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Abstract Given p € (1, 2], the wellposedness of backward stochastic differential
equations with jumps (BSDEJs) in L? sense gives rise to a so-called g-expectation
with L” domain under the jump filtration (the one generated by a Brownian motion and
aPoisson random measure). In this paper, we extend such a g-expectation to a nonlinear
expectation £ with L” domain that is consistent with the jump filtration. We study the
basic (martingale) properties of the jump-filtration consistent nonlinear expectation £
and show that under certain domination condition, the nonlinear expectation £ can be
represented by some g-expectation.
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1 Introduction

The Allais paradox and the Ellsberg paradox prompt people to develop a nonlinear-
expectation version of von Neumann—Morgenstern’s axiomatic system of expected
utilities, a fundamental notion in the modern Economics. Motivated by such a gener-
alization, Peng [28,29] introduced the so-called g-expectations &, with L2 domains
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via backward stochastic differential equations (BSDEs) with generator g. These two
seminal works and some following research ([5,6,10,31,36] among others) showed
that the g-expectations are closely related to axiom-based coherent and convex risk
measures (see [1,17]) in mathematical finance.

Let FB = {f,B}le[o,T] denote the Brownian filtration. Coquet et al. [10] general-
ized g-expectations with domain Lz(]-'ﬁ) to Brownian-filtration consistent nonlinear
expectations (FZ-expectations for short) with domain Lz(}'f ) and systematically
analyzed them using the BSDE theory. These authors demonstrated that under the
following domination condition

E[E]— EM < Eenl€ — ), V&, ne LX(FE) (1.1)

with g* = p|z| for some pu > 0, a nonlinear expectation £ can be represented by
a g-expectation with domain L2(.7-'ﬁ ) or solutions of BSDEs with generator g and
square-integrable terminal data.

Let p € (1, 2]. Based on our study [41] on L? solutions of backward stochastic
differential equations with jumps (BSDEJs), we generalized the notion of (conditional)
g-expectations to the jump case with .” domain and studied their properties in [40].
In the present paper, we further extend these g-expectations to a general class of
nonlinear expectations £ with IL” domains that are consistent with the jump filtration
F = {F}ie0,7] generated by the Brownian motion B and the independent Poisson
random measure Ny.

1.1 Main Results

An F-consistent nonlinear expectation (or F-expectation for short) is a family of
mappings £ = {5 [-|]—',]} €0, satisfying “monotonicity”, “constant preserving”
“consistency” “zero-one law”.

When a translation invariant F-expectation £ with domain L? (F7) is dominated
by some gs-expectation (see (2.3)) in sense that

ElE] = Enl = Egelé —nl. V& me LV (Frp), (1.2)

the corresponding £-martingales still possess many classic properties such as “optional
sampling” (Proposition 3.4) and “Doob—Meyer decomposition” (Theorem 3.1). For a
translation invariant F-expectation £ with domain L? (Fr) under domination (1.2), if
the Brownian motion and the Poisson random measure have independent increments
under &, the F-expectation £ can be represented by a g-expectation with a deterministic
generator g that is independent of y and Lipschitz in (z, u) (see Theorem 4.1 for
detailed description).

The significance of such a representation result might be more notable from the
following consequence in mathematical finance: In a market with jumps, any coherent
or convex time-consistent risk measure p = {p;};¢[0,7] With L” domain that satisfies
the required domination condition can be represented by the L.”-solution of a BSDEJ
with a deterministic Lipschitz generator g. Then one can utilize the BSDEJ theory
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to analyze the risk measure p and employ numerical schemes of BSDEJs to run
simulation for financial problems involving p.

1.2 Main Contributions

The key to our main representation result (Theorem 4.1) lies in establishing a Doob—
Meyer decomposition for F-expectations.

Let g% be a special Lipschitz generator satisfying (2.3) with § = 0 and
let £ be a translation-invariant F-expectation with domain L”(F7) that is domi-
nated by the g=0—expectation in sense of (1.2). Since each £-martingale X is a
250 —supermartingale, the upcrossing inequality under the g=° —expectation implies
that X admits a cadlag modification. In particular, taking X, = E[&|F;], we can
deduce from the a priori L”-estimate (2.1) of BSDEJs that £[£|F.] is continuously
dependent on & in L” sense (see (3.3)). Such a continuous dependence is important
for the approximation schemes in proving the optional sampling and Doob—Meyer
decomposition for the F-expectation £ (Proposition 3.4, Theorem 3.1).

Next, we obtain in Proposition 3.3 a semi-martingale decomposition of &-
martingales which states that each £-martingale X can be expressed as X; = Xo —
fo gsds+ [y ZydBs+ [,y [x Us(¥)Np(ds, dx), 1 € [0, T]with —g=0(t, —Z;, —U;)
<g < gEO (t, Z;, Uy). Also, we show in Proposition 3.6 that the generalized BSDE
(3.19) with respect to £ admits a unique p-integrable solution if the driver f(z, y)
is continuous in y. Using these two results, we then derive the Doob—Meyer decom-
position under the F-expectation £ from a priori L”-estimate for a special BSDEJ
(Proposition 2.4) and a monotonic limit theorem of p-integrable jump diffusion pro-
cesses (Theorem 2.4).

By further assuming that both the Brownian motion and the Poisson random
measure have independent increments under £ (see 4. 1)), we can exploit the Doob—
Meyer decomposition and the semi-martingale decomposition of £-martingales to
define a deterministic measurable function g(t, z, u) Lipschitz in (z, ) such that
—f(; g(s,z,u)ds + zB; + f(o’t] f)( u(x)ﬁp(ds, dx), t € [0,T] is an £-martingale
for any (z, u) (see 4. 13)). This allows us to eventually represent the F-expectation £
by the g-expectation with the deterministic generator g (¢, z, u), proving Theorem 4.1.

1.3 Relevant Literature

The BSDEs were introduced by Bismut [4] as adjoint equations for the Pontryagin
maximum principle in stochastic control theory. Since Pardoux and Peng [27] com-
menced a systematical research of BSDEs, the BSDE theory has grown rapidly and
has been applied to various areas such as mathematical finance, theoretical economics,
stochastic control and optimization, partial differential equations, differential geome-
try and etc, (see the references in [11,16]).

Among many extensions of BSDEs, Li and Tang [39] introduced into BSDEs a jump
term that is driven by a Poisson random measure independent of the Brownian motion;
and EI Karoui et al. [16] initiated the study of LL.”-solutions of BSDEs. We analyzed
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L7 solutions of multi-dimensional BSDEJs in [41] while Kruse and Popier [23,24]
studied a similar IL”-solution problem of BSDE under a right-continuous filtration
which may be larger than the jump filtration F. For a survey of the recent development
of BSDEIJs in numerous directions, see e.g. the introduction of Yao [26,41].

Royer [37] extended the g-expectations with L? domain to the jump case and
showed that under a similar domination condition to (1.2), an F-expectation with
domain L2(F7) can be represented by a g-expectation with domain L*(F7). On
the other hand, [44] obtained the representation of dominated FB-expectations with
domain L? (.7-"76) by g-expectations with domain L” (.7-"75 ). Our paper can be viewed
as an extension of Royer [37] to the L”-domain case and a generalization of Zong and
Hu [44] to the jump case, both of which are nontrivial since we have to tackle some
technical hurdles arising exclusively in the IL” jump case (see the “Main contributions”
part in the introduction of Yao [41] for details).

Based on the representation of FZ-expectations by Coquet et al. [10], Delbaen et
al. [12] derived an integral representation for the minimal penalty term of a dynamic
convex risk measure under domination, which further allows [3] to transform an opti-
mal stopping problem under such a risk measure to an equivalent zero-sum game
of control and stopping and thus solve the optimal stopping problem. In light of the
representation of F-expectations by Royer [37], Tang and Wei [38] obtained an inte-
gral representation for the minimal penalty term of a dominated dynamic convex risk
measure with jumps while Quenez and Sulem [35] studied the related optimization
problem under model ambiguity.

There are many other extensions of Coquet et al. [10]’s representation result:
Peng [30] considered an optimal stochastic control problem and showed that any
F2-expectation dominated by the super-evaluation of the control problem is a g-
expectation. Peng [33], and later [42,43], studied the representation of FZ -expectations
with domain L?(F2) (and thus a F2-dynamic pricing mechanism of square-integrable
contingent claims) under a general conditional-expectation version of domination
(1.1), which was statistically tested using Chicago Mercantile Exchange’s data on
options of S&P 500 Futures. In the discrete-time case, Cohen and Elliott [8,9] rep-
resented nearly time-consistent nonlinear expectations by solutions to backward
stochastic difference equations. Bao and Tang [2] showed that under the domina-
tion (1.1), an FB-expection with a floor S can be represented by solutions of a BSDE
with reflecting barrier S. Cohen [7] analyzed the representation of filtration-consistent
nonlinear expectations in general probability spaces.

As to the quadratic case, Ma and Yao [25] studied the quadratic g-expectations (i.e.
g has quadratic growth in z), then Hu et al. [18] represented FZ-consistent quadratic
nonlinear expectations (including a large class of convex risk measures that do not
satisfying (1.1)) by quadratic g-expectations under a different domination condition.
Lately, Kazi-Tani et al. [22] even extended the quadratic g-expectations to the jump
case and provided a dual representation for quadratic F-expectations.

Among various other research on nonlinear expectations, Peng [32] used a nonlinear
generalization of Kolmogorov’s extension theorem to construct a new type of F5-
consistent nonlinear expectations via nonlinear Markov chains, and showed that the
corresponding BSDEs under such nonlinear expectations are well-posed.
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Recently, Denk et al. [15] discussed a maximal extension for convex nonlinear
expectations which admit a representation in terms of countably additive measures.
These authors derived a robust Kolmogorov extension theorem and used it to extend
nonlinear kernels to an infinite-dimensional path space.

The rest of the paper is organized as follows: We introduce some notations in
Sect. 1.4. In Sect. 2, after making basic assumptions on generator g, we review
some properties of g-expectations with L domains under jump filtration such as
optional sampling, upcrossing inequality and Doob-Meyer decomposition. In Sect.
3, we generalize g-expectations to jump-filtration consistent nonlinear expectations
& with IL? domains. When a translation-invariant nonlinear expectation £ satisfies
certain domination condition, we derive some basic (martingale) properties such as a
semi-martingale decomposition of £-martingales, optional sampling and Doob-Meyer
decomposition. In Sect. 4, we discuss the representation of translation-invariant non-
linear expectations under domination by g-expectations.

1.4 Notation and Preliminaries

Throughout this paper, we fix a time horizon T € (0, co) and let (2, F, P) be a
complete probability space on which a d-dimensional Brownian motion B is defined.

For a generic cadlag process X, let us denote its corresponding jump process by
AX; = X; — X;—,t € [0, T] with Xo— := Xo. Given a measurable space (X, Fy),
let p be an X'-valued Poisson point process on (€2, F, P) that is independent of B.
For any scenario w € €2, let Dy () collect all jump times of path p(w), which is a
countable subset of (0, T'] (see e.g. [19, Sect. 1.9]). We assume that for some finite
measure v on (X, .7-";(), the counting measure Ny (dt,dx) of p on [0, T] x X has
compensator E [Np (dt, dx)] = v(dx)dt. The corresponding compensated Poisson
random measure ]Vp is ]Vp (dt,dx) := Np(dt,dx) — v(dx)dt.

For any ¢ € [0, T], we define sigma-fields

FPi=o{Bss<t), FN:=0|{Ny((0,5],A);s <1, A€ Fx},
Fi=o (FPUF)

and augment them by all P-null sets of F. Clearly, the jump filtration F = {F;};¢[0,7]
satisfies the wusual hypotheses (cf. e.g., [34]). Let & (resp. 55) denote the F-
progressively measurable (resp. F-predictable) sigma-field on [0, T] x €2, and let
T be the set of all F-stopping times with values in [0, T']. For any 7 € 7, we set
T, :={yeT:.:y>1, P—as.l.

The following spaces of functions will be used in the sequel:

(1) For any p € [1, 00), let Li[O, T'] be the space of all measurable functions i :
[0, T+ [0, 00) with [ ((1))"dr < oo.

(2) For p € (1,00), let LY := LP(X, Fx,v;R) be the space of all real-valued,
Fx-measurable functions u with |lul| » := ( [y |u(x)|Pv(dx))% < oo. For any
ui, up € LY, we say u) = up if u1(x) = up(x) for v-as. x € &.
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(3) For any sub-sigma-field G of F, let L%(G) be the space of all real-valued, G-
measurable random variables and set

1

.« LPG) = {s e L%9) : gl = |E[E1r])" < oo} for any p e
(1, 00);

o L®(G) = [S e LY%G) : lIEll (g == esssgp|§(a))| < oo].

(4) Let DY be the space of all real-valued, F-adapted cadlag processes, and let K° be
a subspace of DY that includes all F-predictable cadlag nondecreasing processes
X with Xo = 0.

(5) Set Z} . = L}

- e([0,T] x , P.dt x dP: R?), the space of all R-valued, F-
predictable processes Z with fOT |Z,1>dt < 00, P —as.
(6) Forany p € [1, 00), we let
1
o DF = {X e D’ |X|pr = {EIXI1)7 < oo}, where X, := sup |X,| <
tel0,7T]
o0

o KP:=K'ND? = {K e K" : E[K]] < oo}.
1
py L
o« 220 = |72 e B 1Zlge = {E[(J 122 d1)* |} < oo].
° U{LC = LIIZ)C([O, Tl x 2 x X, ﬁ@ Fx,dt x dP x v(dx); R) be the space
of all # ® F y-measurable random fields U : [0, T] x 2 x X — R such that
I L 10 o1Pv(dx)de = [ 1017, dt < o0, P —as.

S| =

o U7 = {U e UP.: Ullur = {EfOT [ U (x)|Pv(dx)dt}
LP([0,T1 x Q x X, Z ® Fx,dt x dP x v(dx); R).

Given U € U{Z’C (resp. U”), it holds for dt x dP — a.s. (t,w) € [0, T] x  that
U(t,w) € LY In virtue of [41, Sect. 1.2], one can define a Poisson stochastic integral
of U:

< oo} =

mY :=/ /Us(x)ﬁp(ds,dx), t€[0,T],
0,11JXx

which is a cadlag local martingale (resp. uniformly integrable martingale) with
quadratic variation [MY, MY, = Joy Jx 1Us (X)|®Np(ds, dx),t € [0, T]. The jump

process of MY is AM{ () = 1j1ep, ) U (1, . pi(@)), t € (0, T]. Forany U € U?,
an analogy to (5.1) of Yao [41] shows that

e|(f, fwrmanan) | <e [ [ ol
(t,s1JX r JX

VO<t<s<T. (1.3)

e Let us simply denote D? x Z>? x U? by SP.

Asusual, weset x~ := (—x)Vv0,x" := xVvO0forany x € R, and use the convention
inf ) := oco. Given p € (0, 00), the following inequality will be frequently applied in
this paper: For any finite subset {ay, ..., a,} of (0, 00),
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n n n

(1w )l = (Ya) < (v ) Sal as

i=1 i=1 i=1

Also, we let ¢, denote a generic constant depending only on p (in particular, ¢q stands
for a generic constant depending on nothing), whose form may vary from line to line.

2 IL? Solutions of BSDEs with Jumps and Related g-Expectations

From now on, we fix p € (1,2] and set g := % > 2.

Based on IL? solutions of a BSDEJ with generator g, we extended the notion of g-
expectations to the jump case with L” domains in Yao [40], and analyzed the properties
of g-expectations. For purpose of the present paper, we will only review the martingale
properties of g-expectations, which are important for our study of jump-filtration
consistent nonlinear expectations with IL” domain in the next two sections.

2.1 L? Solutions of BSDEs with Jumps

A mapping g : [0,7] x @ x R x RY x LT — R is called a p-generator if it is
2 ® BR) ® BRY) ® B(LY)/%(R)-measurable.

Definition 2.1 Given p € (1,2],let ¢ € LO(Fr) and g be a p-generator. A triplet

Y,z,U) e DO x leoc X Ulpoc is called a solution of a backward stochastic differential

equation with jumps that has terminal data £ and generator g (BSDEJ (&, g) for short)
if [ 18(s, Yy, Zs, Uy)lds < 00, P —a.s. andif itholds P — a.s. that

T T
Y, =§& +/ 8(s, Yy, Zs, Ug)ds _/ Zs d By
t t

—/ /Us(x)ﬁp(ds,dx), t€[0,T].
t,T1JX

Let us make the following standard assumptions on p-generators g:

(A1) fOT lg(,0,0,0)|dt € L?(Fr).
(A2) There exist two [0, 0o)-valued, A0, T] ® Fr-measurable processes 8, A with
fOT (B! v A?)dt € L>®(Fr) such that for dt x dP —a.s. (t,) € [0, T] x Q

|8t w, y1,21,u) — g(t, w, y2, 22, w)| < B, w)y1 — 2| + A(r, w)|z1 — 221,
Y (y1,z1), (32,22) € R x RY,
VuelL?.

(A3) There exists a function § : [0, T] x Q2 x R x RY x LY x LY — L7 such that
(i) his Z ® BR) @ BRY) @ B(LY) @ B(LY)/B(L])—measurable;
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(i1) Thereexistk; € (—1,0]and xp > —k suchthat forany (¢, w, y, z, u1, u2, x) €
[O,T]xQxRdefo,’foxX

ki < (bt o, y, 2, u1, u2))(x) < ko

(iii) It holds fordt x dP — a.s. (t, w) € [0, T] x Q that

g(tvwv Y, Z, M]) - g(t’a)’ Y, Z, M2)
< /X (1) — urx) - (B2 @, y. 2. w1 u2)) () v(d).

d
YV (y,z,up,uz) € Rx R x LY x LP.

The parameter quadruplets E := (8, A, k1, k2) described in (A2) and (A3) will be
referred to as a p-coefficient set. When g = 0, it will be particularly denoted by Eo.

Remark 2.1 Let p € (1,2] and let g be a p-generator.

(1) By (A3) (ii), (iii) and Holder’s inequality, (A2) and (A3) imply
(A2’) There exist two [0, co)-valued, [0, T] ® Fr-measurable processes 8, A
with fOT (B! v A?)dt € L*®(Fr) suchthatfordt xd P —a.s. (t,w) € [0, T]x Q

|g(t5 W, Y1, 21, l/ll) _g(t9 W, Y2, 22, 142)’ = ,B(tvw)(b’l - )72| + ”ul - u2||L5)
+A(t )|z — 22l ¥ (s ziou) ERx RO X LY, i = 1,2,
(2) If g satisfies (A2’) and fOT lg(,0,0,0)|dt < oo, P — a.s., then Remark 2.1
(2) of Yao [40] shows that for any (Y, Z,U) € D! x 7% x Uf;c, we have

loc
fOT lg(s, Yy, Zs, Us)|ds < oo, P — a.s.
(3) If g satisfies (Al), (A2) (resp. (A2)), then g(t,w, y,z,u) = —g(t, o, —y,
—z,—u), (t,w,y,z,u) € [0,T] x 2 x R x RY x LY is also a p-generator
satisfying (A1), (A2) (resp. (A2%)). If g further satisfies (A3), so does g.

For simplicity, we set C := | fOT (Lv Bl v A?)dt ”L°°(]-'r)’ and let C be a generic

constant depending on 7', v(X), p, C (and «; if necessary), whose form may vary
from line to line.

For IL? solutions of BSDEs with jumps, we first quote a wellposedness result and
a comparison theorem from of Yao [40, Theorems 2.1, 2.2 ].

Theorem 2.1 Given p € (1, 2], Let g be a p-generator satisfying (Al) and (A2’). For
any & € LP(Fr), the BSDEJ (€, g) admits a unique solution (Ys’g, AR US,g) €SP
satisfying

T p
|Yes |2, + |25 |5, + |USE|E, < cE[ £ + ( /O 12(1,0,0, 0)|dr> }.
2.1)
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Theorem 2.2 Let p € (1,2, t € Tandy € T,. Fori = 1,2, let & € L°(Fr), let
g' be a p-generator, and let (Y', Z!, U") be a solution of BSDEJ (&;, g') such that
Y!'—Y? € D? and that Y)} < Yﬁ, P —a.s. Foreitheri = lori = 2,if gi satisfies (A2),
(A3), and ifgl(t, YZS_i, Zf_i, Ut3_i) < gz(t, Y,3_i, Z?_i, Ul3_i), dt x dP — a.s. on
Iz, vl ,then it holds P — a.s. that Y,1 < Y,2 for any t € [z, y]. If one further has
Y} =Y2 P —as., then

(i) it holds P — a.s. that Y,1 = Ytzfor anyt € [t,y]; o
(ii) itholdsdt xdP—a.s. onllt, ythat (Z}, U}) = (27, U?)and g' (1, Y], Z}, U))
=g*t, Y, ZL, U, i=1,2

2.2 g-Expectations with Domain L? (Fr)

The wellposedness result of BSDEs with jumps in L? sense (Theorem 2.1) gives
rise to a nonlinear expectation, called g-expectations, with domain L? (Fr), which
generalizes the one introduced in Peng [28,29]:

Definition 2.2 Given p € (1, 2], let g be a p-generator satisfying (A1) and (A2’). For
any & € LP(Fr), define

ElE|Fl:=YE8 e LP(Fy), VteT

as the conditional “g-expectation” of £ at time .
When g = 0, the g-expectation is exactly the classic linear expectation: it holds for
any T € 7 and & € LP(Fr) that E[£|F;] = E[£|F:], P —a.s.

Let p € (1,2] and let g be a p-generator satisfying (A1) and (A2’). We know
from Yao [40] that g-expectations with domain L? (Fr) inherit the following basic
properties from the classic linear expectations: Let § € L?(Fr) and v € 7.

(gl) “Strict Monotonicity”: If g further satisfies (A3), then for any n € L?(Fr) with
& <n, P—as. onehas &[&|F;] < E[n|F:], P —a.s.; Moreover, if it further
holds that & [§|F] = &l F¢], P —as., thené =1, P —a.s.

(g2) “Constant Preserving”: If it holds dt x d P — a.s. that

g(t,v,0,00=0, VyeR, (2.2)

and if & is F;-measurable, then & [§|F;] =&, P —a.s.

(g3) “Time Consistency”: Under (2.2), it holds for any y € 7; that &, [Eg [(E1F)] ‘}}]
=& [E1F:], P —as.

(g4) “Zero-One Law”: For any A € Fr, we have 14&E[148|F] = 14| F],
P — a.s.; In addition, if g(¢,0,0,0) = 0, dt x dP — a.s., then &, [148|F;] =
10E &1 F ), P —aus.

(g5) “Translation Invariance”: If g is independent of y, then & [& + n|F;] =
ElEIF] +1n, P —a.s. forany n € LP(Fy).

Now, let us consider two specific p-generators satisfying (A1)—(A3) and their cor-
responding g-expectations:
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Example 2.1 Given p € (1, 2], let E be a p-coefficient set. The functions

¢2(t 0.y 2 1) = Bt )yl + Al @)]z] — iy /){u‘(x)v(dx)

+K2/ ut (x)v(dx),

X

E(t w,y,Z,U) = —g (t w, —u), VY, w,y,z,u)
e[o,T]xQxRdeng (2.3)

are two p-generators satisfying (A1)—(A3) with respect to the same coefficient set &,
where u®(x) := (u (x))jE (See the proof of [40, Example 3.1] for details). It follows
that £ == 5 5, &= &s are two g-expectations with domain L? (Fr).

According to the comparison theorem for BSDEJs (Theorem 2.2), we can bound
the variation of a g-expectation by g=-expectation and g=-expectation as follows.

Proposition 2.1 Given p € (1, 2], let g be a p-generator satisfying (Al)—(A3) with
respect to some p-coefficient set B. For any £, n € LP(Fr), it holds P — a.s. that
ESlE —nlF] < EJEIF] — EnlFi] < E51E — nlFil foranyt € [0, T},

Proof Fix £, € LP(Fr). Set Y, 2L, u') = (Y58, Z58,U%8), (V2 22,U%) =
(Yng zne yn g) and (y3 z3 L{3) — (Yé—n e , ZEm, IS L UsE—m ga) The 22 ®
BR)® %’(Rd ) ® B(LY)/ A (R)-measurability of fg. the 2 measurability of process

V2, the - -measurability of process Z2 and the PRF y-measurability of random
field 2% imply that the mapping

gt o, y.z,u) = g(t,w, y+ V2t w), 2+ 22t ), u + U, w))
—g(t, 0, Y1, 0), 221, 0), U (1, w)),

V(t,w,y,z,u) € [0,T] x 2 x R x R? x LY is also Z @ ZR) @ ZR?Y) ®
AB(LY)/%(R)-measurable.
For (Y,Z,U) = Y' - Y% 2! = 22, U' —U?) e SP,itholds P — a.s. that

T
P [ (e 202U - o692 22 U)as
t

T
—f Zst—f /vs(x)Np(ds,dx), t€l[0,T].
t @,T1JX

Namely, (Y, Z, U) solves the BSDEJ (£ — 1, g). We can deduce from (A2) and (A3)
that dt x dP — a.s.

g(tv YtaZlvﬁl)
28(173),1,3,1’2/{,1) _g(t’ ytzvztzvutz)

—g (r, vzl u}) _g (z, V2, zf,u,l) te (r, V2, z},u})
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¢ (1 V2 2.7
< BT+ A Zd+ [ Tow- (5 (17 22,6 06)) covia)

J— p— _+ [—
< Bel Yl +Az|Zz|+K2LU, (X)V(dx)—KILU, (x)v(dx)
288 (I,Ytaft,ﬁt)~

Since g% also satisfies (A2) and (A3) by Example 2.1, applying Theorem 2.2
with (r,y) = (0,7), (g', Y, Z",U") = (8. Y,Z,U) and (g%, Y%, 72>, U?) =
(8%, V3, 23, U) yields that P — a.s.

ES[E|F) - EEMIFI =Y = V2 =Y, <V} = EzlE —n|Fi],
Vi el0,T]. 2.4)

Multiplying —1 to BSDEJ(n — &, g%) shows that (—y7—6&° _zn-§s%
—U"%:8%) is the unique solution of BSDEJ (¢ —n.2%). So P[ — e =

Yt%‘—n,?, vVt e |0, T]} = 1, which together with (2.4) implies that P — a.s.

EELE|F ] — E8n|Fe] = — (58[7”]:[] - 5g[§|7:t]) > —E=zln — €| F]
— Y EE _yEIE _ELe — B, Yrelo,T).

2.3 g-Martingales

Let g be a p-generator satisfying (Al) and (A2’). We can define martingales with
respect to the g-expectations with domain L? (Fr) under jump filtration.

Definition 2.3 Given p € (1, 2], let g be a p-generator satisfying (A1) and (A2’). A
real-valued, F-adapted process X is called a g-submartingale (resp. g-supermartingale
org—martingale) ifforany0 <t <s < T, E[|X,|”] < ooand [ X|F;] > (resp. <
or=) X;, P —a.s.

ELINT3

The properties of g-martingales, such as “optional sampling theorem”, “upcrossing

inequality” and “Doob—Meyer decomposition”, have been explored inYao [40]. As
they will play important roles for developing the martingale properties of filtration-
consistent nonlinear expectations in the next section, we cite them completely for ease
reference (The following Propositions 2.2, 2.3, 2.4; Theorems 2.3, 2.4 are from Yao
[40, Propositions 4.1, 4.2, 4.3, Theorems 4.1, A.1] respectively).
Proposition 2.2 (Optional Sampling of g-martingales) Given p € (1,2], let g be
a p-generator satisfying (A2), (A3) and (2.2). Let X be a g-submartingale (resp. g-
supermartingale) with E[X!] < oo and let t € T, y € T;. If X is right-continuous
or if T, y are finitely valued, then
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Egl Xy | Fe] = (resp. <) Xz, P —as.

Let us review the notion of number of upcrossings for presenting the upcrossing
inequality of g-martingales: Given a real-valued process X and two real numbers

a < b, for any finite subset D = {t; < --- < t,,,} of [0, T'], we define the “number
of upcrossings” Up(a, b; X (w)) of interval [a, b] by the sample path {X;(w)};ep
as follows: Set m’ := [%| and 19 := —1. For i = 1,...,m’, we recursively
define

Di—i(@) :==min{t € D: 1 > mi_2(w), X;(w) <a} Aty €T and
7p; () := min {t eD:t>ni_1(w), X(w) > b} Atm €T,

with the convention min ) = oo. Then Up(a, b; X (w)) is defined to be the largest
integer i such that 75 (@) < t,. To wit, Up(a, b; X (@) = 3721 Ly (@) <t)-

Proposition 2.3 (Upcrossing Inequality of g-martingales) Given p € (1, 2], let g be
a p-generator satisfying (A2), (A3), (2.2) with respect to some p-coefficient set E, and
let X be a g-supermartingale with E[X%] < oco. For any real numbers a < b and any
finite subset D = {t] < --- < ty,} of [0, T, the upcrossing number Up(a, b; X) of
interval [a, b] satisfies

3C

3C
E[ln (1 + Up(a, b; X))] <In {be_aé‘g[(Xtm —Cl)_] + |Z|ia + 1}

+%5+ (k2 — In(1 + k) ) (X)T.

Theorem 2.3 (Doob—Meyer Decomposition of g-martingales) Given p € (1, 2], let
g bea p generator satisfying (2.2) and (A2). Assume that g also satisfies (A3) with

fo 2 pdt € L®(Fr)ifp e (1,2), orwith A =kp €[0,00) if p=2.If X € DP
is a g -supermartingale (resp. g-submartingale), then there exist unique processes
(Z,U,K) € Z>P x UP x K? such that P — a.s.

T T
X; :XT+/ g (s, Xy, Zs, Us)ds_/ Zsd By
t t

—/ / Us(x)ﬁp(ds,dx) + K7 — K; (resp. — Kt + K;), t€][0,T].
@.T1JXx

The Theorem 2.3 relies on the following a priori IL”-estimate to a special BSDEJ
and generalized monotonic limit theorem of jump diffusion processes over D?, both
of which are crucial for the proof of the Doob—Meyer decomposition under nonlinear
expectation £ (Theorem 3.1).

Proposition 2.4 Given p € (1,2] and & € LP(Fr), let g be a p-generator and let
X be a real-valued, ¥-adapted cadlag process with Xt eD?P. Let (Y,Z,U,K) €
D? x 72 x UP  x KP satisfies that P — a.s.

loc loc
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T T
Yt=§+/ 8(s, Y, Zs, Us)ds+KT_Kt_/ Zs d By
t t

—/ /Us(x)ﬁp(ds,dx), t€l0,T] (2.5)
.71/ X

T
/ lyy,_>x,_ydK, =0.
0

If there exist three [0, co)-valued, P[0, T] ® Fr-measurable processes {, B, A with
I fedt € LP(Fp), [} (1 v A2)dt € L(Fr) such that

8(t. Ve, Zo, UD| < o+ B (1Yl + WUl ) + AdlZel, di x dP —ass., (2.6)

then (Z,U) € 7%P x UP and

T
1Ylg, +12]7.., + 1UIG, + EIKF] < CE[ISI” + (fo fudt) + (X:)"].

Theorem 2.4 Given p € (1,2], let {Y"},eN be a series of jump diffusion processes
in form of

t t
Y=Y} —/ grds — K +/ ZYd By
0 0
+ / / UM(x)Ny(ds,dx), Vit el0,T],
©0,11JX

where

@) {(g”, AL U")}nEN isboundedian([O, TIxQ, P, dt xdP; R) x 72:P x UP,
i.e. there exists a C > 0 such that

r ’
<E/ Igﬁlpdl> +1Z"Mz20 + 1U"lur < C, Vn € N;
0

(i) Foranyn € N, K" is an F-adapted, continuous increasing process with Kj = 0
and K7 € LP(Fr);
(iii) Y" is an increasing sequence that is bounded above by some X € ID)_P, ie.
Py <y < X, VYt €[0,T]} = 1 foranyn € N. Then Y, := Tim Y/,
n— oo
t € [0, T'] is a process of DP that satisfies

P{Y, = lim  ¥" < X,, Y1 e 0, T]} —1, 2.7

n—oo

and possesses the following decomposition: There exists (g, Z, U, K) € LP ([0, T] x
Q, P, dt xdP; ]R) X Z2P x UP x KP such that P — a.s.
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t t
YZ = Y() _/ gsds — K[ +/ ZSdBS
0 0

+/ /Us(x)ﬁp(ds,dx), Vi elo,T], (2.8)
0,11/ X

and that for any w € (2/p,?2)

T % T ygoa
lim E|:</ |ZY —Zs|wds) —i—/ / U (x) — Us(x)|12v(dx)ds:| =0.
n— oo 0 0 X

Moreover, if Y has only inaccessible jumps, then K is a continuous process and

T 5 T
lim E|: (f |z — Z‘Y|2ds> i +/ f U (x) — Ux(x)lpv(dx)dsj| =0.
n— o0 0 0 X

2.9

3 Filtration-Consistent Nonlinear Expectations

In this section, we generalize g-expectations to a so-called “filtration-consistent non-
linear expectation” as in Coquet et al. [10]. A large class of nonlinear expectations, such
as risk measures or monetary utility functionals, play important role in mathematical
finance.

3.1 F-Expectations with Domain L? (Fr)

Definition 3.1 Let p € (1, 2].

(1) We call a mapping £: LP(Fr) — R a “nonlinear expectation” with domain
LP (Fr) if it satisfies
(1) (Strict Monotonicity) For any &, n € LP(Fr) with&é < n, P —a.s., £[€] <

E[n]; If one further has £[§] = £[n], then & = n, P — a.s.
(ii) (Constant Preserving) E[c] = ¢, Vc € R.

(2) A nonlinear expectation £ on L? (Fr) is said to be “consistent” with the filtration
F if forany & € LP(Fr) and ¢ € [0, T], there exists an n = n(§,t) € LP(F;)
such that £[14&] = &£[147] holds for any A € F;. By the strict monotonicity,
one can check as usual that such a random variable 7 is unique. We will denote
it by £[£|F;] and refer to it as the “filtration-consistent conditional nonlinear
expectation” (or simply F-expectation) of &.

(3) Given an F-expectation {E[| 7]}, c(0.71 With domain L?(F7), a real-valued, F-
adapted process X is called an £-submartingale (resp. E-supermartingale or &-
martingale) ifforany 0 <r <s < T, E[|X;]|”] < oo and

E[Xs|Fi] = (resp. < or =) X;, P —as.
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(4) We say an F-expectation {5 [~|.7-}]} 1e[0.7] with domain L? (F7) to be “translation
invariant” if for any & € L?(Fr),any t € [0, T] and any € L? (F;)

ElE +nlF]1=CEEIF]+n P —as.

Similar to Peng [31, Proposition 2.2], any F-expectation {5[~|}}]}[€[0 7] with
domain L? (F7) possesses the following properties: Let &€ € LP(Fr) and t € [0, T'].

(F1) “Monotonicity”: Forany n € LP(Fr)withé < n, P —a.s., E[E|F;] < E[n|F],
P —as.

(F2) “Constant Preserving”: If £ is F;-measurable, then £[&|F;] =&, P — a.s.

(F3) “Time Consistency”: For any s € [t, T], 5[5[.§|fs]|f,] =E[E|F], P — a.s.

(F4) “Zero—One Law”: For any A € F;, E[146|F;] = 14E[E|F:], P — a.s.

Example 3.1 Let p € (1,2].

(1) Let i: R — R be a strictly increasing continuous function with #(0) = 0 and
satisfying |h(x)| < C(l + |x|1’), Vx € R for some C > 0. Then £[§|F;] :=
h_l(E[h(S)lft]), V& € LP(Fr), Vt € [0, T] defines an F-expectation with
domain L? (Fr).

(2) Let g be a p-generator satisfying (A2), (A3) and (2.2). One can deduce from

(g1)—(g4) and (2.1) that the g-expectation {€,[ |]-',]}t€[0 7 is an F-expectation

with domain L? (F7) such that E|: sup |5g[§|.7-",]|pi| < CEJ[|&|P] for any & €
tel0,7T]
LP(Fr).

Next, let us introduce the notion of the domination of F-expectations with domain
LP(Fr).

Definition 3.2 Given p € (1, 2], let E be a p-coefficient set. We say an F-expectation
{5[~|.7:,]}t€[0 T with domain L? (Fr) is “£;-dominated” if (1.2) holds.

Example 3.2 Given p € (1,2], let g be a p-generator satisfying (A1)—(A3) with
respect to some p-coefficient set E. We see from Proposition 2.1 that the g-expectation
{&l |]-",]}t€[o 71 With domain LP(Fr) is £z-dominated in sense of (1.2).

What follows is a conditional expectation version of £ Eo—domination.

Proposition 3.1 Given p € (1,2], let E be a p-coefficient set with B = 0, and let
{5[-|.7-',]}t€[0 T be a translation invariant F-expectation with domain LP (Fr) that is
530 -dominated. Then it holds for any &, n € LP(Fr) and t € [0, T] that

E_[E—nF]<EEIFI-EMFI<E

Eo

EO[S —n|F], P —as., 3.

and thus that

E[ €117 - EmIF)|"] < CE[lg - ni7] (3.2)
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Proof Fix n € LP(Fr).

(1) By the translation invariance of £, the mapping
El0] = EMm+0]1—EMl, Y& e LP(Fr)

satisfies the “strict monotonicity” and the “constant preserving” in Definition 3.1
(1), and is thus a “nonlinear expectation” with domain L? (Fr).

Given ¥ € L”(Fr) and t € [0, T], we claim that ,[9|F;] = E[n + 9| F] —
E[n|F:]: To see this, we let A € F;. By (F4),

El + 10| F] = 1€ + 140 Fi] + 1ac€ln + 140 | F;]
= Ean + 140 | Fi] + EMacn| Fi] = 1€ + P F1]

Then (F3) and translation invariance of £ imply that

E1a(Eln + 91 F ] = EMIF)] — & [140]

=E[n+1a(En + 1 F] — EMIFN)] — Eln + 140]
= £[e[n+ 1a (€l + 9171 - EIF)|F]]| - €l + 1491
= E[EMIFN + 1a(Eln + 91 F] — EMIF])] — Eln + 149 ]
= E[1ac&MIFi] + 14E + 91 F]] — Eln + 140]
=E[En + 149|171 — Eln + 1491 = 0,

proving the claim. Thus {8 [ |]—',]} 1€[0.7] forms a F-expectation. Moreover, the
translation invariance and the 5 dommatlon of £ lead to those of &,.

(2) Next,leté € LP(Fr),t € [0, T] andsetA {&nlE —nIF] > Eg 6~ |7} €
F;. Since &y[¥] < 530[19] for any © € LP(Fr) and since lA(&,[S —n|F] -
Eg,l6 — nlF1) = 0, P — a.s., we can deduce from (F1)-(F4), the translation
invariance of &, and (g2), (g3), (g5) of g=°-expectations that

0 = &101 < &[14(&)1& — nlF] - €, [6 — 1l 7]
= &[EMAE — DIF] — &g [1aE —n)IF]]
= &[&[1a€ =) — &5, 14 — I F|F]|
E[14(E — ) — E5 114 — mIF]]
< sgo[u(s — - 550[1A<s —nIF]]
= &g, [E2,[10E =) — &5 a6 = 17|17 ]

= &g, [Eg,Ma € — m|F] = Eg [1aE — mIF]]
= &g, 101 =0.
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Then the strict monotonicity of &,[ ] implies that 14(&,[§ — nlF] — Eg,lE =
n|F:]) =0, P—a.s. Itfollowsthat P(A) = Oorequivalently, £[&|F;1-E[n|F] =
Eglg = nlFil < €5 [ —nlFi), P —as.

(3) Let&,n € LP(Fr). If (Y, Z, U) is the unique solution of BSDEJ (n — &, g=0),
multiplying —1 shows that (=Y, —Z, —U ) is the unique solution of BSDEJ (é —
n,g%0). Namely, P{ — £_ [n — &1F]1 =&, [§ —nlFl, Yiel0, T} = 1Tt

follows from the 8 N donnnatlon of £ that =0

Enlg —nl = 6] = Enl = —(Elnl = E18]) = =& [n — &1 = € [€ —nl.

=0

Forany € [0, T], using similar arguments to those in part 2) yields that E[£ | F; ] —
EMFi] = &l —nlF] = 550[5 — n|F:], P — a.s., which proves (3.1). Then
one can deduce from (2.1) and Example 2.1 that

E[|E[E1F] - EMIFT]
< E[|€5,16 = nIF|" v [Eg € —nlF)|"]

<E[ sup [E5,[& = nlF|" + sup |5~ [s—mfs]y”}
s€[0,T]

<CE[lE —nI”].

3.2 £-Martingales

In this subsection, we will study basic properties of £-martingales such as optional
sampling theorem and Doob—Meyer decomposition. All of them rely on a path regular
result of £-martingales as follows:

Proposition 3.2 Given p € (1,2], let E be a p-coefficient set with B = 0, and let
{5 [- |.7-',]} ref0.T be a translation invariant F-expectation with domain LP (Fr) that is
& =N -dominated. Then each €-martingale admits a cadlag modification. Consequently,
we are able to upgrade the inequality (3.2):

E[ s[ng E[E1F ] = EmIFA|” ]sCE[ls—nV’], V& nelP(Fr). (33)
te

Proof Set Dr := (k27" € (0, T) : k,n € NyU{0, T}. Clearly, ¢, (1) := S AT €

Dr, YVt € [0,T], Vn € N. Let X be an £-martingale with E[X?] < oo and define
the right-limit process of X by

X, = lim X+, €[-00,00], Vtel0,T].

n— o0

The right-continuity of filtration F implies that the process X is F-adapted.
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(1) Forany0 <t <s < T,_applying (3.1) with (&, n) = (X, 0) and using (F2) yield
that X, = E[X|F;] > 880 [Xs|F:], P—a.s. So X is also an g=0-supermartingale.
We claim that

PIX, = limX +  €R, Vte[0,T]}=1. (3.4)
n— 00 qn (1)

To see this, we let —00 < a < b < oo and let {D, },,en be an increasing sequence
of finite subsets of D such that UD, = D7 and that T € D,, for any n € N.
n

Since Example 2.1 shows that 220 also satisfies (A2), (A3) and (2.2) with the
same coefficient set £, applying Proposition 2.3 with g = g=°, we obtain that
foranyn € N

Q)

3

N |a|e3C
E[ln(l + Up, (a, b; X))] <In Egola™ +1Xrl] + 5 +1

b—a —a

_|_

N | =

C+ (/Q —In(1 —}—/q))v(X)T < 00.

As lim 1 Up,(a, b; X) = Up,(a, b; X), the monotone convergence theorem
n—0oo
implies that

E[ln(1+UDT(a,b; X))] = lim 1 E[ln(1+UDn(a,b; X))]

€3C
<In {b _a(gE()[a+ + |XT|] + |a|) + 1}

+ %5+ (k2 — In(1 + k1) )v(X)T.

So Up, (a, b; X) < oo, P —a.s. Using a classical argument (see e.g. [21, Propo-
sition 1.3.14]) leads to that

lim Xs;and lim X exist and are finite for any ¢ € [0, T'].
s /'t,s€Dr s\¢,s€Dr

Then (3.4) follows, and thus one can regard X as a real-valued, F-adapted cadlag
process.

(2) Next, fixt € [0, T]. Forany n € N, applying (3.1) with (¢, n, 1) = (X1, 0, ¢, (1))
and using (F2) yield that P — a.s.

Xgro|” = |E[XT|Fpr ) )I” = €5 [ X[ Fo ]IV 1€ 5 [ X[ Fo ]I
sup |5EO[XT|.7-}]|p+ sup |EEO[XT|‘7:S] P= EEo' 3.5)
€[0,T] s€[0,T]

IA

It follows from (3.4) that

X|" = lim X, |" <85, P—as. (3.6)

@ Springer



Appl Math Optim

As (2.1) shows that
E[¢z, ] < CELX7I"l, (3.7)

we see that 5(1 e LP(Fr).
For any n € N, (F2) and (3.2) imply that

E[|€1X,5 0 |F] = Xi|"] = E[ |61 | 7] - €[%:| 7]
< CE[ X, - Xi|"] (3.8)
Since (1.4), (3.5) and (3.6) show that |X ) — X;|” < 2P71(|X " +

]5@!’7 ) < 2”530, one can deduce from (3.4), (3.7) and the dominated conver-
gence theorem that lim E[|an+(t) - 5(\,}17] = 0. It then follows from (3.8) that

lim E[[€[X,¢
n—oo
such that

ar o |.7-",] | ] = 0. So there exists a subsequence {n;};cy of N

X, = lim £[X, folFi] =X, P—as.

i— 00

Therefore, X is a cadlag modification of X.
(3) Let &,n € LP(Fr). We can deduce from (F2), (3.1), (2.1) and Example

2.1 thatE[ sup |5[§|]—",]|"} < E|: sup. (|550[s|ft]|” €z, [E1F1]° )]
te[0,T]

[ sup |5 (171" + sup |5H H¥Al } < CE[|¢]”] < oo, and similarly
1€[0,7]

thatE|: sup |5 nl.ﬁ]\ i| < CE[InIp] < 0.
tel0,T

According to Part (2), the E-martingales {E[&|F;]1}ici0,77 and {E[n]F:1}iefo, 1)
have cadlag modifications, we still denote them by {E[£|F;]}ief0.77 and

{E[n|F:1}ieq0,7] respectively. Using (3.1), (2.1) and Example 2.1 again yields

E|: sup |f:[s|m— [nm]\”]
tel0,T

PyIE P
: E[,:[z?ﬂ( P e

<E|: _77|-7:t]|p+ SUP |5—~ [5_77|-7:z]| ]
tel0,T]

<CE[lE—n|"].

O
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From now on, for any translation invariant, Sao-dominated F-expectation &, we
will just consider the cadlag modification of any £-martingale, which turns out to be
a semi-martingale under P in the following form:

Proposition 3.3 Given p € (1, 2], let E be a p-coefficient set with § = 0 such that
2p

fOT A,zfpdt € L®Fr)ifp e (1,2) or A = kp € [0,00) if p = 2. Also, let
{5 [~|f,]} 1€[0.7] be a translation invariant ¥-expectation with domain LP (Fr) that

is STO -dominated. Fori = 1,2, let X' € DP be an E-martingale, then there exist a

real-valued, F-progressively measurable process g' and (Z', U") € Z*P x UP such
that

() P{xI = xp + [T gids — [[ ZidB, — [, 7y [x Ul(x)Ny(ds.dx), Vi €
[0, 71} = 1.
(2) 22041, Z, U)) < o) < g%(t, 2}, U)), dt x dP —as.
(3) g%,z -72, U} ~U?) < gl —¢? < g%, 2} — 72, U ~U?),dt xd P —as.
Proof (1) Leti =1,2. For0 <t <s < T, (F2) and (3.1) show that
£

JXGF = X[ = EIX(IF] — E01F] < Eg [X{1F ], P —as.

o) o)

Thus X is a g=0-submartingale and a g=0-supermartingale. By Example 2.1,
gEO, §E° satisfies (A2), (A3) and (2.2) with the same coefficient set Eg. In light
of Theorem 2.3, there exist unique processes (Z/, U', K') € Z>P x UP x K?
such that P — a.s.

T T
X; =X, +f g0, Z;, Uj)ds — / Z.dB;
t t

—f f Ul(x)Np(ds,dx) — KL+ K!, t€[0,T], (3.9
¢,T1JX
and there exist unique processes (7, ﬁi, ?i) € 7P xUP x KP such that P —a.s.

T . . T .
X! :X}+/ gEO(S,Z,U;)ds—/ Z.dB
t t
—/ /Xﬁi(x)ﬁp(ds,dxwr?;—?j, t€[0,T]. (3.10)
(.11
Subtracting (3.10) from (3.9) yields that P — a.s.
'r g - g0, =i i
/0 [g°0(s, Zi, U — g%, 7., US)] ds
PN ; —i N\~
:/(; (Z’Y - ZS)dBS ~|—/(0 t]/;((USl(x) - Us(x))Np(ds,dx)
+K + Kt el0,T]. G.11)
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The jump times of the stochastic integral { f(o,z] f X (Ué x) — Ui(x))

N, p(ds, dx)} are totally inaccessible, while the jumps of the F-predictable

1€[0,T] _
cadlag increasing process K’ + K" are exhausted by a sequence {¢!},en of F-
predictable stopping times (i.e. {(t, ) € [0, T1x 2 : AK!(w)+ AK,(w) > O} is
a union of graphs [[¢/]] and these graphs are disjoint on (0, T), see e.g. “Comple-
ments to Chapter IV” of Dellacherie and Meyer [14] or [20, Proposition 1.2.24]
for details). So we see from (3.11) that for P — a.s. w € Q

Lieny ) (AK] (@) + AK (@) =0and 0= Lyep, ) (U — U )t o, pi(@))

+141¢D,p ) (AK! (@) + AK (@), V1 €[0,T].
It follows that P — a.s.

AK! +AK. =0, Yre[0,T] and U/ (x) = U.(x), Y(t,x)€[0,T]x X.
(3.12)

The former shows that the increasing processes K’ and K' have P — a.s. con-

tinuous paths, which together with the latter and (3.11) implies that Z! = 7;,
dt x dP —a.s. and that P — a.s.

i t . . — . .
K}+?§=/ [g50Cs, Zy, U)) — g%°(s, ZL, U |ds, t€[0,T]. (3.13)
0

Hence, both K and K are absolutely continuous processes: there exist nonneg-
ative F-progressively measurable processes a', @' such that P — a.s.

K,’:/ alds, and Kﬁ:/ alds, tel0,T].
0 0

Then we see from (3.9) that the real-valued, F-progessively measurable process
g, = gEO(t, Z,,Uf)—a;,t €0, T]together with (Z', U") leads to that P —a.s.

T T
X, = X5 +/ g.ds —/ Z.d By —/ / U;(x)Np(ds,dx), te€]l0,T].
t t @,T1JX
(3.14)
By (3.13), it holds dt x d P — a.s. that

g%, Z{,UD) =z g = g%, 2, U) —a; =851, Z{, U) + 7
=85, 2. U).
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(2) We know from the proof of Proposition 3.1 that
5[1‘}|,7-",] = S[X%—i—ﬁl}"f E[X |F:], Ytel[0,T], VO € LP(Fr)

is also a translation invariant F-expectation with domain L”(F7) that is SEO-
dominated. Since X} —X? = E[X 1| F1—E[X2|F] = E[X L~ X2 Fil,t € [0, T]
is an &-martingale, an application of (3.14) yields that for some real-valued, F-
progressively measurable process g and (Z U ) € Z*»? xUP itholds P —a.s. that

T T
X}—X?:X}—X%vL/t ’gsds—ft Z,d By
—/ / Us(x)Ny(ds, dx), t€[0,T], (3.15)
@, T1Jx

and that
2504, Z,,U,) <5 < g%, Z,U,), dt xdP —as. (3.16)

As X! — X2 also satisfies that P — a.s.

T T
X=Xt =xp=xp+ [ @l -edds— [ 2=z,
—/ /(Usl(x)—Usz(x))ﬁp(ds,dx), t€[0,T1,
¢, T1JX

an comparlson with (3.15) shows that (gt, Zt) (gt A 212)’ dt xdP —
a.s. and that U,(x) = U, (x) — U,2(x), dt x dP x v(dx)-a.s. Plugging these
equalities into (3.16) yields that

g% (t z! - Z},U,‘—U,Z)
<g —g <g™ (t,Z}—Z,?,U,l—U,z),dtxdp—a.s.

O

Let E be a p-coefficient set with 8 = 0, and let {E[-|F]},. 0.7 be a transla-
tion invariant F-expectation with domain L?(F7) that is EEO -dominated. For any
& € LP(Fr)and t € 7, define £[&|F;] Tf , where Y¢ denotes the cadlag modi-

fication of the £-martingale {5 [&]F:] } 1€[0.T]" Analogous to Proposition 2.2, one has
an optional sampling theorem for E-martingales.

Proposition 3.4 (Optional Sampling of £E-martingales) Given p € (1,2], let E be
a p-coefficient set with B = 0, and let {5[ |‘7:’]}ze[0,T] be a translation invariant
F-expectation with domain LP (Fr) that is Eso—dominated. For any right-continuous
E-submartingale (resp. £-supermartingale) X with E[XY] < oo, it holds for any
T,y €7 that
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Xony < (resp. =) E[X,|F;], P —as.

Proof Letus only consider the £-submartingale case, as the other cases can be derived
similarly. _
Fixt,y € T andlett € [0, T],n € N. Wesett' := t+5; (T —t) fori =0, ---,2",

Al={t<yvi<ifyeFp Al ={t] | <yVi<t)eFpfori=2,---,2",
and define y, := Z%:] Lyt €.
Foranyi =1,---,2" — I, set & := Ly, < Xy, + 1{ynzt,-”+1}Xt,-”+1' Since {y, <

iy = A = 1) € .7-};1 and since l{ynSI,f’}Xyn € .7-};1, (F2), (F4) and the &-
submartingality of X imply that P — a.s.
ELENFr] = Yy E[EN Fur ] + Ly \EL8] 1 Fir ]
= 5[1{%15:,-”})(%1”::;’] + 5[1{Vnzr,-”+l}xt,-"+1 |}—t,«"]
= Ly, < Xy, + Lz (E[Xop 1P ]
= 1y, < Xy, + Lz y X
=Ly, <} Xy, + 1,2 X = &1

Taking [ |F;], we see from (F1) and (F3) that E[£'|F;] = 5[5[51-"|.7:,;t]
E[E"||F;]. P — a.s. It then follows that

F] =

g[XynL?:[] = 5[‘5;1,”-7'}] Z g[sgn,ﬂ]:t] Z e
= Elgg |7l = ElX | Fil = Xi, P —as.

By (32), E[|€1X,, 151 - EX,wil F|” | < CE[1X,, = X,uil?].
Since lim | y, = y V ¢ and since E[X!] < oo, the right-continuity of X and
n— 00
the dominated convergence theorem imply that lim E [|X = Xyvel? ] = 0 and thus
n—oo

li)rr;oEHé’[Xyn |F:] — E[X},Wl}}]!p] = 0. So there exists a subsequence {n} ey of
n
N such that

E[XyvilFi] = lim E[Xyn’_ |F 1> X,, P—as.
j—00 ;

Since {y <t} € F;, (F4) and translation invariance of £ show that P — a.s.
ELXy|Fil = E[Nyy=nXpvr + Ly <n Xy ni| Fr]
= 1y=n&[Xpv| Fe] + 1o Xyne = 1p=nXe + Lyp<n Xy = Xynr.
Hence, it holds except on a P-null set N that EIX)1F] = Xyar, Vit € ([O, T) ﬂ(@) U

{T} and that the paths £[X,,|F.] and X, A. are both cadlag, thanks to Proposition 3.2.
Eventually, it holds on A/ that

E[X)|Fil = Xynr, Y1 el0,T], andthus E[X,|F] = Xepy.

O
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In light of Propositions 3.2 and 3.4, we can extend the properties (F1)-(F4) of
F-expectations.

Proposition 3.5 Given p € (1,2], let E be a p-coefficient set with B = 0, and let
{5 [- |.7-',]} 1€[0.7] be a translation invariant ¥-expectation with domain LP (Fr) that is
SEO-dominated. Then for any & € LP(Fr) and t € T, the following statements hold:

(F1#*) “Monotonicity”: For any n € LP(Fr) with & < n, P — as., E[§|F;] <
EM|F:], P — a.s.

(F2*) “Constant Preserving”: If & is Fy-measurable, then E[§|F;] =&, P — a.s.

(F3*) “Time Consistency”: For any y € Ty, 5[5[§|.7-',,]|.7:f] = E[E|F:], P —a.s.

(F4*) “Zero—One Law”: For any A € Fz, E[1A&|F;] = 14E[E|F], P — a.s.

(F5*%) “TrOanslation Invariance”: Foranyn € LP (Fy), E[E +n|F] = E[E|F]+n,
P —a.s.

Proof Leté € LP(Fr),v € T and y € T;. Applying (3.3) with n = 0 and using (F2)
yield that E[(Tf)p] = E|: sup |€[.§|]—",]|p] < CE[|£]”] < oc. Then Proposition
1€[0.T]

3.4 shows that E[§|F;] = Yi = E[TS|F.] = E[EIEIFNF], P — as., so (F3%)
holds.

Next, let n € LP(Fr) with§ < n, P —as., let{ € LP(F;) and let A € Fr.
Givenn € N, we set ¢/ := 5T fori = 0,---,2", AT :=={0 <7 <t} € ]:t"

Al =1{t" | <t <t} e .7-",l_n fori =2,---,2" and define 1,, := Zi:l lA;z teT.

() By (F1), E[£|F:,1 = Yo, Lo €[61Fn] < S0, L€l Fn] = EIFy, ),
P —as.;

(ii) Since 1 ArC € }",’_n forany i = 1,---,2", one can deduce from (F2), (F4) and
the translation invariance of £ that

on on

Ele|Fe ] =Y 1[I Fp] =Y E[1ar¢|F]

i=1 i=1

27!
= ZIA:@' =¢, P —as, (3.17)

and that
2n 2)1
EE+¢1Fn] =) VaE[E+ 1 Fn] =) E[1art + 1 40¢|Fin]
i=1 i=1
2n
Z 1 E[E|F] + 1a08) = EE|F, 1+ ¢, P —as.
) (3.18)
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(iii) AsANAT e .7-};1 foranyi =1,...,2", (F2) implies that
2" 2)1
LEIEIF,] =) Tanaré[E1Fn] =Y E[lanarél Fy]

i=1 i=1

2}’!
=Y 10 E[148|Fp] = E[148|F,, ] P —ass.
i=1

Clearly, lim | t, = 7. Thus, letting n — oo in (i), (3.17), (3.18) and (iii) leads
n—oo
to (F1%), (F2%), (F4%*), (F5%). O

3.3 Doob—Meyer Decomposition of £-Supermartingales

Let £ be an F-expectation. The Doob—Meyer decomposition of £-supermartingales
requires the study of the following (generalized) BSDE with respect to £

t T
Y,—l—/ £, Ys)ds=5[s+f £, Ys)ds‘]-}}, te[0,T], (3.19)
0 0

whose well-posedness is based on the fixed-point argument and (3.3):

Proposition 3.6 Given p € (1,2], let E be a p-coefficient set with B = 0, and let
{5[-|ft]}t€[0 T be a translation invariant F-expectation with domain L? (Fr) that
is an-dominated. Also, let f : [0,T] x Q xR — Rbea & @ BR)/BR)-

measurable function such that fOT | f(t,0)|dt € LP(Fr) and that for some Cy > 0,
itholds dt x dP —a.s. that |f(t, y1) — f(t, y2)| < C¢ly1 — yal forany y1, y» € R.

Then for any & € LP(Fr), the BSDE (3.19) admits a unique solution Y € D7, i.e.
the unique process in D that satisfies (3.19) P — a.s.

Proof  In the inequality (3.3), the constant coefficient C does not depend on the choice
of £ and 7. To temporarily freeze the form of such a constant, we rephrase it by C in
this proof.

Seta:=2CTP"'C }7 Let L7 collect all real-valued, F-progressively measurable

1
processes ¥ with [|Y || = {E fOT e™|Y,|Pdt}? < oo. Clearly, Lf is a complete
space under norm || ”]Lﬁ-
Fix & € LP(Fr)and let Y € L. Since (1.4) shows that

E[(/OT f . Yr>ldt)p] < E[([()T(lf(z, 0)| +Cf|Yt|)dt)p]

T p T
52P—1E[(/0 |f(t,0)|dt) +c§ZTP—1fO |Yt|sz]

T
—1 P —1ppp—1 p
<P E[(/O |f(t,0)|dt) ]+2P chTry|?, < oo,
(3.20)
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Proposition 3.2 shows that W, (Y) := &[§ + fOT f(s, Yods|F] — fot f(s, Yy)ds,
t € [0, T'] is a real-valued, F-adapted cadlag process. Applying (3.3) with (§,n) =
(5 + [ f(s, Ys)ds, 0), we see from (F2), (1.4) and (3.20) that

E(0.7)']
52”_1E[ sup ‘5[€+/ f(s, Ys)ds

1€[0,T] 1€[0,T]

< 2p—1E[€‘s +fo 75, voyds| + (fo £, YS)|ds)p]

< 2P1E[2P‘C|s|1’ + +2”*IC)(/ | f s, Ys)|d3> } < 00,
0

7]

p ' »
+ sup \/0 £ G5, Yods| }

soW(Y) eD? c LA,

To see that W is a contraction map on L2, we let ) be another process in Lg.
Given ¢ € [0, T], since the translation invariance of £ shows that W,(Y) — W,())) =
& +f,T f(s, Y)ds|F]—E[& +f,T f(s, Yy)ds|F;], P —a.s., one can deduce from
(3.3) and Holder’s inequality that

T p
Fol-eler [ revods }
t

T
scTP”E/ !f(s,Ys)—f(s,ys)lpdsSCT”’]CfE/ |Ys — VsPds.
t t

E[Jw ) - w0’

T
ele+ [ v

<E |: sup f‘t,]

t'€l0,T]

I
Q)

[\f FGs. X0 = £, Y)ds|”

It follows from Fubini’s Theorem that
T
v —w|7, = E/ MW (V) — W, (V) |Pdt
a 0

=/T ‘”E[|\Ilt(Y) v, )| ]d;

/ afE/ |Ys — Vs|Pdsdt
—E/ (m Y|P / ‘”dt)ds
2 Jo

—E/ (™ — DYy —ysl”ds<—||Y VIl

I /\

e 32D

Hence, W is a contraction map on L5 and thus admits a unique fixed point Ye LE.
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Set & i w(7) |l = [v@) - v, <
3|2 =Y, = 3|w(¥) — Y[{, = 0. which implies that W,(%) = %, di x
dP — a.s. Then one can deduce from the right-continuity of ¢ and W,(%) that
P{V, (%) =%, Vt €[0,T]} = 1, namely, % is a solution of BSDE (3.19).

Let %’ € DP be another solution of (3.19). Clearly, P{¥,;(#") = %/, Vit €
[0, T]} = 1 implies that ¥, (#") = %, dt x dP — a.s. Using (3.21) again shows
that | %' — @HL,, = ||w(@’) - ,, <N - @nL,, So |#' — @ul,, =0
or %' =%, dt x dP — a.s. It follows from the right-continuity of % and % 7 that
P{# =%, ¥Vt €[0,T]} = 1. Therefore, % € DP is a unique solution of BSDE
(3.19). O

Given a £-supermartingale X with only inaccessible jumps, by analyzing penalized
BSDE:s with respect to £

t T
Y —l—nf (X — YMds = E[XT +nf (Xy — Y™ds ]—",], te[0,T] (3.22)
0 0

and utilizing Theorem 2.4, we can derive a Doob—Meyer decomposition of X.

Theorem 3.1 (Doob—Meyer Decomposition of E- martmgales) Given p € (1,2], let

B be a p-coefficient set with B = 0 such that f() tz g dt € L®(Fr)ifp € (1,2)
or A = kp € [0,00) if p = 2. Also, let { | Fe] }te 0.7] be a translation invari-
ant F-expectation with domain LP(Fr) that is SH domznated If X € D? is an
E-supermartingale with only inaccessible jumps, then there exists a continuous pro-

cess K € K? such that X + K is an £-martingale.

Proof Let X € D? be an £-supermartingale with only inaccessible jumps.
Fix n € N. Since E[(fOT |X,|dt)p] < TPE[XF] < oo, Proposition 3.6 shows that
the penalized BSDE (3.22) admits a unique solution Y" € D?.

(1) We first show that
P{Y! <X, Vie[0,T]}=1. (3.23)

Let i € N. In light of the Debut Theorem (see e.g. Theorem IV.50 of [13]),
":=inf{t € [0, T]: Y > X; 4+ 1/i} AT defines an F-stopping time. As

T T

Y; = 5[XT —i—n/ (X5 — YS”)ds‘]:T:I — n/ Xy —Yds = Xr, P —as.
0 0

(3.24)

by (F2), the F-stopping time ;" := inf{t € [7/', T] : Y]' < X,} satisfies 7" <
y! < T, P —a.s. And the right continuity of process ¥ — X implies that

Y;lin < Xyl_’l, P —as. (325)
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Since Y§' > X over period [t], /'), we can deduce from (F1*), (F3*), (F5%),
(3.25), the £-supermartingality of X as well as Proposition 3.4 that

r T T
Yh = &| X7 + n/ (X, — yg)ds‘frin] - n/ (X, — YM)ds
! L 0 0

- T .rln
=¢£ 5|:XT + n/ (X5 — st)dS’fy_ni| f,ni| - n/ (Xy —Yds
L 0 ’ ' 0

- yln .[l’l
= |y, +n/0 (X, — Ys")ds‘]-",;z:| - n/o (X, — Y")ds

)

Fon] < X (3.26)

- yin
=& Y;l_n +n/ (XX—YS")dS
L ! !

ft’zt] < S[XV[n

< &Yy,

holds except on a P-null set N/". For all ® €  except on a P-null set ./\N/n,
the paths Y (w) — X.(w) is right-continuous. Given w € {7/' < T} N J\N/,f , the
definition of 7' and the right-continuity of the paths Y (w) — X.(w) imply that
Y"(1/'(w), w) = X(1/"(w), w)+1/i.Comparing this inequality with (3.26) shows
that {z” < T}y N N< c N7, and it follows that {z < T} C N, UAN?. Taking
union over i € N yields that

{Y]' > X,, forsomer € [0,T)} = _UN{Y,” > X, +1/i,
IS

for some ¢ € [0, 7)} € U {" < T} C N, U ( U N)
ieN ieN
So P{Y]' < X;, YVt €[0,T)} = 1, which together with (3.24) proves (3.23).

(2) It follows from (3.23) that K]' := nfOI(XS —YMds,t € [0,T] is an F-
adapted, continuous increasing process with K = 0. By (1.4), E[(K;)” ] <
nPTP2P1E[XY 4+ (Y1)P] < 00,50 K" € KP.

As Y"+ K" € D? is an £-martingale, Proposition 3.3 shows that for some real-

valued, F-progressively measurable process g” and some (2", U") € Z>P x U?,
it holds P — a.s. that

T T
Y;’+K;’=Y¢+K;+/ g;’ds—/ 2148,
t 1t

—f /Uf(x)ﬁp(ds,dx), tel0,T] (3.27)
&, T1JX

and that §50(t, ZH, UM <gl < gEO (t,Z},U}'),dt xdP —a.s. Using Holder’s
inequality, we see from the latter that

gl < A1 Z)| +K2/X U7 (x)|v(dx)

1
< A|Z} +/c2(v()())q ||U,"||Lg, dt xdP — a.s.

@ Springer



Appl Math Optim

Thus, as a p-generator independent of (y, z, u)-variables, g" satisfies (2.6) with
fe = 0.

By (3.23),one has P{Y}" < X,_, Vte€[0,T]} =1,0r P{l{Y,’L>Xt,} =0, Vt e
[0, T]} = 1, which together with (3.27) and (3.24) shows that (2.5) holds with
g=g'and (Y, Z,U, K, &) = (Y", Z", U" K", X7) € DP x Z>? x UP? x KP x
LP(Fr). Applying Proposition 2.4 yields that

Y5 + 222 + 10" |G + E[KDP] = CE[1X717 + (XD)"]
< CE[x?], (3.28)

where the constant C does not depend on .
(3) Next, we show that P{Y} < Y™ 1[0, T]} = L.
Let j € N. By the Debut Theorem again, ;‘j’.’ =inf{t € [0,T] : Y] > Y,’H'1 +
1/j} A T defines an F-stopping time. As Y} = Y?H = Xr, P —a.s. by (F2),
the F-stopping time a]’f = inf{t € [{j’?, T]:Y" < Y,”“} satisfies §j’? < cr]’.l <T,
P —a.s. And the right continuity of process Y" — Y"*! implies that
vh <yht P —as (3.29)

J J

Since Y > Y"*! over period [¢”, o), we see from part (1) that n f;j (Xs —
J

Y!)ds < n fi (Xg = Y0ds < 1+ 1) [} (X — Y/+)ds, P —as. Then
(F1%), (F3%), (F5*) and (3.29) yield that

r T 144
an =& Xr +n/ (X5 — Yv”)ds‘fgn:| — n/ J (X —YHds
J L 0 h J 0 -
]

- g,r_l
<&+ i+ 1)/ "Xy — Y;’H)ds‘}};v}
L/ {;l J

r a o
L 0 0

— o.).l
J
=&\Y +n/ (Xy — Y')ds
L “. I

T
=¢ 5|:XT+(H+1)/ (Xs_st_‘_l)ds)}-a’.l}
0 J

o
—(n + 1)/ (Xs — Y s
0
T
= E[XT +(n+ 1)/ (X, — Ys”“)ds‘]-';;}
0

4
—(n+ 1)/ "Xy — ¥ ds = Y;’,_,Jrl, P —as.
0 J

@ Springer



Appl Math Optim

Using similar arguments to those below (3.26), we obtain that P{Y/" < Yt"+1 ,te
[0, 7]} =1.

Inlight of Theorem 2.4, Y, := lim Y, ¢ € [0, T]defines a process of D? satisfying
n—od

(2.7), and there exists (g, Z, U, K) € ]Lp([O, TIxQ,2,dt xdP; ]R) x 72P x UP x
K? such that (2.8) holds. According to the proof of Theorem 2.4, the process g is the
weak limit of {g"},en in ]LP([O, Tl x Q,Z,dt x dP; R).
Given n € N, (3.23), Holder’s inequality and (3.28) show that
1
cl{e[x:])

n

S

T
0< Ef (X — Y/dt = %E[K?] < %{E[(K%)P]}Tl’ < (3.30)
0

Since itholds P —a.s. that X; — Y/ < X, — Yll, vVt € [0, T] by the monotonicity of
{Y"}nen and since E [, (X, — Ydt < TE[X] + Y 1<TE[1+(X] +Y)?] <00,
letting n — oo in (3.30), we know from the dominated convergence theorem that
E fOT (X; = Ydt = nli)n;OE fOT (X, — Y"dt = 0. This equality and (2.7) imply that
X, — Y, =0,dt x dP — a.s., which together with the right-continuity of processes
X — Y yields

P{X, =Y, Vt€[0,T]} =1. (3.3

So the process Y also has only inaccessible jumps. Then Theorem 2.4 further yields
that K is a continuous process and (2.9) holds.
Let m, n € N. Since Proposition 3.3 also shows that

B2 = ZL U U = — g =870 2 = Z] U = U], di x dP —as.
Holder’s inequality implies that
T
£ lar—atlar
0
T P
< E/ (At|z,m —Z?|+/<2/ |U,m(x)—U[”(x)|v(dx)> dr
0 X
T 2 e T 2
<o (| [ara ) E[([ 1z - zear)
0 L% (Fr) 0
1 T
+277 1 (v )P E/ / U™ (x) — U"(x)|Pv(dx)dt for p € (1,2),
0 X

and similarly that

T 2 T 2
E/ g — g7|’dr < E/ (mz,’" —Z?|+/<2/ U (x) — U,”(x)\v(dx)) dt

0 0 X

T
< 2,(3\5/ |ZM" — Z"2dt 4 23 v(X)
0

T
XE/ /\Uﬁ(x)—u;'(x)fv(dx)dz.
0o JX
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So we see from (2.9) that {g"}, <y is a Cauchy sequence in L.” ([0, Tl x Q, 2, dt x
dP; ]R), let g be its strong limit (and thus weak limit). By the uniqueness of the weak
limit of {g"},eN in IU’([O, TIxQ, P, dt xdP; R), wehave'g, = g;,dt xdP —a.s.,
and it follows that

T
lim E/ lgf — g|"dt = 0. (3.32)
n—oo 0

Foranyn € N,sinceE[(f(ogT] [x IU,”(x)—U,(x)|2Np(dt,dx))%] < EfoT [y |U?

x) — U; (x)|pv(dx)dt by (1.3), we can deduce from (3.3), Holder’s inequality and
the Burkholder—-Davis—Gundy inequality that

E|: sup |E[Y} + K}IF] = EMYr + K7l 71" + sup Y+ K — Y, — K,|”}
t€[0,T] 1€[0,T]

< CE[ sup Y+ K] —Y — Kt|”}
1€[0,T]

T » '
§CE[|Y6’—Y0|”+</O Ig;'—g,|dt) + sup ‘/0 (zy —

1e[0,T]

+ sup ‘/«) / (U (x) — Uy (x)) Ny (ds, dx)‘ ]
t]

te[0,T]
%

T
< CE[|Y3 —Yo|? +TP7! f g — g|Pdt + (/ |z — Z;Izdt)
0 0

+(/ /}U,"(x)—U,(x)|2Np(dt,dx)>2:|
0,71J/Xx

T
SCE[lY(? - Y0|p+Tp_1/ lg; — g/|Pdt
0
T
+(/ Z" — Z,| 2dr / / U7 (x) — U,(x)\”u(dx)dt}
0

Asn — 00,(2.7),(3.32) and (2.9) show that lim E|: sup |5[Y’T“+K¥|]:,]—5[YT+

=00 | 1ef0,T]
KT|.7-'t]|p+ sup |Y[’+Kt” -Y —Kt’p:| = 0. Hence, there exists a sequence {n; };en
1€[0,T]
of N such that

= lim sup |Y" + K" — Y, — K{|

i—00/[0,T]

=0, P—as.,

lim sup ‘5 Y7 + K7 |F)— EYr + Kr|F]

i—>00/[0,T]

which further implies that P{ lim E[Y;' + K7'|F] = E[Yr + Kr|F ], lim (Y +
1—> 00 1—> 00

K;”) =Y+K;, YVt e]0, T]} = 1. It then follows from (3.31) and the £-martingality
of Y" + K"’s that P — a.s.
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EX7 + K7|F] = ElYr + Kr|F] = lim E[Y; + K7/ |F] = lim (Y, + K;")
1—> 00 1—> 00
=Y+ K =X;+K;, Vrel0,T]

Therefore, X + K is an £-martingale. O

4 Representation of an F-Expectation by a g-Expectation

On domain L?”(Fr), We have seen in Example 3.1 (2) that a g-expectation is par-
ticular case of filtration-consistent nonlinear expectations. Inversely, we will show in
this section that a translation-invariant F-expectation under domination (1.2) can be
identified as a g-expectation and thus expressed as the IL” solution of a BSDE with
jump

T T
ElEIF] =& +/ 8(s, Zg, Uy)ds _/ Z d By
t t

—[ /Us(x)ﬁp(ds,dx), t €0, T].
.71/ X

Consequently, one can use the techniques and analytic tools in the BSDE theory to
study filtration-consistent nonlinear expectations which include a large class of risk
measures and monetary utility functionals in mathematical finance.

For the representation of a translation-invariant F-expectation, we additional require
that both Brownian motion B and Poisson random measure N, have independent
increments under £, i.e., itholds forany ¢t € [0, T),8 € (0, T —t]and (z, u) € RY x LY
that

5|:z(B,+5 B+ /X u(x) Ny (ds, dx)‘}',}
]

(148

= 5[z(3t+5 ~ By +/ / u(x)Np(ds, dx):|, P—as. (41
(t,t+8]1 J X

This assumption can be verified by g-expectations with deterministic generators.

Example 4.1 Given p € (1,2],letg: [0, T]x RxR¢ x LY — Rbea A([0,T]) ®
BR) @ BR) ® B(LY)/%(R)-measurable function satisfies

(i) Itholds fora.e.t € [0, T] that g(¢,y,0,0) =0, Vy e R;
(ii) For some c(-) € L%[0, T1, it holds for a.e. t € [0, T] that

g, y1, 21 1) — g(t, y2, 22, )| < c@)(Iy1 — y2l + 21 — 22| + llur — u2ll,r),
YV (yi,ziun), (2,22, u2) € R x RY x LP.

Then (4.1) holds for the g-expectation &,.

@ Springer



Appl Math Optim

Proof Fixt €[0,T),8 € (0,T —t]and (z,u) € R? x LY.

Clearly, Bé = By — B;, s € [t,T] is a d-dimensional Brownian motion over
period [#, T] with B! = 0 while Né ((t, s], A) = Ny ((0, s], A) - Np ((O, t], A),
s € [t,T], A € Fy is the counting measure of p on (¢, T] x X with compensator
E[N!(ds,dx)] = v(dx)ds. And Ni((z. 5], A) := Np((0.s1, A) — Ny ((0. 11, A),
s € [t, T], A € Fy is the corresponding compensated Poisson random measure over
period [¢, T]. For any s € [¢, T], we define sigma-fields

FE = o|Brelt, sy cFE, FV

N

G{Né((o,r],A);r €[t.s]. A e Fx} cF. R ::CT(FF U]:SN[) <

and augment them by all P-null sets of F (In fact, F/ is the collection of all F-
measurable sets with P-measure O or 1). The jump filtration F' = {F{}se(s.7) over
period [z, T] still satisfies the usual hypotheses. Let &' be the F’-predictable sigma-
fieldon [¢, T] x Q. ~

Set & := z(Byys — By) + f(m%l Sy u(x)Nyp(ds, dx) = zB] s+ f(t,t+6] Sy u(x)
ﬁ{a (ds,dx) € .7-'; 15 Wecan deduce from (1.4), the Burkholder-Davis-Gundy inequal-
ity and (1.3) that

IA

_ ~ P
E[1§]P] <27 1E|:|z|p sup |BHP + sup ‘/(ts]/xu(x)Né(ds,dx)‘}

s€t,t+6] s€[t,t+8]

P
cpE[|Z|p5§ + (f / |u(x)|2N;(ds,dx))2]
(t,t+8]1J X

ya
cpl21P5% +CPE[(/ / |u(x)|2Np(ds,dx))2:|
(t,t+8]1 J X

148
Cp|Z|p5g +CpE/ / lu(x)|Pv(dx)dt
t X

IA

IA

cp(I2178% + lull},8) < oc. 4.2)

As g|[;, 7118 adeterministic p-generator satisfying (2.2) and (A2’), Theorem 2.1 shows
that the following BSDE with jumps over period [¢, T']

T T
Vs =& +/ g(”, Vi, Zp Uy )ds _/ Z, dB;
s t

—/ fu,(x)ﬁ;(dr,dx), selt.T]
(s, T JX

admits a unique solution (¥, Z,U) € Dy, ([r, T]) x Zé}p([t, T1) x Ug([z, T1).
Here ]D)g, ([t, T]) denotes the space of all real-valued, F’-adapted cadlag processes

{Ys}sepr. 1) satisfying E| sup |Ys|1’i| < 00, Zi}p([t, T1) denotes the space of all
selt,T]
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P
2

R4-valued, F'-predictable processes {Z}se[r. 7] satisfying E[([tT |ZS|2ds) ] < 00,
and [Ug,([t, T]) denotes the space of all 7 ® Fy-measurable random fields U :

[, T]1 x Q x X — R satisfying E ftT S Us(x)|Pv(dx)ds < oo. In particular, ), is
a real number. o

Since F! C F forany s € [, T], we see that (Vy, Zy,Us) = (Vivs, Lig=1) Zs,
1{S>,}Z/ls), s € [0, T] belongs to S” and satisfies

\)73 = yt\/s
T T -
=£ +/ gr, YV, 2., U)ds — / Z, dBﬁ — / / Z/{r(x)N{,(dr, dx)
t (tvs, T1J X

Vs tVvs

T T
—¢+ [ eevnztar- [ zas - [ [ weoN,@ran
t tVvs (tvs, T1J X

Vs

T T
=&+ / 1{r>t}g(r, Vr, Zp,Uy)dr — / 1{r>t}Zr dB,
s s

[ [ttt Rt an
s, T]1JX

T T
:§+/ g(r’ y”zr’u’)dr_/ 1{r>t}ZrdBr
s s
_/ f ar(x)ﬁp(dr, dx), se€[0,T],
(s, T1JX

which shows that (Y, Z, If) solves BSDEJ (&, g). It follows that &[&|F,] = Vi,
Vs € [0, T]. Taking s = ¢ yields that

& [Z(B,+,; —B) +f f u(x)ﬁp(ds,dx)‘ft]
(t,t+8]1 J X

= &IEIF 1=V = Vi = Vo = EEIF0] = €]

=&, [Z(B,H — B) +f f u(x)Np (ds, dx)].
(t,t+8] J X

]

Let Z([0, T]) denote the Lebesgue sigma-field on [0, T']. We are ready to state one
of the main results of the paper: Under the domination (1.2), a translation invariant
F-expectation with domain L”(Fr) that satisfies (4.1) can be represented by a g-
expectation with deterministic generator g:

Theorem 4.1 Given p € (1,2], let E be a p-coefficient set in which f = 0 and
A =kp € [0, 00). Also, let {5['|'7:’]}te[0,T] be a translation invariant F-expectation
with domain LP (Fr) that is EEO-dominated and satisfies (4.1). Then there exists a
deterministic function g : [0, T] x R? x LY — R that is Z([0,T]) @ Z(RY) ®
%(Lf,’ ) /B (R)- measurable and satisfies
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(1) Fora.e. t € [O, T]! g(t’ 0’ O) = O;
(i) For any t € [0,T] and (z1,u1), (z2,u2) € R x LY, |g(t,z1,u1) —

g(t, 22, u2)| < kplz1 — 22| +K2(V(X))%||M1 —uzllpp;
(iii) Forany& € LP(Fr), P{EIE|Fi] = El&|Fl, t €10, T1} = 1.

Proof (1) Fix 6 := (z,u) € R? x LT We define

t
Yf = —/ gEO(z,u)ds + zB; + / u(x)Np(ds, dx), 7,9
0 X

(0,7]
t

= —f §E°(z, u)ds + zBy —|—/ / u(x)Np(ds,dx), t € [0, T],
0 ©0,nJx

which is a real-valued, F-adapted cadlag process with only inaccessible jumps.
Since Holder’s inequality shows that

1850z w)| v |85z, w)| < Kkalzl + K2 fX lu(x)|v(dx) < Kkalzl
1
+ 2 (VX)) |lullp :=Co, V1 e€l[0,T], (4.3)

an analogy to (4.2) implies that

E[(r))" v (V)| =47 'E |:(KA|Z|T)p + kP TP (0(20))" " ull ] + 27 B

4+ sup (/ /u(x)ﬁp(dt,dx)’p
te[0,T1' J(0,1] J X

-1
< eptealel T+ TP (0())" " fu)?,
10T % + ullf, T} < oo,

Clearly, (Y, z, u) is the unique solution of BSDEJ (Y., g=0) and (79, Z, u) is

the unique solution of BSDEJ (7‘;, §E°>. To wit, Y? is a g%0-martingale and Y’
is a g=0-martingale.

For any ¢ € [0, T], applying (3.1) with (&, ) = (¥, 0) yields that ¥/ =
Sgao[Yﬂ}',] > E[Y?|F1, P —as. So Y? is an E-supermartingale with only
inaccessible jumps. In light of Theorem 3.1, we can find a continuous process
K% e K7 such that Y? 4 K% € DP? is an £-martingale. Then Proposition 3.3

shows that there exist a real-valued, F-progressively measurable process g’ and
(2%, U%) € Z*>P x UP such that P — a.s.

T T
Yy +/ alds —/ 794 By —/ / Ul (x)Ny(ds, dx) + K — K! = v!
t t ¢ T1J X

T T
= YYQ +/ gEO(Z, u)ds — / zd By —/ / u(x)Nyp(ds,dx), vVt € [0, T].
t t t,T]J X

(4.4)
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So it holds P — a.s. that

t
/ (8% (z.u) — gf)ds
0
t
=/ (z—Zf)dBS—i—/ / (u(x) — U (x)) Ny (ds,dx) + K!, Vi e[0,T]
0 0,11 JX

Using similar arguments to those lead to (3.12) and (3.13), we obtain that

P{UY(x) =u(x), Y(t,x) €[0,TIx X} =1 and Z{ =2z, dt xdP —as.
4.5)

Proposition 3.3 also shows that dt x d P — a.s.
80w =82 U)) < ¢ <¢%(Z]. U)) = ¢ w).  (46)
(2) In this step, we define g(t, z,u), t € [0, T] and show that
gf) =g(t,z,u), dtxdP —as.on[0,T)x Q. “@.7)

Set g(T,z,u) :=0.Letr € [0,T). We set §,(¢t) := % AT —1),9,(t,z,u) :=
2(Brss,t) = B) + [ 148,01 Jao #GINp (ds, dx) € LP(Frps, ), ot 2, 1) =
51T 5[@,, (t, z, u)] for any n € N and define g(¢, z, u) := lim o, (¢, z, u).

n n—oo

For any n € N, since ff“”m g%0(z, u)ds is a real number, applying (3.1)

with (§,7n) = (@n(t, z,u), O), one can deduce from (4.1), (F2), (g5) of gs‘)-
expectations and the g =0-martingality of Y that

E[Dnlt, z,w)] = E[Dn(t, 2, w)|F] < E [Dnlt, 2, w)| F]
_¢ Y@ B Y9 N t+68, (1) 2,
o Eo[ 1438, (1) ' /t g7z, u)ds‘]—',:|
P 0 146, (1) =
= 5EO[YI+8,1(1)|]:Z] -7, —i—/t ¢%0(z, u)ds

143, (1)
= / g%%(z,u)ds, P —a.s. 4.8)
1
Using a similar argument on g =0-martingality of Y’ yields that P — a.s.

_ —9 —9 t+3, (1) =
E[Dn(t, Z, u)] > 550 |:YH_3"(,) -7, +/ 290(z, u)ds‘}",]
t

1+, (1)
— / 2°%(z, u)ds.
t
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By (4.3), [€[0u(t,z,w]| < [ g% )| v g% w)|ds < Codul).
Letting n — oo yields that

_Cefg(t’zvu)zn@o 5[911(’71,“)]56'97 VIE[O, T)

8 (1)

To see (4.7), we set &, := 51% ;H"(t) (g7 — g¥)ds, for any t € [0,T) and

n € N. The F-progressively measurability of process g’ implies that the mapping
o’ (t, ) 1 [0, TIxQ — Ris #([0, T]) ® Fr-measurable. So for P —a.s. w € ,
(4.6) and (4.3) show that

the function t — g? (w) is A([0, T])/ P (R)-measurable, 4.9)

and that

8/ ()] < |g%0z, w)| v [§%(z,u)| < Cp forae.r€[0,T]. (4.10)

Lebesgue differentiation theorem then yields that for P — ass. w € €,
lim &/ (w) = 0 forae.t € [0, T). By (4.10) and Fubini Theorem, there exists a
n—o00

Lebesgue-null set € = &(z, u) of [0, T) such that for any ¢ € [0, T)\€,
lim &/ =0 and |gt9| <Cyp, P —as. (4.11)
n— oo

Lett € [0, T)\€&. For any n € N, the translation invariance of &, (4.1), (4.4)
and the £-martingality of Y? + K implies that that P — a.s.

E[Dn(t, z,w)] — Sn(0)g?
o 9 0 9 AR 0
=& Yt+8,l(t) + Kt+8n(t) - - K +/ gsds‘j:t:| —n()g,

L t

r t+68, (1)
0 0 0 0 0 0
=& Vs, + Kivs, +/t (g5 — g;)ds ff} - Y —K;

7

In light of (3.2), E[Iotn(t, Z,u) — gflp] < %E[|$,€|p], where % is a constant
only depending on 7', v(X), p, k2 and k. Since (4.10) and (4.11) show that
P{|§!| < 2Cy, Vn € N} = 1, the bounded convergence theorem yields that
nli)rr;oE[|grfl|P] = 0 and thus that ,,li)H;OE['O‘"(t’ z,u) —gf|?] = 0. Let {n;} jen be

0 P t+68, (1) p P
=&\ Vs, T Kits, o +/t (g5 — g,)ds

—E[Y, 15,00 + Klvs, | ]

an arbitrary subsequence of N. As lim E [|oe,,j (t,z,u) — g‘? |1’] = 0, one can find
j—o0

a subsequence {n/j = n/j(t, Z,u)}jeN of {n;}jen such that

lim a, (t,z,u) =g/, P —as. (4.12)
J—>0o0 J
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In particular, this shows the sequence {anj (t,z,u)}jen of real numbers has a
convergent subsequence {an/j (t,z,u)}jen. In turn, the sequence {o, (7, z, u) }neN
is convergent itself, so g(¢, z, u) = nll)rr;o on(t, z, u). Putting it back into (4.12)
yields that gf = g(t,z,u), P — a.s. Then an application of Fubini’s Theorem
gives rise to (4.7).
(3) We first show that item (i) and (ii) hold.

One can deduce from (4.7) and (4.6) that g0 (z, u) < g(t,z, u) < g%°(z, u)
for a.e. t € [0, T]. In particular, taking 6 = (z, u) = (0, 0) proves item (i).

Given i = 1,2, we let 6; = (zi,u;) € RY x LY and set ©,(,i) :=
2i(Brts,t) = Bo) + [ 45,0 S wi )Np(ds,dx) € LP(Firys,@) for any
te[0,T)andn € N.

We also set 0 := (Z,u) = (z1 — 22, u1 — uz). Letr € [0, T) and n € N.
Similar to (4.8), we can deduce from (4.1), (3.1), (g5) of g=0-expectations and
the g=0-martingality of Y that

E[Dn(t, D] = E[Dn(t.2)] = E[Dn(t, D|F] — E[Dn(t, 2)| F]
< E5,[Dn(t, 1) =Dy (1, 2)| ]

_ s
= &g, |:Yz9+sn(z) -y +/ g7, ﬂ)ds‘]—',]
t

1468, (1)
/ g7z, uwyds < Czé,(t), P —a.s.
t

Letting n — oo, we obtain that g(r,z1,u1) = lim $=€[D,(, D] <
n—o0 n

1

@O 5%5[@"(;, 2)] 4 C5 = g(t, 22, u2) + kA |zl + k2 (v(X)) « @]l .. Revers-
ing the roles of 6 = (z1,u1) and 6> = (z2,u») yields that g(¢, zo, uz) <
g(t, z1, u1) + kalzl + Kz(v(X)ﬁ %]l .»- So item (ii) holds.

(4) Next, we show that the function g(t, z, u) : [0, T'] xRIXLY - Ris 210, TD®
AR @ %’(L,’f)/@(R)-measurable.

Fix A € R, it suffice to show that A, := {(t, z,u) € [0,T] x RY x LY .

g(t,z,u) < 1} € 2(10, T ® BRY) ® B(LY).

1
We also fix n € N and set ¢, := %(KA + /Q(v(?c'))q) ' For any (z,u) €
R x LY define O, (z, u) :={(Z,u') e REx LY : |z =2/ |* + |lu — ”/”ié’ <12},
which is the open ball centered at (z, u) with radius v, in R? x LY. Since the space
R? x LY is separable and thus Lindel6f, there exists a sequence {(z’}, u;l) }jeN of
R? x LY such that U 0, (2", u") =R? x LY.
jeN J7

Let j € N. By (4.7), it holds for P — a.s. w € 2 that g,@(w) = g(t, z,u) for
a.e. t € [0, T'], which together with (4.9) implies that the function t — g(¢, z, u)
on [0, T]is Z([0, T])/AB(R)-measurable. So D;’ ={rel0,T]: g, z;f, u;?) <
A — 1/n} belongs to £ ([0, T1]). For any (¢, z, u) € D;’ X On(z’}, u;f), item (ii)
shows that
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1
gt,z,u) < g (t, z’}, u’}) +KA|Z - z;'| —l—/cz(v(X))‘? lu — u;'-||L5 <Ai—1/n
1
+ <KA + Kz(v(X))q) ty, = A,
which implies that D;’ x Oy (z;?, u?) C A;.
On the other hand, for any (¢, z, u) € Aﬁ = {(t, z,u) € [0, T] x R x LY -

gt,z,u) < A— 2/n}, since (z, u) € Oy (zZ, u?) for some £ € N, one can deduce
from item (ii) again that

1
g(t, 7)., uy) < g(t,z,u) + kalz — 2| +2(v(X)) 7 flu — ufllr < 2 —=2/n

+ (KA +K2(I)(X))‘ll) vy, =i—1/n.

So ¢t € Dy and it follows that Al C jLeJN (D;’ X On(z;?, uS’)) C Ay As A; =
U Aﬁ, taking union overn € Nyieldsthat Ay = U U (D'? x O (7", u".)> c
neN neN jeN \ J A
Z2(10,T) ® ZRY) ® B(LY).
(5) Finally, let us verify item (iii).
‘We have seen from part (3) and (4) that g : [0, T] x RYx LY — Risa Z(0, TH®
BRY Q@ R (Lf ) /A (R)-measurable function satisfying (i) and (ii). Namely, g is

a deterministic p-generator satisfying (2.2) and (A2’).
Let (z,u) € RY x LY. We see from (4.4), (4.7) and (4.5) that P — a.s.

T
v! =Yl —i—/ g(s,z,u)ds — z(Br — By)
t

—/ /u(x)ﬁp(ds,dx)JrK?—Kf, r€[0,T]. (4.13)
&, T1JX

The translation invariance of £ and the £-martingality of Y + K then imply that for
any0<t<s<T

Ena, s,z wF] = E[Y) + K] — ¥, — K7 | 7]
=&Y+ K| F])-Y —K! =0, P—as, (414

with (z, s, z, ) := z(Bs — B;) + f(t,s] [x u(x)ﬁp(dr, dx) — [ g(r,z, wydr.
Let(Z,U) e 72P x UP be in form of simple processes, i.e.

N l;
(Z(@). Ui(@)) =Y l{rem,w]}(z l{wGA;}(Zz, ul])> (t,w) €0, T] x Q,
i=1 j=1

(4.15)
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Z,‘ d
i C R

{ui }f’ ;1 C LY and {Al } ! _; C JFy is a partition of €2. (By refining, we can let
Z and U have the same tlme partition and the same J;-measurable partition of
Q foreachi = 1,---,N.) For any V¢ € [0,T], we set Q; = flT Z,dB; +

o1 e Us@)Np(ds. dx) — [, g(s. Zy. Uy)ds and claim that

where 0 = 1 < -+ < tyy1 = T;and fori = 1,---, N, {zi»}

EV:|F1=0, P—as. (4.16)

Clearly, E[Y7|Fr] = 0, P — a.s. Assume next that for somei = 1,---, N, (4.16)
holds for any ¢ € [t;11, T]. Given t € [t;, ti11), (F3), (F4), translation invariance of £

and (4.14) imply that P — a.s.
]:lt+1i| ‘]:l}

[@LH'E,H +21A’ t tl+1v u’])‘ft]

7

[Syl,+l +21Al t tl+1 Zj7u

j=1

Dl Fi] =

Il
”MN |—| |—|

AIE[ZIAI ttl+1 Z],M ’E}
j=1

S

5[1A§n(t,t,-+1,z )| 7] = ZlAlg[ (1,11, 2w | R ] =0

~.
I
-

Using mathematical induction shows that (4.16) holds for any ¢ € [0, T'].

Now, let £ € LP(Fr). Theorem 2.1 shows that the BSDEJ (£, g) admits a unique
solution (Y, Z, U) € SP. Inlight of Theorem IV.67 of [13], we can approximate (Z, U)
in Z%P x UP by a sequence of simple processes {(Z", U")},en in form of (4.15):
nlirgo||Z” — Zllpr = nlLrI;ollU" — Ullur = 0. Given n € N, since the translation

invariance of £ and (4.16) imply that

ELEIF] = El&1Fil = EIEIF] — Y, = E[§ — V1| F]

T
=& [f Z.d By +/ f Us(x)Np(ds, dx)
t t,T1JX

T
- / g(s, Zs, Us)ds‘ftil
t

T
—& |:/ Z3d By +/ / U (x)Np(ds, dx)
t @,T1JX

T
—/ g (s, Z?,Us’"‘)ds)]-}:|, P —as.,
t
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one can deduce from (3.2), (1.4), Burkholder—Davis—Gundy inequality, item (ii), (1.3)
and Holder’s inequality that

E

(€617 - £ile1 7] |

<k

T
/ (Zs — Z")d B, +/ / (Us(x) — U (x)) Ny (ds, dx)
t t,T]J X

T p
_/ (g(ss ZSaUS)_g(S9 Z_’gl?U;l))dS
t

P
T 2
<%E (/ | Zs —zf:|2ds) + (/ / |Ux(x)—U;’(x)|2Np(ds,dx))
0 0,711/X
T p T 14
+ (/ |Zs — z;?|ds> + (/ |Us — U;‘||L5ds>
0 0
T 5
<%E (/ |zx—z_;’|2ds)
0

=% (12" = 215, + 10" = UI5,).

L
2

T
+f /!UY(X)—UY"(X)VU(dX)dS
0 X

Here ¥ stands for a generic constant depending on T, v(X), p, k3 and x5, whose
form changes from line to line. Letting n — oo yields that E[£|F;] = E[&|F],

P — a.s., which together with the right-continuity of £-martingale { ELE1F ]}
and g-martingale {5g[§|Ft]}

te[0,T]

1€[0.7] leads to item (iii). O
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