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Abstract

In this paper, we analyze a real-valued reflected backward stochastic differential equation (RBSDE) with
an unbounded obstacle and an unbounded terminal condition when its generator f has quadratic growth in
the z-variable. In particular, we obtain existence, uniqueness, and stability results, and consider the optimal
stopping for quadratic g-evaluations. As an application of our results we analyze the obstacle problem for
semi-linear parabolic PDEs in which the non-linearity appears as the square of the gradient. Finally, we
prove a comparison theorem for these obstacle problems when the generator is concave in the z-variable.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a reflected backward stochastic differential equation (RBSDE) with generator f,
terminal condition £ and obstacle L

T T
Lt =< Yt = r‘;: +f f(S, Ys» Zs)ds + KT - Kt _/ ZSdBSv te [O! T]7 (11)
t t

where the solution (Y, Z, K) satisfies the so-called flat-off condition:
T
/ (Y; — L)dK; =0, (1.2)
0
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and K is an increasing process. We will consider the case when f is allowed to have quadratic
growth in the z-variable. Moreover, we will allow L and & to be unbounded.

The theory of RBSDE:s is closely related to the theory of optimal stopping in that the snell-
envelope can be represented as a solution of an RBSDE. These equations were first introduced
by El Karoui et al. [10]. The authors provided the existence and uniqueness of an adapted
solution for a real-valued RBSDE with square-integrable terminal condition under the Lipschitz
hypothesis on the generator. There has been a few developments after this seminal result. Some
generalizations were obtained for backward stochastic differential equations (BSDEs) without
an obstacle and later they were generalized to RBSDEs:

(1) Lepeltier and San Martin [16] showed the existence of a maximal and a minimal solution for
real-valued BSDEs, with square-integrable terminal condition when the generator f is only
continuous and has linear growth in variables y and z. Then [20] adapted this result to the
case of RBSDEs.

(2) Kobylanski [14] established the existence, comparison, and stability results for real-valued
quadratic BSDEs (when f is allowed to have quadratic growth in the z-variable) with
bounded terminal condition. In the spirit of [22], the author gave a link between the solutions
of BSDEs based on a diffusion and viscosity solutions of the corresponding semi-linear
parabolic PDEs. Lepeltier and San Martin [17] extended the existence result of quadratic
BSDEs with bounded terminal condition to the case that the generator f can have a
superlinear growth in the y-variable. Kobylanski et al. [15] made a counterpart study for
RBSDEs with bounded terminal condition and bounded obstacle when the generator f has
superlinear growth in y and quadratic growth in z.

(3) With help of a localization procedure and a priori bounds, Briand and Hu [5] showed that
the boundedness assumption on the terminal condition is not necessary for the existence
of an adapted solution to a real-valued quadratic BSDE: One only needs to require the
terminal condition has exponential moment of certain order. Correspondingly, Lepeltier and
Xu [18] derived the existence result for quadratic RBSDEs with such an unbounded terminal
condition, but still with a bounded obstacle.

Recently, [6], under the assumption that the generator f is additionally concave in the
z-variable, used a so-called “f-difference” method to obtain comparison (thus uniqueness)
and stability results for quadratic BSDEs with solutions having every exponential moment.
Moreover, [9] proved that uniqueness holds among solutions having a given exponential moment
by using a verification theorem that relies on the Fenchel-Legendre dual of the generator. With
these results they also showed that the solutions of BSDEs are viscosity solutions of PDEs
which are quadratic in the gradient. On the other hand, [8] showed that these PDEs have unique
solutions.

In the current paper, we extend the results of [6,9,8] to RBSDEs. Alternatively, our results
can be seen as an extension of [15,18] to the unbounded obstacles. We start by establishing two
a priori estimates which will serve as our basic tools; see Section 2. The first one shows that
any bounded Y has an upper bound in term of the terminal condition £ and the obstacle L. The
second estimate is on the I.” norms of Z and K. With the help of these two estimates, we can
establish a monotone stability result (see Theorem 3.1) in the spirit of [14]. Then the existence
follows as a direct consequence; see Theorem 3.2.

When the generator f is additionally concave in the z-variable, we prove a uniqueness result
for RBSDEs using an argument that involves the Fenchel-Legendre dual of the generator,
see Theorem 4.1. As opposed to [9] (or [1]), we are not relying on a verification argument
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but directly compare two solutions. Since it only requires a given exponential moment on
solutions, this uniqueness result is more general than the one that would be implied by the
above comparison theorem. We develop an alternative representation of the unique solution in
Section 5, where we improve the results of Theorem 5.3 of [3] on optimal stopping for quadratic
g-evaluations. Moreover, the concavity assumption on generator f in the z-variable as well as the
aforementioned 6-difference method are used in deducing the stability result (see Theorem 6.1),
which is crucial for the continuity property of the solutions of forward backward stochastic
differential equations with respect to their initial conditions; see Proposition 7.1. This result
together with the stability result gives a new proof of the flow property; see Proposition 7.2.
A Picard-iteration procedure was introduced to show this property for BSDEs with Lipschitz
generators, see e.g., Theorem 4.1 of [11]. However, it is not appropriate to apply such a Picard-
iteration procedure to derive the flow property for quadratic RBSDE:s.

Thanks to the flow property, the solution of the RBSDE is a viscosity solution of an associated
obstacle problem for a semi-linear parabolic PDE, in which the non-linearity appears as the
square of the gradient; see Theorem 7.1. It is worth pointing out that [9] shows the existence
of a viscosity solution to a similar PDE (with a quadratic gradient term) without obstacle by
approximating the generator f from below by a sequence of Lipschitz generators under a strong
assumption that f~ has a linear growth in variables y and z. However, such a strong assumption
is not necessary if we directly use the flow property to prove Theorem 7.1. Finally, we prove that
in fact this obstacle problem has a unique solution, which is a direct consequence of Theorem 7.2,
a comparison principle between a viscosity subsolution and a viscosity supersolution. Although
inspired by Theorem 3.1 of [8], we prove Theorem 7.2 in a quite different way because there are
two gaps in the proof of Theorem 3.1 of [8], see Remark 9.1 and Appendix A.3 of [2].

1.1. Notation and preliminaries

Throughout this paper we let B be a d-dimensional standard Brownian Motion defined on
a complete probability space ({2, F, P), and consider the augmented filtration generated by it:

F = {.7-} £ U(O’(BS; s € [0, t]) U ./\/)} , where N is the collection of all P-null sets in F.

t>0
We fix a finite time horizon 7 > 0 and let Sp,7 denote the set of all F-stopping times v such

that0 < v < T, P-as. Forany v € Sp r, we define S, r Lt e Sor|v<t<T,P-as.l.
Moreover, we will use the convention inf ¥ £ oo.
The following spaces of functions will be used in the sequel:

(1) Let C[0, T] denote the set of all R-valued continuous functions on [0, 7], and let K[O, T']
collect all increasing functions in C[0, T']. For any {¢;};c[0,77 € CI0, T], we define Zf e
sup; o770

(2) For any sub-o-field G of F, let L°(G) be the space of all R-valued, G-measurable random

variables and let
1

e L7(G) 2 [¢ €1L°G) : Iglung) 2 {E[1617]]" < oof forail p e 1. o)
e 129) 2 {& € LOG) 1 [§l11(g) 2 esssup,eplé(@)] < oof;

o L9(G) £ {£ € LO(G) : E[eP¥!] < 00, ¥ p € (1,00)}.
(3) Let B be a generic Banach space with norm | - |g. For any p, g € [1, 00), we define three
Banach spaces:
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° ]Lg’q ([0, T']; B) denotes the space of all B-valued, measurable, F-adapted processes X with
a/p ) Ve

T
”X”Li;’q([o,T];IB) £1E (f |Xt|1§ dl) < 00;
0

e HEY([0, T1; B) (resp. ﬁg*q([o, T1;B)) £ {X € Ly?([0,T];B) : X is F-predictable
(resp. F-progressively measurable) }
When p = ¢, we simply write L2, HZ and HE for LL” HE? and HE? respectively.
Moreover we let
HE 10C([0 T1; B) (resp. H He 1OC([O T1; B)) denote the space of all B-valued, F-predictable

(resp. F-progressively measurable) processes X with fo |Xt|]Bdt < 0o, P-as. for any
p € [1,00).
(4) Let (C%[O, T] be the space of all R-valued, F-adapted continuous processes, we need its
following subspaces:

o Cp°[0,T] = {X € (C%[O, T]: ||X||C%o[0,T] = esssupw69<supl€[oﬂ IXt(a))I) < oo};

1
e Cpl0,T] £ {X e Cpl0,T] : I Xl ezro,71 2 {E[Supte[o,r] IXtI”]}" < oo} for all
p € [1, 00);
e Vp[0, T] £ {X € (C%[O, T] : X has finite variation};
e Kp[0,T]12 {X € (CO [0, T] : X is an increasing process with Xo = 0} c Vg[0, T1;
e KR[0,T1£ {X € Kp[0, T]: X7 € LP(Fr)} forall p € [1, 00);
Eﬁﬂ 0.7 2 {X eCYO,T1: E [+ + X | <00} < Nyept.oo) CRIO. T for all
A, A € (0, 00).
For any A € (0, co0), we set E%[O, T1& E%’)‘[O, T]. Forany X € (C%[O, T1], one can deduce that

E[eX] = E[*0VXD] = E[eX v X < B[ 4] < 26[H0], (13)

which implies that E;[0, T1 = {X € CQ[0, T]: E [¢**+] < 0o}. Moreover, for any p € [1, 00),
we set SP[0, T1 2 EX[0, T] x Hy*” ([0, T1; RY) x KL[0, T1.

1.2. Reflected BSDEs

Let &2 denote the F-progressively measurable o-field on [0, T'] x {2. A parameter set (&, f, L)
consists of a random variable & € ]LO(]-"T), a function f : [0, 7] x 2 x R x RY - Rand a
process L € (C%[O, T]such that f is & x B(R) x B(RY)/%(R)-measurable and that L7 < &,
P-as.

Definition 1.1. Given a parameter set (¢, f, L), a triplet (Y, Z,K) € (C%[O, T] x ]ﬁl%’loc
([0, T1; R?) x Kg[0, T] is called a solution of the reflected backward stochastic differential
equation with terminal condition &, generator f, and obstacle L (RBSDE (&, f, L) for short), if
(1.1) and (1.2) hold P-a.s.

A function f : [0, T] x 2 x R x RY — R is said to be Lipschitz in (y, z) if for some A > 0,
it holds dt ® d P-a.e. that

[ f(t, w,y1,21) — f(t, 0, y2,22)| < )»(|y1 — |+ 21 —Zz|),
Yy y €R, Vz1,2 € RY.
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The theory of RBSDEs with Lipschitz generators was well developed in the seminal
paper [10]. In this paper, we are interested in quadratic RBSDE:s in the following sense:

(H1) For three constants ¢, 8 > 0 and y > 0, it holds dt ® d P-a.e. that
Y
[f(t 0.y, 9l @+ Blyl+ Sle, V(2 e RxRY

In what follows, for any A > 0 we let c; denote a generic constant depending on A, ¢, B, ¥ and
T (in particular, cg stands for a generic constant depending on «, 8, y and T'), whose form may
vary from line to line.

2. Two a priori estimates
We first present an a priori estimate, which is an extension of Lemma 3.1 of [18].

Proposition 2.1. Let (&, f, L) be a parameter set such that f satisfies (H1). If (Y,Z,K) is a
solution of the quadratic RBSDE(E, f, L) such that Y+ € Cy[0, T, then it holds P-a.s. that

|
Y,<co+ —InE [W"T@”L?)m] e[0Tl .1
Y

Proof. In light of Ito’s formula, (Y, Z,K) € C[0,T] x HZ([0, T]: RY) x Kg[0, T]
with YT € C{°[0, 7] is a solution of the RBSDE(, £, L) if and only if (Y, Z,K) 2
(Y, ye  Z,y [e7VdKy) € CRI0,T] x HE([0, T1; RY) x Kp[0, T] is a solution of the
RBSDE(e”%, f, e”L) with

~ Iny z 1z)?
f(t9a)7y9z)é1{y>0} VYf Lw,—,— | —5— 1>
y vy)] 2
V(t,w,,2) €[0,T] x 2 xR x RY.
Let u = ay Vv BV 1. One can deduce from (H1) that dr ® d P-a.e.

ft,0,9,2) < HO) 2 y(u+ BIny)lysyy +uly<ry, V(0,2 € Rx RY (2.2)
Clearly, H(-) is a strictly positive, increasing, continuous and convex function satisfying
oo 1
Jo Hoydy = . ~
For any x € Rand T € [0, T], the ordinary differential equation (ODE)

T
b(1) = ¥ + / H(p())ds, 1 [0,7]
t

can be solved as follows (cf. [5]):

(i) When x > 0: ¢>?(x) = exp {mp(? —1)+ yxeﬂ(f_‘)}, where ¢(s) £ ‘3/3;3*11{,%0} +

slig—oy, Vs €[0,T1;

e’ 4+ ;L(? -1 <1+ [l,(? —1) < MT=0 < e“w(T7t>, ife?* + [L(i: -1 <l

_ rx _q ~ ~
exp{;up (T—t+e m )} < pe(T—1) ife? + (T —1) > 1.

(i) When x < 0: ¢ (x) = {

One can check that

(¢1) For any x € R and T ¢ [0,T],t — ¢f (x) is a decreasing and continuous function on
[0.7];
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(¢2) For any x € Rand ¢t € [0, T], T — 4)? (x) is an increasing and continuous function on
[t, T]; » -

(¢3) Forany0 <t <T <T,x — qth (x) 1§ an increasing and continuous function on R;

(¢p4) Foranyx e Rand0 < <T < T, q&[T(x) < exp {,u(p(T) + yx+eﬁT}.

Let 2 2 {w € 2 : Lr(w) < §(w) and the path — L, (w) is continuous} € F, which
defines a measurable set with probability 1. Fix w € (2. Theorem 6.2 of [18] shows that the
following reflected backward ODE

T
@ < A (w) = 8@ + / H(Ay(@))ds + kr (@) — ki(0), t €0, T],

t

/0 ! (AS () — eVL-v<w>) dky(@) =0

admits a unique solution (A.(a)), k. (a))) e C[0, T1 x K]0, T], which satisfies

s
A (w) = sEJpT] (/ H(/lr(a)))dr + eVE@ =1} + eny(‘”)l{KT})
selt, t
= sup (@), tel0,T], 2.3)
s€e(t,T]

where {u} (w)},c[0,s] is the unique solution of the following ODE
N
u (@) = " 1py 4+ @ 1y + / H(u(w))da, 1 €]0,s].
r
To wit, ul(w) = ¢; (S(w)l{szr} + Ly(w) I{S<T}). Then it follows from (2.3) and (¢4) that

0< @ < @) = sup u}(@) < explue(T) + v (@) v LT (@)},

selt,T]
t€[0,T]. 24
Forany 0 <t <t < T, one can deduce from (2.3) and (¢1) that
Ag(w) = sup ufl (w) > sup ufl (w) > sup ufz(a)) = A, (w). (2.5)
selty,T] s€ltr,T] s€ltr,T]

Thus t — A;(w) is a decreasing and continuous path. Moreover, for any ¢t € [0, T] (2.3) and
(¢2) show that

A (o) = sup i () = sup{ui(w) se (L (QU {T}}. (2.6)
selt,
Forany 0 < ¢t < s < T, the continuity of ¢;(-) by (¢3) implies that the random variable
{uf (@)}, .o = ¢! (E1is=1) + Ls1is<1)) is Fy-measurable. Then we can deduce from (2.6) that
for any ¢ € [0, T], the random variable A, is Fp-measurable (however, not necessarily J;-
measurable).

Now, let us introduce an F-adapted process f; L& E[HWA)|F], t € [0,T]. Since A
is a decreasing process by (2.5), and since H(-) is an increasing function, it holds for any
0 <t < s < T that E[fs|F] = E[H(As)|F:] < E[H(A)|F] = fr, P-a.s. Thus f is a
supermartingale. As Y+ € Cg°[0, T'], it follows that (6§, L™) € L (Fr) x Cg°[0, T']. Then the
continuity of process H(A.), (2.4) and the Bounded Convergence Theorem imply that

Elf/] = E[H(A)] = li?tl E[H ()] = hf[zl Effs], t€[0,T].
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Thanks to Theorem 1.3.13 of [13], f has a right-continuous modiﬁcation?. Hence, we can regard}v
as a generator that is independent of (y, z). It follows from Fubini’s Theorem, Jensen’s inequality
as well as (2.4) that

e[ s = [ E[]as= [ E[P)as = [ e[sDmcmE]s
= fOT E[|H(4,)*])ds < oo.

Since 6 € L®°(Fr) and ¥t € Cy’[0, T, Theorem 5.2 and Proposition 2.3 of [10] show that
the RBSDE(e"%, f, e¥L) admits a unique solution (), Z,K) € (C%[O, T] x H%([O, T]; RY) x
K%[O, T1 and that for any ¢ € [0, T']

T
YV, =esssup E |:/ fyds + e’* o=y + e"Lfl{KT}
t

'[ES,,T

.7-"ti| , P-as. 2.7
Foranyt € [0, T] and t € S, 7, Fubini’s Theorem implies that for any A € F;

T_ T ~ T
E |:1A/ fs ds] = / E [lAl{ssr}fs] ds Zf E [IAI{Sf‘[}E[H(AS)LFY]] ds
t t t

T T
= / E[1aly<)H(Ay)]ds = E [1A/ H(/ls)ds]
t t

Thus E [ [ Ts ds|F:] = E[[7 H(As)ds|F;], P-as. Then (2.7), (2.3) and (2.4) imply that for
anyt € [0, T]
d

ELAIF] < e DE[er €V Rl <, Paas, 2.8)

T
Yy = esssup E |:'/ H(Ag)ds + e’é 1z=7) + eVLfl{KT}
t

'L’ES;YT

IA

with Cy £ exp {,u(p(T) + )/eﬁT<||$+”]LOO(]-‘T) v ||L+||(c§o[0,T]> ] By the continuity of process
Y, it holds P-a.s. that

0<et <Y s e[ EVIDE] <C, 10T, 2.9)
which shows that Y € Cy°[0, T'] with ||y||(c;o[0,T] < C,.
To finalize the proof, it suffices to show that P(l?t <Y, Vit e]0, T]) = 1. To see this, we

fix n € N and define the F-stopping time t, e inf{t e[0,T]: fé |ZS|2ds > n} A T. Clearly,
lim,» 1 7, =T, P-a.s. Applying Tanaka’s formula to the process (? — YT yields that

n

Toont = Veor) ™ = (Vg = Vo)t + / Ly oy, (Fs. Yo, Zg) = To)ds

Ta AL
Tn ~ T .
+/ 1{i>ys}(sz—d’Cs)—/ L7,> 3 (Zs = Z5) dB;
Tp At WAL
1 Tn
——/ dg,, 1el0,T], (2.10)
2 Jone

where £ is a real-valued, F-adapted, increasing and continuous process known as “local time”.
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Since the function H (-) is increasing, continuous and convex, Jensen’s inequality and (2.8)
show that

H(Y,) - fy < H(Y,) — H(E[A|F]) < HY,) = HQ)) < ClY, — Vsl
s €[0,T], (2.1D)
where Cp is the Lipschitz coefficient of function H(-) over {x e R: x| < ||?||(C§O[0,T] \Y

||y||(c§o[0,T] } Moreover, the flat-off condition of (17 , 7 , K ) implies that

T T
/0 15 .y,dK; =/O L, -y,dK =0, Pas. (2.12)

Taking the expectation in (2.10), we can deduce from (2.2), Fubini’s Theorem, (2.11) and
(2.12) that

~ ~ T ~
E[(Veount = Vo)) = E[(Yr, = Vo)) = | E| Loz Loy (HX) — ) | ds
{Ys>Vs}
t
T ~
= CH/ E [l{sirn}l{?&ys}(ys - y5)+] ds
t

T
=< CH/ E [(YTnAS - yr,,As)+] ds, tel0,T]
13

Then Gronwall’s inequality shows that E [(?r,mt — V)] < eCHTE [(171,1 V)], Vi e
[0, T]. As n — o0, the continuity of processes Y, ) and the Bounded Convergence Theorem
imply that for any ¢ € [0, T']

E[()Z - y,)+] =0, thusY, <), P-as.

Using the continuity of processes Y and Y again, we obtain P(?, < Vi Vit € [0, T]) =1,
which together with (2.9) leads to (2.1). O

For a solution (Y, Z, K) of a quadratic RBSDE(£, f, L) such that L, and Y:‘ have
exponential moments of certain orders, the next result estimates the norms of (Z, K) in

Hf_’z”([o, T1; RY) x Kﬁ[o, T] for some p > 1.

Proposition 2.2. Let (&, f, L) be a parameter set such that f satisfies (H1). If (Y,Z,K) is a
solution of the quadratic RBSDE(E, f, L) such that Y € E;y’k Y10, T1 for some x, X > 1 with
% + % < 1, then

T P _ B AN
E / |Z|%ds + K7 §ckypE[e)‘yY* —i—e“/Y*] <oo, Vpell, .
A A P

Proof. We set p, £ ,/p&—)ik,) A 2 > 1 and define stopping times 7, e inf{t e [0,T] :
[tempor¥s|Z2ds > n} AT, Vn € N. Since E[¢*""+] < oo and Z e Hz'*([0, T]; RY),
it holds P-as. that Y + fOT |Zs|2ds < oo. Then it follows that fOT e PoYYs|Z 2ds <
ePovYs fOT |Zs|>ds < oo, P-as. Hence, for P-a.s. @ € 2, there exists an n(w) € N such
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that 7,(w) (@) = T. For any n € N, applying Itd’s formula to process e ~7¥¥ and using the fact

that o 4+ Bx < (a \Y, m) e(pg’po)yx, Vx > 0, we obtain that P-a.s.

1 1

Tn Tn
3 Po¥ / e P Z,Pds < newm — / e P f(s, Y5, Zy)ds
0 0 0

Tn Tn
_/ e_PoVstKS+/ e PorYs7 dB;
0 0

1 _
ept)yY* + (a V 2#)
DoY (p5 — Po)Y

Tn 5
x / e Por Yst(Po=po)vI¥sl g ¢
0

IA

Tn Tn
+Zf e_”"”YS|ZS|2ds+‘/ e Pz dB| . (2.13)
0 0

2

Observe that for" e*l’o)/yx+(l7¢2;7po)}"ys|ds < fOT” e*P%VI(Ys<O)yxds < Tepng;’ P-a.s., which
together with the Burkholder—-Davis—Gundy inequality and (2.13) implies that

2 v g
E (/ e PorYs| 7| ds>
0
P I e el B Yei7 12 L0
<cwpE | e (f e PV Zg1 ds
0

_ 1 Tn )»]);2
=awxpE [ekyY* ] + EE (/ e_p”VY‘TIZslzds) ‘
0

_2 _
Since E |:(fOT” e_p”VYSIZslzds))”p” i| < n*:" < oo, it follows that E|:(for" e~ PoYYs|Z |2

Ap;? - .
ds) Po :| <awpE [eM’Y* ] As n — oo, the Monotone Convergence Theorem gives that

)Lp_2 _ 2
T o=poyYs| 7 |2 o Ay, ~ Apop Apgp / -
E( e PoVis|Z, a’s) < ¢ E[eV*.Smce o < of < )/, applyin
Jo |1Zs < Gp ity < 5oz = M. applying

s . . . ~ A ~ .
Young’s inequality with p = P and g = s yields that
T p T p
E / |Z|%ds < E|ePorrYs / e P Ys 1z 2ds
0 0
< G B[ 47 ] < o0, 2.14)

On the other hand, since Yy, < Y + Yj , it holds P-a.s. that

T T
Kr=Yy—§ _/ f(s, Yy, Zs)ds+/ Zsd By
0 0

IA

T T
ot + @y +¥H+ % |zs|2ds+‘/ Z,dB,
0 0
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Then the Burkholder—Davis—Gundy inequality and (2.14) imply that

o E[l ) () </ 'Z‘Y'zdsﬂ

- -
aonpE [e)‘VY* + * 7Yy ] <oo. O

E[K7]

IA

IA

3. Existence

As usually, the existence is based on the following monotone stability result.

Theorem 3.1. Forany n € N, let {(Sn, s L”)}nEN be a parameter set and let (Y",Z", K") €
CY[0, T] x HE"¢([0, T1; RY) x Kg[0, T] be a solution of the RBSDE (&,, f,, L") such that

(M1) All generators fy,, n € N satisfy (H1) with the same constants o, § > 0and y > 0;
(M2) There exists a function f : [0,T] x 2 x R x RY — R such that for dt ® dP-a.e.
(t,w) € [0, T] x §2, the mapping f(t, w, -, -) is continuous and f,(t, w, y, z) converges
to f(t,w,y,z) locally uniformly in (y, z);
and that for some L € (C%[O, T and some real-valued, F-adapted process Y, either of the
following two holds:
(M3a) It holds P-a.s. that for any t € [0,T], {L}},en and {Y['}nen are both increasing
sequences inn withlim, o * L} = L; and lim,_, o, 1 Y;' =Y, respectively;
(M3b) It holds P-a.s. that for any t € [0,T], {L}},eN and {Y'},en are both decreasing
sequences inn withlim, oo | L} = L; and lim,_,~ | Y;' =Y, respectively.

Denote &, = (L)) VL and %% = (Y)* v Y7, VYt € [0,T]. If = £ E[e*?f* +
e)‘,y'oy*] < oo for some A, N > 6 with % + % < %, then Y € Egy’*’y[o, T] and there exist
Z.K)yen (1.2 Hy*P ([0, T1; RY) x KL[0, T such that the triplet (Y, Z, K) is a solution
of the RBSDE (&, f, L) with &€ £ Yr.

Proof. Since it holds P-a.s. that
~ L <L AL <L'<Y'<Y'vY, <%, tel0,T],VneN. (3.1

(D Lethy 25+ 4 (2 -6) < 24 — 1 Itfollows that p, £ 22— e (1, 24).
For any n € N, since E [e“’(yn); + e)‘/V(Yn)*Jr] <E [e)‘y‘f* + e’vl’%‘] < o0 by (3.1), applying

Proposition 2.2 with p = p, yields that
T p0
E[(f |Z?|2ds> + (K%)””} <ok [WWW +eW<Y”>3f] <awE <o, (32)
0

which shows that {Z"}, < is a bounded subset of the reflexive Banach space H%’ZP ([0, T]; RY).
Then Theorem 5.2.1 of [26] implies that {Z"}, <N has a weakly convergent subsequence (we still
denote it by {Z"},en) with limit Z € Hg ([0, T1; RY).

(2) In this step, we will show that {Z"}, iy strongly converges to Z in H%([O, T); RY).
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We define ¢ (x) £ ﬁ (e*7¥l —a,ylx| — 1) = 0, Vx € R.Fixn € N. For any m > n, we

set &y £ &En — &, and O™" L om_O"for®=Y,ZK,L. Applying 1t6’s formula to the
process ¢(Y.’"’”) yields that

T
¢ (th,n) + % / ¢// (Ysm,n) |Z;”’"|2ds
t

T
— b (Emn) + / ¢ (V) (funls, Y, Z) — fi(s, Y7, Z0))ds
t

T T
+ / o' (Y dK" — / @' (Y"") 2] "dBy, t€[0,T]. (3.3)
t t
Since |¢'(x)| = e*¥¥l — 1, x € R, applying Young’s inequality with
A A J

= —, = — an
P1 o p2 o o

(L1 - AN 3 '
P T ) T e T

we can deduce from (3.1), the Burkholder—Davis—Gundy inequality, and (3.2) that
t
E| sup f ¢ (Y)"") Z]"d By
1€[0,7]1J0
. T
< coE| erV Lt +/ |z 2ds
0
T Po
< Con E[e)\oplyf* + 6)‘01’2)’% + <1 +/ |Z§n»n|2ds> :|
0
< C)L’)L/(l + E) < 00. 3.5)

Thus [y ¢ (Y;"") Z{""dBs is a uniformly integrable martingale. Letting 1 = 0, taking
expectation in (3.3), and using (H1) we obtain

T
Eo(y )+ 5E [ oz tas

T T
< E[¢(&mn)] +E /O ¢'(Y"")dK"" + E /0 ' (Y| (2a + BIY| + BIYY

1 9
+ 5y(2|Z§"’”|2 + (o = DNZs — Z1* + (3 +— 5)|ZS|2>>ds, (3.6)
[
where we used the fact that |27 + | Z!|> < 2|Z§""|> +3|27|? and |2/ > < (1 + 252)|Z, —
2P+ (14 25)1Z42
Since P(|Y;""| < Y, = Y]] < |Y; — Y, vVt €0, T1) = 1, the monotonicity of ¢ and |¢'|
implies that P-a.s.
GEmn) <PE —&) and ¢/ (Y| < |9/ (Y — Y| < 16 (¥, — Y1,
t €10, T). (3.7
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Similar, it holds P-a.s. that

o' (LT"™)| < |¢'(Ly — L < |¢'(L, — LD)|, te€[0,T]. (3.8)
We also see from (3.5) that
T T
E / ¢’ (Y| |z P ds < E[ sup |/ (Y™™ / |Z;"*”|2ds] < oo, (3.9)
0 s€[0,T] 0

which together with (3.6), (3.7) and (3.1) implies that
T

T
E /0 (9" —2p18'1) (Y™") |ZM"*ds < 2E [¢ (§ — &x)] + 2E /0 o' (Y!")dK!""

T
0

9
3 Z|? | ds. 3.10
+< +)\0_5>V| s|>s ( )

Now we estimate the second term on the right-hand-side of (3.10) by two cases of assumption
(M3). Assume (M3a) first. Since ¢’ is an increasing and continuous function on R, the flat-off
condition of (Y™, Z™, K™), (3.2) and (3.8) imply that

T T
B[ o rmnyarn < [ o (v - L aky
0 0

IA

T
E / ¢ (¥") dK"
0

T
B E/ Liyp—ip@' (L") K
0

IK7 oy 107 (£77) ”Cé’% [0.7]

IA

x
S Ere

/
¢ (L— Ln)”c;:%] . (3.11)

On the other hand, it holds for the case of (M3b) that

T
—E/ Lyp=)@' (L") K
0

o (L=L")] e,

creo,1)

T
E/ ¢ (Y[ dK "
0

IA

L
Cy, )\,/E Po

IA

Since [\/ |@/ (Ym-m)| Z™" } weakly converges to
m>n
' (Y — Y(Z - Z") in Hg ([0, TT; RY, (3.12)
which is proved in Appendix A.1, Theorem 5.1.1(ii) of [26] shows that

T T
E / |6'(Ys = Y)I1Zy — Z2Pds < lim E / ¢ (Y 12" P ds. (3.13)
0 0

m—00
As H%’z"”([o, T1;RY) C H%([O, T1; RY), the sequence {Z"};,,>, also weakly converges to Z

in H%([O, T1; R9). Applying Theorem 5.1.1(ii) of [26] once again, we can deduce from (3.10),
(3.11) and (3.13) that
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T T
xoyE/ |Zy — Z"*ds < Tim E/ (¢ — roy1d/l) (YT 2" ds
O m—0Q 0
(9" (xX) = Xoy1¢' (X)| = Aoy, Vx € R)

T
= lim E/ (" —2v19'l) (Y"") |ZM"2ds — (hp — 2)y

m—00

T
x lim E / ' (Y| Z" Pds

m—00 0

<2E[¢p¢ — &)+ = Em ¢ (L — LM

CCF”" [0,7]
T
+CA,A/E/ ¢/ (Vs — YL+ .4 + % + | Zs|*)ds. (3.14)
0
Since A, < HA,, it follows that A/ > x T and
g = Af)”, we can deduce from (3.1) that P-as., 0 < ¢p(E—-¢&,) < OV erov (L +4) <

Co (e”’f* + e””@*), Vn € N. As E [e)‘yf* + VL/*] < 00, the continuity of ¢ and the
Dominated Convergence Theorem imply that

lim | E[¢ (€ —&)]=0. (3.15)
n— oo

In light of Dini’s Theorem and (M3), it holds P-a.s. that
lim sup [L} —L;|= lim sup |¥/'—Y,|=0. (3.16)
=90 1e[0,T] =00 te[0,T]

The continuity of ¢’ implies that
0= lim |¢'( sup |L,—L}])|= hm sup exp {Aoy|L — L}|} —1
=00 tef0,T]  te[0,T]
= lim sup l¢'(L — L})|. P-as.

n—>00 4c10.T]

1’0 1
)

It follows from (3.8) that P-a.s. sup, ¢, 7 |¢ (L, - L”)
Vn € N. Applying Young’s inequality with p = AH‘ and g = )‘+

that
1’01
E| sup ‘q&’ (Lt—L}) Po=
tel0,7]

T < supcpo.r 9" (Li = L)
y , one can deduce from (3.1)

IA

E [eif{, <$*+%>}

< W E [e”‘f* + eW’*] < 0. (3.17)
The Dominated Convergence Theorem then implies that
_po_
lim | E| sup |¢' (L, —L})|7 T |=0. (3.18)
n—o0 1€[0,7]

Next, we can deduce from (3.1) and (3.7) that P-a.s.
6'(Y: = YOI(1 + L + % + 1 ZI7)

< eI L6l —YDIZPR, Vie[o,T], Va e,
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_Po
Similar to (3.17), one has E|: sup;cro.r1 @' (Ve — Y') ”0—‘:| < cuw & < oo, which together

with Young’s inequality and (3.17) shows that

T wy g
E/ (eHX’ G+ | |’ (Y; — Y,1)| |Zt|2)df
0

Po

M 7 Po T

<o E| e B Lqup 1 (v, — Y 7T / Z,2dt) | < oo
t€[0,7T] 0

Then the continuity of ¢’ and the Dominated Convergence Theorem imply that
lim, s 00 EfOT |¢’ (Y — YS”)I(I + 4+ + |Z,|2)ds = 0, which together with (3.15), (3.18)
and Doob’s martingale inequality leads to that

T
lim E/ |Zy — Z"*ds =0 and  lim E|: sup
0

n—oo n—oo lE[O,T]

t
fO (Zs - Z;Z)st

2
i| = 0(3.19)

(3) Next, we show that ¥ € Ep"*7[0, T,

By (3.19), we can extract a subsequence of {Z"},cn (we still denote it by {Z"},cn) such
that lim, .0 Z!' = Z;, dt ® dP-a.e. In fact, we can choose this subsequence so that Z* £
Sup,en 127] € H%[O, T]; see [16] or [14, Lemma 2.5]. By (M2), it holds dt ® d P-a.e. that

flt.o,y,2) = lim fy(t,0,y,2), V(y,2) e RxRY, (3.20)
n—oo

which together with the measurability of f,,,n € N implies that f is also & x Z([R) x
AR/ A (R)-measurable. Moreover, we see from (3.20) and (M1) that f also satisfies (H1).
Fordt @ dP-a.e. (t,w) € [0, T] x {2, the continuity of mapping f (¢, w, -, -) shows that

lim |f(f, ®, Y] (@), Z] (@) — f(t, ®, Yi(®), Zi(w))| = 0. (3.21)
n—oo

On the other hand, (M2) implies that for dt ® d P-a.e. (¢, w) € [0, T] x 2,
0 < lim |fu(t. 0. Y (@), Z}' (@) = f(t, 0. Y] (@), Z]' ()]

n—oo

IA

Jim (sup{[fu (.0, v.2) = £t 0,3, 2)] 1 ] < IV @) V (@) < oc,
lz| < Z}(w) < oo}) =0,
which together with (3.21) yields that dt ® d P-a.e.
Tim | (1,0, Y @), 2] (@) = (1, 0, V@), Zi(@)| =0. (3.22)
Moreover, (H1) and (3.1) show that dr ® d P-a.e.
[Fale Y Z) = £ (Y0 Z0)| < 20+ 2B(L0 + %) + 2(1ZP +12P).
VneN. (3.23)

Let us assume that except on a P-null set .4/, (3.22), (3.23) hold for a.e. t € [0, T'] and
L+ Y+ fOT(|Z;‘|2 + |Z,|2)dt < 00. For any w € 4¢, the Dominated Convergence Theorem
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implies that
T
lim | fu(t, 0, Y] (), Z} (@) — f(t, 0, Yi(0), Zi(w))|dt = 0. (3.24)
n—oo 0

For any n € N, integrating with respect to ¢ in (3.23) yields that

T
/O | fu(t, o, Y] (), Z}' (@) — f(t, 0, Yi(0), Zi(w))|dt

T
< e T BOIH@) | z / (1Zt @ +1Z@)?)ar

Then it follows from (3.17) and (3.2) that

T Po T Po
E[(/ Ifn(tHY,"»ZZ’)—f(tsYz,Zz)|dt) ]SCA,A'E-FCA,A’E[(/ |Z,|2dr> }
0 0

<00, Vmnel,

1+po

which implies that {( Sy Ve 22) = £ (.Y, 20) | de)

sequence in L' (Fr). Hence, one can deduce from (3.24) that

} is uniformly integrable
neN

1+po
2

T
lim E|:(/ | fue, Y], Z7) — f(t. Y, z,)}m) ] =0. (3.25)
0

n—oo

Since ¢ (x) > )“’Ty|x|2 and |¢'(x)| > Aoy |x], x € R, we can deduce from (3.15) and (3.18)
that

Tim_ | E[(g—g,,)z]zo and  lim 4 IL—L"| =0, (3.26)
(C [0,T]

Moreover, for any p € [1, 00), (3.1) and (3.17) imply that

2y (Lt -
el [(iﬂ*-ﬁ-%)p]icx,w,pE[W“ y )}<Cu/ z,

CRI0, T]
VneN. (3.27)

Now for any m, n € N with m > n, applying It6’s formula to the process (Y"’”‘)2 yields that
T T
¥ < g, +2/ Y (fon (s, Y ZE) = fuls, Y Z0))ds +2/ Y dK "
t t

T
—2/ Y"1 Zm By, t € [0, T].
t

The flat-off condition of (Y™, Z™, K™) implies that P-a.s.

T
ymnggmn
/t s s

T
/ " — LY)dK] :/ LU""dK? < K7 sup |L{""|, t€[0,T], incase(M3a);
t 5€[0,T]

T
/ Yy — LdK] = / L{""dK{ < Ky sup [LY""|, te€l0,T], incase(M3b).
t $€[0,T]



1170 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 122 (2012) 1155-1203

Then Holder’s inequality, (3.2), the Burkholder—Davis—Gundy inequality and (3.27) imply that

po—1
E[ sup IY,’”’"F} < E[Eé] + e E 0ot | fu (LY, ZM)
1€l0,T] ’

_fn(', an Zfll)HAIVI+P0
Hpy 2 (0,TLR)

1 1
+en Er|IL™M _po +ovE2 | 2™ e Rd) -
o) H HHF([O,T],]R )
Hence, we canNdeduce from (3.26), (3.25) and (3.19) that {Y"},cn is a Cauchy sequence
in C3[0, T]. Let Y be its limit in C§[0, T']. There is a subsequence {ni}; ey of N such that
lim; o SUPyefo, 7] |Y,”" — Y;| = 0, P-as., which together with (M3) implies that P(Yt =
Y, YVt €0, T]) = 1. So Y is a continuous process satisfying
lim | sup |Y/'—-Y;] =0, P-as. (3.28)
=00 1el0,T]
Since E [e)‘VYf + ex’ij] <E [e)‘yf* + e)‘lV‘oy*] < ooby(3.1), wesee that Y € E;V’A,V[O, 7).

(4) Now let us define an F-adapted, continuous process K; £ Yy — ¥; — fot f(s,Ys, Zs)ds +
! ZydBg,t €[0,T]. By (3.25) and (3.19), { (Y", Z") has a subsequence (we still denote it
0 y neN q

by {(Y", Z")}neN) such that P-a.s.
This together with (3.28) leads to that
lim sup |K]'—K;|=0, P-as., (3.29)

=09 10,7

t
/ (Zy — Z,)d By
0

n—00 t€[0,T]

T
lim :/ | fu@. Y] Z)) — f(t. Vs, Z,)|dt + sup
0

which implies that K is an increasing process. To wit, K € Kp[0, T']. Letting n — oo in (3.1)
yields that P-a.s.

T T
Ly SYz=€+/ S, YSaZs)ds+KT_Kt_f ZsdBs, t€l0,T].
t t

(5) For P-as.o € £2, since {(Y"(w), L"(w), K"(w))}, _y uniformly converges (Y.(w), L.(w),
K. (a))) in ¢t by (3.16) and (3.29), one can deduce from standard arguments and the flat-off
condition of each (Y, L, K}') that

T T
/0 (Yi(@) = Li(@)dKi (@) = lim /0 (¥ (@) — L' (@)dK} (@) =0,

which together with the previous steps show that (Y, Z, K) is a solution of the quadratic
RBSDE(, f,L). Since Y € E;"*7[0,T], Proposition 2.2 shows that (Z,K) e
Hy 7 (10, 1 RY) x KR(0, T forany p € (1, #5). O

As a consequence of Theorem 3.1, we have the following existence result.

Theorem 3.2. Let (&, f, L) be a parameter set such that f satisfies (H1) and that
Fordt @ dP-a.e. (t,w) € [0,T] x {2, the mapping f(t, w, -, -) is continuous. (3.30)
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If E[eM’L; + ek/yeﬁT(SJ’VL:)] < oo for some A, N > 6 with % + % < %, then the quadratic

) EX 4710, T1x Hy > ([0, T1; RY) x

1.2
ey

RBSDE (&, f, L) admits a solution (Y, Z, K) € ﬁpe(

KE[0, T1 that satisfies (2.1).
In addition, if €T Vv L, € L¢(Fr), then this solution (Y, Z, K) belongs to Sg [0, T'] for all
p € [1, 00). More precisely, for any p € (1, 0c0) we have

E [ePVY*] <E I:ePVL;iI + cp E I:epyeﬁT(SvaLI)] < 00;

T P (3.31)
E|:</ |Zx|2ds> +K¥j| §cpE[e3"’yY*] < 00.
0

Sketch of the proof. For any i,n € N, we set &, £ (§ V (=i)) Anand L' £ (L Vv (—=i)) An.
Theorem 1 of [15] shows that the quadratic RBSDE(£"", f, L") admits a maximal bounded
solution (Y™, Zin K1) e C[0, T x HA([0, T]; RY) x Kg[0, T]. Letting n — oo and
then letting i — o0, we can deduce from Theorem 3.1 as well as Proposition 2.1 that
the RBSDE (&, f, L) has such a solution (Y, Z, K). If T v L, € 1Lé(Fr), one can use
Proposition 2.2 and Doob’s martingale inequality to obtain (3.31). See [2] for details. [

4. Uniqueness
In the rest of the paper, we impose two more hypotheses on generator f which together imply
(3.30).
(H2) f is Lipschitz in y: For some « > 0, it holds dt ® d P-a.e. that
|f(tw.y1.2) = f(t, o, y2. ) <kly1 —yal. ¥yr.yp€R, Yz e R 4.1
(H3) f is concave in z: i.e., it holds df ® d P-a.e. that
f(tow,y. 021+ (1 =0)22) = 6f(t, 0, y.21) + (1 —0) f(1, 0.y, 22),
V(0,y)€(0,1) xR, Yz1,z2 € RY. (4.2)
From now on, for any A > 0 the generic constant ¢, also depends on « implicitly. The

following uniqueness result derives from a Legendre—Fenchel transformation argument, which
was used in [9], [10, Section 7] and [1, Section 4].

Theorem 4.1. Let (€, f, L) be a parameter set such that f satisfies (H2) and (H3). Assume that
for three constants o, B > 0 and y > 0, it holds dt ® d P-a.e. that

Y
ft,o,y,2) > —a—ﬁ|y|—5|z|2, V(y,2) e R x RY. (4.3)

Then the RBSDE(, f,L) has at most one solution (Y,Z,K) € Ef:)"/ [0, T] x
Hz ([0, T1: RY) x Kg[0, T] with » € (y, 00) and 3" € (0, 00).

Proof. Suppose that the RBSDE(, f, L) has two solutions {(Yi, zZi, K")}’.:1 , C Egﬁk” [0, T]x
Hy ([0, T1; RY) x Ky[0, T] with &; € (y,00) and A, € (0,00). We set A £ Aj A A2 and
P A} A LS. Clearly, — f is convex in z. For any (1, , y) € [0, T] x 2 x R, it is well-known
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that the Legendre—Fenchel transformation of f (¢, w, y, -): f(t, w,y,q) £ supzeRd((q, z) +
ft, w,y, z)), Vq € R? is an R U {oo}-valued, convex and lower semicontinuous function.
Let 91 be the dt ® d P-null set except on which (4.1)—(4.3) hold. Given (f, w) € N°, fhas the
following properties:

(1) By 43), f(t. 0. y.9) = —a — Bly| + %Iqlz, V(y.2) eR xR’ 4.4
(2) For any q € R?, if f(t, w,y,q) < oo for some y € R, then (H2) implies that for any y’ € R,
fo,y 9) <00 and |f(t.w.y.0) = ft.0,y )] <ly =Y. 4.5)
(3) For any y € R, since — f (¢, w, y, -) is convex on R?, the conjugacy relation shows that
— fltw.y.2) = S‘ﬁ’d((z’ 0)— f(t.o.y.9). VzeR. (4.6)
qe

Moreover, the convexity of —f(t,w,y,-) on R4 implies its continui}y on RY, thus
ft, o, y,q9 = supze@d((q, )+ ft vy, z)), Y q € R4, which implies that f is & x Z(R) x
AR/ A (R)-measurable.

(4) For any (y,z) € R x RY, let 9(— ), w,y, z7) denote the subdifferential of the function
—f(t,w,y, ") at z (see e.g., [25]). It is a non-empty convex compact subset of q € R? such that
—ft,w,y,7)+ ft,w,y,2) > (q,7 — z) forany z’ € R?, to wit,

(@.2) + f(t,0,y,2) = sup ({4, 2) + f(t, 0, y,2)) = F(t, 0, y, Q). @.7)

7/eRd

Let i = 1,2. For any (f,w) € M, we choose a q'(f,w) € I(—f)(t, w, Y/ (w), Z!(w)).
By (4.7),

ft, 0, Y (), 4 ¢, 0) = (ZHw), ¢ (1,0) + (1, 0, Y (0), Z}(0)) < . (4.8)

Thanks to the Measurable Selection Theorem (see e. g., Lemma 1 of [4] or Lemma 16.34 of [12]),
there exists an F-progressively measurable process ' such that

[t 0, Y (@), ZH() = Ft, 0, Y (), §(@) = (ZH (), §@), Vo) eN, 49)
which together with (4.4) leads to that

. . . 1
f(t, o, Y (@), ZHw)) > —a — BIY ()] + §|q;(w>|2
1 . 1 X
- 5<2y|z;<w)|2 + 5|q;<w>|2), V(t,w)eN. (410

Since (Y, Z!, Ky € Eg' 1[0, T x HZ'(0, T]: RY) x Kg[0, T] solves the RBSDE(£, f, L).
it holds P-a.s. that Y + fOT |Z! 2dt + | fOT f@, Y, ZHdt| < oo. Then it follows from (4.10)
that

1 r T . , . T ,

E/o CARE 5/0 fr, Y;,z;)dt+(a+,3Y;)T+y/0 |Zi2dt < oo,

P-as. 4.1D)
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Next, let us pick up an N € N such that £ < 22 (L _ 1) 7er4 £ 0. For

> p p N = 2/3(},4—)»/) y 2 0 .
Jjefl,..., N}, we set t; e % and define the process M;’J £ exp(— fé 1{szz,~_1}a§st -3

Jy Vs [@elPds). 1 € 10,151,
Given n € N, we define the F-stopping time 7; £ inf{t € [tj-1.tj] : fri, S 0z +

|a§|2)ds > n} A tj. Clearly, lim, 0 1 r,{ = tj, P-as. by (4.11), and{ rnAt}ze[Otj]

is a uniformly integrable martingale thanks to Novikov’s Criterion. Hence, & 2 M" ,’
Th
induces a probability QV, that is equivalent to P. Girsanov Theorem shows that { B 2

B + fo ds} is a Brownian Motion under Qn and

_1<s<t} }qa t€[0,t;]

] -[j l]n 1 ‘L’,{ i 2
i 1nM’ ] E i; —/ G dBy / 9. |*ds
Qn’[ o’ b *3 b

J= J

1 w
_lp f § |2ds (4.12)
2704 s : :
ti—1

E|M" In M‘ J
fn Tll

It is well-known that for any (x, 1) € R x (0,00),xu <e* +u(lnp —1) < e* + pulnpu,
thus xpu = Ax% <M 4 %(ln w—In k), which together with (4.12) implies that for k = 1, 2

E ,».,-[ sup (¥})~ }

" 1€[0,;]

E|: sup (Y,k)_M:/.ji|

1€[0,1] n

IA

101
E[eMYk)*]-l—)L Q,,[lnM” lnk]

1 Tn —
Ck+ —E f G %ds |. (4.13)
2)\, Qn Ij,1 h

where TF 2 E[&0D0] 4 WA Similarly, EQi.j|: sup,e[o’tj](Ytk)+:|

1 r{ ~i 2
2NE l,j |:fl‘]rl |qi| ds}

We can deduce from (4.9), (4.4) and Girsanov Theorem that

I/\

IA

o+

o
Yl —v / f(s,Y Z)ds+K’—K;jl—/. Z!dB
./

Z/,, (Fls. ¥ 7)) - (205, / ZidB,

Jj—1

%l
z/ (—a—ﬂlY’|+—|q|2> fz B, Pas. (414
fj—1

-



1174 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 122 (2012) 1155-1203

By Bayes’ rule (see e.g., [13, Lemma 3.5.3]), EQL ,[Y’ ] = E[Y,’ ,/ I] = E[Y‘ ]. Then
taking £ 0 in (4.14), one can deduce from (4.13) that

J
1 ff)z ~i 2 i+ aT ,BT o
—E . @ Pds | < E[(r)F]+ S+ (14 5 ) Eg| swp (v
2y Qn’|: - s ( )* N N i ze[O,t_,-]( t)

BT [ ‘ +]
+—E .| sup (Y}
N o te[O,lj]( )

1 opT(1 1 W
<S+|l—+"A=+—=)])E i2ds |,
< +<2x+ N <2A+2N)> an[/,_/_, las|“ds

where 5 £ %E[e)‘/(yi)r] + % + (1 + BT + ,BT’E)f/. It follows from (4.12) and the

. L. i _ )
setting of N that %(% - %)E[M:{’ In M;{f] = %(% — %)E i [ftr’l |Clls|2ds] < 5. 1In light
of de la Vallée—Poussin’s lemma, {Mi’jj } N is uniformly integrable. Hence, E [M]] ] =

ne

Tll
limy— 00 E[M',’] 1, which shows that M’/ is a martingale. Thus Q— e M,';,] induces a

. dP
‘[’1
probability Q%/ that is equivalent to P, and { B £ B + fo L= ) }te[o . is a Brownian
]
Motion under Q’+/. Then Fatou’s lemma implies that

i e . .
Egij [ / |a;|2ds] = E[M,’;-’ / |H;|2ds] < lim E[M’;-’ / |ﬁ;|2ds]
= = n—00 i Jijo

J= J=

w 4y =
= lim E ;;j / [q |2ds < Y .
n— o0 On ; A=y

lj—

And an analogy to (4.12) shows that

B Tnmii 1= Lo, | (7 s | < 222 (4.15)
Qb 1 = ) Qb i qs S| = T ‘}/ .
-1

Now for any n € N, applying Tanaka’s formula to the process (Y1 - Y2)+, we can deduce
from (4.6), (4.9), the flat-off condition of (Y!, Z!, K1), (4.8), (4.5) as well as Girsanov Theorem
that

14

+ + j
1 2 1 2 1 1 2 2
(Yl =720) = (vh-72) +/TW1{YS;>Y3}(f(s, Y,z - f(s, Y2, Z2))ds
J

(2N ‘L'/\[

!

i j
+/ Lyioy2dK| —dKf)—/ Lyioy2(Z{ — Z7)dB;
At r}’m
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o

f J
— f(S7 Y 7’&?) ( 37 El?))ds + /n 1{LV=YV]>YY2}dKS1
T AL
T;‘ | )
N / Lyioy2)(Zs — Z5) d By
r}lAt
1 2\t 7 L s
< (Y'[','_Y'['.'> +K/ l{yv1>yy2}(YS _Ys) ds
! / TIAL
g 1 2 2,j
- Lyjoyy)(Zs = Z5)dBs, 1 €ltj—1, 45, (4.16)
T;‘/\t

where £ is a real-valued, F-adapted, increasing and continuous process known as ““local time”.
Taking the expectation E >, and using Fubini’s Theorem, we obtain

1 2 \* 2 i 2
EQz,j[<YT - Y,W) ]<EQ2,[(Y — Y ) ]+K/ Ege[ (¥ —Y) Jas.
t
t€ltj_1,t].

Then an application of Gronwall’s inequality yields that

E v o —v% V] <eTE vl —v2)" 4.17
Qz._/[( b =Y M) ]_e Qz,_,-[( b - ,.7) ] teltion gl (4.17)
Similar to (4.13), one can deduce from (4.15) that

+ —
EQZ,j|: sup]<Yt1—Y,2) i|§ EQZ,j|: sup (Y,1)++ sup (Ytz) ]

t€[0,t; t€[0,t4] t€[0,t;]

- 1 1 i
2 ~2,2
< Cy —{—C)L + (—2)\/ + 2)\'>EQ2/ |:\/t‘j_] |qs| dS:| < OQ.

If Y,ﬁ < Y%, P-as.,asn — oo in (4.17), dominated convergence theorem implies that for
any 1 € [tj_l, tj]

EQz.j [(Y,l — Y,2)+] =0, thus Yzl < Ytz, P-as. (4.18)

In particular, Y,}_i ;< Yéi .+ P-as. On the other hand, if Yé < Yl;, P-a.s., interchanging
(vl z', 7z with (Y2, Z2, Z2) and estimating under Q7 in the above arguments (from (4.16)
to (4.18)) give that forany ¢ € [t;_1, t;], Y,2 < Y,l, P-a.s. Therefore, starting from Yi= Y% =

P-a.s., we can use backward induction to conclude that for any ¢ € [0, T, Y,1 = Y,2, P-a.s. Then
the continuity of processes ¥! and Y2 shows that Y! and Y? are indistinguishable, which implies

that
0=Y) Y =¥ -7H

t t
= /O (fGs, ¥}, Zh = f(s, Y2, D)) ds + K} — K} —/0 (2! - z»Hd B,

t t
=f (fGs, ¥}, Zh — fGs, ¥}, ZzD)ds + K — K2 — f(zsl—zf)st,
0 0
tel0,T]. (4.19)
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Since the set of continuous martingales and that of finite variation processes only intersect at
constants, one can deduce that Z! = Z2, dt ® d P-a.e. Putting it back into (4.19) shows that K'!
and K? are indistinguishable. [

5. An optimal stopping problem for quadratic g-evaluations

In this section, we will solve an optimal stopping problem in which the objective of the stopper
is to determine an optimal stopping time 7 that satisfies

sup £8 [Re] = £¢, [Re,]. 5.1)

TESO,T

where £8 is a “quadratic g-evaluation” (a type of non-linear expectation to be defined below),
and R is a reward process that we will specify shortly.

Let g : [0,T] x 2 x RxR! - RbeaZ x BR) x BR?Y)/ZBR)-measurable
function that satisfies (H1)—(H3). For any v € Spr7, It is clear that g.(t, w, y, z) =
lyicng(t,,y,2),(t,w,y,2) € [0, T] x 2 xR x R? is also a & x B(R) x BR?Y)/BR)-
measurable function that satisfies (H1)-(H3). Thus, we know from Corollary 6 of [6] that for any
& € L°(Fr), the following quadratic BSDE

T T
Y, =§ —}—f 15<0y8(s, Y, Zg)ds —/ ZsdBs, tel0,T] 5.2)
t t

admits a unique solution (Y™, Z™€) in N e(1.00) ELIO, T1 x Ha*? ([0, T1; RY). If £ € L¢(Fy),
one can deduce that

P(Y,”f =Y E, Vielo, T]) =1 and Z7¥ =147, dt ® dP-ae. (5.3)

Definition 5.1. A “quadratic g-evaluation” with domain IL¢ (F7) is a family of operators {Efyr :
Le(F;) ]Le(]-'v)}vesw res, , Such that E8. €12 Y1F, VE € L°(F,). In particular, for any

& € L¢(Fr), we can define the “quadratic g-expectation” of £ at a stopping time v € Sp 7 by
ES[51F] 2 €5, 1€).

The g-evaluation was introduced by Peng [24] for Lipschitz generators over L2(Fp).
Then [19] extended the notion for quadratic generators, however, on L°°(F7). Thanks to
Theorem 5 of [6] and the uniqueness of the solution (Y [ AAR ), one can show that the
quadratic g-evaluation &5 ; inherit the basic properties of g-evaluations with Lipschitz generators
such as: Monotonicity, Time-Consistency, Constant-Preserving, Zero-one Law and Translation
Invariance (see [2]).

Now, we assume that the reward process R is in the form of

R = ly<r Lo + 1p=r)§, 1€[0,T], (5.4

for some L € (C%[O, Tland & € ILO(}"T) with L7 < &, P-a.s. One can regard £ as the running
reward and & as the final reward with a possible bonus.

When £tV L, € L¢(Fr), the quadratic RBSDE (£, g, £) admits a unique solution (Y, Z, K)
inNpef1,00) S}‘Z [0, T'] thanks to Theorems 3.2 and 4.1. In fact, the continuous process ) is the snell
envelope of the reward process R under the quadratic g-evaluation, and the first time process )
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meets process R after time ¢+ = 0 is an optimal stopping time for (5.1). More precisely, we have
the following result.

Theorem 5.1. Ler g : [0,T] x 2 x R xR — R be a P x BR) x BRY)/BR)-
measurable function that satisfies (H1)—(H3), and let R be a reward process in the form of (5.4).
If €TV Ly € L°(Fr), then for any v € So T,

Yy =esssupES [Re] =E5 . [Re], P-as.,

v, T (V)
‘L'ESVYT

where ) is of the unique solution to the quadratic RBSDE (&, g, £) and T, (v) = inf{t ev,T]:
Y = Rt} [S Su,T~

This theorem extends Section 3 of [21], it also extends Theorem 5.3 of [3] except that the
continuity condition on the reward process R is strengthened. The proof of Theorem 5.1 depends
on the following comparison theorem for quadratic BSDEs, which generalizes Theorem 5 of [6].
Proposition 5.1. Fori = 1,2, let f; : [0, TIx 2xRxR? — Rbea Zx BR)x BR!) | BR)-
measurable function, and let (Y!, Z', V1) € CU[0, T] x Hg'*([0, T1; R?) x V[0, T] solves the
following BSDE

T T
Y, =Y} +/ fiGs, Y, Zhyds + Vi — V] — / ZldB,, t€l0,T] (5.5)
t 1

such that Y1 < Y2, P-a.s., that E el(yl)*+ +e*<y2); < o0 for all . € (1, 00), and that for
T T

some 0y € (0, 1), 0V — V2 is a decreasing process for any 0 € (6, 1). If either of the following
two holds:

() f1 satisfies (H1'), (H2); fi is concave in z; and Af(t) = fi(t, Y2, Z2) — fo(t, Y2, Z?) < 0,
dt @ dP-a.e.;

(ii) f» satisfies (H1'), (H2); f> is concave in z; and Af (1) = fi(t, Y}, ZH— o, Y}, Z}) <0,
dt @ dP-a.e.;

(where (H1') is an extension of (H1) in that the constant a is replaced by an F-progressively
measurable, non-negative process {a;};cj0,7] such that E [exp{ p fOT ardr}] < 00 for some
p > ye*T) then it holds P-a.s. that Yzl < Ytzfor anyt €[0,T].

In addition, if le = YTZ, P-a.s. for some Tt € So 1, then

T

P(Y} = Y%,/ Af(s)ds = o) > 0. (5.6)
T

Proof of Theorem 5.1. Fix v € Sp 7. For any t € S, 7, it holds P-a.s. that

T T

g(sa yv’Zs)ds+’Cr —Kent _/ Zyd By

TNt

yr/\tzyr+/

TNt

T
=V + / 1{S<T}g(sv Vens 1{s<r}zs)ds + K —Kens
t

T
—/ 1<) Z5dBs, t €0, T]. 5.7
t
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Since Vr > lir<1}L: + 1iz=7}¢§ = R, P-a.s., applying Proposition 5.1 with (Yl, z1, Vl) =
(YoRe, zoRe 0) and (Y2, 2%,V = {(Ven s Ly<y 21, Kont) ) epo.ry Vields that P-as.,
Yirnr = Y,T’R’ for any ¢ € [0, T']. In particular, we have ), > YJ’R’ = Sf,T[RT], P-as. So it
remains to show that ), = &% [Re,)] P-as. To see this, we define

v, T (V)

V21V + Lz Veone and 2 2 14 20 + 1y pcr ) 2,
Vielo, Tl

Clearly, (Y, Z) € Npe(t.o0) EAIO, T] x Hy ([0, T]; RY). The flat-off condition of (I, Z, K)
and the continuity of X imply that P-a.s.
0= / l{ys>£s}dlcs =
[v,7(v))
=Krw — K.

Hence, taking 7 = 7,(v) and = v Vv ¢ in (5.7), we can deduce that P-a.s.

l{ys>Rs}dK~Y :/ d’Cb = lim ICS - ICU

[v,7(1)) [v, 7 (1)) 5/'%(v)

T

~ ~ T ~
Vovone = Revw + f Ls<e.ong(s. T, )ds - / ZdB, 1e[0,T]. (58
vVt

vVt

In particular, we have

T T
Y, = 'R,T*(v) =+ / 1{s<T*(V)}g(S, Y, Zs)ds — / ZsdB;, P-as. 5.9)
v v

Fix t € [0, T]. One can deduce from (5.3) and (5.9) that

v v
L e 1{t<v}/ g5 vy, 20 )ds — 1{t<v}/ z0Y0dB,
! t
v ~ ~ v -
=1y + 1{t<v}f g(s, Vs, Zy)ds — 1{,<U}/ Z.dB,
! t

T T
= 1{t<v}Rr*(v) + 1{t<v} / 1{s<r*(v)}g(sv Vs, Zs)ds - 1{t<v} / Zsd By,
t t

which together with (5.8) implies that P-a.s.

Vi = Rr*(v) + / 1{S<T*(v)}g(s» Vs, Zs)ds - / Z,dB;. (5.10)
t t

The continuity of process :)7, further shows that P-a.s., (5.10) holds for any ¢ € [0, T]. To wit,
V., 2) € Npe,00) ]Eﬁ [0, T'] x H%‘ZP([O, T1; Rd) is the unique solution of the BSDE (5.2) with
(1,€) = (t:(v), Ry, (). Therefore, it follows that Y, = Y, = 55,*(1,) [Re]- O

6. Stability

Inspired by the “O-difference” method introduced in [6], we obtain the following stability
result.
Theorem 6.1. Let {(§,,, fim, Lm)}meNO be a sequence of parameter sets such that

(S1) With the same constants o, B,k > 0 and y > 0, fo satisfies (H1) and {f,}nen
satisfy (H1)—(H3);
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(S2) It holds P-a.s. that &, converges to &y and that L} converges to L? uniformly int € [0, T];
(S3) Z(p) 2 supen, E [e” @JVUD] < 00 forall p € (1, 00).
We let (Y?, Z°, K°) € Npe1,00) SRIO, T1 be a solution of the quadratic RBSDE(&, fo, L?),

and for any n € N we let (Y",Z", K") be the unique solution of the quadratic
RBSDE(&,, fu, L") in ﬁpe[l,oo)Sg[O, T]. If fn(t, Yto, Z?) converges dt @ dP-ae. to

fo(t, Y,O, Z?), then for any p € [1, 00), [supte[o Y — Y,0|1’] N is a uniformly integrable
’ ne

sequence in L' (Fr) and

T p
lim E[ sup |Y/ — Yt0|”:| = lim E[(f |z — z?|2ds> } =0.
n—o00 1€[0,T] n—o00 0 s b

Moreover, if it holds dt @ d P-a.e. that f,(t, w, v, z) converges to fo(t, w, y, z) locally uniformly
in (y, z), then up to a subsequence, we further have lim,_,o E| sup,co 1) K — Kt0|p =
0, Vp e[l oc0).

Proof. (1) Fixn € N, 6 € (0, 1) and ¢ > 0. We first show that P-a.s.

1—-0 i
Y =Y < (A=) (1Y 1+ 1Y) + ——In (Z 1) t [0, T], (6.1)
i=1
where I £ E[I?‘il}"t] fori = 1,2, 3, 4 such that

t
' 2 Dry,  with Dtéexp!yez"Tf (a+(,3+x)|Y£|)ds}, ¢ €0, T] and
0

M = exp{goe” (16 — 080| V 150 — 05l }:
n2 a kT r . A VeKT N kT (yn 0
17" £ e Dy n/o Anf©)lds with & & -—, T, = exp{goe” (Y + 1Y)}
and A, f(t) & fu(t, Y2, Z0) — fo(t, Y, ZP), t €10, T1;
1372 (14 GyexpleT +egoe ™)) (1+ Drexp {ye™™ (v + v2) | (K + k7));

1’;’4 2 g_ee"TDT T,,( sup |L} — L?l)(Kg + K7).
& t€[0,T]

Weset U" £ Y0 — y", v" £ 97% — 7" and define two processes

Fut,0Y0, 2 — fult, Y, Z)
uy

ay £ Liypo) —«lgr=g), A} = /Otafds»
t [0, T].
Applying 1to’s formula to the process I £ exp{¢pe’ U}, t € [0, T] yields that
T T T
I =7 +/ G"ds + gef e dK? —dK™) — gg/ et vidB;,

t t t

tel[0,T],
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where G = g5 IMe/ (9 fot, Y0, Z0) — fult, Y, Z0) — al Ul — %ggeA?w,"P). In light of
(H1) and the concavity of f; in z, it holds dt ® d P-a.e. that for any y € R

_yn

fn(t7 yvzf) 2 efn(t’ Vs Z?) +(1 _Q)fn <t’ Vs 1_19> = an(t9 Y, Z?)

~(=0) @+ Bl — g VT 6.2)

which together with (H2) implies that dt ® d P-a.e.

n 1 n
G! = gplfte (—eAnf(o +0fu(t, YL, Z0) — fu(t, 070, Z1) — §§9€A’ |v,”|2>
< goIle™ (|Anf(r>| +0fut, Y2, Z0) — fult, Y2, 20

0 0 4 2
+ 1 fult, Y7 ZY) — fult, 07, Z1)| — me >

<y T I (@ + B+ IV 1) + Goe T I A, £ ().
Integration by parts gives that

T T

I < DI} < Dr Iy +;9eKT/ D IUA, f(s)lds + 59/ DIt dK?

- ) t t
— 2 / DyI"e™s V' d B
t
T T n
< I+ 1 4 e Dr / Ir"dk? — ¢ / DyI"e*V'dB,, tel0,T]. (6.3)
0 t
The flat-off condition of (YO, ZO, KO) implies that
T T
/ F;ldK? = / I{YOZLO}[‘YndI(;J
0 0 s B o

T T
0 0
2/0 1{Y?:L9§L§’+8}ansz +/0 1{1{9:L9>L{g+s}ansz

IA

T
/0 Liyo<ynie) €XP {yezKTIYS"I + eg'ge"T} dKSO

T
0
+ Tn/o Lpn_po-)dKs

1
exp {yez"TYf + ségeKT} K)+ - T,,( sup |L} — L?|)K?, P-as.
€ 1€[0,T]

IA

(6.4)
For each p € (1, 00), (3.31) and (S3) imply that

n' r ’ P / BT (4,71
sup E| PV + / |Z2Pds |+ (K7)7 | < cp sup E[éwe (gver )]
n’eN 0 n’eN

Cp E(3pye’3T>.

A

IA
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Thus, it follows that

T 14
sup E| eV 4 f |z %ds | + (K%)”
mENO 0
0 T g ol
scp5(3pye“)+E[eW*+<f |Z?|2ds) +(K9)”}ﬁ5<p>,
0

which together with (S1) implies that

Elny]

IA

E[ep Iae”(lénl-i-\éo\)] < %E I:ez,” CoeT (VLY + 2P {oe"T(s()*ng)]

5(217 Cae'(T),

IA

ELT{1 < SB[ e g 2] < :~< 2 em>,

E|:</0T|Anf(s)|ds>p:|

p

IA

T
E 2T(a+ﬂY£)+y/ 120 2ds
0

0 T r
cpE|:epVY* + (/ |Z?|2ds) :|
0

IA

1181

(6.5)

(6.6)

6.7)

(6.8)

E|: sup |L" — L?|P] < c,,E[(L:)” + (L‘j)”] < c,,E[epLZ +ePL53] <cp 2(p). (69)

t€[0,T]

Since D7 < ¢ exp{y(ﬂ + k)T e*T Y,?}, P-as., we also see that Dy € ILP(F7). Thus, one

can deduce from Young’s inequality and (6.5)—(6.9) that random variables I;’i, i=1,2,3,4are
all integrable. Moreover, the Burkholder—Davis—Gundy inequality and Holder’s inequality imply

that

IA

t
/ Dy I e VI'd By
0

|

E| sup
te[0,T]

IA

T 1/2
coE |:DT T, </ |VS"|2ds> ]
0

IA

thus fo Dy FS”eA? V.'d B, is a uniformly integrable martingale.

r 172
C()E|:</ (DSF;l)zeZA:" |‘/;’|2ds> :|
0

o 1DT lszn) I Talleacry [V | g0, 7wy < 00
(6.10)

Forany 7 € [0, T, taking E[-|F;] in (6.3) and (6.4) yields that I"* < Y7 I/"!, P-a.s. It then

follows that

1-6 ;
Y —v <0 -0))+6v)—v" <1 -0+ In (Z 1,”") ,  P-as.

4 i=1

6.11)
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To show the other half of (6.1), we set U" 2 0Y" — Y%, V" 2 97" — 70 and define two
fﬂ(tv Yzos Z;,l)_fn(tv Y[n,Z;’l) 1
O£y Yo _ yn K =y

t t

processes
t
/ agds,
0
tel0,T].

Applying It6’s formula to the process T L exp{ggeg? ﬁt”}, t € [0, T, yields that

[I>

~n A an
a =1 Aj

T T ~ T ~
I =T+ f G"ds + ¢ / Ie% (dK" — dK?) — ¢ / e VB,
t t t
t€[0,T],
where G = ¢ T7e (9 Fult. Y0, Z0) — fo(r, Y0, 2% —anOn — %§9e5?1|‘7;1|2). Similar to
(6.2), (H1) and the concavity of f, in z show that dr ® d P-a.e.

Falt 3, 200 2 0613, 2]) = (1= 0) @+ BD = 577

V', VyeR,
which together with (H2) implies that dt ® d P-a.e.
~n Fin Al n —n 0 -0 ~nrin 4 n 2
G} < ¢olfe™ | 0fult, Y] Z)) — fu0. Y, Z) + An f (1) — G} U] — mwt |
< Iy e™ (0fu(r. Y1, 27) = 0£, (1. Y. Z7)
18,0 =& T + 1 = 0) (a+ pIY))
= oIy e (1= 0)a ) +14, Ol + (1 = 0) (« + 1Y) )
< y@TT @+ B+ OIY) + G TP A O
Similarly to (6.3), integration by parts gives that
T T ~
<o 4?4 §eeKTDT/ I'dK} — ggf DI VI'd By,
0 t

t €0, T], (6.12)

where fo Dy f;'e’zﬁl V;’d By is a uniformly integrable martingale, which can be shown by using
similar arguments to those lead to (6.10). And similar to (6.4), the flat-off condition of
(¥Y", Z", K") implies that

T
~ 1
[ I''dK} <exp {yez’(TYf + 8{96”} K+ - Tn< sup |L} — L?|)K¥, P-as.
0 € 1€[0,T]
(6.13)
For any ¢ € [0, T], taking E[-|F;] in (6.12) and (6.13) yields that ft” < Z?:l I["‘i, P-as. It
then follows that

1—60 (S~ i
Y'Y <A -0 +oy" Y2 <1 -0+ In (Z 1;”) ,  Pas,
Y i=1

which together with (6.11) as well as the continuity of processes ¥”, Y and Z?:l I implies
(6.1).
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(2) For any 6 > 0, (6.1), (6.5), (6.7), Doob’s martingale inequality and Holder’s inequality imply
that

P( sup Y — Y0 > 5)
t€[0,T]

4
< P((l —HY2+rr) > 5/2) +P (1 6 ln(z 1;”') > 5/2)

<

<21_0E2 4KT %C = 8 2T !
= Vu()‘f‘ € e I llL2 ) + 80 1= 1_96

T
/ |Ap f(s)|ds +14+ ;088§9e”
0

X
L4(Fr)
S0 8 :
~ 2%T 0
+?{:<1—96K )} IL" — L ||<C4F[0,T])’ (6.14)
with C = 1 + [Drll27,) + supneN(E [DTeVez”T(YerY;’)(Kg+K¥)] + IIDT(K¥ +

K?)H]LZ(]-‘T))- Holder’s inequality and (6.5) show that C is a finite constant. The convergence
of A, f to 0 and (S1) imply that dt ® d P-a.e.

lim A, f(tr,w) =0 and |A,f(t, ®)| <2a+28Y(w) + y|Z2(w)]?,
n— 00
VneN. (6.15)
Hence, for P-a.s. @ € {2 we may assume that (6.15) holds for ae. + € [0,T], and
that Yf (w) + fOT |Z?(a))|2ds < 00. The Dominated convergence theorem then yields that
limy,— o0 fOT | A, f(s, w)|ds = 0. By (S2), it also holds P-a.s. that limy_ ey = e’ Il
and limn_)oo<supl€[0’T] L — L9|) — 0. Applying (6.6), (6.8) and (6.9) with any p > 4

shows that {2} . H( foT | A f(s)|ds)4] . and {sup,e[o 1LY — L9|4} are all uniformly
ne ’ neN

integrable sequences in LY(Fr), which leads to that lim,_ o E [nﬁ] = E [ezyeh”&)'] and

lim,, s 00 E[(fOT |Anf(s)|ds)4 + sup;co.7y 1LY — L?|4] = 0. Hence, letting n — o0 in (6.14)
and then letting ¢ — 0 yield that

lim P( sup Y — Y0 > 8)
n—o0 1€[0,T]

-0~ Sy 2%T yeT
<2 20 +4eTerm=nC (1 ye™ ol 2 ).
<2 (2) +4ee ( + lle Il + 15
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As 6 — 1, we obtain lim,,_, o P( sup;eo.7y Y7 — Y,0| > 8) = 0, which implies that for any
p €[l,00), exp[py “Supsepo.r Y1 — Yto|} converges to 1 in probability.

(3) Fix p € [1, 00). Since E[expiny - sup,ro.m 1Y — Yt0|” < %E [641’”": +e41’7’Y’9] <
::(417) holds for any n € N by (6.5), we see that {exp{py - sup,epo.ry 1Y — Yt0|}}neN
is a uniformly integrable sequence in L!(F7), which implies that lim,_ o E [exp{ py -
SUP;¢(0,7] |Yt"—Y,0|” = 1. In particular, it follows that [supte[oﬂ |Y[’—Yt0|1’}”EN is a uniformly
integrable sequence in IL! (F7) and that

lim E[ sup Y — Y}’|P} =0. (6.16)

n—00 te[0,T1]
For any n € N, applying Ito6’s formula to the process |Y” — Y°|2, we can deduce from (S1)

that
T
fo 12" — Z9ds

T
= |&, — &> — Y7 - YOP + 2/ X = YO (fuls, YI, Z0) — fols, Y0, Z2)) ds
0
T T
+2 / (¥! — YO@K" —dKY% 2 / (¥? — ¥0)(z" — 2% dB,
0 0

<2 sup ¥/ —Y2||2aT + BT (Y +YP)
t€(0,T]

T
+ g/ (131 +1Z)1%)ds + K7 + Kg)
0

T
+ sup [V =Y 42 ‘/ " —y%z" - 7%dB,|, P-as.
0

1€[0,T]

Then the Burkholder—-Davis—Gundy inequality, Holder’s inequality, and (6.5) imply that

(i)

T
< cpE[ sup Y/ — Yl°|21’} +cpE[ sup Y — Y0P (/ |Z" — z§?|2ds)
0

SIS}

t€[0,T] te[0,T]
%
+c,,{E[ sup Y/ — Y,°|2P]}
t€[0,T]
1

T 2p 2
x | sup E|e*Pr¥ 4 |Z"2ds + (K} r
p s T
mEN() 0
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p
1 T
< c[,E|: sup Y — Yt0|2Pi| +-FE / |Zp — Z0\ds
1e0,T] 2 0
~ 02 ?
ool g -]

te[0,T]

P
Itis clear that E [( STz - z§|2ds) ] < ooas 2", 20 € HX?P ([0, T; RY). Hence, it follows

that
T 14
E / 12" — Z%)2ds < cpE|: sup [Y/' — Y,°|2P]
0 t€[0,T]
1
=~ o2p ||?
+ep :(ZP){E[ sup |¥)" =Y/ ”“ :

te[0,T]

Asn — 00, (6.16) implies

T p
lim E|:</ |zt — z§’|2ds) } =0. (6.17)
n—oo 0

(4) Let us further assume that dt ® d P-a.e., f,(t,w,y, z) converges to fo(t,w,y, z) locally
uniformly in (y, z). By (6.16) and (6.17) with p = 1, {(Y", Z")} _ has a subsequence (we
still denote it by {(Y”, Z")}neN) such that lim,— oo sup,¢jo. 7 1Y — Yt0| = 0, P-a.s. and
lim, 00 Z = Z°, dt ® d P-a.e. In fact, we can choose this subsequence so that sup, .y | Z"| €
]HI%[O, T]; see [16] or [14, Lemma 2.5]. Fix p € [1, 00). Using similar arguments to those lead
to (3.25), we can deduce from (S1) and (6.5) that

n—oo

lim E|:(/OT | fu(s, Y, Z%) — fo(s, YO, z?)us)p] =0. (6.18)
For any n € N, it holds P-a.s. that
K'—K) =Yy —Y) - =10 - /Ot(fn(s, Y Z) — fols, Y2, Z0)) ds
+ /Ot(zg —7%dB,, tel0,T].
The Burkholder—Davis—Gundy inequality then implies that

E[ sup |K,"—K,°|P]
te[0,T]

T P
=< cpE|: sup |Y[n - YIO|]) + (/() |fn(s7 st» Z?) - fo(sv YSO’ Z_?)|ds>

tel0,T]

T 2
+</O |z;’—z§|2ds> }
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2 e , . .
where E |:<f0T VA Z?|2ds) i| < {E [(fOT VA Z?|2ds) ]} due to Holder’s inequality.

Asn — 00, (6.16)—(6.18) lead to lim,_s s E[ supcro.71 1K' — Klo|1’] =0. O

7. An obstacle problem for PDEs
In this section, we show that in the Markovian case, quadratic RBSDEs with unbounded

obstacles provide a probabilistic interpretation of solutions of some obstacle problem for semi-

linear parabolic PDEs, in which the non-linearity appears as the square of the gradient.
Forany ¢ € [0, c0), B' = {Bx’ £ B; s — Bt}se[0,00) 18 also a d-dimensional standard Brownian

Motion on the probability space ({2, F, P). Let F’ be the augmented filtration generated by B,
[Fr2o(o(Blre0.5)UN)} . Letk €Nk > 0and @  [1.2). We consider
§=

the following functions:
Sup(t’x)e[o’T]XRk |U (t, .x) | < 00, and that

ie., F' = {F!
0,T] x R¥ > R and o : [0, T] x R¥ — R¥*4 are two continuous functions such that
|b(t7 x) - b(tv x/)| + |U(t5 x) - U(ta x/)| S K|‘x - .x/l,
(7.1

—

(1) b:

(1>

O
Vi el[0,T], Vx,x' e Rk
(2) h : R¥ > Rand!: [0, T] x RF — R are two continuous functions such that
Vx eRF and |[h(x)| VI, x)] < k(1 +[x|7),
@) V1L, 2)] <« (14 |x]7) 72)

T, x) < h(x),
Y (¢, x) € [0, T] x RX.
3) f:10,T] x REXRxRY — Risa jointly continuous function that satisfies
(i) There exist &, 8 > 0 and y > 0 such that for any (¢, x,z) € [0, T] x R¥ x RY and

(7.3)

v,y €R
1Ft.x. y.2) < a+Blyl+ §|z|2 and

|f(tﬂx7yaz)_f(tvxvy/vz)| §K|y_y/|v

(i1) The mapping z — f (¢, x, y, z) is concave for all (¢, x, y) € [0, T] x R* x R.
(7.4)

For any A > 0, we let ; denote a generic constant, depending on A, o, 8, v, k, @, T, 0, and on

by & sup;¢po. 71 10(f, 0)| < 0o, whose form may vary from line to line.
Given (7, x) € [0, T] x R¥, it is well-known that the SDE
(7.5

N s
Xy =x +/ b(r, X, )dr +/ o(r, X,)dB,, s€lt, T]
! '
sefr, 7] A0 R¥-valued continuous process, such that X, e

admits a unique solution {X;*}
F!_, C Fs forany s € [t, T]. In addition, we set X;* £ x, Vs € [0, t].
We recall from [9, Section 5] the following estimate for the exponential moments of process

117 ey
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Lemma 7.1. Let p € [1, 00). For any (¢, x) € [0, T] x R¥, we have

E|expip sup |XI*|7 Sgpexp{p3w*1e"wr|x|w].
selt,T]

Our objective in this section is to find a unique viscosity solution of the following obstacle
problem for semi-linear parabolic PDEs:

min {(u — I)(t, x), —du(t, x) — Lu(t, x) — f (t, xut,x), (o7 - Vo), x))} —0,
V(t,x) € (0, T) x R, (7.6)
u(T,x) =h(x), VxeRk

where o denotes the transpose of o and Lu(t,x) £ %trace((aaTDfu)(t,x)) + (b(t, x),
Vyeul(t, x)).

Definition 7.1. A function u € C([0, T] x R¥) is called a viscosity subsolution (resp. viscosity
supersolution) of (7.6) if u(T,x) < (resp. >) h(x), Vx € R¥, and if for any (fo, xo, ¢) €
0,T) x RF x Cl’z([O, T] x Rk) such that u(zy, xo) = ¢(ty, xo) and that u — ¢ attains a local
maximum (resp. local minimum) at (¢y, xo), we have

min {(M — 1)(t0, X0), =39 (to, x0) — f (to. x0. u(to, X0), (¢ - Viu)(to, XO))]
< (resp. >) 0.

A function u € C([0, T] x R¥) is called a viscosity solution of (7.6) if it is both a viscosity
subsolution and a viscosity supersolution of (7.6).

For any (s, x) € [0, T] X R¥, let 22! denote the F’-progressively measurable o-field on
[0, T — ] x £2. Since Xi* £ X;;fs, s € [0, T —t]is an F’-adapted continuous process, the joint
continuity of f implies that

(s, 0,9,2) 2 f(t +5, X% (), y,z), V(s,,y,2) €0, T —1]x 2 xR xR?

isa 2! x BR) x BR?) /% (R)-measurable function, namely, it is a generator with respect to
F’ over the period [0, T —¢t]. By (7.3) and (7.4), f"* also satisfies (H1)—(H3). On the other hand,

(7.2) shows that {Zlyx 21t +s, )~(§.’x)}se[0 7y 18 also an F'-adapted continuous process such
that Ly, = I(T, X}*) < h(X}¥) € Fi_,. Forany p € [1,00), (7.2) and Lemma 7.1 imply

1

A

E [exp {p<|h(X;x)| v Z;x

N—"

epKE[exp{ﬂVpK) sup |X§’x|w}i|
s€lt,T]

IA

T, exp {(1 v i) 3”*‘emT|x|’f’} . 1.7)

Hence, Theorems 3.2 and 4.1 show that the quadratic RBSDE(h(X [T’X), f Lx L *") with respect

to B’ over the period [0, T — ] admits a unique solution (17”)“, AL I?”x) in Nperi,00) Sg,
[0, T —¢].
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The continuity of process { X"} 7y (7:3) and (7.4) imply that

s€(0,
F G, 0,9,2) 2 Lo [ (5 =t 0,5, 2) = L= £ (5, X5 (@), 3, 2),
V(s,w,v,2) €[0,T] x 2 xR xR?
isa P x BR) x BRY) /% (R)-measurable function that satisfies (H1)—(H3) with the same

constants o, B,k > 0andy > Oas f.Let Ly* £ LI(YX t)+ =I(svt, Xi’vx,), s € [0, T, which is

clearly an F-adapted continuous process with LT’ = LT—z < h(X th) Then one can show that

(s—0)*t>

(Yst’x’ VA Kstx) = (Yt’x 1{S>t et 1{Y>t}Ks t) s €[0,T]
satisfies the quadratic RBSDE(h(X’T’x), fh, Lt'x) over the period [0,7], and that
(Y5, 21, K*) € Npert o0 SEIO, T1. Since E [exp | p(In(x5)1 v L) || < o0 by 2.7,
Theorems 3.2 and 4.1 again show that (Y*-*, Z"*, K"-¥) is the unique solution of the quadratic

RBSDE(h(X7"), f**, L") in Nper1,00) SEIO, T1.
The main objective of this section is to demonstrate that

u(t, x) 2 Y5 =y, V(@1,x) [0, T] x RF (1.8)
is a viscosity solution of (7.6).

Proposition 7.1. The function u defined in (7.8) is continuous such that |u(t, x)| < 50(1 +|x |w)
forany (t,x) € [0, T] x Rk,

Sketch of the Proof: Given (¢, x) € [0, T] x R, for each sequence {(t;, Xn)}peny C [0, T] X R¥

that converges to (¢,x), a standard calculation shows that lim,_ o, E SUPsc(0.7] |X§"’x” —

Xé’x |2i| = 0. Thus, up to a subsequence, we can deduce from the continuity of functions 4, [
and f that P-a.s.
lim h(X7") = h(X}"), lim sup |L* — LM¥| =0,

n—oo n—o00 SE[O T]

and  lim (s, y,2) = f"*(s,y,2), VY(s,y,2) €[0,T] xR x R,
n—oo

Then applying Theorem 6.1 yields that lim, oo supsego.77|¥s"™ — Y| = 0, P-as. In
particular, one has lim,— o0 u(ty, x,) = limy— oo Yt” T — limy,— oo Y"' A — Yé’x = Y(;’x =
u(t, x). Moreover, Theorem 3.2, (7.2) and Lemma 7. 1 imply that

—k (14 1x|7) < I, x) = L§" <u(t,x) =Y* <&

L1 lnE[exp [ye“(m(X’T”‘)l vl

<7 1nE[exp{y;<eﬂ sup |X;’X|WH <o(1+x7). O
)/ selt.T]

For any £ € O & {E e LOFr) : & > LtT’X, P-a.s. and E[ep §+] < o0, Vp €
(1,00)}, Theorems 3.2 and 4.1 assure a unique solution (Y**:5, Z"%& K**:%) of the quadratic
RBSDE(&, £, L") in Npe(1,00) Spl0, T1. For each s € [0, T, we can regard £*[£|F;] £
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Y;’x’g,é € O" as a non-linear conditional expectation on O"* with respect to Fy (cf.
g-expectations in the case of BSDEs, see e.g., [23,19], Subsection 5.4 of [3] and Section 5 of
the current paper). Then the diffusion X’* has the following Markov property under £'*:

Proposition 7.2. Let u be the function defined in (1.8). For any (t,x) € [0, T] x R¥ it holds
P-a.s. that

u(s, X0 =vi¥ =7y, selr Tl (7.9)

s—1

For case of quadratic BSDEs, [14] pointed out that the flow property derives from the

Markovian property of the diffusion process X”* and from the uniqueness of the quadratic BSDE
(see line 1-5 of page 591 therein). However, the author neither proved it in details nor mentioned
the role of the stability result. So we would like to provide a complete proof of the flow property
(7.9):
Proof of Proposition 7.2. (1) We fix s € [#, 7] and denote ©° £ 0", ¢’ € [5, T] for © =
X.Y,Z, K. Givenn € N, there exist a finite subset {x/'}", of By (0) £ {x € RF : |x| < 2"}
and a disjoint partition {Z7'}" | of B:(0) such that x" € I" € B(R) and I C B-n(x!") for
i=1,... junLet A7 £{X%eT’} e F, i=1,...,j,andlet A7 £ {X? € BS,(0)} € F.
Forany t' € [s,T]and © = X, Y, Z, K, we define O], £ {”:0 IA? 9:,’x" € Fy with x{j £ 0.
Then foranyi =0, ..., j,,

t/

t n n
Lo X = 2 +/ IA;;b<r, Xf’x’>dr+/ IA;zo(r, x5 )dB,
N N

t t
= xlfllA:; + / IA;:b(r, Xf)dr + / IA;IU(r, Xf) dB,, P-as.;
s s
and that
Ll (£, X3) = Lael (¢, X)) = La L

X! s,x

SIA?Y !

t

n
5, X}

n T n
= Lyh(X7™) +/ Ly f(r X0 Y,
t/

n
$,X]

, 2y )dr

o n o n T o n
+1p Ky — 1K, — f 1402, dB,
t !
T
ZIA?h(X’%)_F/‘ lAglf(r,X”,l,an,Z,’,l)dr‘FlA’!K;l——lAﬂKﬁ
t/ 1 1 1
T
— / IA;:Z;’dB,, P-as.
t/

Summing up both expressions overi = 0, ..., j,, one can deduce from the continuity of function
[ as well as the continuity of processes { X[}y e[s, 71, {1} }rres, 71 and {K )}y efs, 1) that P-a.s.

t t
X5 =Xy +/ b(r, Xdr —i—/ o(r,X"dB,, t €ls,Tl; (7.10)
s N

T T
1(t', X)) <Y} =h(X}) +/ fr, X}, Y] ZNdr + K — K}, — / Z'dB;,
v v

t'els, T]. (7.11)
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Moreover, we also have
n ! s,x! s,x
/ (Y" —1(r, X"))dK] = ZlAnf (v, o ")dK,"" =0, P-as. (7.12)
N

By (7.5), it holds P-as. that X0 = X0 + [" b(r, XO)dr + [ o(r, XO)dB,, V' € [s, T].
Subtracting it from (7.10), we see from (7.1) that P-a.s.

[/
sup IX;',—XE.)/I < IX;‘—X?|+K/ X" — X%dr
s'els,t'] K

/S(a(r,Xf)—a(r,Xg))dB, tels,T]. (7.13)

I

+ sup

s'€ls,t']

Similar to Lemma 7.1, we can deduce that (see [2] for details)
1

~ T 0 .
cp {E[exp {p 27 XY — X |w}i“

1
E,,{E [exp {p Zzw_le’(’UT|X?|w”]2,

IA

E|:exp{p sup |X;’,—X?,|w}i|
1'els,T]

IA

where we used the fact that

|X? - X?' =1 X0|<2n |X? - X(v)| +1 X0|>2n |X(y)| =< 27" +1 X0|>2n |X9| (714)
{1X91<2"} {1Xg1=2"} {1X31=2"}
Thus it follows that for any p € [1, co)
1
E[exp{p sup | X7, |w}i| < —E|:exp{p2w sup |X:’,—X?,|w”
rels.T] 2 rels.T]
1
+—E|:exp{p2w sup |X?,|w”
2 t'els,T]
< c,,+E[exp{p2*w te«@T sup |X7) |WH (7.15)
els, T]

C Npef1,00) SEI0, T1, it holds for any p € [1, c0) that

i=0,...,jn

T p
E exp{p sup |Yt',’|} + / |Z;’|2dr —I—(K?)P
t'els,T] s
Jn s, x" r 2 P s,x"\ P
<Mk exp{p sup |} ” n / dr +<KT’ ) <00, (7.16)
i=0 t'els,T] s

(2) Fixm € Ny. As X, = l{t/<5}E[Xm|]:;/] + l{t/>5}Xt’ s
process, the continuity of function / and f shows that £:’,’
F-adapted continuous process and

I 0, y,2) & f(t', X (), v, 2),

As {(Ys,xi’" Zs,x;l’ Ks,xf)}.

s,x!

zZ:

t' € [0, T is an F-adapted continuous
£ (', XT), 1" € [0, T] is also an

V(' w,y,2) €[0,T] x 2 x Rf x RY
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isa Z x BR) x B[R?Y)/A(R)-measurable function. Moreover, (7.3)—(7.4) show that f,
satisfies (H1)-(H3) with the same constants «, 8,k > 0 and y > 0 as f. For any p €
(1, 00), the convexity of function y — ¢/”I” on R and Jensen’s inequality imply that

w
[exp{(E [lX;ll |}",/]> }} (0.00) is a continuous positive submartingale. Doob’s Martingale
t'€[0,00
Inequality then shows that

o (ol )= (525) el oty

which together with (7.15) and Lemma 7.1 leads to that

Elexo|p(x)7}] = E[ sup. exp p<E[|X;n||f,,])”f}} +E[ sup exp{mx;ﬂw}}

t'€[0,s] t'els,T]
< F,,E|:exp{p sup | X}'|7 }]
1'€ls,T]
<cp +Z"I,E|:exp{p23w_leK’I’T sup |X?,|w }i|
t'€ls,T]
<Cp+cpexp {p 23w7]3w7162KWT|x|w} .

Hence it follows from (7.2) that

E[ew {p(inaep) v 22)|]

IA

eP E [exp {(1 Vv pr)(X")7 1]

IA

)+ Ty exp {(1 v px)23w—13w—1e2mT|x|W} (7.17)

As Y € EL[0, T1, we also see from (7.16) that E[ep |Y~rm|] < o0. Since Y > I(s, X)) =

l(s, X{”) = LT, P-as., Theorems 3.2 and 4.1 imply that the quadratic RBSDE(Y", f,,, L)

over time interval [0, s] admits a unique solution { o, Zr, ICT)}r €[0.5]

in Npe[l,00) Sg[o, s].

We extend the processes (Y™, Z™, K'™) to the period (s, T] by setting ( t’f‘, Z;’?, IC:’} £
;. zp, Ky + K7 — K", V¢ € (s,T]. Then (7.11) and (7.12) imply that
{7, 217, K }repo,r) solves the quadratic RBSDE(h(X?), s E”’). As (Y, Z0Y KB €
Npefl,o0) SpI0, T1, (7.16) shows that (Y™, Z™ K™) € Npefl,o0) Spl0, T1. Moreover,
Theorems 3.2 and 4.1 and (7.17) yield that (M, Z™, KC'™) is the unique solution of the quadratic
RBSDE (A (X), fm, £™) in Npe1,00) Spl0, T1.
(3) Squaring both sides of (7.13), one can deduce from Holder’s inequality, Doob’s martingale
inequality, Fubini’s Theorem and (7.1) that

E|: sup IXf,—X?/Iz]

s'€[s,t']

t/
53E[|X;‘—x§|2]+3x2(T+4)/ E|: sup |Xf§,—XS,|2]dr, /' els, T
S

s'els,r]
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Then Gronwall’s inequality and (7.14) imply that

E|: sup | X[ — X9|2] <3E [|X;’ — X?|2] AKHTH4T)
t'els,T]

< (2—2" + E[1{|X9|>2,1}|X?|2]).

As E[|X§’x|2] < 00, letting n — oo yields that lim,, o E[sup,/e[‘ﬂ] | X — X?,|2i| = 0. By

Doob’s martingale inequality

IA

E|: sup |Xt'f—)(t9|2:|

E|: sup |E[X" — XO|Fi] |2} + E[ sup | X7 — x?,|2]
t'€[0,T]

1'€[0,s] t'els,T1

IA

SE[ sup |X;’,—X?,|2}.
t'els,T]

It follows that lim,,—, 5 E[supt,e[o,ﬂ | — Xt9|2:| = 0. Hence, we can pick up a subsequence
of {X"},en (we still denote it by { X"}, cn) such that except on a P-null set .4/,
lim ( sup | — X[(,)l) =0 and the path t’ — th is continuous. (7.18)
=00 prel0,7]

To apply Theorem 6.1 to the sequence {(V", 2", K")} _. let us check the assumptions of
this theorem first. We have seen that the sequence { fi, }men, satisfies (S1), and that (7.17) justifies
(S3). Fix w € 4. For any ¢ > 0, the continuity of / assures that there exists a §(w) € (0, 1)
such that

|h(X) —h@EH| VG, X) =16, x) <&, VYG,%),6,x)el0,T] x Z2(w) with
5 =51+ 1% =217 < 8 (),
where Z(w) = {)? e R . ¥ < 1+ SUP,¢i0.7] |Xt9(a))| < oo} In light of
(7.18), there exists an N(w) € N such that for any n > N(w), SUP,¢0.7] |Xt’? (w) —
X%(®)| < 8(w). Then it holds for any n > N(w) that [h(X}(w)) — h(XR(@))| < e

and that | L% (w) — LO(w)] = [I(f' X)) — (X% ()] < & for any ' € [0,T].
Thus (S2) is satisfied. Given (t',w) € [0,T] x A4, the continuity of f and (7.18)
imply that lim,—oo fu(t, @, Y)(@), 20 (@) = limyooo f(1, X (@), W(0), Z)(w)) =

(' X@), V(). Z)(@) = folt', o, V) (@), Z)()).

Now, applying Theorem 6.1 yields that lim,, .~ E [exp{sup,fe[oj] |V — y3| H = 1, thus
{J"}nen has a subsequence (we still denote it by {)"},en) such that limy, oo sSUp,¢jo. 77 1Y) —
y}2| =0, P-a.s. In particular,

lim ¥" = lim V' =) =v?=v"*, P-as. (7.19)
n—o0 n—oo
where Y = Y IA;zY;'x" =y, Lyru(s, x]') = n Lapu(s, X§) = u(s, X}) for any

n e N. Since lim, 0o X" = X? = X{*, P-as. by (7.14), Proposition 7.1 and (7.19) then
imply that ¥{* = lim,— o0 u(s, X") = u(s, X;'*), P-a.s. Eventually, the continuity of processes
X", Y"* and Proposition 7.1 leads to (7.9). O
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Theorem 7.1. The function u defined in (7.8) is a viscosity solution of (7.6).

Proof. (1) For any x € R, it is clear that u(T, x) = 170T’x = h(X;’x) = h(x). We first show
that u is a viscosity subsolution of (7.6). Let (fy, xo, ¢) € (0, T) x R¥ x Cl’z([O, T] x Rk) be
such that u(#g, x9) = ¢(t9, xo) and that u — ¢ attains a local maximum at (¢y, xo9). We prove by
contradiction. Suppose that

AL

|
&= 5 min {(u — ) (to, x0), —9;¢(to, x0) — Le(to, X0)

- f (to,xo, @ (o, X0), (GTfop)(to,xo))} > 0.

Since ¢ € C l’2([0, T] x RK ) the continuity of functions u, [, b, o and f as well as the assumption
on local maximum of u — ¢ assure that thereisa § € (O, T — to] such that for any ¢ € [#g, fo + &]
and any x € R* with |x — x| < 8

lu(t, x) — u(ty, xo)| < %87 w—0D,x)>e (u—e)(t,x) <0, (7.20)

and —0,p(t,x) — Lo(t,x)— f (t, x, @(t, x), (UTngD)(t, x)) > e. (7.21)

Since { X }se[O 7, @nd Y00 are both F-adapted continuous processes,

~ ~ ~ 1
v 2 infls € [0, 8] : | X% — xo| > 8} Adnfls € [0, 8] : |Y/oX0 — Y00 5 Zgl A S
K K 0 3

(7.22)
defines an F-stopping time such that v > 0, P-a.s. For any w € {2 and s € [0, v(w)], (7.20)
implies that

~ ~ 1 1 ~ 2
Yoo (w) > Yéo’xo — 58 = u(ty, xo) — 58 > u(to + s, X;O”‘O(w)) - 55

~ 1 ~ 1
> l(to + s, X;O’Xo(w)) + 58 = Léo,X()(w) + 58.

Because (Y050, Z0%0, K'050) € N[t o0) Spio [0, T —to] solves the quadratic RBSDE(h(X’TO’x“)
, floxo, Zto’x‘)) with respect to B over the period [0, T — to], its flat-off condition shows that

P-as., K% = 0 for any s € [0, v]. Hence, it holds P-a.s. that

v v
Vv10.X0 710, X £10,% V10,%0 710, Z10,x [
yoo — g0 0+ﬂ/ 7o OQ;Yp O,Zf‘vdr—l/ ZoXgBh s e [0, 8.
% VAS

NS

. S = 2,2
Towit. (¥.2) 2 {(VA0 10 Z0™)} € CF10.81 x Ny oo Higy” (10, 81 B

solves the BSDE:
$ S
yxzy‘ivaO_‘_/‘ f(rvyr,zr)dr_/ ZrdBrt‘O’ SG[O’S]’
s s

with f(s, w, y, 2) £ l{s <v(w)}]gt0’x0 (s, w,y,2),
V(s,w,y,2) €[0,8] x 2 x R x R?. (7.23)
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Like f/*0fis a generator with respect to F0 over the period [0, 8] that satisfies (H1)—(H3).
On the other hand, since

A

S s
Rovo =t [ b0+ Ko+ [ o+, XomdBE s 0.7 bl
0 0

applying Itd’s formula to the process @(fo + -, X°) yields that

v

oo+ v s, K8) = ol + . 580) = [ (g + o)1+, K00)ar

VAS

v
—f (@"Ve)(to +r, X"0)dBY, s €[0,35].
VAS

Namely, (y’, Z’) £ {(go(to + VA, ff,o;\ﬁo), 1{S<v}(aTVX(p)(to + s, %éo’xo))}se[o 5] solves the
BSDE ’

§ )
V. = o(to + v, X10%0) +/ f.dr —/ Z/dB", s5€]0,8],
S )

where f; £ —1(; <) (d:0 + Lo) (10 + s, iﬁo’xo), Vs € [0,8]. Since X% is an F-adapted
continuous process, and since ¢ € C 1*2([0, T] x RF ), the continuity of function o implies that
YV’ is an F-adapted continuous process as well as that Z’ and § are both F-progressively

. ~t N
measurable processes. Moreover, since |X oo xo| < & holds for P-as. w € {2 and

s € [O, v(a))], and since ¢ € C 1’2([0, T] x Rk), we further see from the continuity of function b
and the boundedness of function o that ), Z’ ang § are all bounded | processes. ~

Proposition 7.2 and (7.20)~(7.22) imply that ¥,""* = u(to + v, X:"™°) < ¢(to + v, XLO’XO),
P-a.s., and that on {2

fo = 5. V5 20) = =15 < (0 + Lop) (10 + 5, X°)
_ 1{s<v}f<to + s, )?EO’XO, cp(lo + s, )N(éo,xo)7
@7V (1o + 5, K10)) = el cup. Vs € 10,51 (7.24)
The first part of Proposition 5.1 gives that P-a.s., J); > ) for any s € [0,d]. Since
Y = elto, x0) = u(to, xo) = Y(;"’XO = ), the second part of Proposition 5.1 further shows
that P(J; (5, = (5. %% 2}))ds = 0) > 0. However, (7.24) and (7.22) show that P-as.,

f(f (f; —§(s, V., ZS’))ds > gv > 0, which leads to a contradiction.

(2) Next, we show that u is a viscosity supersolution of (7.6). Let (¢, xo, ¢) € (0, T) X RF x
Cl’z([O, T] x ]Rk) be such that u(7g, xg) = ¢(9, xo) and that u — ¢ attains a local minimum at

(to, x0). Since u(ty, xo) = ¥ = L™ = I(to, X,>*°) = I(to. x0), it suffices to show that

—0¢(to, x0) — Lo(to, x0) — f (to, x0, ¢(t0, X0), (07 V) (10, XO)) > 0.

To make a contradiction, we assume that

1
e 3 ((%P(to, xo) + Lo(to, x0) + f (lo, x0, (10, X0), (07 V) (to, XO))) > 0.

Since ¢ € Cl*z([O, T] x Rk), the continuity of functions b, o and f as well as the assumption
on local minimum of u — ¢ assures that thereisad € (0, T — to] such that for any ¢ € [f, o + 5]
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and any x € R* with |x — x| <8
dip(t,¥) + Lo, + f (15,000, @ Vi), ) Z e and (@ =)t x) 2 0.
(7.25)

We still define the F0-stopping time v as in (7.22). It is easy to see that the processes
[ 1
(y Z V = {( quf s {S‘<V}Zt 0-%0 KUO/\)SCO) }36[0,5 F’O [0 5]

() Hpa"(0.61:R) x () Kb, [0.6]
pe[l,00) pel(l,00)

solves the BSDE (5.5) with generator f defined in (7.23) over the period [0, §]. Let (3, Z’) be
the pair of processes considered in part 1. Proposition 7.2, (7.25) and the definition of v imply
that Y00 = u(to + v, X‘t}o,m) > ¢(to+ v, X,[,O’xo), P-a.s., and that on {2
f(s. . 2") = = 1{s<v}f<to + 5, X100 (1 + 5, X109, (07 V,0) (10 + 5, ;?;o’xo))
+1{s<v}(8t(p + &P) (t0 + s, )?éo’xo) = 81{s<u}» Vs €[0,6].
Using similar arguments to those that follow (7.24), we reach a contradiction. [

For the uniqueness of the viscosity solution of (7.6), we establish a comparison principle
between its viscosity subsolution and viscosity supersolution, whose proof is inspired by the
techniques used in Theorem 3.1 of [8].

Theorem 7.2. Suppose that there exists an increasing function MM : (0, 00) — (0, oo) such that
forany R > 0,

|f(t x,y,2) = f@,x,y, ] < MR)(1 + |z]) |x — x| (7.26)
holds for any (t,x,x',y,z) € [0,T] x R¥ x R¥ x R x R? with |x| v |x’| V |y| < R. Let
u € C([O, T] x Rk) (resp. v € C([O, T] x Rk)) be a viscosity subsolution (resp. viscosity
supersolution) of (7.6) such that for some ¥ > 0,

lu(t, )| v v, x)] <K+ |x|7), Y(r,x)€[0,T] x RE. (1.27)
Then u(t,x) <wv(t,x) forall (t,x) € [0, T] x Rk,

Proof. For any 6 € (0, 1], we define
do(t,x) 20 ut,x) and gt x) 2 0ev(t,x), VY, x)el0,T]x R-.

One can show that i1y and vy are respectively a viscosity subsolution and a viscosity supersolu-
tion of

mind @(t, x) — 012, x), —dpii(t, x) — Lii(t, x) — f~9<t,x, i1, x), Vxﬂ(t,x))} —0,

7.28
Y(t,x) € (0,T) x RK, (7.28)

(T, x) =0Th(x), VxeRK,

with fo(t,x,y,2) & —ky + Oe”f(t,x, ée””y, éeiK’aT(t,x) ~z), V(y,z) € R x R¥ (see
e.g., Lemma 9.3 of [2]).
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Let A £ 8(bo + «) + 4(1 + 4ye)a + 2(a + 4k%)e T . Suppose that we have proven the
following statement:

1
For any [T}, T>] C [0, T with T, — T < —, ifu(Tr,x) <v(lp, x),
y [T1, To] C [0, T] 2= =5 (T2, x) (T, x) (7.29)

Vx € R¥, thenu(r, x) < v(t, x), Y (t,x) € [T, T»] x RK.

SetN £ [AT7]andf; & iy L fori =0,1,...,N. Starting from u(7, x) < h(x) < v(T,x), Vx €
RK, one can use (7.29) to iteratively shows that u(¢, x) < v(t,x) over [t;_1, ;] x R¥ for
i =N,..., 1. Hence, it suffices to show (7.29).

Assume that (7.29) does not hold, i.e., there exists a time interval [T}, To] C [0, T'] with
Hh—-T < )% such that u (T3, x) < v(T», x), Vx € R¥ and that u(f, 2) — v(f, ) > & for some
(t, %) € [T1, Tr) x R* and some § > 0. By the continuity of # and v, we may assume that f>T.
We fix a0 € (0, 1) such that

R f o 8
le<Tu(E, )| v e u(E, 2)| v A TD (1 £217?) < H=5) (7.30)

andfixap € (0, %(f — Tl)). For any ¢ > 0, we define

2
Bo(t,x, x) 2 —2 4 T2 (u + =01+ [x* + Ix/|2)>
t—T e
Ve (Ti, Tr), Vx,x' € RE,
and M, 2 sup {to(t, x) — 01(1,x") — Pe(t, x, x")}.

(I,X,x/)E(Tl,Tz]XRkXRk

@ p=d
Since r2 > " (1 +r@) holds forany r > Rg £ 1 v (8“ ) , (7.27) shows that for
any (1, x, x') € [T1, T»] x R x R¥ with |x| v |x'| > Ry

ot x) — 01, x) < T (lu(t, )| + 1o, X)) < 28T (1+ (x| v [¥'D?)

A

1
ST = 01+ P+ [P), (7.31)

which implies that hm . ig(t, x) — 01(t, x") — P (t, x, x/)) = —o0. Hence, M, is

\/\xl\/\x |—>o<>(
finite and attainable at some (t,, x¢, x,) € (T1, T2] x R* x RX. Then it follows from (7.30) that
g (te, xg) — U1 (te, xé) — D (te, X¢, xé)
= M, > g, %) — 01 (7, %) — % — DD gy 4 213)
1

>u(f, %) — v, 2) + O — De u(f, 2) — LT — D —g)(1 +21%%)
1

8
= 7.32
> (7.32)

which implies that

) xe — xL|? ~ =
s M0 <|T| + (1= 0)(1+ |xe > + |x;|2)) < g (te, Xe) — D1 (e, x1). (7.33)
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Hence, we see from (7.31) that

x| V [x!] < Re. (7.34)

As {(tg,xs,xé) e > 0} C (T1, T2] x Bgy(0) x Bg,(0), we can pick up a sequence
{en}nen C (0, 00) with lim,,_,o | &, = 0 such that the sequence {(tgn,xgn,xgn)}neN con-

verges to some (ty, X, x,) € [T1, T2] % §R9 0) x §R9 (0). Then (7.32) and the continuity of
function u and v imply that

lim <
n—>oo to — T n— 00

S 3 B )
< lim &, (te,, Xe,, X, ) <@g (tx, X4) — 01 (ty, x},) — 7 =%

which implies that #, = lim,— o0 t;, > 71, i.e., tx € (T1, T2]. One can also deduce from (7.33)
|xe, —x}, 12
&,

that lim,,_, o < il (ts, X5) — D1 (4, X.,) < 00, which leads to that lim,, _ oo |xe, —x

0, namely, x, = x,. For any n € N,

/
el
i (tan s xa,l) —U; (te,, , xéﬂ) - ‘Ps,l (tsn s Xeys xén)
Q

* 1

= My, > iig(t. Xs) — 01 (t4, X5) — — M1 = 0) (1 + 2x, 7).

As n — o0, the continuity of functions # and v implies that

X _x/ 2
im o Xl (7.35)

n—o00 &n
Now we claim that
{en}nen has a subsequence {€,},en  such that for any n € N, eitherrz, = 7>  or
u(tz,, xz,) < Il(tz,, xz,). (7.36)

Assume not. Then there exists an n° € N such that for any n > n°,t, € (T1,712) and
u(te,, xe,) > L(te,, x¢,).

Fix n > n°. The continuity of u# and / shows that (f,, x¢,) has an open neighborhood
0, 2 (te, —¥ns te, +10) X By, (x¢,) C (T1, T2) X R for some r, > 0 such that u(t, x) > I(t, x)
for any (¢, x) € O,. Then iy becomes a viscosity subsolution of (7.28) without obstacle and
terminal condition over O,,, i.e.,

— 0,u(t,x) — Lu(t, x) + ku(t, x)
—GeK’f(t,x, %e_'“ﬂ(t,x), ée"”(aT : Vxﬂ)(t,x)> =0, V(. x)e0, (137

As 17 is a viscosity supersolution of (7.28), it is clearly a viscosity supersolution of (7.28) without
obstacle and terminal condition over (0, 7) x R¥ (thus over o, £ (te, —Tn» te, +70) X By, (xén)),
ie.,

—0;0(¢, x) — LU(t, x) + kv(t, x)
—e’“f(t,x, e 15t x), e ¥ (0T -V, 5) (1, x)) =0, V(.x)eO, (7.38)

Since the mapping (¢, x, x') — g (t, x) — 01 (¢, x") — D¢, (¢, x, ) is maximized at (te,, Xe,, X
over (T1, T»] x R* x R (thus over (ts, —n, te, +70) X By, (xg,) X By, (x;n)), Theorem 8.3 of [7]
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shows that there exist p,, p, € Rand W,, W, € S¥ such that

52+~
(Pn, Vy @sn (tsn s Xeys xén), Wn) eP’ uy (tsn s xan)s (7.39)
=2,— .
(Phs =V Be, (te, X, X1 ). Wy) € P77 01 (e, X1 ) (7.40)
Q
Pn — 17;, = 0 D¢, (1, Xs,,,xén) = _(tgn——Tl)z — ADe, (e, s Xe,), (7.41)

W, 0 2
and <0 n —w’> < D2 B, (1o, %oy, X)) +8,3!(D§’x/ Doy (1o, Xey XL ) (7142
n

where 7_?2'+129 is the second-order superjets of ity and 52’7171 is the second-order subjets of v;
(see [7]).
As i1g is a viscosity subsolution of (7.37), one can deduce from (7.39) that

1
— Pn — Etrace(Wn : (UUT)(tsn» xan))

X — x!
— 2eM P2 ten) <b(r€,,,xgn), D Te (- e)xg,,>
£

n

2 _ _
+ 0k nuty,, xe,) — 0" f (tg,,,xg,,, u(te,, Xg,), 56’ ey 1T IE”)CTT(le,,,xs,,)

Xe, — XL
x (— L (- e)xgn)> <. (7.43)

&n

Since v is a viscosity supersolution of (7.38), it follows from (7.40) that

1
- ph— Etrace(W,’l . (cmT)(tsn,xgn )

Xg — X)
—2eM T2 ten) <b(t£n,x; T (1 —6)x! >
n 8 n

n

Kte / Kte / / —kte, +A(Tr—ts,) T /
i 01, x],) = € f (10,0 xL, ke, x4, ), 20K BTG T (1 ]

Xe, — X ,
X | — =1 -0)x, > 0. (7.44)
&n n
Subtracting (7.44) from (7.43), we see from (7.41) that

4

6
Gy TPl Xe) < Iy +2eMPten) 12 4 oFlen N L (7.45)
en — 11

j=3

where

1 1
I, = Etrace(Wn (00 ") (te,, X5,)) — Etrace(W:; H(00 "), X)),

/
Xg, — X

2 A € £

e <b(zg,,,xs,,) — b(te,. x},). —>

&n
(1= 0) (bl %), %6,) + (blts, 5,). 57,) ),

3 A
I) = _eKu(tsn,xsn) +Kv(t8n’ x;n),

n
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1 1
I;,‘ £ |:9f (ts,,» Xey s u(ts,,, xsn)» 5-]11) - 0f (tsw Xep o U(ts,” Xén), a-ln)] , with

/
Xg, — X
Jp 2 2o len ML ten) 6 T (g x, Y (8—8 + (1 —-0)xg, |,
n

1 1
I,? £ |:9f <t8,17x8n7 U(tgn,xén s 5Jn> —0f <t8n1 Xén, U(ts,l’ x;n)a §Jn>:| ,

6 & ’ / 1 ! / / :
I, = 0f tgn,xen,v(tgn,xen),an = flte,s X, Ve, X, )5 Jy ), With

/
_ _ Xg, — X
T B 5, —Kley +M(Ts ta”)OT(te,,,x’ . (”—5" - - 9)%}1) .
&n

En
e One can deduce from (7.42) and (7.1) that
11 _ l U(te,,,xsn) T W, 0 G(ts,pxs,,)
m 2 \ot,.x,)) \O =W, ) \o(t,, x)
L ) 4 ge 2Tt 462(1 — ) Trte)

&n
x |U(t5n, -xé‘n) _ U(tgn, xén)lz + <(1 _ G)EA(TZ_ZE") + 283(1 _ 6)262)»(T2—t5n)>

IA

2 2
x (107 (te, x0) 2 4 1071, X1, ) )

—x 2
A (7.46)

|Xe, _
K25 +2(1 — 0) P62 ¢, (e, + 2 + 63).

e
€n

xe —x. |?
X, — X, (7.47)

eBy (7.1), I <« + (1 = 0)(bolxs, | + bolx,, | + K lxe, I* + x|x, 7).

n
e We see from (7.33) that Qu(t,,, xs,) — v(tgn,xgn) > 0. Then (7.3) shows that I,‘l1 <
ic|Ou(te, , xg,) — OV(te,, x; )| < Kk (Oulte,, Xe,) — v(te,, X, )) + k(1 — 0)|v(tg,, x,,)|. Thus,

I+ 1 < k(1= 0)|vlts,. x, ). (7.48)

e (7.34) and (7.27) imply that sup;cn{lxe; | V [x].| V [v(te;. x[)1} < Ry 2 (LvRE)(1+ RY).
Then (7.26) shows that

- 1
I3 < a)t(Rg)(l + 5|Jn|)|xen — x|

~ 2 Xe, — X}
< Sm(Re)<1 + 69"* <'8—' + R9>> e, — X |. (7.49)
n

e The concavity of the mapping z — f (tgn s Xg, » (e, s Xg, ), z), (7.3) implies that

6 1 4 Jr/z — Jn
I} < =1 =0)f1e,, X, Ve, Xg,), 2
I Jn —Jn l
= —-(=0)f|1, x,. 0, —o + k(1 = O)|v(te,, x, )l
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’
Jy—=Jn Qe len M —tey) Xen —Xegp

where %=l — A (<a(r8n,x;n) — 0t Xe,): 8_> + (- 9)(0T(t8,,,x8,1) .

Iy 12
< i e —Xenl” (7 35) and

&n

: Xep —X}
Xe, + UT(tsn,x;n) -xgn)). Since ’<a(tsn,xén) — 0 (te,, Xe,), E"S—ng”>

the continuity of function o that

lim 2= n

Jim S =40 0 x) - x. (7.50)

Letting n — oo in (7.45) and using the continuity of all functions involved, we can deduce from
(7.35), (7.46) through (7.50) that

A1 = )M (1 4 21x, 7)) < 2(1 — 0)e 2o f + 4(1 — 0) (by + k)M 271
X (14 [xl?) + 26 (1 = 0) |0t x:)| — €' (1 = )
x f(t*, Xy, 0, de ANt G T (1 x*>. (7.51)
Conditions (7.27) and (7.3) imply that
2k e ™ | (ty, x5)| — e’”*f(t*, X, 0, de < FMD=1) G T (- x ) -x*)
= 2R (1 4 [ ™) + e (o + Bye 2B G2 12)
Plugging it back into (7.51) yields that
A1 — 0)eM =1 (1 4+ 21x,)?)
< (1 —0)H P (] + |x*|2)<4(bo 1) +2(1 +4ye)o? + (@ + 4/<z)eKT)
- %A(l — 0) 27 (1 4 2|x, %),

which results in a contradiction. Thus we proved claim (7.36). Let {€,, },,cn be the subsequence of
{en}nen as described in (7.36). For any n € N, since the maximum is attained at (t3,, xz,, xfgn),

0ii(i, %) — 5. %) — % — D —9)(1 4215
1

< Mz, < 0i(tz,, xz,) — 0(tz,, X7,). (7.52)

Iftz, = o, u(tz,, x3,) = u(Tr, xz,) < v(Tr, x3,) = v(tz,, x3,) by our condition. Otherwise,
tz, € (T1, Tr) and u(tz,, xz,) <I(tz,, xz,). As v is a viscosity supersolution of (7.6), we always
have v(tz,, xz,) — l(tz,, xz,) > 0. Thus we still have u(tz,, xz,) < v(tz,,xz,). Then (7.52)
reduces to

Qi (i, %) — (7, %) — % — AT —9)(1 +213) < 03(5,, x7,) — Dz, x%).
1

As n — 00, we obtain 8 (7, £) — (7, ) — ﬁ — D= (1 —0)(14+2|%]2) < (0 — Di(ty, xs).

Letting 0 — 0 and letting & — 1 yield that & (f, &) — 9(f, X) < 0. Thus u(f, X) < v(f, X), which
contradicts with our initial assumption. Therefore, (7.29) holds, proving the theorem. [J

Thanks to Theorems 7.1 and 7.2, (7.6) has a unique viscosity solution.
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Appendix
A.l. Proofof(3.12)

Fix n € N. We have seen from (3.9) that {«/|¢’(Y’"v")|Zm’"}
to (3.5),

T T p()
£ |¢/<YS—Y;'>||ZS—Z;’|2dssck,x5+cx,xE[(/ |zs|2ds) ]<oo.
0 0

Thus /[¢'(Y — YN)[(Z — Z") € HE ([0, T1; RY). (Note that since ¥",n € N are F-adapted
continuous processes Y =lim,_ o Y"is at least an F- predictable process.)
Forany X € H2 ([0, T]; R9), since —+ +1 = 2— by (3.4), applying Young’s inequality

C HA([0, T]; RY). Similar

m>n

with g1 = p1(2 — —) @ =p(2- —) and g3 = 2 — 1, we can deduce from (3.1) and (3.2)
that
Po
T Tpo—T
E[( |- Y;’>||Xs|2ds> }
0
Aol)oqug kapoqzroy T 2
<cwE|e 2o T e 2o T +/ | Xs|"ds
0

T
<o (5 + E/ IXslzds> < 00.
0

2’ 2po
Thus X /|¢'(Y —Y™")| € Hp o=1([0, T): RY). As {Z™}y=n weakly converges to Z in
Hy > ([0, T]; RY),

T
lim Ef X9/ Yy — YD (Zs — Z]") ds = 0. (A.1)
0

m—0oQ

On the other hand, for any m > n Holder’s inequality and (3.2) imply that

T
‘E /0 X (VIg 0 = Y01 = I/ (") Z2ds

< L)L )L/,:,ZPO

X(VIFW =TT = 16|, 2 . (A2)

Hy 77~ (10.TLR)

It follows from (3.7) that P-a.s.

0= 1X,1(VI#'(F = ¥ = 10" < 1X V19 (Y, -
Vtel0, T], YVm > n.



1202 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 122 (2012) 1155-1203

2po

2,
Since [X|/[¢'(Y —Y™)| € Hy 7=1([0, T]; R), the continuity of ¢/ and Dominated Conver-

gence Theorem imply Timy—oc || 1Xs1(y/I'0Fs = 701 = VIO, 2, =0,
H

2o
e 0. TR

which together with (A.2) and (A.1) gives

m—

T
lim E /0 X (VIO Oy = YDI(Z, = Z2) = 16/ ("I (Z2m) ) ds =0,

proving (3.12).
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