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Abstract Given p ∈ (1, 2], the wellposedness of backward stochastic differential
equations with jumps (BSDEJs) in L

p sense gives rise to a so-called g-expectation
withLp domain under the jump filtration (the one generated by aBrownianmotion and
aPoisson randommeasure). In this paper,we extend such a g-expectation to a nonlinear
expectation E with Lp domain that is consistent with the jump filtration. We study the
basic (martingale) properties of the jump-filtration consistent nonlinear expectation E
and show that under certain domination condition, the nonlinear expectation E can be
represented by some g-expectation.
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1 Introduction

The Allais paradox and the Ellsberg paradox prompt people to develop a nonlinear-
expectation version of von Neumann–Morgenstern’s axiomatic system of expected
utilities, a fundamental notion in the modern Economics. Motivated by such a gener-
alization, Peng [28,29] introduced the so-called g-expectations Eg with L

2 domains

B Song Yao
songyao@pitt.edu

Jing Liu
jil156@pitt.edu

1 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-017-9422-4&domain=pdf


Appl Math Optim

via backward stochastic differential equations (BSDEs) with generator g. These two
seminal works and some following research ([5,6,10,31,36] among others) showed
that the g-expectations are closely related to axiom-based coherent and convex risk
measures (see [1,17]) in mathematical finance.

Let FB = {F B
t }t∈[0,T ] denote the Brownian filtration. Coquet et al. [10] general-

ized g-expectations with domain L2(F B
T ) to Brownian-filtration consistent nonlinear

expectations (FB-expectations for short) with domain L2(F B
T ) and systematically

analyzed them using the BSDE theory. These authors demonstrated that under the
following domination condition

E[ξ ] − E[η] ≤ Egμ[ξ − η], ∀ ξ, η ∈ L2(F B
T ) (1.1)

with gμ = μ|z| for some μ > 0, a nonlinear expectation E can be represented by
a g-expectation with domain L2(F B

T ) or solutions of BSDEs with generator g and
square-integrable terminal data.

Let p ∈ (1, 2]. Based on our study [41] on L
p solutions of backward stochastic

differential equationswith jumps (BSDEJs), we generalized the notion of (conditional)
g-expectations to the jump case with L

p domain and studied their properties in [40].
In the present paper, we further extend these g-expectations to a general class of
nonlinear expectations E with Lp domains that are consistent with the jump filtration
F = {Ft }t∈[0,T ] generated by the Brownian motion B and the independent Poisson
random measure Np.

1.1 Main Results

An F-consistent nonlinear expectation (or F-expectation for short) is a family of
mappings E = {E[·|Ft ]

}
t∈[0,T ] satisfying “monotonicity”, “constant preserving”

“consistency” “zero-one law”.
When a translation invariant F-expectation E with domain L p(FT ) is dominated

by some g�-expectation (see (2.3)) in sense that

E[ξ ] − E[η] ≤ Eg� [ξ − η], ∀ ξ, η ∈ L p(FT ), (1.2)

the correspondingE-martingales still possessmany classic properties such as “optional
sampling” (Proposition 3.4) and “Doob–Meyer decomposition” (Theorem 3.1). For a
translation invariant F-expectation E with domain L p(FT ) under domination (1.2), if
the Brownian motion and the Poisson random measure have independent increments
underE , theF-expectationE can be represented by a g-expectationwith a deterministic
generator g that is independent of y and Lipschitz in (z, u) (see Theorem 4.1 for
detailed description).

The significance of such a representation result might be more notable from the
following consequence in mathematical finance: In a market with jumps, any coherent
or convex time-consistent risk measure ρ = {ρt }t∈[0,T ] with L

p domain that satisfies
the required domination condition can be represented by the Lp-solution of a BSDEJ
with a deterministic Lipschitz generator g. Then one can utilize the BSDEJ theory
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to analyze the risk measure ρ and employ numerical schemes of BSDEJs to run
simulation for financial problems involving ρ.

1.2 Main Contributions

The key to our main representation result (Theorem 4.1) lies in establishing a Doob–
Meyer decomposition for F-expectations.

Let g�0 be a special Lipschitz generator satisfying (2.3) with β ≡ 0 and
let E be a translation-invariant F-expectation with domain L p(FT ) that is domi-
nated by the g�0−expectation in sense of (1.2). Since each E-martingale X is a
g�0−supermartingale, the upcrossing inequality under the g�0−expectation implies
that X admits a càdlàg modification. In particular, taking Xt = E[ξ |Ft ], we can
deduce from the a priori Lp-estimate (2.1) of BSDEJs that E[ξ |F·] is continuously
dependent on ξ in L

p sense
(
see (3.3)

)
. Such a continuous dependence is important

for the approximation schemes in proving the optional sampling and Doob–Meyer
decomposition for the F-expectation E (Proposition 3.4, Theorem 3.1).

Next, we obtain in Proposition 3.3 a semi-martingale decomposition of E-
martingales which states that each E-martingale X can be expressed as Xt = X0 −∫ t
0 gsds+∫ t

0 Zsd Bs +
∫
(0,t]
∫
X Us(x)Ñp(ds, dx), t ∈ [0, T ]with−g�0(t,−Zt ,−Ut )

≤ gt ≤ g�0(t, Zt , Ut ). Also, we show in Proposition 3.6 that the generalized BSDE
(3.19) with respect to E admits a unique p-integrable solution if the driver f (t, y)

is continuous in y. Using these two results, we then derive the Doob–Meyer decom-
position under the F-expectation E from a priori Lp-estimate for a special BSDEJ
(Proposition 2.4) and a monotonic limit theorem of p-integrable jump diffusion pro-
cesses (Theorem 2.4).

By further assuming that both the Brownian motion and the Poisson random
measure have independent increments under E

(
see (4.1)

)
, we can exploit the Doob–

Meyer decomposition and the semi-martingale decomposition of E-martingales to
define a deterministic measurable function g(t, z, u) Lipschitz in (z, u) such that
− ∫ t

0 g(s, z, u)ds + zBt + ∫
(0,t]
∫
X u(x)Ñp(ds, dx), t ∈ [0, T ] is an E-martingale

for any (z, u)
(
see (4.13)

)
. This allows us to eventually represent the F-expectation E

by the g-expectation with the deterministic generator g(t, z, u), proving Theorem 4.1.

1.3 Relevant Literature

The BSDEs were introduced by Bismut [4] as adjoint equations for the Pontryagin
maximum principle in stochastic control theory. Since Pardoux and Peng [27] com-
menced a systematical research of BSDEs, the BSDE theory has grown rapidly and
has been applied to various areas such as mathematical finance, theoretical economics,
stochastic control and optimization, partial differential equations, differential geome-
try and etc, (see the references in [11,16]).

Amongmany extensions ofBSDEs, Li andTang [39] introduced intoBSDEs a jump
term that is driven by a Poisson randommeasure independent of the Brownian motion;
and El Karoui et al. [16] initiated the study of Lp-solutions of BSDEs. We analyzed
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L
p solutions of multi-dimensional BSDEJs in [41] while Kruse and Popier [23,24]

studied a similar Lp-solution problem of BSDE under a right-continuous filtration
which may be larger than the jump filtration F. For a survey of the recent development
of BSDEJs in numerous directions, see e.g. the introduction of Yao [26,41].

Royer [37] extended the g-expectations with L
2 domain to the jump case and

showed that under a similar domination condition to (1.2), an F-expectation with
domain L2(FT ) can be represented by a g-expectation with domain L2(FT ). On
the other hand, [44] obtained the representation of dominated FB-expectations with
domain L p(F B

T ) by g-expectations with domain L p(F B
T ). Our paper can be viewed

as an extension of Royer [37] to the Lp-domain case and a generalization of Zong and
Hu [44] to the jump case, both of which are nontrivial since we have to tackle some
technical hurdles arising exclusively in theLp jump case (see the “Main contributions”
part in the introduction of Yao [41] for details).

Based on the representation of FB-expectations by Coquet et al. [10], Delbaen et
al. [12] derived an integral representation for the minimal penalty term of a dynamic
convex risk measure under domination, which further allows [3] to transform an opti-
mal stopping problem under such a risk measure to an equivalent zero-sum game
of control and stopping and thus solve the optimal stopping problem. In light of the
representation of F-expectations by Royer [37], Tang and Wei [38] obtained an inte-
gral representation for the minimal penalty term of a dominated dynamic convex risk
measure with jumps while Quenez and Sulem [35] studied the related optimization
problem under model ambiguity.

There are many other extensions of Coquet et al. [10]’s representation result:
Peng [30] considered an optimal stochastic control problem and showed that any
FB-expectation dominated by the super-evaluation of the control problem is a g-
expectation. Peng [33], and later [42,43], studied the representation ofFB -expectations
with domain L2(F B

T ) (and thus aFB-dynamic pricingmechanism of square-integrable
contingent claims) under a general conditional-expectation version of domination
(1.1), which was statistically tested using Chicago Mercantile Exchange’s data on
options of S&P500 Futures. In the discrete-time case, Cohen and Elliott [8,9] rep-
resented nearly time-consistent nonlinear expectations by solutions to backward
stochastic difference equations. Bao and Tang [2] showed that under the domina-
tion (1.1), an FB-expection with a floor S can be represented by solutions of a BSDE
with reflecting barrier S. Cohen [7] analyzed the representation of filtration-consistent
nonlinear expectations in general probability spaces.

As to the quadratic case, Ma and Yao [25] studied the quadratic g-expectations (i.e.
g has quadratic growth in z), then Hu et al. [18] represented FB-consistent quadratic
nonlinear expectations (including a large class of convex risk measures that do not
satisfying (1.1)) by quadratic g-expectations under a different domination condition.
Lately, Kazi-Tani et al. [22] even extended the quadratic g-expectations to the jump
case and provided a dual representation for quadratic F-expectations.

Among various other research on nonlinear expectations, Peng [32] used a nonlinear
generalization of Kolmogorov’s extension theorem to construct a new type of FB-
consistent nonlinear expectations via nonlinear Markov chains, and showed that the
corresponding BSDEs under such nonlinear expectations are well-posed.
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Recently, Denk et al. [15] discussed a maximal extension for convex nonlinear
expectations which admit a representation in terms of countably additive measures.
These authors derived a robust Kolmogorov extension theorem and used it to extend
nonlinear kernels to an infinite-dimensional path space.

The rest of the paper is organized as follows: We introduce some notations in
Sect. 1.4. In Sect. 2, after making basic assumptions on generator g, we review
some properties of g-expectations with L

p domains under jump filtration such as
optional sampling, upcrossing inequality and Doob–Meyer decomposition. In Sect.
3, we generalize g-expectations to jump-filtration consistent nonlinear expectations
E with L

p domains. When a translation-invariant nonlinear expectation E satisfies
certain domination condition, we derive some basic (martingale) properties such as a
semi-martingale decomposition ofE-martingales, optional sampling andDoob–Meyer
decomposition. In Sect. 4, we discuss the representation of translation-invariant non-
linear expectations under domination by g-expectations.

1.4 Notation and Preliminaries

Throughout this paper, we fix a time horizon T ∈ (0,∞) and let (�,F , P) be a
complete probability space on which a d-dimensional Brownian motion B is defined.

For a generic càdlàg process X , let us denote its corresponding jump process by
�Xt := Xt − Xt−, t ∈ [0, T ] with X0− := X0. Given a measurable space (X ,FX ),
let p be an X -valued Poisson point process on (�,F , P) that is independent of B.
For any scenario ω ∈ �, let Dp(ω) collect all jump times of path p(ω), which is a
countable subset of (0, T ] (see e.g. [19, Sect. 1.9]). We assume that for some finite
measure ν on

(
X ,FX

)
, the counting measure Np(dt, dx) of p on [0, T ] × X has

compensator E
[
Np(dt, dx)

] = ν(dx)dt . The corresponding compensated Poisson
random measure Ñp is Ñp(dt, dx) := Np(dt, dx) − ν(dx)dt .

For any t ∈ [0, T ], we define sigma-fields

F B
t := σ

{
Bs; s ≤ t

}
, FN

t := σ
{

Np((0, s], A); s ≤ t, A ∈ FX
}
,

Ft := σ
(
F B

t ∪ FN
t

)

and augment them by all P-null sets of F . Clearly, the jump filtration F = {Ft }t∈[0,T ]
satisfies the usual hypotheses (cf. e.g., [34]). Let P

(
resp. P̂

)
denote the F-

progressively measurable (resp. F-predictable) sigma-field on [0, T ] × �, and let
T be the set of all F-stopping times with values in [0, T ]. For any τ ∈ T , we set
Tτ := {γ ∈ T : γ ≥ τ, P − a.s.}.

The following spaces of functions will be used in the sequel:

(1) For any p ∈ [1,∞), let L p
+[0, T ] be the space of all measurable functions ψ :

[0, T ] 	→ [0,∞) with
∫ T
0

(
ψ(t)
)p

dt < ∞.
(2) For p ∈ (1,∞), let L p

ν := L p(X ,FX , ν;R) be the space of all real-valued,

FX -measurable functions u with ‖u‖L p
ν

:= ( ∫X |u(x)|pν(dx)
) 1

p < ∞. For any

u1, u2 ∈ L p
ν , we say u1 = u2 if u1(x) = u2(x) for ν-a.s. x ∈ X .
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(3) For any sub-sigma-field G of F , let L0(G) be the space of all real-valued, G-
measurable random variables and set

• L p(G) :=
{
ξ ∈ L0(G) : ‖ξ‖L p(G) :=

{
E
[|ξ |p
]} 1

p
< ∞

}
for any p ∈

(1,∞);

• L∞(G) :=
{
ξ ∈ L0(G) : ‖ξ‖L∞(G) := esssup

ω∈�

|ξ(ω)| < ∞
}
.

(4) Let D0 be the space of all real-valued, F-adapted càdlàg processes, and let K0 be
a subspace of D0 that includes all F-predictable càdlàg nondecreasing processes
X with X0 = 0.

(5) Set Z2
loc := L2

loc

([0, T ] × �, P̂, dt × d P;Rd
)
, the space of all Rd -valued, F-

predictable processes Z with
∫ T
0 |Zt |2 dt < ∞, P − a.s.

(6) For any p ∈ [1,∞), we let

• D
p :=

{
X ∈ D

0 : ‖X‖Dp := {E[X p∗ ]} 1
p < ∞

}
, where X∗ := sup

t∈[0,T ]
|Xt | <

∞.
• K

p := K
0 ∩ D

p = {K ∈ K
0 : E[K p

T ] < ∞}.
• Z

2,p :=
{

Z ∈ Z
2
loc : ‖Z‖Z2,p :=

{
E
[( ∫ T

0 |Zt |2 dt
) p
2
]} 1

p
< ∞
}
.

• U
p
loc := L p

loc

([0, T ] × � × X , P̂ ⊗ FX , dt × d P × ν(dx);R) be the space
of all P̂ ⊗FX -measurable random fields U : [0, T ] × � ×X → R such that∫ T
0

∫
X |Ut (x)|pν(dx)dt = ∫ T

0 ‖Ut‖p
L p

ν
dt < ∞, P − a.s.

• U
p :=

{
U ∈ U

p
loc : ‖U‖Up := {E ∫ T

0

∫
X |Ut (x)|pν(dx)dt

} 1
p < ∞

}
=

L p
([0, T ] × � × X , P̂ ⊗ FX , dt × d P × ν(dx);R).

Given U ∈ U
p
loc

(
resp. Up

)
, it holds for dt × d P − a.s. (t, ω) ∈ [0, T ] × � that

U (t, ω) ∈ L p
ν . In virtue of [41, Sect. 1.2], one can define a Poisson stochastic integral

of U :

MU
t :=

∫

(0,t]

∫

X
Us(x)Ñp(ds, dx), t ∈ [0, T ],

which is a càdlàg local martingale (resp. uniformly integrable martingale) with
quadratic variation [MU , MU ]t = ∫

(0,t]
∫
X |Us(x)|2Np(ds, dx), t ∈ [0, T ]. The jump

process of MU is �MU
t (ω) = 1{t∈Dp(ω)}U

(
t, ω, pt (ω)

)
, t ∈ (0, T ]. For any U ∈ U

p,
an analogy to (5.1) of Yao [41] shows that

E

[(∫

(t,s]

∫

X
|Ut (x)|2Np(dt, dx)

) p
2
]

≤ E
∫ s

t

∫

X

∣∣Ut (x)
∣∣pν(dx)dt,

∀ 0 ≤ t < s ≤ T . (1.3)

• Let us simply denote Dp × Z
2,p × U

p by S
p.

As usual, we set x− := (−x)∨0, x+ := x ∨0 for any x ∈ R, and use the convention
inf ∅ := ∞. Given p ∈ (0,∞), the following inequality will be frequently applied in
this paper: For any finite subset {a1, . . . , an} of (0,∞),
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(
1 ∧ n p−1

) n∑

i=1

a p
i ≤
( n∑

i=1

ai

)p

≤
(
1 ∨ n p−1

) n∑

i=1

a p
i . (1.4)

Also, we let cp denote a generic constant depending only on p (in particular, c0 stands
for a generic constant depending on nothing), whose form may vary from line to line.

2 L
p Solutions of BSDEs with Jumps and Related g-Expectations

From now on, we fix p ∈ (1, 2] and set q := p
p−1 ≥ 2.

Based on Lp solutions of a BSDEJ with generator g, we extended the notion of g-
expectations to the jump casewithLp domains inYao [40], and analyzed the properties
of g-expectations. For purpose of the present paper, wewill only review themartingale
properties of g-expectations, which are important for our study of jump-filtration
consistent nonlinear expectations with L

p domain in the next two sections.

2.1 L
p Solutions of BSDEs with Jumps

A mapping g : [0, T ] × � × R × R
d × L p

ν → R is called a p-generator if it is
P ⊗ B(R) ⊗ B(Rd) ⊗ B

(
L p

ν

)
/B(R)-measurable.

Definition 2.1 Given p ∈ (1, 2], let ξ ∈ L0(FT ) and g be a p-generator. A triplet
(Y, Z , U ) ∈ D

0 ×Z
2
loc ×U

p
loc is called a solution of a backward stochastic differential

equation with jumps that has terminal data ξ and generator g
(
BSDEJ (ξ, g) for short

)

if
∫ T
0 |g(s, Ys, Zs, Us)|ds < ∞, P − a.s. and if it holds P − a.s. that

Yt = ξ +
∫ T

t
g(s, Ys, Zs, Us)ds −

∫ T

t
Zs d Bs

−
∫

(t,T ]

∫

X
Us(x)Ñp(ds, dx), t ∈ [0, T ].

Let us make the following standard assumptions on p-generators g:

(A1)
∫ T
0 |g(t, 0, 0, 0)|dt ∈ L p(FT ).

(A2) There exist two [0,∞)-valued,B[0, T ] ⊗FT -measurable processes β, � with∫ T
0

(
β

q
t ∨ �2

t

)
dt ∈ L∞(FT ) such that for dt × d P − a.s. (t, ω) ∈ [0, T ] × �

∣∣g(t, ω, y1, z1, u) − g(t, ω, y2, z2, u)
∣∣ ≤ β(t, ω)|y1 − y2| + �(t, ω)|z1 − z2|,

∀ (y1, z1), (y2, z2) ∈ R × R
d ,

∀ u ∈ L p
ν .

(A3) There exists a function h : [0, T ] × � × R × R
d × L p

ν × L p
ν → Lq

ν such that
(i) h isP ⊗ B(R) ⊗ B(Rd) ⊗ B(L p

ν ) ⊗ B(L p
ν )/B(Lq

ν )−measurable;
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(ii) There exist κ1 ∈ (−1, 0] and κ2 ≥ −κ1 such that for any (t, ω, y, z, u1, u2, x) ∈
[0, T ] × � × R × R

d × L p
ν × L p

ν × X

κ1 ≤ (h(t, ω, y, z, u1, u2)
)
(x) ≤ κ2;

(iii) It holds for dt × d P − a.s. (t, ω) ∈ [0, T ] × � that

g(t, ω, y, z, u1) − g(t, ω, y, z, u2)

≤
∫

X
(
u1(x) − u2(x)

) · (h(t, ω, y, z, u1, u2)
)
(x) ν(dx),

∀ (y, z, u1, u2) ∈ R × R
d × L p

ν × L p
ν .

The parameter quadruplets � := (β,�, κ1, κ2) described in (A2) and (A3) will be
referred to as a p-coefficient set. When β ≡ 0, it will be particularly denoted by �0.

Remark 2.1 Let p ∈ (1, 2] and let g be a p-generator.

(1) By (A3) (ii), (iii) and Hölder’s inequality, (A2) and (A3) imply
(A2’) There exist two [0,∞)-valued,B[0, T ] ⊗ FT -measurable processes β, �
with
∫ T
0

(
β

q
t ∨�2

t

)
dt ∈ L∞(FT ) such that for dt ×d P −a.s. (t, ω) ∈ [0, T ]×�

∣∣g(t, ω, y1, z1, u1) −g(t, ω, y2, z2, u2)
∣∣ ≤ β(t, ω)

(|y1 − y2| + ‖u1 − u2‖L p
ν

)

+�(t, ω)|z1 − z2|, ∀ (yi , zi , ui ) ∈ R × R
d × L p

ν , i = 1, 2.

(2) If g satisfies (A2’) and
∫ T
0 |g(t, 0, 0, 0)|dt < ∞, P − a.s., then Remark 2.1

(2) of Yao [40] shows that for any (Y, Z , U ) ∈ D
1 × Z

2
loc × U

p
loc, we have

∫ T
0 |g(s, Ys, Zs, Us)|ds < ∞, P − a.s.

(3) If g satisfies (A1), (A2)
(
resp. (A2’)), then g(t, ω, y, z, u) := −g(t, ω,−y,

−z,−u), (t, ω, y, z, u) ∈ [0, T ] × � × R × R
d × L p

ν is also a p-generator
satisfying (A1), (A2)

(
resp. (A2’)). If g further satisfies (A3), so does g.

For simplicity, we set Ĉ := ∥∥ ∫ T
0

(
1 ∨ β

q
t ∨ �2

t

)
dt
∥∥

L∞(FT )
, and let C be a generic

constant depending on T , ν(X ), p, Ĉ (and κ2 if necessary), whose form may vary
from line to line.

For Lp solutions of BSDEs with jumps, we first quote a wellposedness result and
a comparison theorem from of Yao [40, Theorems 2.1, 2.2 ].

Theorem 2.1 Given p ∈ (1, 2], Let g be a p-generator satisfying (A1) and (A2’). For
any ξ ∈ L p(FT ), the BSDEJ (ξ, g) admits a unique solution

(
Y ξ,g, Z ξ,g, U ξ,g

) ∈ S
p

satisfying

∥∥Y ξ,g
∥∥p
Dp + ∥∥Z ξ,g

∥∥p
Z2,p + ∥∥U ξ,g

∥∥p
Up ≤ CE

[
|ξ |p +

(∫ T

0
|g(t, 0, 0, 0)|dt

)p ]
.

(2.1)
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Theorem 2.2 Let p ∈ (1, 2], τ ∈ T and γ ∈ Tτ . For i = 1, 2, let ξi ∈ L0(FT ), let
gi be a p-generator, and let (Y i , Zi , Ui ) be a solution of BSDEJ (ξi , gi ) such that
Y 1−Y 2 ∈ D

p and that Y 1
γ ≤ Y 2

γ , P−a.s. For either i = 1 or i = 2, if gi satisfies (A2),

(A3), and if g1(t, Y 3−i
t , Z3−i

t , U 3−i
t ) ≤ g2(t, Y 3−i

t , Z3−i
t , U 3−i

t ), dt × d P − a.s. on
]]τ, γ [[ ,then it holds P − a.s. that Y 1

t ≤ Y 2
t for any t ∈ [τ, γ ]. If one further has

Y 1
τ = Y 2

τ , P − a.s., then

(i) it holds P − a.s. that Y 1
t = Y 2

t for any t ∈ [τ, γ ];
(ii) it holds dt ×d P −a.s. on ]]τ, γ ]] that (Z1

t , U 1
t ) = (Z2

t , U 2
t ) and g1(t, Y i

t , Zi
t , Ui

t )

= g2(t, Y i
t , Zi

t , Ui
t ), i = 1, 2.

2.2 g-Expectations with Domain L p(FT )

The wellposedness result of BSDEs with jumps in L
p sense (Theorem 2.1) gives

rise to a nonlinear expectation, called g-expectations, with domain L p(FT ), which
generalizes the one introduced in Peng [28,29]:

Definition 2.2 Given p ∈ (1, 2], let g be a p-generator satisfying (A1) and (A2’). For
any ξ ∈ L p(FT ), define

Eg[ξ |Fτ ] := Y ξ,g
τ ∈ L p(Fτ ), ∀ τ ∈ T

as the conditional “g-expectation” of ξ at time τ .
When g ≡ 0, the g-expectation is exactly the classic linear expectation: it holds for

any τ ∈ T and ξ ∈ L p(FT ) that Eg[ξ |Fτ ] = E[ξ |Fτ ], P − a.s.

Let p ∈ (1, 2] and let g be a p-generator satisfying (A1) and (A2’). We know
from Yao [40] that g-expectations with domain L p(FT ) inherit the following basic
properties from the classic linear expectations: Let ξ ∈ L p(FT ) and τ ∈ T .

(g1) “Strict Monotonicity”: If g further satisfies (A3), then for any η ∈ L p(FT ) with
ξ ≤ η, P − a.s. one has Eg[ξ |Fτ ] ≤ Eg[η|Fτ ], P − a.s.; Moreover, if it further
holds that Eg[ξ |Fτ ] = Eg[η|Fτ ], P − a.s., then ξ = η, P − a.s.

(g2) “Constant Preserving”: If it holds dt × d P − a.s. that

g(t, y, 0, 0) = 0, ∀ y ∈ R, (2.2)

and if ξ is Fτ -measurable, then Eg[ξ |Fτ ] = ξ , P − a.s.
(g3) “Time Consistency”: Under (2.2), it holds for any γ ∈ Tτ that Eg

[
Eg[ξ |Fγ ]∣∣Fτ

]

= Eg[ξ |Fτ ], P − a.s.
(g4) “Zero-One Law”: For any A ∈ Fτ , we have 1AEg[1Aξ |Fτ ] = 1AEg[ξ |Fτ ],

P − a.s.; In addition, if g(t, 0, 0, 0) = 0, dt × d P − a.s., then Eg[1Aξ |Fτ ] =
1AEg[ξ |Fτ ], P − a.s.

(g5) “Translation Invariance”: If g is independent of y, then Eg[ξ + η|Fτ ] =
Eg[ξ |Fτ ] + η, P − a.s. for any η ∈ L p(Fτ ).

Now, let us consider two specific p-generators satisfying (A1)–(A3) and their cor-
responding g-expectations:
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Example 2.1 Given p ∈ (1, 2], let � be a p-coefficient set. The functions

g�(t, ω, y, z, u) := β(t, ω)|y| + �(t, ω)|z| − κ1

∫

X
u−(x)ν(dx)

+ κ2

∫

X
u+(x)ν(dx),

g�(t, ω, y, z, u) := −g�(t, ω,−y,−z,−u), ∀ (t, ω, y, z, u)

∈ [0, T ] × � × R × R
d × L p

ν (2.3)

are two p-generators satisfying (A1)–(A3) with respect to the same coefficient set �,
where u±(x) := (u(x))± (See the proof of [40, Example 3.1] for details). It follows
that E

�
:= Eg� , E

�
:= Eg� are two g-expectations with domain L p(FT ).

According to the comparison theorem for BSDEJs (Theorem 2.2), we can bound
the variation of a g-expectation by g�-expectation and g�-expectation as follows.

Proposition 2.1 Given p ∈ (1, 2], let g be a p-generator satisfying (A1)–(A3) with
respect to some p-coefficient set �. For any ξ, η ∈ L p(FT ), it holds P − a.s. that
E

�
[ξ − η|Ft ] ≤ Eg[ξ |Ft ] − Eg[η|Ft ] ≤ E

�
[ξ − η|Ft ] for any t ∈ [0, T ].

Proof Fix ξ, η ∈ L p(FT ). Set (Y1,Z1,U1) = (Y ξ,g, Z ξ,g, U ξ,g
)
, (Y2,Z2,U2) =

(
Y η,g, Zη,g, Uη,g

)
and (Y3,Z3,U3) = (Y ξ−η,g�

, Z ξ−η,g�
, U ξ−η,g�)

. The P ⊗
B(R)⊗B(Rd)⊗B

(
L p

ν

)
/B(R)-measurability of g, theP measurability of process

Y2, the P̂-measurability of process Z2 and the P̂ ⊗ FX -measurability of random
field U2 imply that the mapping

g(t, ω, y, z, u) := g
(
t, ω, y + Y2(t, ω), z + Z2(t, ω), u + U2(t, ω)

)

− g
(
t, ω,Y2(t, ω),Z2(t, ω),U2(t, ω)

)
,

∀ (t, ω, y, z, u) ∈ [0, T ] × � × R × R
d × L p

ν is also P ⊗ B(R) ⊗ B(Rd) ⊗
B
(
L p

ν

)
/B(R)-measurable.

For
(
Y , Z , U

) := (Y1 − Y2,Z1 − Z2,U1 − U2) ∈ S
p, it holds P − a.s. that

Y t = ξ − η +
∫ T

t

(
g(s,Y1

s ,Z1
s ,U1

s ) − g(s,Y2
s ,Z2

s ,U2
s )
)
ds

−
∫ T

t
Zsd Bs −

∫

(t,T ]

∫

X
U s(x)Ñp(ds, dx), t ∈ [0, T ].

Namely,
(
Y , Z , U

)
solves the BSDEJ (ξ − η, g). We can deduce from (A2) and (A3)

that dt × d P − a.s.

g
(
t, Y t , Zt , U t

)

= g
(

t,Y1
t ,Z1

t ,U1
t

)
− g
(

t,Y2
t ,Z2

t ,U2
t

)

= g
(

t,Y1
t ,Z1

t ,U1
t

)
− g
(

t,Y2
t ,Z2

t ,U1
t

)
+ g
(

t,Y2
t ,Z2

t ,U1
t

)
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−g
(

t,Y2
t ,Z2

t ,U2
t

)

≤ βt |Y t | + �t |Zt | +
∫

X
U t (x) ·

(
h
(

t,Y2
t ,Z2

t ,U1
t ,U2

t

))
(x)ν(dx)

≤ βt |Y t | + �t |Zt | + κ2

∫

X
U

+
t (x)ν(dx) − κ1

∫

X
U

−
t (x)ν(dx)

= g�
(
t, Y t , Zt , U t

)
.

Since g� also satisfies (A2) and (A3) by Example 2.1, applying Theorem 2.2
with (τ, γ ) = (0, T ), (g1, Y 1, Z1, U 1) = (g, Y , Z , U

)
and (g2, Y 2, Z2, U 2) =

(g�,Y3,Z3,U3) yields that P − a.s.

Eg[ξ |Ft ] − Eg[η|Ft ] = Y1
t − Y2

t = Y t ≤ Y3
t = E�[ξ − η|Ft ],

∀ t ∈ [0, T ]. (2.4)

Multiplying −1 to BSDEJ
(
η − ξ, g�

)
shows that (−Y η−ξ,g�

,−Zη−ξ,g�
,

−Uη−ξ,g�
) is the unique solution of BSDEJ

(
ξ − η, g�

)
. So P

{
− Y η−ξ,g�

t =
Y ξ−η,g�

t , ∀ t ∈ [0, T ]
}

= 1, which together with (2.4) implies that P − a.s.

Eg[ξ |Ft ] − Eg[η|Ft ] = − (Eg[η|Ft ] − Eg[ξ |Ft ]
) ≥ −E�[η − ξ |Ft ]

= −Y η−ξ,g�

t = Y ξ−η,g�

t = E�[ξ − η|Ft ], ∀ t ∈ [0, T ].
��

2.3 g-Martingales

Let g be a p-generator satisfying (A1) and (A2’). We can define martingales with
respect to the g-expectations with domain L p(FT ) under jump filtration.

Definition 2.3 Given p ∈ (1, 2], let g be a p-generator satisfying (A1) and (A2’). A
real-valued,F-adapted process X is called a g-submartingale

(
resp. g-supermartingale

or g-martingale
)
if for any 0 ≤ t ≤ s ≤ T , E[|Xs |p] < ∞ and Eg[Xs |Ft ] ≥ (resp. ≤

or =) Xt , P − a.s.

The properties of g-martingales, such as “optional sampling theorem”, “upcrossing
inequality” and “Doob–Meyer decomposition”, have been explored inYao [40]. As
they will play important roles for developing the martingale properties of filtration-
consistent nonlinear expectations in the next section, we cite them completely for ease
reference (The following Propositions 2.2, 2.3, 2.4; Theorems 2.3, 2.4 are from Yao
[40, Propositions 4.1, 4.2, 4.3, Theorems 4.1, A.1] respectively).

Proposition 2.2 (Optional Sampling of g-martingales) Given p ∈ (1, 2], let g be
a p-generator satisfying (A2), (A3) and (2.2). Let X be a g-submartingale (resp. g-
supermartingale) with E[X p∗ ] < ∞ and let τ ∈ T , γ ∈ Tτ . If X is right-continuous
or if τ , γ are finitely valued, then
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Eg[Xγ |Fτ ] ≥ (resp. ≤) Xτ , P − a.s.

Let us review the notion of number of upcrossings for presenting the upcrossing
inequality of g-martingales: Given a real-valued process X and two real numbers
a < b, for any finite subset D = {t1 < · · · < tm} of [0, T ], we define the “number
of upcrossings” UD(a, b; X (ω)) of interval [a, b] by the sample path {Xt (ω)}t∈D
as follows: Set m′ := ⌈m

2

⌉
and τ0 := −1. For i = 1, . . . , m′, we recursively

define

τ2i−1(ω) := min
{
t ∈ D : t > τ2i−2(ω), Xt (ω) < a

} ∧ tm ∈ T and

τ2i (ω) := min
{
t ∈ D : t > τ2i−1(ω), Xt (ω) > b

} ∧ tm ∈ T ,

with the convention min ∅ = ∞. Then UD(a, b; X (ω)) is defined to be the largest
integer i such that τ2i (ω) < tm . To wit, UD

(
a, b; X (ω)

) =∑m′
i=1 1{τ2i (ω)<tm }.

Proposition 2.3 (Upcrossing Inequality of g-martingales) Given p ∈ (1, 2], let g be
a p-generator satisfying (A2), (A3), (2.2) with respect to some p-coefficient set �, and
let X be a g-supermartingale with E[X p∗ ] < ∞. For any real numbers a < b and any
finite subset D = {t1 < · · · < tm} of [0, T ], the upcrossing number UD(a, b; X) of
interval [a, b] satisfies

E
[
ln
(
1 + UD(a, b; X)

)] ≤ ln

{
e3Ĉ

b − a
E�

[
(Xtm − a)−

]+ |a|e3Ĉ

b − a
+ 1

}

+1

2
Ĉ + (κ2 − ln(1 + κ1)

)
ν(X )T .

Theorem 2.3 (Doob–Meyer Decomposition of g-martingales) Given p ∈ (1, 2], let
g be a p-generator satisfying (2.2) and (A2). Assume that g also satisfies (A3) with
∫ T
0 �

2p
2−p
t dt ∈ L∞(FT ) if p ∈ (1, 2), or with � ≡ κ� ∈ [0,∞) if p = 2. If X ∈ D

p

is a g-supermartingale (resp. g-submartingale), then there exist unique processes
(Z , U, K ) ∈ Z

2,p × U
p × K

p such that P − a.s.

Xt = XT +
∫ T

t
g (s, Xs, Zs, Us) ds −

∫ T

t
Zsd Bs

−
∫

(t,T ]

∫

X
Us(x)Ñp(ds, dx) + KT − Kt (resp. − KT + Kt ), t ∈ [0, T ].

The Theorem 2.3 relies on the following a priori Lp-estimate to a special BSDEJ
and generalized monotonic limit theorem of jump diffusion processes over Dp, both
of which are crucial for the proof of the Doob–Meyer decomposition under nonlinear
expectation E (Theorem 3.1).

Proposition 2.4 Given p ∈ (1, 2] and ξ ∈ L p(FT ), let g be a p-generator and let
X be a real-valued, F-adapted càdlàg process with X+ ∈ D

p. Let (Y, Z , U, K ) ∈
D

p × Z
2
loc × U

p
loc × K

p satisfies that P − a.s.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt = ξ +
∫ T

t
g(s, Ys, Zs, Us)ds + KT − Kt −

∫ T

t
Zs d Bs

−
∫

(t,T ]

∫

X
Us(x)Ñp(ds, dx), t ∈ [0, T ]

∫ T

0
1{Yt−>Xt−}d Kt = 0.

(2.5)

If there exist three [0,∞)-valued, B[0, T ] ⊗ FT -measurable processes f, β, � with∫ T
0 ft dt ∈ L p(FT ),

∫ T
0

(
β

q
t ∨ �2

t

)
dt ∈ L∞(FT ) such that

∣∣g(t, Yt , Zt , Ut )
∣∣ ≤ ft + βt

(|Yt | + ‖Ut‖L p
ν

)+ �t |Zt |, dt × d P − a.s., (2.6)

then (Z , U ) ∈ Z
2,p × U

p and

‖Y‖p
Dp + ∥∥Z

∥∥p
Z2,p + ∥∥U∥∥p

Up + E[K p
T ] ≤ CE

[
|ξ |p +

( ∫ T

0
ft dt
)p + (X+∗ )p

]
.

Theorem 2.4 Given p ∈ (1, 2], let {Y n}n∈N be a series of jump diffusion processes
in form of

Y n
t = Y n

0 −
∫ t

0
gn

s ds − K n
t +
∫ t

0
Zn

s d Bs

+
∫

(0,t]

∫

X
U n

s (x)Ñp(ds, dx), ∀ t ∈ [0, T ],

where

(i)
{
(gn, Zn, U n)

}
n∈N is bounded in L

p
([0, T ]×�,P, dt ×d P;R)×Z

2,p ×U
p,

i.e. there exists a C > 0 such that

(
E
∫ T

0
|gn

t |pdt

) 1
p + ‖Zn‖Z2,p + ‖U n‖Up ≤ C, ∀ n ∈ N;

(ii) For any n ∈ N, K n is an F-adapted, continuous increasing process with K n
0 = 0

and K n
T ∈ L p(FT );

(iii) Y n is an increasing sequence that is bounded above by some X ∈ D
p, i.e.

P{Y n
t ≤ Y n+1

t ≤ Xt , ∀ t ∈ [0, T ]} = 1 for any n ∈ N. Then Yt := lim
n→∞Y n

t ,

t ∈ [0, T ] is a process of Dp that satisfies

P
{

Yt = lim
n→∞ ↑ Y n

t ≤ Xt , ∀ t ∈ [0, T ]
}

= 1, (2.7)

and possesses the following decomposition: There exists (g, Z , U, K ) ∈ L
p
([0, T ]×

�,P, dt × d P;R)× Z
2,p × U

p × K
p such that P − a.s.
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Yt = Y0 −
∫ t

0
gsds − Kt +

∫ t

0
Zsd Bs

+
∫

(0,t]

∫

X
Us(x)Ñp(ds, dx), ∀ t ∈ [0, T ], (2.8)

and that for any � ∈ (2/p, 2)

lim
n→∞E

[(∫ T

0
|Zn

s − Zs |� ds

) p
2

+
∫ T

0

∫

X
|U n

s (x) − Us(x)| p�
2 ν(dx)ds

]
= 0.

Moreover, if Y has only inaccessible jumps, then K is a continuous process and

lim
n→∞E

[(∫ T

0
|Zn

s − Zs |2ds

) p
2

+
∫ T

0

∫

X
|U n

s (x) − Us(x)|pν(dx)ds

]
= 0.

(2.9)

3 Filtration-Consistent Nonlinear Expectations

In this section, we generalize g-expectations to a so-called “filtration-consistent non-
linear expectation” as inCoquet et al. [10].A large class of nonlinear expectations, such
as risk measures or monetary utility functionals, play important role in mathematical
finance.

3.1 F-Expectations with Domain L p(FT )

Definition 3.1 Let p ∈ (1, 2].
(1) We call a mapping E : L p(FT ) → R a “nonlinear expectation” with domain

L p(FT ) if it satisfies
(i) (Strict Monotonicity) For any ξ, η ∈ L p(FT ) with ξ ≤ η, P − a.s., E[ξ ] ≤

E[η]; If one further has E[ξ ] = E[η], then ξ = η, P − a.s.
(ii) (Constant Preserving) E[c] = c, ∀ c ∈ R.

(2) A nonlinear expectation E on L p(FT ) is said to be “consistent” with the filtration
F if for any ξ ∈ L p(FT ) and t ∈ [0, T ], there exists an η = η(ξ, t) ∈ L p(Ft )

such that E[1Aξ ] = E[1Aη] holds for any A ∈ Ft . By the strict monotonicity,
one can check as usual that such a random variable η is unique. We will denote
it by E[ξ |Ft ] and refer to it as the “filtration-consistent conditional nonlinear
expectation” (or simply F-expectation) of ξ .

(3) Given an F-expectation
{
E[·|Ft ]

}
t∈[0,T ] with domain L p(FT ), a real-valued, F-

adapted process X is called an E-submartingale
(
resp. E-supermartingale or E-

martingale
)
if for any 0 ≤ t ≤ s ≤ T , E[|Xs |p] < ∞ and

E[Xs |Ft ] ≥ (resp. ≤ or =) Xt , P − a.s.
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(4) We say an F-expectation
{
E[·|Ft ]

}
t∈[0,T ] with domain L p(FT ) to be “translation

invariant” if for any ξ ∈ L p(FT ), any t ∈ [0, T ] and any η ∈ L p(Ft )

E[ξ + η|Ft ] = E[ξ |Ft ] + η, P − a.s.

Similar to Peng [31, Proposition 2.2], any F-expectation
{
E[·|Ft ]

}
t∈[0,T ] with

domain L p(FT ) possesses the following properties: Let ξ ∈ L p(FT ) and t ∈ [0, T ].
(F1) “Monotonicity”: For any η ∈ L p(FT )with ξ ≤ η, P −a.s., E[ξ |Ft ] ≤ E[η|Ft ],

P − a.s.
(F2) “Constant Preserving”: If ξ is Ft -measurable, then E[ξ |Ft ] = ξ , P − a.s.
(F3) “Time Consistency”: For any s ∈ [t, T ], E[E[ξ |Fs]

∣∣Ft
] = E[ξ |Ft ], P − a.s.

(F4) “Zero–One Law”: For any A ∈ Ft , E[1Aξ |Ft ] = 1AE[ξ |Ft ], P − a.s.

Example 3.1 Let p ∈ (1, 2].
(1) Let h: R → R be a strictly increasing continuous function with h(0) = 0 and

satisfying |h(x)| ≤ C
(
1 + |x |p

)
, ∀ x ∈ R for some C > 0. Then E[ξ |Ft ] :=

h−1
(
E[h(ξ)|Ft ]

)
, ∀ ξ ∈ L p(FT ), ∀ t ∈ [0, T ] defines an F-expectation with

domain L p(FT ).
(2) Let g be a p-generator satisfying (A2), (A3) and (2.2). One can deduce from

(g1)–(g4) and (2.1) that the g-expectation
{
Eg[ |Ft ]

}
t∈[0,T ] is an F-expectation

with domain L p(FT ) such that E

[
sup

t∈[0,T ]
∣∣Eg[ξ |Ft ]

∣∣p
]

< CE[|ξ |p] for any ξ ∈
L p(FT ).

Next, let us introduce the notion of the domination of F-expectations with domain
L p(FT ).

Definition 3.2 Given p ∈ (1, 2], let� be a p-coefficient set. We say an F-expectation{
E[·|Ft ]

}
t∈[0,T ] with domain L p(FT ) is “E

�
-dominated” if (1.2) holds.

Example 3.2 Given p ∈ (1, 2], let g be a p-generator satisfying (A1)–(A3) with
respect to some p-coefficient set�.We see fromProposition 2.1 that the g-expectation{
Eg[ |Ft ]

}
t∈[0,T ] with domain L p(FT ) is E

�
-dominated in sense of (1.2).

What follows is a conditional expectation version of E
�0
-domination.

Proposition 3.1 Given p ∈ (1, 2], let � be a p-coefficient set with β ≡ 0, and let{
E[·|Ft ]

}
t∈[0,T ] be a translation invariant F-expectation with domain L p(FT ) that is

E
�0

-dominated. Then it holds for any ξ, η ∈ L p(FT ) and t ∈ [0, T ] that

E
�0

[ξ − η|Ft ] ≤ E[ξ |Ft ] − E[η|Ft ] ≤ E
�0

[ξ − η|Ft ], P − a.s., (3.1)

and thus that

E
[∣∣E[ξ |Ft ] − E[η|Ft ]

∣∣p
]

≤ CE
[|ξ − η|p]. (3.2)
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Proof Fix η ∈ L p(FT ).

(1) By the translation invariance of E , the mapping

Eη[ϑ] := E[η + ϑ] − E[η], ∀ϑ ∈ L p(FT )

satisfies the “strict monotonicity” and the “constant preserving” in Definition 3.1
(1), and is thus a “nonlinear expectation” with domain L p(FT ).
Given ϑ ∈ L p(FT ) and t ∈ [0, T ], we claim that Eη[ϑ |Ft ] = E[η + ϑ |Ft ] −
E[η|Ft ]: To see this, we let A ∈ Ft . By (F4),

E[η + 1Aϑ |Ft ] = 1AE[η + 1Aϑ |Ft ] + 1AcE[η + 1Aϑ |Ft ]
= E[1Aη + 1Aϑ |Ft ] + E[1Acη|Ft ] = 1AE[η + ϑ |Ft ]

+1AcE[η|Ft ], P − a.s.

Then (F3) and translation invariance of E imply that

Eη

[
1A
(
E[η + ϑ |Ft ] − E[η|Ft ]

)]− Eη[1Aϑ]
= E
[
η + 1A

(
E[η + ϑ |Ft ] − E[η|Ft ]

)]− E[η + 1Aϑ]
= E
[
E
[
η + 1A

(
E[η + ϑ |Ft ] − E[η|Ft ]

)∣∣Ft
]]− E[η + 1Aϑ]

= E
[
E[η|Ft ] + 1A

(
E[η + ϑ |Ft ] − E[η|Ft ]

)]− E[η + 1Aϑ]
= E
[
1AcE[η|Ft ] + 1AE[η + ϑ |Ft ]

]− E[η + 1Aϑ]
= E
[
E[η + 1Aϑ |Ft ]

]− E[η + 1Aϑ] = 0,

proving the claim. Thus
{
Eη[ |Ft ]

}
t∈[0,T ] forms a F-expectation. Moreover, the

translation invariance and the E
�0
-domination of E lead to those of Eη.

(2) Next, let ξ ∈ L p(FT ), t ∈ [0, T ] and set A := {Eη[ξ −η|Ft ] > E
�0

[ξ −η|Ft ]
} ∈

Ft . Since Eη[ϑ] ≤ E
�0

[ϑ] for any ϑ ∈ L p(FT ) and since 1A
(
Eη[ξ − η|Ft ] −

E
�0

[ξ − η|Ft ]
) ≥ 0, P − a.s., we can deduce from (F1)–(F4), the translation

invariance of Eη and (g2), (g3), (g5) of g�0 -expectations that

0 = Eη[0] ≤ Eη

[
1A
(
Eη[ξ − η|Ft ] − E

�0
[ξ − η|Ft ])

]

= Eη

[
Eη[1A(ξ − η)|Ft ] − E

�0
[1A(ξ − η)|Ft ]

]

= Eη

[
Eη

[
1A(ξ − η) − E

�0
[1A(ξ − η)|Ft ]

∣∣Ft
]]

= Eη

[
1A(ξ − η) − E

�0
[1A(ξ − η)|Ft ]

]

≤ E
�0

[
1A(ξ − η) − E

�0
[1A(ξ − η)|Ft ]

]

= E
�0

[
E

�0

[
1A(ξ − η) − E

�0
[1A(ξ − η)|Ft ]

∣∣Ft
]]

= E
�0

[
E

�0
[1A(ξ − η)

∣∣Ft ] − E
�0

[1A(ξ − η)|Ft ]
]

= E
�0

[0] = 0.

123

Author's personal copy



Appl Math Optim

Then the strict monotonicity of Eη[ ] implies that 1A
(
Eη[ξ − η|Ft ] − E

�0
[ξ −

η|Ft ]) = 0, P−a.s. It follows that P(A) = 0or equivalently,E[ξ |Ft ]−E[η|Ft ] =
Eη[ξ − η|Ft ] ≤ E

�0
[ξ − η|Ft ], P − a.s.

(3) Let ξ, η ∈ L p(FT ). If (Y, Z , U ) is the unique solution of BSDEJ
(
η − ξ, g�0

)
,

multiplying −1 shows that (−Y,−Z ,−U ) is the unique solution of BSDEJ
(
ξ −

η, g�0
)
. Namely, P

{ − E
�0

[η − ξ |Ft ] = E
�0

[ξ − η|Ft ], ∀ t ∈ [0, T ]} = 1. It
follows from the E

�0
-domination of E that

Eη[ξ − η] = E[ξ ] − E[η] = −(E[η] − E[ξ ]) ≥ −E
�0

[η − ξ ] = E
�0

[ξ − η].

For any t ∈ [0, T ], using similar arguments to those in part 2) yields that E[ξ |Ft ]−
E[η|Ft ] = Eη[ξ − η|Ft ] ≥ E

�0
[ξ − η|Ft ], P − a.s., which proves (3.1). Then

one can deduce from (2.1) and Example 2.1 that

E
[∣∣E[ξ |Ft ] − E[η|Ft ]

∣∣p]

≤ E
[∣∣E

�0
[ξ − η|Ft ]

∣∣p ∨ ∣∣E
�0

[ξ − η|Ft ]
∣∣p
]

≤ E

[
sup

s∈[0,T ]
∣∣E

�0
[ξ − η|Fs]

∣∣p + sup
s∈[0,T ]

∣∣E
�0

[ξ − η|Fs]
∣∣p
]

≤ CE
[|ξ − η|p].

��

3.2 E-Martingales

In this subsection, we will study basic properties of E-martingales such as optional
sampling theorem and Doob–Meyer decomposition. All of them rely on a path regular
result of E-martingales as follows:

Proposition 3.2 Given p ∈ (1, 2], let � be a p-coefficient set with β ≡ 0, and let{
E[·|Ft ]

}
t∈[0,T ] be a translation invariant F-expectation with domain L p(FT ) that is

E
�0

-dominated. Then each E-martingale admits a càdlàg modification. Consequently,
we are able to upgrade the inequality (3.2):

E

[
sup

t∈[0,T ]
∣∣E[ξ |Ft ] − E[η|Ft ]

∣∣p
]

≤ CE
[|ξ − η|p], ∀ ξ, η ∈ L p(FT ). (3.3)

Proof SetDT := {k2−n ∈ (0, T ) : k, n ∈ N} ∪ {0, T }. Clearly, q+
n (t) := �2n t�

2n ∧ T ∈
DT , ∀ t ∈ [0, T ], ∀ n ∈ N. Let X be an E-martingale with E[X p∗ ] < ∞ and define
the right-limit process of X by

X̂t := lim
n→∞

Xq+
n (t) ∈ [−∞,∞], ∀ t ∈ [0, T ].

The right-continuity of filtration F implies that the process X̂ is F-adapted.
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(1) For any 0 ≤ t < s ≤ T , applying (3.1) with (ξ, η) = (Xs, 0) and using (F2) yield
that Xt = E[Xs |Ft ] ≥ E

�0
[Xs |Ft ], P−a.s. So X is also an g�0 -supermartingale.

We claim that

P
{

X̂t = lim
n→∞Xq+

n (t) ∈ R, ∀ t ∈ [0, T ]
}

= 1. (3.4)

To see this, we let −∞ < a < b < ∞ and let {Dn}n∈N be an increasing sequence
of finite subsets of DT such that ∪

n
Dn = DT and that T ∈ Dn for any n ∈ N.

Since Example 2.1 shows that g�0 also satisfies (A2), (A3) and (2.2) with the
same coefficient set �0, applying Proposition 2.3 with g = g�0 , we obtain that
for any n ∈ N

E
[
ln
(
1 + UDn (a, b; X)

)] ≤ ln

{
e3Ĉ

b − a
E�0

[
a+ + |XT |]+ |a|e3Ĉ

b − a
+ 1

}

+ 1

2
Ĉ + (κ2 − ln(1 + κ1)

)
ν(X )T < ∞.

As lim
n→∞ ↑ UDn (a, b; X) = UDT (a, b; X), the monotone convergence theorem

implies that

E
[
ln
(
1 + UDT (a, b; X)

)] = lim
n→∞ ↑ E

[
ln
(
1 + UDn (a, b; X)

)]

≤ ln

{
e3Ĉ

b − a

(
E�0

[
a+ + |XT |]+ |a|)+ 1

}

+ 1

2
Ĉ + (κ2 − ln(1 + κ1)

)
ν(X )T .

So UDT (a, b; X) < ∞, P − a.s. Using a classical argument (see e.g. [21, Propo-
sition 1.3.14]) leads to that

lim
s↗t,s∈DT

Xs and lim
s↘t,s∈DT

Xs exist and are finite for any t ∈ [0, T ].

Then (3.4) follows, and thus one can regard X̂ as a real-valued, F-adapted càdlàg
process.

(2) Next, fix t ∈ [0, T ]. For any n ∈ N, applying (3.1) with (ξ, η, t) = (XT , 0, q+
n (t))

and using (F2) yield that P − a.s.

∣∣Xq+
n (t)

∣∣p = ∣∣E[XT
∣∣Fq+

n (t)

]∣∣p ≤ ∣∣E
�0

[
XT
∣∣Fq+

n (t)

]∣∣p ∨ ∣∣E
�0

[
XT
∣∣Fq+

n (t)

]∣∣p

≤ sup
s∈[0,T ]

∣∣E
�0

[
XT
∣∣Fs
]∣∣p + sup

s∈[0,T ]
∣∣E

�0

[
XT
∣∣Fs
]∣∣p := ξ

�0
. (3.5)

It follows from (3.4) that

∣∣X̂t
∣∣p = lim

n→∞
∣∣Xq+

n (t)

∣∣p ≤ ξ
�0

, P − a.s. (3.6)
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As (2.1) shows that

E
[
ξ
�0

] ≤ CE[|XT |p], (3.7)

we see that X̂t ∈ L p(FT ).
For any n ∈ N, (F2) and (3.2) imply that

E
[∣∣E[Xq+

n (t)

∣∣Ft
]− X̂t

∣∣p
]

= E
[∣∣E[Xq+

n (t)

∣∣Ft
]− E

[
X̂t
∣∣Ft
]∣∣p
]

≤ CE
[∣∣Xq+

n (t) − X̂t
∣∣p
]
. (3.8)

Since (1.4), (3.5) and (3.6) show that
∣∣Xq+

n (t) − X̂t
∣∣p ≤ 2p−1

(∣∣Xq+
n (t)

∣∣p +
∣∣X̂t
∣∣p) ≤ 2pξ

�0
, one can deduce from (3.4), (3.7) and the dominated conver-

gence theorem that lim
n→∞E

[∣∣Xq+
n (t) − X̂t

∣∣p] = 0. It then follows from (3.8) that

lim
n→∞E

[∣∣E
[
Xq+

n (t)

∣∣Ft
]− X̂t

∣∣p
]

= 0. So there exists a subsequence {ni }i∈N of N

such that

X̂t = lim
i→∞E

[
Xq+

ni (t)

∣∣Ft
] = Xt , P − a.s.

Therefore, X̂ is a càdlàg modification of X .
(3) Let ξ, η ∈ L p(FT ). We can deduce from (F2), (3.1), (2.1) and Example

2.1 that E

[
sup

t∈[0,T ]
∣∣E[ξ |Ft ]

∣∣p
]

≤ E

[
sup

t∈[0,T ]

(∣∣E
�0

[ξ |Ft ]
∣∣p ∨ ∣∣E

�0
[ξ |Ft ]

∣∣p
)]

≤

E

[
sup

t∈[0,T ]
∣∣E

�0
[ξ |Ft ]

∣∣p + sup
t∈[0,T ]

∣∣E
�0

[ξ |Ft ]
∣∣p
]

≤ CE
[|ξ |p
]

< ∞, and similarly

that E

[
sup

t∈[0,T ]
∣∣E[η|Ft ]

∣∣p
]

≤ CE
[|η|p
]

< ∞.

According to Part (2), the E-martingales {E[ξ |Ft ]}t∈[0,T ] and {E[η|Ft ]}t∈[0,T ]
have càdlàg modifications, we still denote them by {E[ξ |Ft ]}t∈[0,T ] and
{E[η|Ft ]}t∈[0,T ] respectively. Using (3.1), (2.1) and Example 2.1 again yields

E

[
sup

t∈[0,T ]
∣∣E[ξ |Ft ] − E[η|Ft ]

∣∣p
]

≤ E

[
sup

t∈[0,T ]

(∣∣E
�0

[ξ − η|Ft ]
∣∣p ∨ ∣∣E

�0
[ξ − η|Ft ]

∣∣p
)]

≤ E

[
sup

t∈[0,T ]
∣∣E

�0
[ξ − η|Ft ]

∣∣p + sup
t∈[0,T ]

∣∣E
�0

[ξ − η|Ft ]
∣∣p
]

≤ CE
[|ξ − η|p].

��
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From now on, for any translation invariant, E
�0
-dominated F-expectation E , we

will just consider the càdlàg modification of any E-martingale, which turns out to be
a semi-martingale under P in the following form:

Proposition 3.3 Given p ∈ (1, 2], let � be a p-coefficient set with β ≡ 0 such that
∫ T
0 �

2p
2−p
t dt ∈ L∞(FT ) if p ∈ (1, 2) or � ≡ κ� ∈ [0,∞) if p = 2. Also, let{

E[·|Ft ]
}

t∈[0,T ] be a translation invariant F-expectation with domain L p(FT ) that

is E
�0

-dominated. For i = 1, 2, let Xi ∈ D
p be an E-martingale, then there exist a

real-valued, F-progressively measurable process gi and (Zi , Ui ) ∈ Z
2,p × U

p such
that

(1) P
{

Xi
t = Xi

T + ∫ T
t gi

sds − ∫ T
t Z i

sd Bs − ∫
(t,T ]
∫
X Ui

s (x)Ñp(ds, dx), ∀ t ∈
[0, T ]} = 1.

(2) g�0(t, Zi
t , Ui

t ) ≤ gi
t ≤ g�0(t, Zi

t , Ui
t ), dt × d P − a.s.

(3) g�0(t, Z1
t − Z2

t , U 1
t −U 2

t ) ≤ g1t −g2t ≤ g�0(t, Z1
t − Z2

t , U 1
t −U 2

t ),dt ×d P −a.s.

Proof (1) Let i = 1, 2. For 0 ≤ t ≤ s ≤ T , (F2) and (3.1) show that

E
�0

[Xi
s |Ft ] ≤ Xi

t = E[Xi
s |Ft ] − E[0|Ft ] ≤ E

�0
[Xi

s |Ft ], P − a.s.

Thus Xi is a g�0 -submartingale and a g�0 -supermartingale. By Example 2.1,
g�0 , g�0 satisfies (A2), (A3) and (2.2) with the same coefficient set �0. In light
of Theorem 2.3, there exist unique processes (Zi , Ui , K i ) ∈ Z

2,p × U
p × K

p

such that P − a.s.

Xi
t = Xi

T +
∫ T

t
g�0(s, Zi

s, Ui
s )ds −

∫ T

t
Z i

sd Bs

−
∫

(t,T ]

∫

X
Ui

s (x)Ñp(ds, dx) − K i
T + K i

t , t ∈ [0, T ], (3.9)

and there exist unique processes (Z
i
, U

i
, K

i
) ∈ Z

2,p ×U
p ×K

p such that P−a.s.

Xi
t = Xi

T +
∫ T

t
g�0(s, Z

i
s, U

i
s)ds −

∫ T

t
Z

i
sd Bs

−
∫

(t,T ]

∫

X
U

i
s(x)Ñp(ds, dx) + K

i
T − K

i
t , t ∈ [0, T ]. (3.10)

Subtracting (3.10) from (3.9) yields that P − a.s.

∫ t

0

[
g�0(s, Zi

s, Ui
s ) − g�0(s, Z

i
s, U

i
s)
]

ds

=
∫ t

0

(
Zi

s − Z
i
s

)
d Bs +

∫

(0,t]

∫

X
(
Ui

s (x) − U
i
s(x)
)
Ñp(ds, dx)

+ K i
t + K

i
t , t ∈ [0, T ]. (3.11)
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The jump times of the stochastic integral
{ ∫

(0,t]
∫
X
(
Ui

s (x) − U
i
s(x)
)

Ñp(ds, dx)
}

t∈[0,T ] are totally inaccessible, while the jumps of the F-predictable

càdlàg increasing process K i + K
i
are exhausted by a sequence {ζ i

n}n∈N of F-

predictable stopping times
(
i.e. {(t, ω) ∈ [0, T ]×� : �K i

t (ω)+�K
i
t (ω) > 0} is

a union of graphs [[ζ i
n]] and these graphs are disjoint on (0, T ), see e.g. “Comple-

ments to Chapter IV” of Dellacherie and Meyer [14] or [20, Proposition I.2.24]
for details

)
. So we see from (3.11) that for P − a.s. ω ∈ �

1{t∈Dp(ω)}
(
�K i

t (ω) + �K
i
t (ω)
) = 0 and 0 = 1{t∈Dp(ω)}

(
Ui − U

i )
(t, ω, pt (ω))

+ 1{t /∈Dp(ω)}
(
�K i

t (ω) + �K
i
t (ω)
)
, ∀ t ∈ [0, T ].

It follows that P − a.s.

�K i
t + �K

i
t = 0, ∀ t ∈ [0, T ] and Ui

t (x) = U
i
t (x), ∀ (t, x) ∈ [0, T ] × X .

(3.12)

The former shows that the increasing processes K i and K
i
have P − a.s. con-

tinuous paths, which together with the latter and (3.11) implies that Zi
t = Z

i
t ,

dt × d P − a.s. and that P − a.s.

K i
t + K

i
t =
∫ t

0

[
g�0(s, Zi

s, Ui
s ) − g�0(s, Zi

s, Ui
s )
]
ds, t ∈ [0, T ]. (3.13)

Hence, both K i and K
i
are absolutely continuous processes: there exist nonneg-

ative F-progressively measurable processes ai , ai such that P − a.s.

K i
t =
∫ t

0
ai

sds, and K
i
t =
∫ t

0
ai

sds, t ∈ [0, T ].

Then we see from (3.9) that the real-valued, F-progessively measurable process
gi

t := g�0(t, Zi
t , Ui

t )−ai
t , t ∈ [0, T ] together with (Zi , Ui ) leads to that P − a.s.

Xi
t = Xi

T +
∫ T

t
gi

sds −
∫ T

t
Z i

sd Bs −
∫

(t,T ]

∫

X
Ui

s (x)Ñp(ds, dx), t ∈ [0, T ].
(3.14)

By (3.13), it holds dt × d P − a.s. that

g�0(t, Zi
t , Ui

t ) ≥ gi
t = g�0(t, Zi

t , Ui
t ) − ai

t = g�0(t, Zi
t , Ui

t ) + ai
t

≥ g�0(t, Zi
t , Ui

t ).
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(2) We know from the proof of Proposition 3.1 that

Ẽ[ϑ |Ft ] := E[X2
T + ϑ |Ft ] − E[X2

T |Ft ], ∀ t ∈ [0, T ], ∀ϑ ∈ L p(FT )

is also a translation invariant F-expectation with domain L p(FT ) that is E
�0
-

dominated. Since X1
t −X2

t = E[X1
T |Ft ]−E[X2

T |Ft ] = Ẽ[X1
T −X2

T |Ft ], t ∈ [0, T ]
is an Ẽ-martingale, an application of (3.14) yields that for some real-valued, F-
progressivelymeasurable process g̃ and

(
Z̃ , Ũ
) ∈ Z

2,p×U
p, it holds P−a.s. that

X1
t − X2

t = X1
T − X2

T +
∫ T

t
g̃sds −

∫ T

t
Z̃sd Bs

−
∫

(t,T ]

∫

X
Ũs(x)Ñp(ds, dx), t ∈ [0, T ], (3.15)

and that

g�0(t, Z̃t , Ũt ) ≤ g̃t ≤ g�0(t, Z̃t , Ũt ), dt × d P − a.s. (3.16)

As X1 − X2 also satisfies that P − a.s.

X1
t − X2

t = X1
T − X2

T +
∫ T

t
(g1s − g2s )ds −

∫ T

t
(Z1

s − Z2
s )d Bs

−
∫

(t,T ]

∫

X
(
U 1

s (x) − U 2
s (x)
)
Ñp(ds, dx), t ∈ [0, T ],

an comparison with (3.15) shows that
(
g̃t , Z̃t

) = (g1t − g2t , Z1
t − Z2

t

)
, dt × d P −

a.s. and that Ũt (x) = U 1
t (x) − U 2

t (x), dt × d P × ν(dx)-a.s. Plugging these
equalities into (3.16) yields that

g�0
(

t, Z1
t − Z2

t , U 1
t − U 2

t

)

≤ g1t − g2t ≤ g�0
(

t, Z1
t − Z2

t , U 1
t − U 2

t

)
, dt × d P − a.s.

��
Let � be a p-coefficient set with β ≡ 0, and let

{
E[·|Ft ]

}
t∈[0,T ] be a transla-

tion invariant F-expectation with domain L p(FT ) that is E
�0
-dominated. For any

ξ ∈ L p(FT ) and τ ∈ T , define E[ξ |Fτ ] = ϒ
ξ
τ , where ϒξ denotes the càdlàg modi-

fication of the E-martingale
{
E[ξ |Ft ]

}
t∈[0,T ]. Analogous to Proposition 2.2, one has

an optional sampling theorem for E-martingales.

Proposition 3.4 (Optional Sampling of E-martingales) Given p ∈ (1, 2], let � be
a p-coefficient set with β ≡ 0, and let

{
E[·|Ft ]

}
t∈[0,T ] be a translation invariant

F-expectation with domain L p(FT ) that is E
�0

-dominated. For any right-continuous

E-submartingale (resp.E-supermartingale) X with E[X p∗ ] < ∞, it holds for any
τ, γ ∈ T that
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Xτ∧γ ≤ (resp. ≥) E[Xγ |Fτ ], P − a.s.

Proof Let us only consider the E-submartingale case, as the other cases can be derived
similarly.

Fix τ, γ ∈ T and let t ∈ [0, T ], n ∈ N.We set tn
i := t+ i

2n (T −t) for i = 0, · · · , 2n ,
An
1 := {t ≤ γ ∨ t ≤ tn

1 } ∈ Ftn
1
, An

i := {tn
i−1 < γ ∨ t ≤ tn

i } ∈ Ftn
i
for i = 2, · · · , 2n ,

and define γn :=∑2n

i=1 1An
i

tn
i ∈ T .

For any i = 1, · · · , 2n − 1, set ξn
i := 1{γn≤tn

i } Xγn + 1{γn≥tn
i+1} Xtn

i+1
. Since {γn ≤

tn
i } = {γn ≥ tn

i+1}c ∈ Ftn
i
and since 1{γn≤tn

i } Xγn ∈ Ftn
i
, (F2), (F4) and the E-

submartingality of X imply that P − a.s.

E
[
ξn

i |Ftn
i

] = 1{γn≤tn
i }E
[
ξn

i |Ftn
i

]+ 1{γn≥tn
i+1}E
[
ξn

i |Ftn
i

]

= E
[
1{γn≤tn

i } Xγn |Ftn
i

]+ E
[
1{γn≥tn

i+1} Xtn
i+1

|Ftn
i

]

= 1{γn≤tn
i } Xγn + 1{γn≥tn

i+1}E
[
Xtn

i+1
|Ftn

i

]

≥ 1{γn≤tn
i } Xγn + 1{γn≥tn

i+1} Xtn
i

= 1{γn≤tn
i−1} Xγn + 1{γn≥tn

i } Xtn
i

= ξn
i−1.

Taking E[ |Ft ], we see from (F1) and (F3) that E
[
ξn

i |Ft
] = E

[
E[ξn

i |Ftn
i
]∣∣Ft
] ≥

E
[
ξn

i−1|Ft
]
, P − a.s. It then follows that

E[Xγn |Ft ] = E[ξn
2n−1|Ft ] ≥ E[ξn

2n−2|Ft ] ≥ · · ·
≥ E[ξn

0 |Ft ] = E[Xtn
1
|Ft ] ≥ Xt , P − a.s.

By (3.2), E
[∣∣E[Xγn |Ft ] − E[Xγ∨t |Ft ]

∣∣p
]

≤ CE
[|Xγn − Xγ∨t |p

]
.

Since lim
n→∞ ↓ γn = γ ∨ t and since E[X p∗ ] < ∞, the right-continuity of X and

the dominated convergence theorem imply that lim
n→∞E

[|Xγn − Xγ∨t |p
] = 0 and thus

lim
n→∞E

[∣∣E[Xγn |Ft ] − E[Xγ∨t |Ft ]
∣∣p] = 0. So there exists a subsequence {n j } j∈N of

N such that

E[Xγ∨t |Ft ] = lim
j→∞E[Xγn j

|Ft ] ≥ Xt , P − a.s.

Since {γ ≤ t} ∈ Ft , (F4) and translation invariance of E show that P − a.s.

E[Xγ |Ft ] = E
[
1{γ>t} Xγ∨t + 1{γ≤t} Xγ∧t

∣∣Ft
]

= 1{γ>t}E
[
Xγ∨t
∣∣Ft
]+ 1{γ≤t} Xγ∧t ≥ 1{γ>t} Xt + 1{γ≤t} Xγ∧t = Xγ∧t .

Hence, it holds except on a P-null setN that E[Xγ |Ft ] ≥ Xγ∧t , ∀ t ∈ ([0, T )∩Q
)∪

{T } and that the paths E[Xγ |F·] and Xγ∧· are both càdlàg, thanks to Proposition 3.2.
Eventually, it holds on N c that

E[Xγ |Ft ] ≥ Xγ∧t , ∀ t ∈ [0, T ], and thus E[Xγ |Fτ ] ≥ Xτ∧γ .

��
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In light of Propositions 3.2 and 3.4, we can extend the properties (F1)–(F4) of
F-expectations.

Proposition 3.5 Given p ∈ (1, 2], let � be a p-coefficient set with β ≡ 0, and let{
E[·|Ft ]

}
t∈[0,T ] be a translation invariant F-expectation with domain L p(FT ) that is

E
�0

-dominated. Then for any ξ ∈ L p(FT ) and τ ∈ T , the following statements hold:

(F1*) “Monotonicity”: For any η ∈ L p(FT ) with ξ ≤ η, P − a.s., E[ξ |Fτ ] ≤
E[η|Fτ ], P − a.s.

(F2*) “Constant Preserving”: If ξ is Fτ -measurable, then E[ξ |Fτ ] = ξ , P − a.s.
(F3*) “Time Consistency”: For any γ ∈ Tτ , E

[
E[ξ |Fγ ]∣∣Fτ

] = E[ξ |Fτ ], P − a.s.
(F4*) “Zero–One Law”: For any A ∈ Fτ , E[1Aξ |Fτ ] = 1AE[ξ |Fτ ], P − a.s.
(F5*) “Tr0anslation Invariance”: For any η ∈ L p(Fτ ), E[ξ +η|Fτ ] = E[ξ |Fτ ]+η,

P − a.s.

Proof Let ξ ∈ L p(FT ), τ ∈ T and γ ∈ Tτ . Applying (3.3) with η = 0 and using (F2)

yield that E
[(

ϒ
ξ∗
)p] = E

[
sup

t∈[0,T ]
∣∣E[ξ |Ft ]

∣∣p
]

≤ CE
[|ξ |p
]

< ∞. Then Proposition

3.4 shows that E[ξ |Fτ ] = ϒ
ξ
τ = E[ϒξ

γ |Fτ ] = E
[
E[ξ |Fγ ]|Fτ

]
, P − a.s., so (F3*)

holds.
Next, let η ∈ L p(FT ) with ξ ≤ η, P − a.s., let ζ ∈ L p(Fτ ) and let A ∈ Fτ .

Given n ∈ N, we set tn
i := i

2n T for i = 0, · · · , 2n , An
1 := {0 ≤ τ ≤ tn

1 } ∈ Ftn
1
,

An
i := {tn

i−1 < τ ≤ tn
i } ∈ Ftn

i
for i = 2, · · · , 2n , and define τn :=∑2n

i=1 1An
i

tn
i ∈ T .

(i) By (F1), E[ξ |Fτn ] = ∑2n

i=1 1An
i
E
[
ξ |Ftn

i

] ≤ ∑2n

i=1 1An
i
E
[
η|Ftn

i

] = E[η|Fτn ],
P − a.s.;

(ii) Since 1An
i
ζ ∈ Ftn

i
for any i = 1, · · · , 2n , one can deduce from (F2), (F4) and

the translation invariance of E that

E[ζ |Fτn ] =
2n∑

i=1

1An
i
E
[
ζ |Ftn

i

] =
2n∑

i=1

E
[
1An

i
ζ |Ftn

i

]

=
2n∑

i=1

1An
i
ζ = ζ, P − a.s., (3.17)

and that

E[ξ + ζ |Fτn ] =
2n∑

i=1

1An
i
E
[
ξ + ζ |Ftn

i

] =
2n∑

i=1

E
[
1An

i
ξ + 1An

i
ζ |Ftn

i

]

=
2n∑

i=1

(
1An

i
E
[
ξ |Ftn

i

]+ 1An
i
ζ
) = E[ξ |Fτn ] + ζ, P − a.s.

(3.18)
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(iii) As A ∩ An
i ∈ Ftn

i
for any i = 1, . . . , 2n , (F2) implies that

1AE[ξ |Fτn ] =
2n∑

i=1

1A∩An
i
E
[
ξ |Ftn

i

] =
2n∑

i=1

E
[
1A∩An

i
ξ |Ftn

i

]

=
2n∑

i=1

1An
i
E
[
1Aξ |Ftn

i

] = E
[
1Aξ |Fτn

]
, P − a.s.

Clearly, lim
n→∞ ↓ τn = τ . Thus, letting n → ∞ in (i), (3.17), (3.18) and (iii) leads

to (F1*), (F2*), (F4*), (F5*). ��

3.3 Doob–Meyer Decomposition of E-Supermartingales

Let E be an F-expectation. The Doob–Meyer decomposition of E-supermartingales
requires the study of the following (generalized) BSDE with respect to E

Yt +
∫ t

0
f (s, Ys)ds = E

[
ξ +
∫ T

0
f (s, Ys)ds

∣∣∣Ft

]
, t ∈ [0, T ], (3.19)

whose well-posedness is based on the fixed-point argument and (3.3):

Proposition 3.6 Given p ∈ (1, 2], let � be a p-coefficient set with β ≡ 0, and let{
E[·|Ft ]

}
t∈[0,T ] be a translation invariant F-expectation with domain L p(FT ) that

is E
�0

-dominated. Also, let f : [0, T ] × � × R → R be a P ⊗ B(R)/B(R)-

measurable function such that
∫ T
0 | f (t, 0)|dt ∈ L p(FT ) and that for some C f > 0,

it holds dt × d P − a.s. that
∣∣ f (t, y1) − f (t, y2)

∣∣ ≤ C f |y1 − y2| for any y1, y2 ∈ R.
Then for any ξ ∈ L p(FT ), the BSDE (3.19) admits a unique solution Y ∈ D

p, i.e.
the unique process in D

p that satisfies (3.19) P − a.s.

Proof In the inequality (3.3), the constant coefficient C does not depend on the choice
of ξ and η. To temporarily freeze the form of such a constant, we rephrase it by Ĉ in
this proof.

Set a := 2Ĉ T p−1C p
f . Let L

p
a collect all real-valued, F-progressively measurable

processes Y with ‖Y‖
L

p
a

:= {E ∫ T
0 eat |Yt |pdt

} 1
p < ∞. Clearly, Lp

a is a complete
space under norm ‖ ‖

L
p
a
.

Fix ξ ∈ L p(FT ) and let Y ∈ L
p
a . Since (1.4) shows that

E

[( ∫ T

0
| f (t, Yt )|dt

)p
]

≤ E

[( ∫ T

0
(| f (t, 0)| + C f |Yt |)dt

)p
]

≤ 2p−1E

[( ∫ T

0
| f (t, 0)|dt

)p + C p
f T p−1

∫ T

0
|Yt |pdt

]

≤ 2p−1E

[( ∫ T

0
| f (t, 0)|dt

)p
]

+ 2p−1C p
f T p−1‖Y‖p

L
p
a

< ∞,

(3.20)
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Proposition 3.2 shows that �t (Y ) := E
[
ξ + ∫ T

0 f (s, Ys)ds|Ft
] − ∫ t

0 f (s, Ys)ds,
t ∈ [0, T ] is a real-valued, F-adapted càdlàg process. Applying (3.3) with (ξ, η) =(
ξ + ∫ T

0 f (s, Ys)ds, 0
)
, we see from (F2), (1.4) and (3.20) that

E
[(

�∗(Y )
)p]

≤ 2p−1E

[
sup

t∈[0,T ]

∣∣∣E
[
ξ +
∫ T

0
f (s, Ys)ds

∣∣∣Ft

]∣∣∣∣

p

+ sup
t∈[0,T ]

∣∣∣
∫ t

0
f (s, Ys)ds

∣∣∣
p
]

≤ 2p−1E

[
Ĉ
∣∣∣ξ +
∫ T

0
f (s, Ys)ds

∣∣∣
p +
( ∫ T

0

∣∣ f (s, Ys)
∣∣ds
)p
]

≤ 2p−1E

[
2p−1Ĉ|ξ |p + (1 + 2p−1Ĉ)

( ∫ T

0

∣∣ f (s, Ys)
∣∣ds
)p
]

< ∞,

so �(Y ) ∈ D
p ⊂ L

p
a .

To see that � is a contraction map on L
p
a , we let Y be another process in L

p
a .

Given t ∈ [0, T ], since the translation invariance of E shows that �t (Y ) − �t (Y) =
E
[
ξ + ∫ T

t f (s, Ys)ds
∣∣Ft
]−E
[
ξ + ∫ T

t f (s,Ys)ds
∣∣Ft
]
, P − a.s., one can deduce from

(3.3) and Hölder’s inequality that

E
[∣∣�t (Y ) − �t (Y)

∣∣p
]

≤ E

[

sup
t ′∈[0,T ]

∣∣∣∣E
[
ξ +
∫ T

t
f (s, Ys)ds

∣∣∣Ft ′
]

− E
[
ξ +
∫ T

t
f (s,Ys)ds

∣∣∣Ft ′
]∣∣∣∣

p
]

≤ ĈE

[∣∣∣
∫ T

t

(
f (s, Ys) − f (s,Ys)

)
ds
∣∣∣

p
]

≤ Ĉ T p−1E
∫ T

t

∣∣ f (s, Ys) − f (s,Ys)
∣∣pds ≤ Ĉ T p−1C p

f E
∫ T

t
|Ys − Ys |pds.

It follows from Fubini’s Theorem that

∥∥�(Y ) − �(Y)
∥∥p
L

p
a

= E
∫ T

0
eat |�t (Y ) − �t (Y)|pdt

=
∫ T

0
eat E
[∣∣�t (Y ) − �t (Y)

∣∣p
]
dt

≤ a

2

∫ T

0
eat E

∫ T

t
|Ys − Ys |pdsdt

= a

2
E
∫ T

0

(
|Ys − Ys |p

∫ s

0
eat dt

)
ds

= 1

2
E
∫ T

0
(eas − 1)|Ys − Ys |pds ≤ 1

2
‖Y − Y‖p

L
p
a
. (3.21)

Hence, � is a contraction map on L
p
a and thus admits a unique fixed point Ŷ ∈ L

p
a .
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Set Y := �
(
Ŷ
) ∈ D

p. By (3.21),
∥∥�(Y ) − Y

∥∥p
L

p
a

= ∥∥�(Y ) − �
(
Ŷ
)∥∥p

L
p
a

≤
1
2

∥∥Y − Ŷ
∥∥p
L

p
a

= 1
2

∥∥�
(
Ŷ
) − Ŷ

∥∥p
L

p
a

= 0, which implies that �t (Y ) = Yt , dt ×
d P − a.s. Then one can deduce from the right-continuity of Y and �t (Y ) that
P{�t (Y ) = Yt , ∀ t ∈ [0, T ]} = 1, namely, Y is a solution of BSDE (3.19).

Let Y ′ ∈ D
p be another solution of (3.19). Clearly, P{�t (Y ′) = Y ′

t , ∀ t ∈
[0, T ]} = 1 implies that �t (Y ′) = Y ′

t , dt × d P − a.s. Using (3.21) again shows
that
∥∥Y ′ − Y

∥∥p
L

p
a

= ∥∥�(Y ′) − �(Y )
∥∥p
L

p
a

≤ 1
2‖Y ′ − Y ‖p

L
p
a
. So ‖Y ′ − Y ‖p

L
p
a

= 0

or Y ′
t = Yt , dt × d P − a.s. It follows from the right-continuity of Y and Y ′ that

P{Y ′
t = Yt , ∀ t ∈ [0, T ]} = 1. Therefore, Y ∈ D

p is a unique solution of BSDE
(3.19). ��

Given a E-supermartingale X with only inaccessible jumps, by analyzing penalized
BSDEs with respect to E

Y n
t + n

∫ t

0
(Xs − Y n

s )ds = E
[

XT + n
∫ T

0
(Xs − Y n

s )ds
∣∣∣Ft

]
, t ∈ [0, T ] (3.22)

and utilizing Theorem 2.4, we can derive a Doob–Meyer decomposition of X .

Theorem 3.1 (Doob–Meyer Decomposition of E-martingales) Given p ∈ (1, 2], let

� be a p-coefficient set with β ≡ 0 such that
∫ T
0 �

2p
2−p
t dt ∈ L∞(FT ) if p ∈ (1, 2)

or � ≡ κ� ∈ [0,∞) if p = 2. Also, let
{
E[·|Ft ]

}
t∈[0,T ] be a translation invari-

ant F-expectation with domain L p(FT ) that is E
�0

-dominated. If X ∈ D
p is an

E-supermartingale with only inaccessible jumps, then there exists a continuous pro-
cess K ∈ K

p such that X + K is an E-martingale.

Proof Let X ∈ D
p be an E-supermartingale with only inaccessible jumps.

Fix n ∈ N. Since E
[
(
∫ T
0 |Xt |dt)p

] ≤ T p E[X p∗ ] < ∞, Proposition 3.6 shows that
the penalized BSDE (3.22) admits a unique solution Y n ∈ D

p.

(1) We first show that

P
{
Y n

t ≤ Xt , ∀ t ∈ [0, T ]} = 1. (3.23)

Let i ∈ N. In light of the Debut Theorem (see e.g. Theorem IV.50 of [13]),
τ n

i := inf{t ∈ [0, T ] : Y n
t ≥ Xt + 1/ i} ∧ T defines an F-stopping time. As

Y n
T = E

[
XT + n

∫ T

0
(Xs − Y n

s )ds
∣∣∣FT

]
− n
∫ T

0
(Xs − Y n

s )ds = XT , P − a.s.

(3.24)

by (F2), the F-stopping time γ n
i := inf{t ∈ [τ n

i , T ] : Y n
t ≤ Xt } satisfies τ n

i ≤
γ n

i ≤ T , P − a.s. And the right continuity of process Y n − X implies that

Y n
γ n

i
≤ Xγ n

i
, P − a.s. (3.25)
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Since Y n
s > Xs over period [τ n

i , γ n
i ), we can deduce from (F1*), (F3*), (F5*),

(3.25), the E-supermartingality of X as well as Proposition 3.4 that

Y n
τ n

i
= E
[

XT + n
∫ T

0
(Xs − Y n

s )ds
∣∣∣Fτ n

i

]
− n
∫ τ n

i

0
(Xs − Y n

s )ds

= E
[
E
[

XT + n
∫ T

0
(Xs − Y n

s )ds
∣∣∣Fγ n

i

]∣∣∣∣Fτ n
i

]
− n
∫ τ n

i

0
(Xs − Y n

s )ds

= E
[

Y n
γ n

i
+ n
∫ γ n

i

0
(Xs − Y n

s )ds
∣∣∣Fτ n

i

]
− n
∫ τ n

i

0
(Xs − Y n

s )ds

= E
[

Y n
γ n

i
+ n
∫ γ n

i

τ n
i

(Xs − Y n
s )ds
∣∣∣Fτ n

i

]

≤ E
[
Y n

γ n
i

∣∣Fτ n
i

] ≤ E
[
Xγ n

i

∣∣Fτ n
i

] ≤ Xτ n
i

(3.26)

holds except on a P-null set N n
i . For all ω ∈ � except on a P-null set Ñn ,

the paths Y n· (ω) − X ·(ω) is right-continuous. Given ω ∈ {τ n
i < T } ∩ Ñ c

n , the
definition of τ n

i and the right-continuity of the paths Y n· (ω) − X ·(ω) imply that
Y n
(
τ n

i (ω), ω
) ≥ X

(
τ n

i (ω), ω
)+1/ i . Comparing this inequalitywith (3.26) shows

that {τ n
i < T } ∩ Ñ c

n ⊂ N n
i , and it follows that {τ n

i < T } ⊂ Ñn ∪ N n
i . Taking

union over i ∈ N yields that

{Y n
t > Xt , for some t ∈ [0, T )} = ∪

i∈N{Y n
t ≥ Xt + 1/ i,

for some t ∈ [0, T )} ⊂ ∪
i∈N{τ n

i < T } ⊂ Ñn ∪
(

∪
i∈N N n

i

)
.

So P{Y n
t ≤ Xt , ∀ t ∈ [0, T )} = 1, which together with (3.24) proves (3.23).

(2) It follows from (3.23) that K n
t := n

∫ t
0 (Xs − Y n

s )ds, t ∈ [0, T ] is an F-
adapted, continuous increasing process with K n

0 = 0. By (1.4), E
[
(K n

T )p
] ≤

n pT p2p−1E
[
X p∗ + (Y n∗ )p

]
< ∞, so K n ∈ K

p.
As Y n + K n ∈ D

p is an E-martingale, Proposition 3.3 shows that for some real-
valued, F-progressively measurable process gn and some (Zn, U n) ∈ Z

2,p ×U
p,

it holds P − a.s. that

Y n
t + K n

t = Y n
T + K n

T +
∫ T

t
gn

s ds −
∫ T

t
Zn

s d Bs

−
∫

(t,T ]

∫

X
U n

s (x)Ñp(ds, dx), t ∈ [0, T ] (3.27)

and that g�0(t, Zn
t , U n

t ) ≤ gn
t ≤ g�0(t, Zn

t , U n
t ), dt × d P − a.s. Using Hölder’s

inequality, we see from the latter that

|gn
t | ≤ �t |Zn

t | + κ2

∫

X

∣∣U n
t (x)
∣∣ν(dx)

≤ �t |Zn
t | + κ2

(
ν(X )

) 1
q ‖U n

t ‖L p
ν
, dt × d P − a.s.
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Thus, as a p-generator independent of (y, z, u)-variables, gn satisfies (2.6) with
ft = 0.
By (3.23), one has P{Y n

t− ≤ Xt−, ∀ t ∈ [0, T ]} = 1, or P{1{Y n
t−>Xt−} = 0, ∀ t ∈

[0, T ]} = 1, which together with (3.27) and (3.24) shows that (2.5) holds with
g = gn and (Y, Z , U, K , ξ) = (Y n, Zn, U n, K n, XT ) ∈ D

p ×Z
2,p ×U

p ×K
p ×

L p(FT ). Applying Proposition 2.4 yields that

‖Y n‖p
Dp + ∥∥Zn

∥∥p
Z2,p + ∥∥U n

∥∥p
Up + E

[
(K n

T )p] ≤ CE
[|XT |p + (X+∗ )p]

≤ CE
[
X p∗
]
, (3.28)

where the constant C does not depend on n.
(3) Next, we show that P{Y n

t ≤ Y n+1
t , t ∈ [0, T ]} = 1.

Let j ∈ N. By the Debut Theorem again, ζ n
j := inf{t ∈ [0, T ] : Y n

t ≥ Y n+1
t +

1/j} ∧ T defines an F-stopping time. As Y n
T = Y n+1

T = XT , P − a.s. by (F2),
the F-stopping time σ n

j := inf{t ∈ [ζ n
j , T ] : Y n

t ≤ Y n+1
t } satisfies ζ n

j ≤ σ n
j ≤ T ,

P − a.s. And the right continuity of process Y n − Y n+1 implies that

Y n
σ n

j
≤ Y n+1

σ n
j

, P − a.s. (3.29)

Since Y n
s > Y n+1

s over period [ζ n
j , σ n

j ), we see from part (1) that n
∫ σ n

j

ζ n
j

(Xs −
Y n

s )ds ≤ n
∫ σ n

j

ζ n
j

(Xs − Y n+1
s )ds ≤ (n + 1)

∫ σ n
j

ζ n
j

(Xs − Y n+1
s )ds, P − a.s. Then

(F1*), (F3*), (F5*) and (3.29) yield that

Y n
ζ n

j
= E
[

XT + n
∫ T

0
(Xs − Y n

s )ds
∣∣∣Fζ n

j

]
− n
∫ ζ n

j

0
(Xs − Y n

s )ds

= E
[
E
[

XT + n
∫ T

0
(Xs − Y n

s )ds
∣∣∣Fσ n

j

]∣∣∣∣Fζ n
j

]
− n
∫ ζ n

j

0
(Xs − Y n

s )ds

= E
[

Y n
σ n

j
+ n
∫ σ n

j

ζ n
j

(Xs − Y n
s )ds
∣∣∣Fζ n

j

]

≤ E
[

Y n+1
σ n

j
+ (n + 1)

∫ σ n
j

ζ n
j

(Xs − Y n+1
s )ds

∣∣∣Fζ n
j

]

= E
[
E
[

XT + (n + 1)
∫ T

0
(Xs − Y n+1

s )ds
∣∣∣Fσ n

j

]∣∣∣∣Fζ n
j

]

−(n + 1)
∫ ζ n

j

0
(Xs − Y n+1

s )ds

= E
[

XT + (n + 1)
∫ T

0
(Xs − Y n+1

s )ds
∣∣∣Fζ n

j

]

−(n + 1)
∫ ζ n

j

0
(Xs − Y n+1

s )ds = Y n+1
ζ n

j
, P − a.s.
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Using similar arguments to those below (3.26), we obtain that P{Y n
t ≤ Y n+1

t , t ∈
[0, T ]} = 1.

In light of Theorem2.4,Yt := lim
n→∞Y n

t , t ∈ [0, T ] defines a process ofDp satisfying

(2.7), and there exists (g, Z , U, K ) ∈ L
p
([0, T ]×�,P, dt ×d P;R)×Z

2,p ×U
p ×

K
p such that (2.8) holds. According to the proof of Theorem 2.4, the process g is the

weak limit of {gn}n∈N in Lp
([0, T ] × �,P, dt × d P;R).

Given n ∈ N, (3.23), Hölder’s inequality and (3.28) show that

0 ≤ E
∫ T

0
(Xt − Y n

t )dt = 1

n
E[K n

T ] ≤ 1

n

{
E[(K n

T )p]} 1
p ≤ 1

n
C
{

E
[
X p∗
]} 1

p . (3.30)

Since it holds P − a.s. that Xt − Y n
t ≤ Xt − Y 1

t , ∀ t ∈ [0, T ] by the monotonicity of

{Y n}n∈N and since E
∫ T
0 (Xt − Y 1

t )dt ≤ T E[X+∗ + Y 1∗ ]≤T E
[
1+(X+∗ +Y 1∗ )p

]
<∞,

letting n → ∞ in (3.30), we know from the dominated convergence theorem that
E
∫ T
0 (Xt − Yt )dt = lim

n→∞E
∫ T
0 (Xt − Y n

t )dt = 0. This equality and (2.7) imply that

Xt − Yt = 0, dt × d P − a.s., which together with the right-continuity of processes
X − Y yields

P{Xt = Yt , ∀ t ∈ [0, T ]} = 1. (3.31)

So the process Y also has only inaccessible jumps. Then Theorem 2.4 further yields
that K is a continuous process and (2.9) holds.

Let m, n ∈ N. Since Proposition 3.3 also shows that

g�0(t, Zm
t − Zn

t , U m
t − U n

t ) ≤ gm
t − gn

t ≤ g�0(t, Zm
t − Zn

t , U m
t − U n

t ), dt × d P − a.s.

Hölder’s inequality implies that

E
∫ T

0

∣∣gm
t − gn

t

∣∣pdt

≤ E
∫ T

0

(
�t |Zm

t − Zn
t | + κ2

∫

X

∣∣U m
t (x) − U n

t (x)
∣∣ν(dx)

)p
dt

≤ 2p−1
(∥∥∥
∫ T

0
�

2p
2−p
t dt

∥∥∥
L∞(FT )

) 2−p
2

E

[( ∫ T

0
|Zm

t − Zn
t |2dt

) p
2
]

+ 2p−1κ
p
2

(
ν(X )

)p−1
E
∫ T

0

∫

X

∣∣U m
t (x) − U n

t (x)
∣∣pν(dx)dt for p ∈ (1, 2),

and similarly that

E
∫ T

0

∣∣gm
t − gn

t

∣∣2dt ≤ E
∫ T

0

(
κ�|Zm

t − Zn
t | + κ2

∫

X

∣∣U m
t (x) − U n

t (x)
∣∣ν(dx)

)2
dt

≤ 2κ2
�E
∫ T

0
|Zm

t − Zn
t |2dt + 2κ2

2ν(X )

×E
∫ T

0

∫

X

∣∣U m
t (x) − U n

t (x)
∣∣2ν(dx)dt.
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So we see from (2.9) that {gn}n∈N is a Cauchy sequence in L
p
([0, T ] × �,P, dt ×

d P;R), let g̃ be its strong limit (and thus weak limit). By the uniqueness of the weak
limit of {gn}n∈N in Lp

([0, T ]×�,P, dt ×d P;R), we have g̃t = gt , dt ×d P −a.s.,
and it follows that

lim
n→∞E

∫ T

0

∣∣gn
t − gt

∣∣pdt = 0. (3.32)

For anyn ∈ N, since E
[( ∫

(0,T ]
∫
X |U n

t (x)−Ut (x)|2Np(dt, dx)
) p
2
]

≤ E
∫ T
0

∫
X
∣∣U n

t

(x) − Ut (x)
∣∣pν(dx)dt by (1.3), we can deduce from (3.3), Hölder’s inequality and

the Burkholder–Davis–Gundy inequality that

E

[
sup

t∈[0,T ]
∣∣E[Y n

T + K n
T |Ft ] − E[YT + KT |Ft ]

∣∣p + sup
t∈[0,T ]

∣∣Y n
t + K n

t − Yt − Kt
∣∣p
]

≤ CE

[
sup

t∈[0,T ]
∣∣Y n

t + K n
t − Yt − Kt

∣∣p
]

≤ CE

[
|Y n

0 − Y0|p +
( ∫ T

0
|gn

t − gt |dt
)p + sup

t∈[0,T ]

∣∣∣
∫ t

0
(Zn

s − Zs)d Bs

∣∣∣
p

+ sup
t∈[0,T ]

∣∣∣
∫

(0,t]

∫

X
(
U n

s (x) − Us(x)
)
Ñp(ds, dx)

∣∣∣
p
]

≤ CE

[
|Y n

0 − Y0|p + T p−1
∫ T

0
|gn

t − gt |pdt +
( ∫ T

0
|Zn

t − Zt |2dt
) p

2

+
( ∫

(0,T ]

∫

X

∣∣U n
t (x) − Ut (x)

∣∣2Np(dt, dx)
) p

2
]

≤ CE

[
|Y n

0 − Y0|p + T p−1
∫ T

0
|gn

t − gt |pdt

+
( ∫ T

0
|Zn

t − Zt |2dt
) p

2 +
∫ T

0

∫

X

∣∣U n
t (x) − Ut (x)

∣∣pν(dx)dt

]
.

As n → ∞, (2.7), (3.32) and (2.9) show that lim
n→∞E

[
sup

t∈[0,T ]
∣∣E[Y n

T +K n
T |Ft ]−E[YT +

KT |Ft ]
∣∣p + sup

t∈[0,T ]
∣∣Y n

t + K n
t −Yt − Kt

∣∣p
]

= 0. Hence, there exists a sequence {ni }i∈N

of N such that

lim
i→∞ sup

t∈[0,T ]

∣∣∣E[Y ni
T + K ni

T |Ft ] − E[YT + KT |Ft ]
∣∣∣ = lim

i→∞ sup
t∈[0,T ]

∣∣Y ni
t + K ni

t − Yt − Kt
∣∣

= 0, P − a.s.,

which further implies that P
{
lim

i→∞E[Y ni
T + K ni

T |Ft ] = E[YT + KT |Ft ], lim
i→∞
(
Y ni

t +
K ni

t
) = Yt +Kt , ∀ t ∈ [0, T ]} = 1. It then follows from (3.31) and the E-martingality

of Y ni + K ni ’s that P − a.s.

123

Author's personal copy



Appl Math Optim

E[XT + KT |Ft ] = E[YT + KT |Ft ] = lim
i→∞E[Y ni

T + K ni
T |Ft ] = lim

i→∞
(
Y ni

t + K ni
t
)

= Yt + Kt = Xt + Kt , ∀ t ∈ [0, T ].

Therefore, X + K is an E-martingale. ��

4 Representation of an F-Expectation by a g-Expectation

On domain L p(FT ), We have seen in Example 3.1 (2) that a g-expectation is par-
ticular case of filtration-consistent nonlinear expectations. Inversely, we will show in
this section that a translation-invariant F-expectation under domination (1.2) can be
identified as a g-expectation and thus expressed as the Lp solution of a BSDE with
jump

E[ξ |Ft ] = ξ +
∫ T

t
g(s, Zs, Us)ds −

∫ T

t
Zs d Bs

−
∫

(t,T ]

∫

X
Us(x)Ñp(ds, dx), t ∈ [0, T ].

Consequently, one can use the techniques and analytic tools in the BSDE theory to
study filtration-consistent nonlinear expectations which include a large class of risk
measures and monetary utility functionals in mathematical finance.

For the representation of a translation-invariantF-expectation,we additional require
that both Brownian motion B and Poisson random measure Np have independent
increments under E , i.e., it holds for any t ∈ [0, T ), δ ∈ (0, T −t] and (z, u) ∈ R

d ×L p
ν

that

E
[

z(Bt+δ − Bt ) +
∫

(t,t+δ]

∫

X
u(x)Ñp(ds, dx)

∣∣∣Ft

]

= E
[

z(Bt+δ − Bt ) +
∫

(t,t+δ]

∫

X
u(x)Ñp(ds, dx)

]
, P − a.s. (4.1)

This assumption can be verified by g-expectations with deterministic generators.

Example 4.1 Given p ∈ (1, 2], let g : [0, T ] ×R×R
d × L p

ν → R be aB([0, T ]) ⊗
B(R) ⊗ B(Rd) ⊗ B

(
L p

ν

)
/B(R)-measurable function satisfies

(i) It holds for a.e. t ∈ [0, T ] that g(t, y, 0, 0) = 0, ∀ y ∈ R;
(ii) For some c(·) ∈ Lq

+[0, T ], it holds for a.e. t ∈ [0, T ] that
∣∣g(t, y1, z1, u) − g(t, y2, z2, u)

∣∣ ≤ c(t)
(|y1 − y2| + |z1 − z2| + ‖u1 − u2‖L p

ν

)
,

∀ (y1, z1, u1), (y2, z2, u2) ∈ R × R
d × L p

ν .

Then (4.1) holds for the g-expectation Eg .
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Proof Fix t ∈ [0, T ), δ ∈ (0, T − t] and (z, u) ∈ R
d × L p

ν .
Clearly, Bt

s := Bs − Bt , s ∈ [t, T ] is a d-dimensional Brownian motion over
period [t, T ] with Bt

t = 0 while N t
p

(
(t, s], A

) := Np

(
(0, s], A

) − Np

(
(0, t], A

)
,

s ∈ [t, T ], A ∈ FX is the counting measure of p on (t, T ] × X with compensator
E
[
N t
p(ds, dx)

] = ν(dx)ds. And Ñ t
p

(
(t, s], A

) := Ñp

(
(0, s], A

) − Ñp

(
(0, t], A

)
,

s ∈ [t, T ], A ∈ FX is the corresponding compensated Poisson random measure over
period [t, T ]. For any s ∈ [t, T ], we define sigma-fields

F Bt

s := σ
{

Bt
r ; r ∈ [t, s]} ⊂ F B

s , FN t

s

:= σ
{

N t
p((0, r ], A); r ∈ [t, s], A ∈ FX

} ⊂ FN
s , F t

s := σ
(
F Bt

s ∪ FN t

s

)
⊂ Fs

and augment them by all P-null sets of F (In fact, F t
t is the collection of all F-

measurable sets with P-measure 0 or 1). The jump filtration Ft = {F t
s }s∈[t,T ] over

period [t, T ] still satisfies the usual hypotheses. Let P̂ t be the Ft -predictable sigma-
field on [t, T ] × �.

Set ξ := z(Bt+δ − Bt ) + ∫
(t,t+δ]

∫
X u(x)Ñp(ds, dx) = zBt

t+δ + ∫
(t,t+δ]

∫
X u(x)

Ñ t
p(ds, dx) ∈ F t

t+δ .We can deduce from (1.4), the Burkholder-Davis-Gundy inequal-
ity and (1.3) that

E
[|ξ |p] ≤ 2p−1E

[
|z|p sup

s∈[t,t+δ]
|Bt

s |p + sup
s∈[t,t+δ]

∣∣∣
∫

(t,s]

∫

X
u(x)Ñ t

p(ds, dx)

∣∣∣
p
]

≤ cp E

[
|z|pδ

p
2 +
( ∫

(t,t+δ]

∫

X
|u(x)|2N t

p(ds, dx)
) p

2
]

= cp|z|pδ
p
2 + cp E

[( ∫

(t,t+δ]

∫

X
|u(x)|2Np(ds, dx)

) p
2
]

≤ cp|z|pδ
p
2 + cp E

∫ t+δ

t

∫

X
|u(x)|pν(dx)dt

= cp
(|z|pδ

p
2 + ‖u‖p

L p
ν
δ
)

< ∞. (4.2)

As g|[t,T ] is a deterministic p-generator satisfying (2.2) and (A2’), Theorem 2.1 shows
that the following BSDE with jumps over period [t, T ]

Ys = ξ +
∫ T

s
g(r,Yr ,Zr ,Ur )ds −

∫ T

t
Zr d Bt

r

−
∫

(s,T ]

∫

X
Ur (x)Ñ t

p(dr, dx), s ∈ [t, T ]

admits a unique solution (Y,Z,U) ∈ D
p
Ft

([t, T ]) × Z
2,p
Ft

([t, T ]) × U
p
Ft

([t, T ]).
Here D

p
Ft

([t, T ]) denotes the space of all real-valued, Ft -adapted càdlàg processes

{Ys}s∈[t,T ] satisfying E

[
sup

s∈[t,T ]
|Ys |p
]

< ∞, Z2,p
Ft

([t, T ]) denotes the space of all
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R
d -valued, Ft -predictable processes {Zs}s∈[t,T ] satisfying E

[( ∫ T
t |Zs |2ds

) p
2
]

< ∞,

and U
p
Ft

([t, T ]) denotes the space of all P̂ t ⊗ FX -measurable random fields U :
[t, T ] × � ×X → R satisfying E

∫ T
t

∫
X |Us(x)|pν(dx)ds < ∞. In particular, Yt is

a real number.
Since F t

s ⊂ Fs for any s ∈ [t, T ], we see that
(
Ỹs, Z̃s, Ũs

) := (Yt∨s, 1{s>t}Zs,

1{s>t}Us
)
, s ∈ [0, T ] belongs to Sp and satisfies

Ỹs = Yt∨s

= ξ +
∫ T

t∨s
g(r,Yr ,Zr ,Ur )ds −

∫ T

t∨s
Zr d Bt

r −
∫

(t∨s,T ]

∫

X
Ur (x)Ñ t

p(dr, dx)

= ξ +
∫ T

t∨s
g(r,Yr ,Zr ,Ur )dr −

∫ T

t∨s
Zr d Br −

∫

(t∨s,T ]

∫

X
Ur (x)Ñp(dr, dx)

= ξ +
∫ T

s
1{r>t}g(r,Yr ,Zr ,Ur )dr −

∫ T

s
1{r>t}Zr d Br

−
∫

(s,T ]

∫

X
1{r>t}Ur (x)Ñp(dr, dx)

= ξ +
∫ T

s
g
(
r, Ỹr , Z̃r , Ũr

)
dr −

∫ T

s
1{r>t}Z̃r d Br

−
∫

(s,T ]

∫

X
Ũr (x)Ñp(dr, dx), s ∈ [0, T ],

which shows that
(
Ỹ, Z̃, Ũ

)
solves BSDEJ (ξ, g). It follows that Eg[ξ |Fs] = Ỹs ,

∀ s ∈ [0, T ]. Taking s = t yields that

Eg

[
z(Bt+δ − Bt ) +

∫

(t,t+δ]

∫

X
u(x)Ñp(ds, dx)

∣∣∣Ft

]

= Eg[ξ |Ft ] = Ỹt = Yt = Ỹ0 = Eg[ξ |F0] = Eg[ξ ]

= Eg

[
z(Bt+δ − Bt ) +

∫

(t,t+δ]

∫

X
u(x)Ñp(ds, dx)

]
.

��
LetL ([0, T ]) denote the Lebesgue sigma-field on [0, T ]. We are ready to state one

of the main results of the paper: Under the domination (1.2), a translation invariant
F-expectation with domain L p(FT ) that satisfies (4.1) can be represented by a g-
expectation with deterministic generator g:

Theorem 4.1 Given p ∈ (1, 2], let � be a p-coefficient set in which β ≡ 0 and
� ≡ κ� ∈ [0,∞). Also, let

{
E[·|Ft ]

}
t∈[0,T ] be a translation invariant F-expectation

with domain L p(FT ) that is E
�0

-dominated and satisfies (4.1). Then there exists a

deterministic function g : [0, T ] × R
d × L p

ν → R that is L ([0, T ]) ⊗ B(Rd) ⊗
B
(
L p

ν

)
/B(R)- measurable and satisfies
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(i) For a.e. t ∈ [0, T ], g(t, 0, 0) = 0;
(ii) For any t ∈ [0, T ] and (z1, u1), (z2, u2) ∈ R

d × L p
ν ,
∣∣g(t, z1, u1) −

g(t, z2, u2)
∣∣ ≤ κ�|z1 − z2| + κ2

(
ν(X )

) 1
q ‖u1 − u2‖L p

ν
;

(iii) For any ξ ∈ L p(FT ), P
{
E[ξ |Ft ] = Eg[ξ |Ft ], t ∈ [0, T ]} = 1.

Proof (1) Fix θ := (z, u) ∈ R
d × L p

ν . We define

Y θ
t := −

∫ t

0
g�0(z, u)ds + zBt +

∫

(0,t]

∫

X
u(x)Ñp(ds, dx), Y

θ

t

:= −
∫ t

0
g�0(z, u)ds + zBt +

∫

(0,t]

∫

X
u(x)Ñp(ds, dx), t ∈ [0, T ],

which is a real-valued, F-adapted càdlàg process with only inaccessible jumps.
Since Hölder’s inequality shows that
∣∣g�0(z, u)

∣∣ ∨ ∣∣g�0(z, u)
∣∣ ≤ κ�|z| + κ2

∫

X
|u(x)|ν(dx) ≤ κ�|z|

+ κ2
(
ν(X )

) 1
q ‖u‖L p

ν
:= Cθ , ∀ t ∈ [0, T ], (4.3)

an analogy to (4.2) implies that

E
[(

Y θ∗
)p ∨ (Y θ

∗
)p] ≤ 4p−1E

[

(κ�|z|T )p + κ
p
2 T p(ν(X )

)p−1‖u‖p
L p

ν
+ z p B p∗

+ sup
t∈[0,T ]

∣∣∣
∫

(0,t]

∫

X
u(x)Ñp(dt, dx)

∣∣∣
p
]

≤ cp

{
(κ�|z|T )p + κ

p
2 T p(ν(X )

)p−1‖u‖p
L p

ν

+ |z|pT
p
2 + ‖u‖p

L p
ν

T
}

< ∞.

Clearly,
(
Y θ , z, u

)
is the unique solution of BSDEJ

(
Y θ

T , g�0
)
and
(

Y
θ
, z, u
)
is

the unique solution of BSDEJ
(

Y
θ

T , g�0
)
. To wit, Y θ is a g�0 -martingale and Y

θ

is a g�0 -martingale.
For any t ∈ [0, T ], applying (3.1) with (ξ, η) = (Y θ

T , 0
)
yields that Y θ

t =
Eg�0

[
Y θ

T

∣∣Ft
] ≥ E[Y θ

T

∣∣Ft ], P − a.s. So Y θ is an E-supermartingale with only
inaccessible jumps. In light of Theorem 3.1, we can find a continuous process
K θ ∈ K

p such that Y θ + K θ ∈ D
p is an E-martingale. Then Proposition 3.3

shows that there exist a real-valued, F-progressively measurable process gθ and
(Z θ , U θ ) ∈ Z

2,p × U
p such that P − a.s.

Y θ
T +
∫ T

t
gθ

s ds −
∫ T

t
Z θ

s d Bs −
∫

(t,T ]

∫

X
U θ

s (x)Ñp(ds, dx) + K θ
T − K θ

t = Y θ
t

= Y θ
T +
∫ T

t
g�0(z, u)ds −

∫ T

t
zd Bs −

∫

(t,T ]

∫

X
u(x)Ñp(ds, dx), ∀ t ∈ [0, T ].

(4.4)
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So it holds P − a.s. that

∫ t

0

(
g�0(z, u) − gθ

s

)
ds

=
∫ t

0
(z − Z θ

s )d Bs +
∫

(0,t]

∫

X
(
u(x) − U θ

s (x)
)
Ñp(ds, dx) + K θ

t , ∀ t ∈ [0, T ]

Using similar arguments to those lead to (3.12) and (3.13), we obtain that

P
{
U θ

t (x) = u(x), ∀ (t, x) ∈ [0, T ] × X
} = 1 and Z θ

t = z, dt × d P − a.s.

(4.5)

Proposition 3.3 also shows that dt × d P − a.s.

g�0(z, u) = g�0(Z θ
t , U θ

t ) ≤ gθ
t ≤ g�0(Z θ

t , U θ
t ) = g�0(z, u). (4.6)

(2) In this step, we define g(t, z, u), t ∈ [0, T ] and show that

gθ
t = g(t, z, u), dt × d P − a.s. on [0, T ) × �. (4.7)

Set g(T, z, u) := 0. Let t ∈ [0, T ). We set δn(t) := 1
n ∧ (T − t), Dn(t, z, u) :=

z(Bt+δn(t) − Bt ) + ∫
(t,t+δn(t)]

∫
X u(x)Ñp(ds, dx) ∈ L p

(
Ft+δn(t)

)
, αn(t, z, u) :=

1
δn(t) E

[
Dn(t, z, u)

]
for any n ∈ N and define g(t, z, u) := lim

n→∞αn(t, z, u).

For any n ∈ N, since
∫ t+δn(t)

t g�0(z, u)ds is a real number, applying (3.1)
with (ξ, η) = (Dn(t, z, u), 0

)
, one can deduce from (4.1), (F2), (g5) of g�0 -

expectations and the g�0 -martingality of Y θ that

E
[
Dn(t, z, u)

] = E
[
Dn(t, z, u)|Ft

] ≤ E
�0

[
Dn(t, z, u)|Ft

]

= E
�0

[
Y θ

t+δn(t) − Y θ
t +
∫ t+δn(t)

t
g�0(z, u)ds

∣∣∣Ft

]

= E
�0

[
Y θ

t+δn(t)|Ft
]− Y θ

t +
∫ t+δn(t)

t
g�0(z, u)ds

=
∫ t+δn(t)

t
g�0(z, u)ds, P − a.s. (4.8)

Using a similar argument on g�0 -martingality of Y
θ
yields that P − a.s.

E
[
Dn(t, z, u)

] ≥ E
�0

[
Y

θ

t+δn(t) − Y
θ

t +
∫ t+δn(t)

t
g�0(z, u)ds

∣∣∣Ft

]

=
∫ t+δn(t)

t
g�0(z, u)ds.
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By (4.3),
∣∣E[Dn(t, z, u)]∣∣ ≤ ∫ t+δn(t)

t

∣∣g�0(z, u)
∣∣ ∨ ∣∣g�0(z, u)

∣∣ds ≤ Cθ δn(t).
Letting n → ∞ yields that

−Cθ ≤ g(t, z, u) = lim
n→∞

1

δn(t)
E
[
Dn(t, z, u)

] ≤ Cθ , ∀ t ∈ [0, T ).

To see (4.7), we set ξ t
n := 1

δn(t)

∫ t+δn(t)
t

(
gθ

s − gθ
t

)
ds, for any t ∈ [0, T ) and

n ∈ N. The F-progressively measurability of process gθ implies that the mapping
gθ (t, ω) : [0, T ]×� → R isB([0, T ])⊗FT -measurable. So for P −a.s. ω ∈ �,
(4.6) and (4.3) show that

the function t → gθ
t (ω) isB([0, T ])/B(R)-measurable, (4.9)

and that

|gθ
t (ω)| ≤ ∣∣g�0(z, u)

∣∣ ∨ ∣∣g�0(z, u)
∣∣ ≤ Cθ for a.e. t ∈ [0, T ]. (4.10)

Lebesgue differentiation theorem then yields that for P − a.s. ω ∈ �,
lim

n→∞ξ t
n(ω) = 0 for a.e. t ∈ [0, T ). By (4.10) and Fubini Theorem, there exists a

Lebesgue-null set E = E(z, u) of [0, T ) such that for any t ∈ [0, T )\E,
lim

n→∞ξ t
n = 0 and |gθ

t | ≤ Cθ , P − a.s. (4.11)

Let t ∈ [0, T )\E. For any n ∈ N, the translation invariance of E , (4.1), (4.4)
and the E-martingality of Y θ + K θ implies that that P − a.s.

E
[
Dn(t, z, u)

]− δn(t)gθ
t

= E
[

Y θ
t+δn(t) + K θ

t+δn(t) − Y θ
t − K θ

t +
∫ t+δn(t)

t
gθ

s ds
∣∣∣Ft

]
− δn(t)gθ

t

= E
[

Y θ
t+δn(t) + K θ

t+δn(t) +
∫ t+δn(t)

t
(gθ

s − gθ
t )ds
∣∣∣Ft

]
− Y θ

t − K θ
t

= E
[

Y θ
t+δn(t) + K θ

t+δn(t) +
∫ t+δn(t)

t
(gθ

s − gθ
t )ds
∣∣∣Ft

]

−E
[
Y θ

t+δn(t) + K θ
t+δn(t)

∣∣Ft
]
.

In light of (3.2), E
[|αn(t, z, u) − gθ

t |p
] ≤ C E

[|ξ t
n|p
]
, where C is a constant

only depending on T , ν(X ), p, κ2 and κ�. Since (4.10) and (4.11) show that
P{|ξ t

n| ≤ 2Cθ , ∀ n ∈ N} = 1, the bounded convergence theorem yields that
lim

n→∞E[|ξ t
n|p] = 0 and thus that lim

n→∞E
[|αn(t, z, u) − gθ

t |p
] = 0. Let {n j } j∈N be

an arbitrary subsequence of N. As lim
j→∞E

[|αn j (t, z, u) − gθ
t |p
] = 0, one can find

a subsequence {n′
j = n′

j (t, z, u)} j∈N of {n j } j∈N such that

lim
j→∞αn′

j
(t, z, u) = gθ

t , P − a.s. (4.12)
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In particular, this shows the sequence {αn j (t, z, u)} j∈N of real numbers has a
convergent subsequence {αn′

j
(t, z, u)} j∈N. In turn, the sequence {αn(t, z, u)}n∈N

is convergent itself, so g(t, z, u) = lim
n→∞αn(t, z, u). Putting it back into (4.12)

yields that gθ
t = g(t, z, u), P − a.s. Then an application of Fubini’s Theorem

gives rise to (4.7).
(3) We first show that item (i) and (ii) hold.

One can deduce from (4.7) and (4.6) that g�0(z, u) ≤ g(t, z, u) ≤ g�0(z, u)

for a.e. t ∈ [0, T ]. In particular, taking θ = (z, u) = (0, 0) proves item (i).
Given i = 1, 2, we let θi := (zi , ui ) ∈ R

d × L p
ν and set Dn(t, i) :=

zi (Bt+δn(t) − Bt ) + ∫
(t,t+δn(t)]

∫
X ui (x)Ñp(ds, dx) ∈ L p

(
Ft+δn(t)

)
for any

t ∈ [0, T ) and n ∈ N.
We also set θ := (z, u) = (z1 − z2, u1 − u2). Let t ∈ [0, T ) and n ∈ N.

Similar to (4.8), we can deduce from (4.1), (3.1), (g5) of g�0 -expectations and
the g�0 -martingality of Y θ that

E
[
Dn(t, 1)

]− E
[
Dn(t, 2)

] = E
[
Dn(t, 1)

∣∣Ft
]− E

[
Dn(t, 2)

∣∣Ft
]

≤ E
�0

[
Dn(t, 1) − Dn(t, 2)

∣∣Ft
]

= E
�0

[
Y θ

t+δn(t) − Y θ
t +
∫ t+δn(t)

t
g�0(z, u)ds

∣∣∣Ft

]

=
∫ t+δn(t)

t
g�0(z, u)ds ≤ Cθ δn(t), P − a.s.

Letting n → ∞, we obtain that g(t, z1, u1) = lim
n→∞

1
δn(t)E

[
Dn(t, 1)

] ≤
lim

n→∞
1

δn(t)E
[
Dn(t, 2)

]+ Cθ = g(t, z2, u2) + κ�|z| + κ2
(
ν(X )

) 1
q ‖u‖L p

ν
. Revers-

ing the roles of θ1 = (z1, u1) and θ2 = (z2, u2) yields that g(t, z2, u2) ≤
g(t, z1, u1) + κ�|z| + κ2

(
ν(X )

) 1
q ‖u‖L p

ν
. So item (ii) holds.

(4) Next, we show that the function g(t, z, u) : [0, T ]×R
d × L p

ν → R isL ([0, T ])⊗
B(Rd) ⊗ B

(
L p

ν

)
/B(R)-measurable.

Fix λ ∈ R, it suffice to show that Aλ := {(t, z, u) ∈ [0, T ] × R
d × L p

ν :
g(t, z, u) < λ

} ∈ L ([0, T ]) ⊗ B(Rd) ⊗ B
(
L p

ν

)
.

We also fix n ∈ N and set rn := 1
n

(
κ� + κ2

(
ν(X )

) 1
q
)−1. For any (z, u) ∈

R
d × L p

ν , define On(z, u) := {(z′, u′) ∈ R
d × L p

ν : |z − z′|2 +‖u − u′‖2
L p

ν
< r2n},

which is the open ball centered at (z, u)with radius rn inRd × L p
ν . Since the space

R
d × L p

ν is separable and thus Lindelöf, there exists a sequence
{(

zn
j , un

j

)}
j∈N of

R
d × L p

ν such that ∪
j∈NOn

(
zn

j , un
j

) = R
d × L p

ν .

Let j ∈ N. By (4.7), it holds for P − a.s. ω ∈ � that gθ
t (ω) = g(t, z, u) for

a.e. t ∈ [0, T ], which together with (4.9) implies that the function t → g(t, z, u)

on [0, T ] isL ([0, T ])/B(R)-measurable. So Dn
j := {t ∈ [0, T ] : g(t, zn

j , un
j ) <

λ − 1/n} belongs to L ([0, T ]). For any (t, z, u) ∈ Dn
j × On(zn

j , un
j ), item (ii)

shows that
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g(t, z, u) ≤ g
(

t, zn
j , un

j

)
+ κ�

∣∣z − zn
j

∣∣+ κ2
(
ν(X )

) 1
q ‖u − un

j‖L p
ν

< λ − 1/n

+
(

κ� + κ2
(
ν(X )

) 1
q

)
rn = λ,

which implies that Dn
j × On(zn

j , un
j ) ⊂ Aλ.

On the other hand, for any (t, z, u) ∈ Aλ
n := {(t, z, u) ∈ [0, T ] × R

d × L p
ν :

g(t, z, u) < λ− 2/n
}
, since (z, u) ∈ On

(
zn
� , un

�

)
for some � ∈ N, one can deduce

from item (ii) again that

g(t, zn
� , un

� ) ≤ g(t, z, u) + κ�

∣∣z − zn
�

∣∣+ κ2
(
ν(X )

) 1
q ‖u − un

�‖L p
ν

< λ − 2/n

+
(

κ� + κ2
(
ν(X )

) 1
q

)
rn = λ − 1/n.

So t ∈ Dn
� and it follows that Aλ

n ⊂ ∪
j∈N

(
Dn

j × On(zn
j , un

j )
)

⊂ Aλ. As Aλ =
∪

n∈NA
λ
n , taking union over n ∈ N yields that Aλ = ∪

n∈N ∪
j∈N

(
Dn

j × On(zn
j , un

j )
)

∈
L ([0, T ]) ⊗ B(Rd) ⊗ B

(
L p

ν

)
.

(5) Finally, let us verify item (iii).
Wehave seen frompart (3) and (4) that g : [0, T ]×R

d ×L p
ν → R is aL ([0, T ])⊗

B(Rd)⊗B
(
L p

ν

)
/B(R)-measurable function satisfying (i) and (ii). Namely, g is

a deterministic p-generator satisfying (2.2) and (A2’).
Let (z, u) ∈ R

d × L p
ν . We see from (4.4), (4.7) and (4.5) that P − a.s.

Y θ
t = Y θ

T +
∫ T

t
g(s, z, u)ds − z(BT − Bt )

−
∫

(t,T ]

∫

X
u(x)Ñp(ds, dx) + K θ

T − K θ
t , t ∈ [0, T ]. (4.13)

The translation invariance of E and the E-martingality of Y θ + K θ then imply that for
any 0 ≤ t < s ≤ T

E
[
η(t, s, z, u)|Ft

] = E
[
Y θ

s + K θ
s − Y θ

t − K θ
t

∣∣Ft
]

= E
[
Y θ

s + K θ
s

∣∣Ft
]− Y θ

t − K θ
t = 0, P − a.s., (4.14)

with η(t, s, z, u) := z(Bs − Bt ) + ∫
(t,s]
∫
X u(x)Ñp(dr, dx) − ∫ s

t g(r, z, u)dr .

Let (Z , U ) ∈ Z
2,p × U

p be in form of simple processes, i.e.

(
Zt (ω), Ut (ω)

) =
N∑

i=1

1{t∈(ti ,ti+1]}
( �i∑

j=1

1{ω∈Ai
j }
(
zi

j , ui
j

))
, (t, ω) ∈ [0, T ] × �,

(4.15)

123

Author's personal copy



Appl Math Optim

where 0 = t1 < · · · < tN+1 = T ; and for i = 1, · · · , N ,
{
zi

j

}�i
j=1 ⊂ R

d ,
{
ui

j

}�i
j=1 ⊂ L p

ν and
{

Ai
j

}�i
j=1 ⊂ Fti is a partition of �. (By refining, we can let

Z and U have the same time partition and the same Fti -measurable partition of

� for each i = 1, · · · , N .) For any ∀ t ∈ [0, T ], we set Yt := ∫ T
t Zsd Bs +

∫
(t,T ]
∫
X Us(x)Ñp(ds, dx) − ∫ T

t g(s, Zs, Us)ds and claim that

E[Yt |Ft ] = 0, P − a.s. (4.16)

Clearly, E[YT |FT ] = 0, P − a.s. Assume next that for some i = 1, · · · , N , (4.16)
holds for any t ∈ [ti+1, T ]. Given t ∈ [ti , ti+1), (F3), (F4), translation invariance of E
and (4.14) imply that P − a.s.

E[Yt |Ft ] = E
[
E
[
Yti+1 +

�i∑

j=1

1Ai
j
η
(
t, ti+1, zi

j , ui
j

)
∣∣∣∣Fti+1

]∣∣∣∣Ft

]

= E
[
E
[
Yti+1 |Fti+1

]+
�i∑

j=1

1Ai
j
η
(
t, ti+1, zi

j , ui
j

)∣∣∣Ft

]

=
�i∑

j=1

1Ai
j
E
[ �i∑

j=1

1Ai
j
η
(
t, ti+1, zi

j , ui
j

)∣∣∣Ft

]

=
�i∑

j=1

E
[
1Ai

j
η
(
t, ti+1, zi

j , ui
j

)∣∣Ft

]
=

�i∑

j=1

1Ai
j
E
[
η
(
t, ti+1, zi

j , ui
j

)∣∣Ft

]
= 0.

Using mathematical induction shows that (4.16) holds for any t ∈ [0, T ].
Now, let ξ ∈ L p(FT ). Theorem 2.1 shows that the BSDEJ (ξ, g) admits a unique

solution (Y, Z , U ) ∈ S
p. In light ofTheorem IV.67of [13],we can approximate (Z , U )

in Z
2,p × U

p by a sequence of simple processes {(Zn, U n)}n∈N in form of (4.15):
lim

n→∞‖Zn − Z‖Z2,p = lim
n→∞‖U n − U‖Up = 0. Given n ∈ N, since the translation

invariance of E and (4.16) imply that

E[ξ |Ft ] − Eg[ξ |Ft ] = E[ξ |Ft ] − Yt = E
[
ξ − Yt |Ft

]

= E
[∫ T

t
Zsd Bs +

∫

(t,T ]

∫

X
Us(x)Ñp(ds, dx)

−
∫ T

t
g(s, Zs, Us)ds

∣∣∣Ft

]

− E
[∫ T

t
Zn

s d Bs +
∫

(t,T ]

∫

X
U n

s (x)Ñp(ds, dx)

−
∫ T

t
g(s, Zn

s , U n
s )ds
∣∣∣Ft

]
, P − a.s.,
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one can deduce from (3.2), (1.4), Burkholder–Davis–Gundy inequality, item (ii), (1.3)
and Hölder’s inequality that

E
[∣∣E[ξ |Ft ] − Eg[ξ |Ft ]

∣∣p
]

≤ C E

[∣∣∣∣

∫ T

t
(Zs − Zn

s )d Bs +
∫

(t,T ]

∫

X
(
Us(x) − U n

s (x)
)
Ñp(ds, dx)

−
∫ T

t

(
g(s, Zs, Us) − g(s, Zn

s , U n
s )
)
ds

∣∣∣∣

p
]

≤ C E

⎡

⎣
(∫ T

0
|Zs − Zn

s |2ds

) p
2

+
(∫

(0,T ]

∫

X

∣∣Us(x) − U n
s (x)
∣∣2 Np(ds, dx)

) p
2

+
(∫ T

0
|Zs − Zn

s |ds

)p

+
(∫ T

0
‖Us − U n

s ‖L p
ν
ds

)p
]

≤ C E

⎡

⎣
(∫ T

0
|Zs − Zn

s |2ds

) p
2

+
∫ T

0

∫

X

∣∣Us(x) − U n
s (x)
∣∣p ν(dx)ds

⎤

⎦

= C
(
‖Zn − Z‖p

Z2,p + ‖U n − U‖p
Up

)
.

Here C stands for a generic constant depending on T , ν(X ), p, κ2 and κ�, whose
form changes from line to line. Letting n → ∞ yields that E[ξ |Ft ] = Eg[ξ |Ft ],
P − a.s., which together with the right-continuity of E-martingale

{
E[ξ |Ft ]

}
t∈[0,T ]

and g-martingale
{
Eg[ξ |Ft ]

}
t∈[0,T ] leads to item (iii). ��
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