that 9;""°:= sup %(y ), t€[0,T) satisfies
sE[YiALYi]

B[] <E| swp o20m)| <E| s 2P| et =gt <o (A37

s€[0,T] s€[0,T]

Applying Itd’s formula to ¢P();*) on the interval [(Ti\/t)/\’yi, ’yi] and using (A.36) yield that

1 Vi
POl by [ DRAONIEI s ST (SO0 ) - Dad (78]

TVOAY s€ (Ve Ay i)
Vi 9 Vi 9
)+ [ NI OE-bdsp [ omYNK]
(Ti\/t)/\’yi (Ti\/t)/\"/i
Yi -
_p/( o (pg—Q(ysn_)yg_sz—p(M;z—M@ivt)/\w—i—./\/lzi—M?Tivt)/\%), P-a.s., (A.38)
Ti Yi
where M{":= M;"* = [(or™2(Vi ) Vi 20dB, and MP := M = [io o [t 2 (Vi ) Vi Uz (x) Ny (ds, da), t € [0, T].

We can deduce from the Burkholder-Davis-Gundy inequality, Young s inequality, (A.37) and ( . ) that

T 1 1
B| s e+ sup [M71] <o | (s gog—l(y:))( [ 1zzpas) e (s mtom) ([ ] R s )|
0 0,T1]

te[0,T] te[0,T] s€[0,T] s€[0,T]
T
ScpE[ sup @2(V)+ / |Z72 ds / / |Uf(:c)|pu(dx)ds} <0o0. (A.39)
s€[0,T] 0o Ja

So both M™ and M™ are uniformly integrable martingales.
Analogous to (6.57), we can deduce from Taylor’s Expansion Theorem and (A.35)) that P—a.s.

S (- ) -Der () avy)

s€((TiVE)Avi,vil
_ T I p_q
=2 (1) [ [ L s o 5 @) (@) +2) N (s ). (A.40)
(Tz\/t)/\’YL7'Yz]
Since it holds P—a.s. that
— PRV VI =RV | SV = YR - AV P (VR AV T <[P AV, se0,T),
(A.35) implies that P—a.s.

Vi Y Vi Y Vi - -
- / LAYV K, < / Ve PR = VrpPtdES+ Y Vi PTTAK,
(

TiVE)AY; (1 VE)Ay; (Ta VE)Avs s€((1:VE) Avs il

i ~ ~ ~
<[ prptaRee Y prpUaRe Y ARIPUAR,
(

VO s€((T: V) Avi il s€((Ti V) Avi,yil
Yi R =N N
= / rrlaRes YD rPTtARE Y (AKL)P, (A4l
(ravi) Ay S€((rVE) AYi ] s€((ravi) Avirvi]

where K¢ denotes the continuous part of K. As the condition (iil) shows that

P{Y'<0, Vse[0,T]}=1, (A.42)
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plugging (A.40) and (| into , we see from ) that

n p v P_q
(‘Dg(y(ﬂv)t)/\%)—f—§(p—1)/ (y")lZn| d8+2p 3 p 1 / ]_{lyn [<Ur (= |}‘Z/I ’ (|ug(:1;)|2+5)2 Np(ds,d$)
(Ti\/t)/\'% (7'7 \/f)/\'%
Sg:ja +pnzn _p(M’;LL _M(Ti\/t)/\% +M'TYLL _M?Ti\/t)/\'n)’ P—a.s., (A43)

where &, =P (V1 )4p [ 01 (Vi) b2 =bs|ds and nf := [P ARAS ¢ (7, [VEPTTAK A g (AKS).
5) Since M™ and M" are uniformly integrable martingales, taking t=0 and taking expectation in (A.43]) yield that

Vi
E/ 02

k3

2E[&} +pn}']
p(p—1)

Clearly, lir%T \U"(s,w,m)|2(\un(s,w7m)\2+€)%71 = U"(s,w,z)P, V(s,w,x) € [0,T]xQ2x X, so the monotone
e—

convergence theorem implies that

Vi P
lim 1 E/ /Xlﬂy;|§\ug(z)\}|Ug($)|2(\U:(x)|2+5) ’

21

Yi
2(y2)|32\2d8+2p’2E/_ /Xl{\;v;ugu:(w)\}WS(:E)IQ(IUS(JG)\Q%) v(dx)ds < (A.44)

—1

e—0

Vi
V(dx)ds:E/ / 1{|y:ﬁ\§|ug(z)|}|ug($)|pv(dm)d8. (A.45)
Ti X

On the other hand, since &', < &'y, Ve € (0,1] and since Young’s inequality implies that F[{] < (1+(p—
1)T)E[(2)7T‘i’i’1)p} +Ef0T|b?—b5\pds<oo by (A.37), the dominated convergence theorem shows that

lim E[¢7.] = F [Eﬂ : (A.46)

where Ez" = Di;l

Pop [ VP[0 — by ds.

2B [& +pn7 ]

. And it follows from
p(p—1)

Letting ¢ — 0 in (A.44)) yields that 2P —2F T':"’fxlﬂyg_g‘ug(x)‘}‘Ug(x)’py(dx)dsg

(A.36) that
Yi Vi Vi
E/ /}6|Ugl(w)|pu(d$)dS§E/ / 1{'3):-7‘S‘U;L(:E)l}|u§($)|py(dw)d8+E/ ‘/Xl{WSn(I)K‘y:J}|y§7|pl/(d:)’;)d8

923—p 3—p

<

- ~ Yi
n n v Pdg—= n n v "Pds. A.
p(p_l)E[é, +pn; ] +v(X)E / Ve |Pd p(p_l)E[fz +pnit |+ (X)E/ﬂ_ Ve |Pd (A.47)

Now, fix £ €(0,1] again. We can deduce from (A.43) that
E[(@le)ﬁ} :E‘[ sup ¢F (y(nvt)m )] SE[§ZE+pnﬂ —|—2pE[ sup |MI|+ sup |M?|} (A.48)
t€[0,77] S€[7s,7i] s€[Ti, i)
Similar to (A.39), the Burkholder-Davis-Gundy inequality, Young’s inequality, (A.36)), (1.5, (A.44]) and (A.47) imply

that
A 3 o 3
) ([ erromzie) vy ([ [ o)
T (T3,7i] J X

298| sup 21+ s M2 <copt

s€[7i i s€[Ti,7il
1
<SP e [ oz [ [ ey
1 nlE n n n n
< B3P0 BlE+ & +if) +eu@)E [ vrps (A.49)

As E[(924¢)P] <oo by (A.37), plugging (A.49) back into (A.48) yields that E[(Q)Zi*i’e)p} <¢FE| 3€+€? +n]+
Cpl/(X)Eszi Y2 |Pds. Then Young’s inequality, (A.44) and (A.47) imply that

E{(/7 IZ;‘2ds)5+/:/x|ug(m)Pu(dx)ds]<E (m”)()(f (y")IZ”Fds) +/ /\u" )Py (dz)d ]

2 n,i,e p n p—2 n n|2 n n p
< TE[( ) }+§E/ L2V ZY ds+E/T_ /XWS (z)|Pv(dx)ds (A.50)

i

~ Yi
< B ;fg+§?+ny]+cpu(X)E/ |V [Pds.
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Summing up i€{0,--- , N} and letting € — 0, we see from (A.46]), Holder’s inequality and (A.34]) that

iE[(/ |Z”|2ds) //\m |pu(dx)ds}<cpZE§"+m" +epu ZE/ V" [Pds

= =0
N Vi % Vi ; -
cofssia o] [ ol o [ el s
=0 Ti Ti
where 97 := V7, [P +-v(X f% y”|pd5+f% yrp- 1dKC—|—X:Se (rivi] V5 1P IAK,.

The Holder’s inequality and (A.2)) imply that
T % T -
E(/1 120 zgwczs)]+E//1 1 e (o) oy U ()| 5 1 (dae)dis
[ T T b G o Jut{oe S o} HE @0 U (@) ()

P(QZW) T L -z
n|2 4 n|| 5
(/ etir®) ) o g geene) el

N I 1-% e N 1-z e
el (L) |} 12t e S} el
i=0 i=0
AT (12T (6T 41215, ) + (@) T (2T ) (6T + T2 )=o),
Then we can deduce from , 7 and that

T
E[(/ 27(=ds)” / /\u” ki )ds]

E 1, « 1zn>| 27 : E 1 (a =R

S |: /O {Seigo(’)’iﬂ'i+1]} {IZS|2)\}| S| ds :|+ / / {SEU(% T1+1]} e @ ‘>/\}|u ( )| ( )ds

N Vi 3 Vi
n|w 2 n r= w b r=
+ZE[(/ 12020 27 ds) +/, /}(1{‘%%1)@”% (2)|% V(dac)ds] A=T)% 4 AT u(X)T

Ti

)+ AP(F _1)ZE[(/ 27 ds) : //|un |pz/(dx)ds}+/\ (T5 +0(X)T)
< 0N+ A (TH +(X)T) +0(F (ZE o] +Z{ [ / |y:|pd5]};(Cri+||b||1LP([0,T]xQ,@,dtde;R)))+Cp/\.

Since Young’s inequality, the monotonicity of sequence {Y"},en and (1.7)) show that
~ ~ 1 1 ~
I < )T+ (R~ Kr) < (14— +0(X)T) sup (X,= P+ KE
q t€[0,T] p
1 14
< <1+7+V(X)T> 271 (XP+(Y})P)+~KE, VneN, (A.52)
q p

letting n — oo, one can deduce from the dominated convergence theorem, (A.4), (A.3)) and (A.31) that

T 2
hmE[(/ |ZQ—ZS\% ’ //\U" —U,( )”z’”y(dx)ds]gg(A)+A”5”(T§+u(X)T)+cpA.
0

n—oo

As A — 0, we obtain

n—oo

T 2
limE[(/ |Z§L—Zs\wds ’ / U () —Us( )"zwu(da;)ds]zo, (A.53)
0

which shows that U™’s strongly converge and thus weakly converge to U in U%. On the other hand, the weak
convergence of U™s to U in UP implies that U™’s also weakly converge to U in U’z . So by the uniqueness of weak
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hmlt of {U"}pen in U™, one has Uy (z) =Uy(z), dt x dP X v(dz)—a.s. Consequently, follows from (A.53)), and
shows that K = K GKP This together with (| - IA.21)) eventually leads to
6) Suppose further that Y has only inaccessible jumps. As K is an F— predlctable process, we see from that
K has no jump or K is a continuous process.

We fix n € N and reset (Y, Z",U"):=(Y"—Y,Z"—Z,U"—U). Analogous to (A.35) and (A.3G), it holds for
P—a.s. we) that

AV (w)=1(ep, ., U" (t,w,pi(w)), Vt€[0,T] and {te[0,T]: Vi (w)#V{(w)} is a countable subset of [0, T]. (A.54)

Let (t,e) €0, T]x(0,1]. We see from (A.37) that the process 9);"°:= sup ¢.(Y7), t€[0,T] satisfies
s€(t,T]
B[(05<)] <5 swp | et =g, et <o (A.55)
s€[0,T]
Subtracting (A.5)) from (A.1) and applying It6’s formula to ¢?();*) on the interval [t, T yield that P—a.s.
PR+ / D2 (V|2 Pdst 3 (2D (Vi) - Dagh (V2 )AVY)

se(t,T)
T T
— (Vi) +p / 2PN (b7 —b,)ds+p / 2 (YMY(AKT — ) — p(ME— M+ ME— M), (A.56)
t t

where M™ and M™ are uniformly integrable martingales as defined in (A.38)). Similar to (6.57)), Taylor’s Expansion
Theorem and the first part of (A.54]) imply that P—a.s.

Z (@?(3’3)*@g(y?_)*Dsﬁg(y?_)Ayﬁ > 2p3p(p1)/(t T]/Xlﬂy:g|u;(x)|}|U§L($)}2(|U§L($)|2+5)gle(d87d$)~

s€(t,T)

Then we can deduce from (A.56), (A.42) and (6.54) that

p
2

T T
p - - 2 -1
so’é(y?)+§<p—1)/ PrR (V|2 Pds+2 3p(p—l)/ /Xl{\y:,|§|u:<z)\}luﬁ(9«“)\ (I () +2) > Ny(ds, dx)
¢ t
<€ —p(Mf—MP+Mp—My), P-as., (A.57)
with &7 ::@é’(y%)+pf0Tg0§’l(y§)|b2—bs\ds+p fOT\ymP*lsz. So letting t=0 and taking expectation yield that

L1 2
v(dx)ds <
(dz) “pp-1)

T T
— n n — n 2 n n
E/O P2 (V|21 Pds+2P 2E/O /Xl{\ygjgug(mn}fus (@)]" (2 (@)]*+e) E[¢]. (A5B8)

Similar to (A.45) and (A.46[), the monotone convergence theorem shows that

e—0

T vy T
lim EA /){1{%‘SW(I)”|ug(x)|2(|ug(x)\2+s) : z/(dx)ds:E/O /Xl{wl‘S‘ug(m)”|Z/l;1(x)|pz/(dx)ds
while Young’s inequality, (A.55)) and the dominated convergence theorem imply that
lim E[¢7] = B[£,], (A.59)

where &, := | V[P +p ftT |V P —bs|ds+p f0T|y;‘|p_1sz. So letting £ —0 in (A.58) and using the second part of
(A.54) yields that

T T T
E/ /X \u:<x>|Pu<dm>dsSE/ / 1{|yg,\g\u:w|uy<x>|pu<dx>ds+E/() /X 10z oy <iyn V™ Po(da)ds

23-p

= p(p—1)

E[&]+v(x E/ Vs [Pds. (A.60)
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Now, fix € € (0,1] again. Using similar arguments to those that lead to (A.48) and (A.49), we can deduce from
(A.57), (A.58)) and (A.60) that

B[(5)"] <Ble] +2pE[ sup [M+ sup M"] LB+ e B+ €] +epl / Pds.

s€[0,T] s€[0,T]

As E[(97°)P] <oo by (A55), similar to (A-50), Young’s inequality, (A.58) and (A.60) imply that

E[(/OT |Z:2d8)§+/OT/X|US(I)|”V(dx)ds}§22pE[( g’s)p}JrgE/OTgog2(3{?)|Z:|2ds+E/OT/X|usn(z)|pV(dx)ds

<c,E [55 —|—§n +epv( E/ | Vi |Pds.

Letting £ — 0, we see from (A.59) and Holder’s inequality that

E{(AT|Z§|2ds)g+/0T/X|Z/{;L(:z:)|py(dx)ds] ScpE[ﬂn]—Fcp{E[/oT |y:”ds}}é{E[AT|bg—bs|Pds}};,

where 0, := |V} [P +v(X) fOT |yf|pds+f0T|y§|p’1sz. Since an analogy to (A.52)) shows that
1 1
O < (v (YO + ()P K < (14 AT (X2+(v1)) +§K§i, VneN,

letting n — oo, one can derive | - ) from the dominated convergence theorem, and (| - (]
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