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Abstract

In this paper, we analyze a real-valued reflected backward stochastic differential equation (RBSDE) with
an unbounded obstacle and an unbounded terminal condition when its generator f has quadratic growth in
the z-variable. In particular, we obtain existence, uniqueness, and stability results, and consider the optimal
stopping for quadratic g-evaluations. As an application of our results we analyze the obstacle problem for
semi-linear parabolic PDEs in which the non-linearity appears as the square of the gradient. Finally, we
prove a comparison theorem for these obstacle problems when the generator is concave in the z-variable.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a reflected backward stochastic differential equation (RBSDE) with generator f ,
terminal condition ξ and obstacle L

L t ≤ Yt = ξ +

 T

t
f (s, Ys, Zs) ds + KT − Kt −

 T

t
Zsd Bs, t ∈ [0, T ], (1.1)

where the solution (Y, Z , K ) satisfies the so-called flat-off condition: T

0
(Yt − L t )d Kt = 0, (1.2)
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and K is an increasing process. We will consider the case when f is allowed to have quadratic
growth in the z-variable. Moreover, we will allow L and ξ to be unbounded.

The theory of RBSDEs is closely related to the theory of optimal stopping in that the snell-
envelope can be represented as a solution of an RBSDE. These equations were first introduced
by El Karoui et al. [10]. The authors provided the existence and uniqueness of an adapted
solution for a real-valued RBSDE with square-integrable terminal condition under the Lipschitz
hypothesis on the generator. There has been a few developments after this seminal result. Some
generalizations were obtained for backward stochastic differential equations (BSDEs) without
an obstacle and later they were generalized to RBSDEs:

(1) Lepeltier and San Martı́n [16] showed the existence of a maximal and a minimal solution for
real-valued BSDEs, with square-integrable terminal condition when the generator f is only
continuous and has linear growth in variables y and z. Then [20] adapted this result to the
case of RBSDEs.

(2) Kobylanski [14] established the existence, comparison, and stability results for real-valued
quadratic BSDEs (when f is allowed to have quadratic growth in the z-variable) with
bounded terminal condition. In the spirit of [22], the author gave a link between the solutions
of BSDEs based on a diffusion and viscosity solutions of the corresponding semi-linear
parabolic PDEs. Lepeltier and San Martı́n [17] extended the existence result of quadratic
BSDEs with bounded terminal condition to the case that the generator f can have a
superlinear growth in the y-variable. Kobylanski et al. [15] made a counterpart study for
RBSDEs with bounded terminal condition and bounded obstacle when the generator f has
superlinear growth in y and quadratic growth in z.

(3) With help of a localization procedure and a priori bounds, Briand and Hu [5] showed that
the boundedness assumption on the terminal condition is not necessary for the existence
of an adapted solution to a real-valued quadratic BSDE: One only needs to require the
terminal condition has exponential moment of certain order. Correspondingly, Lepeltier and
Xu [18] derived the existence result for quadratic RBSDEs with such an unbounded terminal
condition, but still with a bounded obstacle.

Recently, [6], under the assumption that the generator f is additionally concave in the
z-variable, used a so-called “θ -difference” method to obtain comparison (thus uniqueness)
and stability results for quadratic BSDEs with solutions having every exponential moment.
Moreover, [9] proved that uniqueness holds among solutions having a given exponential moment
by using a verification theorem that relies on the Fenchel–Legendre dual of the generator. With
these results they also showed that the solutions of BSDEs are viscosity solutions of PDEs
which are quadratic in the gradient. On the other hand, [8] showed that these PDEs have unique
solutions.

In the current paper, we extend the results of [6,9,8] to RBSDEs. Alternatively, our results
can be seen as an extension of [15,18] to the unbounded obstacles. We start by establishing two
a priori estimates which will serve as our basic tools; see Section 2. The first one shows that
any bounded Y has an upper bound in term of the terminal condition ξ and the obstacle L . The
second estimate is on the Lp norms of Z and K . With the help of these two estimates, we can
establish a monotone stability result (see Theorem 3.1) in the spirit of [14]. Then the existence
follows as a direct consequence; see Theorem 3.2.

When the generator f is additionally concave in the z-variable, we prove a uniqueness result
for RBSDEs using an argument that involves the Fenchel–Legendre dual of the generator,
see Theorem 4.1. As opposed to [9] (or [1]), we are not relying on a verification argument
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but directly compare two solutions. Since it only requires a given exponential moment on
solutions, this uniqueness result is more general than the one that would be implied by the
above comparison theorem. We develop an alternative representation of the unique solution in
Section 5, where we improve the results of Theorem 5.3 of [3] on optimal stopping for quadratic
g-evaluations. Moreover, the concavity assumption on generator f in the z-variable as well as the
aforementioned θ -difference method are used in deducing the stability result (see Theorem 6.1),
which is crucial for the continuity property of the solutions of forward backward stochastic
differential equations with respect to their initial conditions; see Proposition 7.1. This result
together with the stability result gives a new proof of the flow property; see Proposition 7.2.
A Picard-iteration procedure was introduced to show this property for BSDEs with Lipschitz
generators, see e.g., Theorem 4.1 of [11]. However, it is not appropriate to apply such a Picard-
iteration procedure to derive the flow property for quadratic RBSDEs.

Thanks to the flow property, the solution of the RBSDE is a viscosity solution of an associated
obstacle problem for a semi-linear parabolic PDE, in which the non-linearity appears as the
square of the gradient; see Theorem 7.1. It is worth pointing out that [9] shows the existence
of a viscosity solution to a similar PDE (with a quadratic gradient term) without obstacle by
approximating the generator f from below by a sequence of Lipschitz generators under a strong
assumption that f − has a linear growth in variables y and z. However, such a strong assumption
is not necessary if we directly use the flow property to prove Theorem 7.1. Finally, we prove that
in fact this obstacle problem has a unique solution, which is a direct consequence of Theorem 7.2,
a comparison principle between a viscosity subsolution and a viscosity supersolution. Although
inspired by Theorem 3.1 of [8], we prove Theorem 7.2 in a quite different way because there are
two gaps in the proof of Theorem 3.1 of [8], see Remark 9.1 and Appendix A.3 of [2].

1.1. Notation and preliminaries

Throughout this paper we let B be a d-dimensional standard Brownian Motion defined on
a complete probability space (Ω , F , P), and consider the augmented filtration generated by it:

F =


Ft , σ


σ

Bs; s ∈ [0, t]


∪ N


t≥0

, where N is the collection of all P-null sets in F .

We fix a finite time horizon T > 0 and let S0,T denote the set of all F-stopping times ν such
that 0 ≤ ν ≤ T , P-a.s. For any ν ∈ S0,T , we define Sν,T , {τ ∈ S0,T | ν ≤ τ ≤ T, P-a.s.}.
Moreover, we will use the convention inf ∅ , ∞.

The following spaces of functions will be used in the sequel:

(1) Let C[0, T ] denote the set of all R-valued continuous functions on [0, T ], and let K[0, T ]

collect all increasing functions in C[0, T ]. For any {ℓt }t∈[0,T ] ∈ C[0, T ], we define ℓ±
∗ ,

supt∈[0,T ](ℓt )
±.

(2) For any sub-σ -field G of F , let L0(G) be the space of all R-valued, G-measurable random
variables and let

• Lp(G) ,

ξ ∈ L0(G) : ∥ξ∥Lp(G) ,


E

|ξ |

p
 1

p
< ∞


for all p ∈ [1, ∞);

• L∞(G) ,

ξ ∈ L0(G) : ∥ξ∥L∞(G) , esssupω∈Ω |ξ(ω)| < ∞


;

• Le(G) ,

ξ ∈ L0(G) : E


ep|ξ |


< ∞, ∀ p ∈ (1, ∞)


.

(3) Let B be a generic Banach space with norm | · |B. For any p, q ∈ [1, ∞), we define three
Banach spaces:
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• Lp,q
F ([0, T ]; B) denotes the space of all B-valued, measurable, F-adapted processes X with

∥X∥Lp,q
F ([0,T ];B) ,

E

 T

0
|X t |

p
B dt

q/p


1/q

< ∞;

• Hp,q
F ([0, T ]; B) (resp. Hp,q

F ([0, T ]; B)) ,


X ∈ Lp,q
F ([0, T ]; B) : X is F-predictable

(resp. F-progressively measurable)

.

When p = q , we simply write Lp
F, Hp

F and Hp
F for Lp,p

F , Hp,p
F and Hp,p

F respectively.
Moreover we let

• Hp,loc
F ([0, T ]; B) (resp. Hp,loc

F ([0, T ]; B)) denote the space of all B-valued, F-predictable

(resp. F-progressively measurable) processes X with
 T

0 |X t |
p
Bdt < ∞, P-a.s. for any

p ∈ [1, ∞).
(4) Let C0

F[0, T ] be the space of all R-valued, F-adapted continuous processes, we need its
following subspaces:
• C∞

F [0, T ] ,


X ∈ C0
F[0, T ] : ∥X∥C∞

F [0,T ] , esssupω∈Ω


supt∈[0,T ] |X t (ω)|


< ∞


;

• Cp
F[0, T ] ,


X ∈ C0

F[0, T ] : ∥X∥Cp
F[0,T ]

,


E

supt∈[0,T ] |X t |

p
 1

p
< ∞


for all

p ∈ [1, ∞);
• VF[0, T ] ,


X ∈ C0

F[0, T ] : X has finite variation

;

• KF[0, T ] ,


X ∈ C0
F[0, T ] : X is an increasing process with X0 = 0


⊂ VF[0, T ];

• Kp
F[0, T ] ,


X ∈ KF[0, T ] : XT ∈ Lp(FT )


for all p ∈ [1, ∞);

• Eλ,λ′

F [0, T ] ,


X ∈ C0
F[0, T ] : E


eλX−

∗ + eλ′ X+
∗


< ∞


⊂ ∩p∈[1,∞) Cp

F[0, T ] for all

λ, λ′
∈ (0, ∞).

For any λ ∈ (0, ∞), we set Eλ
F[0, T ] , Eλ,λ

F [0, T ]. For any X ∈ C0
F[0, T ], one can deduce that

E

eλX∗


= E


eλ(X−

∗ ∨X+
∗ )


= E

eλX−

∗ ∨ eλX+
∗


≤ E


eλX−

∗ + eλX+
∗


≤ 2E


eλX∗


, (1.3)

which implies that Eλ
F[0, T ] =


X ∈ C0

F[0, T ] : E

eλX∗


< ∞


. Moreover, for any p ∈ [1, ∞),

we set Sp
F[0, T ] , Ep

F[0, T ] × H2,2p
F ([0, T ]; Rd) × Kp

F[0, T ].

1.2. Reflected BSDEs

Let P denote the F-progressively measurable σ -field on [0, T ]×Ω . A parameter set (ξ, f, L)

consists of a random variable ξ ∈ L0(FT ), a function f : [0, T ] × Ω × R × Rd
→ R and a

process L ∈ C0
F[0, T ] such that f is P × B(R) × B(Rd)/B(R)-measurable and that LT ≤ ξ ,

P-a.s.

Definition 1.1. Given a parameter set (ξ, f, L), a triplet (Y, Z , K ) ∈ C0
F[0, T ] × H2,loc

F
([0, T ]; Rd) × KF[0, T ] is called a solution of the reflected backward stochastic differential
equation with terminal condition ξ , generator f , and obstacle L (RBSDE (ξ, f, L) for short), if
(1.1) and (1.2) hold P-a.s.

A function f : [0, T ] × Ω × R × Rd
→ R is said to be Lipschitz in (y, z) if for some λ > 0,

it holds dt ⊗ d P-a.e. that

| f (t, ω, y1, z1) − f (t, ω, y2, z2)| ≤ λ

|y1 − y2| + |z1 − z2|


,

∀ y1, y2 ∈ R, ∀ z1, z2 ∈ Rd .
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The theory of RBSDEs with Lipschitz generators was well developed in the seminal
paper [10]. In this paper, we are interested in quadratic RBSDEs in the following sense:

(H1) For three constants α, β ≥ 0 and γ > 0, it holds dt ⊗ d P-a.e. that

| f (t, ω, y, z)| ≤ α + β|y| +
γ

2
|z|2, ∀ (y, z) ∈ R × Rd .

In what follows, for any λ ≥ 0 we let cλ denote a generic constant depending on λ, α, β, γ and
T (in particular, c0 stands for a generic constant depending on α, β, γ and T ), whose form may
vary from line to line.

2. Two a priori estimates

We first present an a priori estimate, which is an extension of Lemma 3.1 of [18].

Proposition 2.1. Let (ξ, f, L) be a parameter set such that f satisfies (H1). If (Y, Z , K ) is a
solution of the quadratic RBSDE(ξ, f, L) such that Y +

∈ C∞

F [0, T ], then it holds P-a.s. that

Yt ≤ c0 +
1
γ

ln E

eγ eβT (ξ+

∨L+
∗ )

|Ft


, t ∈ [0, T ]. (2.1)

Proof. In light of Itô’s formula, (Y, Z , K ) ∈ C0
F[0, T ] × H2

F([0, T ]; Rd) × KF[0, T ]

with Y +
∈ C∞

F [0, T ] is a solution of the RBSDE(ξ, f, L) if and only if
Y ,Z , K  ,

eγ Y , γ eγ Y Z , γ


·

0 eγ Ys d Ks


∈ C∞

F [0, T ] × H2
F([0, T ]; Rd) × KF[0, T ] is a solution of the

RBSDE(eγ ξ , f , eγ L) with

f (t, ω, y, z) , 1{y>0}


γ y f


t, ω,

ln y

γ
,

z

γ y


−

1
2

|z|2

y


,

∀ (t, ω, y, z) ∈ [0, T ] × Ω × R × Rd .

Let µ , αγ ∨ β ∨ 1. One can deduce from (H1) that dt ⊗ d P-a.e.f (t, ω, y, z) ≤ H(y) , y

µ + β ln y


1{y≥1} + µ1{y<1}, ∀ (y, z) ∈ R × Rd . (2.2)

Clearly, H(·) is a strictly positive, increasing, continuous and convex function satisfying
∞

0
1

H(y)
dy = ∞.

For any x ∈ R and T ∈ [0, T ], the ordinary differential equation (ODE)

φ(t) = eγ x
+

 T
t

H

φ(s)


ds, t ∈


0,T 

can be solved as follows (cf. [5]):

(i) When x ≥ 0: φ
T
t (x) = exp


µϕ
T − t


+ γ xeβ(T −t)


, where ϕ(s) , eβs

−1
β

1{β>0} +

s1{β=0}, ∀ s ∈ [0, T ];

(ii) When x < 0: φ
T
t (x) =


eγ x

+ µ(T − t) < 1 + µ(T − t) ≤ eµ(T −t)
≤ eµϕ(T −t), if eγ x

+ µ(T − t) < 1,

exp

µϕ

T − t +
eγ x

− 1
µ


≤ eµϕ(T −t) if eγ x

+ µ(T − t) ≥ 1.

One can check that

(φ1) For any x ∈ R and T ∈ [0, T ], t → φ
T
t (x) is a decreasing and continuous function on

0,T ;
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(φ2) For any x ∈ R and t ∈ [0, T ],T → φ
T
t (x) is an increasing and continuous function on

[t, T ];
(φ3) For any 0 ≤ t ≤ T ≤ T, x → φ

T
t (x) is an increasing and continuous function on R;

(φ4) For any x ∈ R and 0 ≤ t ≤ T ≤ T, φ
T
t (x) ≤ exp


µϕ(T ) + γ x+eβT


.

Let Ω , {ω ∈ Ω : LT (ω) ≤ ξ(ω) and the path t → L t (ω) is continuous} ∈ F , which
defines a measurable set with probability 1. Fix ω ∈ Ω . Theorem 6.2 of [18] shows that the
following reflected backward ODE

eγ L t (ω)
≤ Λt (ω) = eγ ξ(ω)

+

 T

t
H

Λs(ω)


ds + kT (ω) − kt (ω), t ∈ [0, T ], T

0


Λs(ω) − eγ Ls (ω)


dks(ω) = 0

admits a unique solution

Λ·(ω), k·(ω)


∈ C[0, T ] × K[0, T ], which satisfies

Λt (ω) = sup
s∈[t,T ]

 s

t
H

Λr (ω)


dr + eγ ξ(ω) 1{s=T } + eγ Ls (ω)1{s<T }


= sup

s∈[t,T ]

us
t (ω), t ∈ [0, T ], (2.3)

where {us
r (ω)}r∈[0,s] is the unique solution of the following ODE

us
r (ω) = eγ ξ(ω) 1{s=T } + eγ Ls (ω) 1{s<T } +

 s

r
H

us

a(ω)

da, r ∈ [0, s].

To wit, us
r (ω) = φs

r


ξ(ω)1{s=T } + Ls(ω) 1{s<T }


. Then it follows from (2.3) and (φ4) that

0 < eγ L t (ω)
≤ Λt (ω) = sup

s∈[t,T ]

us
t (ω) ≤ exp


µϕ(T ) + γ eβT ξ+(ω) ∨ L+

∗ (ω)


,

t ∈ [0, T ]. (2.4)

For any 0 ≤ t1 < t2 ≤ T , one can deduce from (2.3) and (φ1) that

Λt1(ω) = sup
s∈[t1,T ]

us
t1(ω) ≥ sup

s∈[t2,T ]

us
t1(ω) ≥ sup

s∈[t2,T ]

us
t2(ω) = Λt2(ω). (2.5)

Thus t → Λt (ω) is a decreasing and continuous path. Moreover, for any t ∈ [0, T ] (2.3) and
(φ2) show that

Λt (ω) = sup
s∈[t,T ]

us
t (ω) = sup


us

t (ω) : s ∈

[t, T )


Q

∪ {T }


. (2.6)

For any 0 ≤ t ≤ s ≤ T , the continuity of φs
t (·) by (φ3) implies that the random variable

us
t (ω)


ω∈Ω = φs

t


ξ1{s=T } + Ls1{s<T }


is Fs-measurable. Then we can deduce from (2.6) that

for any t ∈ [0, T ], the random variable Λt is FT -measurable (however, not necessarily Ft -
measurable).

Now, let us introduce an F-adapted process ft , E[H(Λt )|Ft ], t ∈ [0, T ]. Since Λ
is a decreasing process by (2.5), and since H(·) is an increasing function, it holds for any
0 ≤ t < s ≤ T that E[fs |Ft ] = E[H(Λs)|Ft ] ≤ E[H(Λt )|Ft ] = ft , P-a.s. Thus f is a
supermartingale. As Y +

∈ C∞

F [0, T ], it follows that (ξ+, L+) ∈ L∞(FT )×C∞

F [0, T ]. Then the
continuity of process H(Λ·), (2.4) and the Bounded Convergence Theorem imply that

E[ft ] = E[H(Λt )] = lim
s↓t

E[H(Λs)] = lim
s↓t

E[fs], t ∈ [0, T ].
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Thanks to Theorem 1.3.13 of [13], f has a right-continuous modificationf. Hence, we can regardf
as a generator that is independent of (y, z). It follows from Fubini’s Theorem, Jensen’s inequality
as well as (2.4) that

E
 T

0
|fs |

2ds =

 T

0
E

|fs |

2


ds =

 T

0
E

|fs |

2


ds ≤

 T

0
E


E

|H(Λs)|

2
|Fs


ds

=

 T

0
E

|H(Λs)|

2ds < ∞.

Since eγ ξ
∈ L∞(FT ) and eγ L

∈ C∞

F [0, T ], Theorem 5.2 and Proposition 2.3 of [10] show that
the RBSDE(eγ ξ ,f, eγ L) admits a unique solution (Y, Z, K) ∈ C2

F[0, T ] × H2
F


[0, T ]; Rd


×

K2
F[0, T ] and that for any t ∈ [0, T ]

Yt = esssup
τ∈St,T

E

 τ

t

fs ds + eγ ξ 1{τ=T } + eγ Lτ 1{τ<T }

Ft


, P-a.s. (2.7)

For any t ∈ [0, T ] and τ ∈ St,T , Fubini’s Theorem implies that for any A ∈ Ft

E


1A

 τ

t

fs ds


=

 T

t
E

1A1{s≤τ }

fs


ds =

 T

t
E

1A1{s≤τ }E[H(Λs)|Fs]


ds

=

 T

t
E

1A1{s≤τ } H(Λs)


ds = E


1A

 τ

t
H(Λs)ds


.

Thus E
 τ

t
fs ds|Ft


= E

 τ

t H(Λs)ds|Ft

, P-a.s. Then (2.7), (2.3) and (2.4) imply that for

any t ∈ [0, T ]

Yt = esssup
τ∈St,T

E

 τ

t
H(Λs)ds + eγ ξ 1{τ=T } + eγ Lτ 1{τ<T }

Ft


≤ E[Λt |Ft ] ≤ eµϕ(T )E


eγ eβT (ξ+

∨L+
∗ )

|Ft


≤ C∗, P-a.s., (2.8)

with C∗ , exp

µϕ(T ) + γ eβT


∥ξ+

∥L∞(FT ) ∨ ∥L+
∥C∞

F [0,T ]


. By the continuity of process

Y , it holds P-a.s. that

0 < eγ L t ≤ Yt ≤ eµϕ(T )E

eγ eβT (ξ+

∨L+
∗ )

|Ft


≤ C∗, t ∈ [0, T ], (2.9)

which shows that Y ∈ C∞

F [0, T ] with ∥Y∥C∞

F [0,T ] ≤ C∗.

To finalize the proof, it suffices to show that P
Yt ≤ Yt , ∀ t ∈ [0, T ]


= 1. To see this, we

fix n ∈ N and define the F-stopping time τn , inf


t ∈ [0, T ] :
 t

0 |Zs |
2ds > n


∧ T . Clearly,

limn→∞ ↑ τn = T , P-a.s. Applying Tanaka’s formula to the process (Y − Y)+ yields that

(Yτn∧t − Yτn∧t )
+

= (Yτn − Yτn )
+

+

 τn

τn∧t
1
{Ys>Ys }

 f (s,Ys,Zs) −fs

ds

+

 τn

τn∧t
1
{Ys>Ys }


d Ks − d Ks


−

 τn

τn∧t
1
{Ys>Ys }

(Zs − Zs) d Bs

−
1
2

 τn

τn∧t
dLs, t ∈ [0, T ], (2.10)

where L is a real-valued, F-adapted, increasing and continuous process known as “ local time”.
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Since the function H(·) is increasing, continuous and convex, Jensen’s inequality and (2.8)
show that

H(Ys) − fs ≤ H(Ys) − H

E[Λs |Fs]


≤ H(Ys) − H(Ys) ≤ CH |Ys − Ys |,

s ∈ [0, T ], (2.11)

where CH is the Lipschitz coefficient of function H(·) over


x ∈ R : |x | ≤ ∥Y∥C∞

F [0,T ] ∨

∥Y∥C∞

F [0,T ]


. Moreover, the flat-off condition of

Y ,Z , K  implies that T

0
1
{Ys>Ys }

d Ks =

 T

0
1
{eγ Ls =Ys>Ys }

d Ks = 0, P-a.s. (2.12)

Taking the expectation in (2.10), we can deduce from (2.2), Fubini’s Theorem, (2.11) and
(2.12) that

E

(Yτn∧t − Yτn∧t )

+

− E


(Yτn − Yτn )

+


≤

 T

t
E

1{s≤τn}1{Ys>Ys }


H(Ys) − fs


ds

≤ CH

 T

t
E

1{s≤τn}1{Ys>Ys }

(Ys − Ys)
+


ds

≤ CH

 T

t
E

(Yτn∧s − Yτn∧s)

+


ds, t ∈ [0, T ].

Then Gronwall’s inequality shows that E

(Yτn∧t − Yτn∧t )

+


≤ eCH T E

(Yτn − Yτn )

+

, ∀ t ∈

[0, T ]. As n → ∞, the continuity of processes Y , Y and the Bounded Convergence Theorem
imply that for any t ∈ [0, T ]

E

(Yt − Yt )

+


= 0, thus Yt ≤ Yt , P-a.s.

Using the continuity of processes Y and Y again, we obtain P
Yt ≤ Yt , ∀ t ∈ [0, T ]


= 1,

which together with (2.9) leads to (2.1). �

For a solution (Y, Z , K ) of a quadratic RBSDE(ξ, f, L) such that L−
∗ and Y +

∗ have
exponential moments of certain orders, the next result estimates the norms of (Z , K ) in
H2,2p

F ([0, T ]; Rd) × Kp
F[0, T ] for some p > 1.

Proposition 2.2. Let (ξ, f, L) be a parameter set such that f satisfies (H1). If (Y, Z , K ) is a

solution of the quadratic RBSDE(ξ, f, L) such that Y ∈ Eλγ,λ′γ

F [0, T ] for some λ, λ′ > 1 with
1
λ

+
1
λ′ < 1, then

E

 T

0
|Zs |

2ds

p

+ K p
T


≤ cλ,λ′,p E


eλγ Y −

∗ + eλ′γ Y +
∗


< ∞, ∀ p ∈


1,

λλ′

λ + λ′


.

Proof. We set po ,


λλ′

p (λ+λ′)
∧ 2 > 1 and define stopping times τn , inf


t ∈ [0, T ] : t

0 e−poγ Ys |Zs |
2ds > n


∧ T, ∀ n ∈ N. Since E


eλγ Y −

∗


< ∞ and Z ∈ H2,loc

F ([0, T ]; Rd),

it holds P-a.s. that Y −
∗ +

 T
0 |Zs |

2ds < ∞. Then it follows that
 T

0 e−poγ Ys |Zs |
2ds ≤

epoγ Y −
∗

 T
0 |Zs |

2ds < ∞, P-a.s. Hence, for P-a.s. ω ∈ Ω , there exists an n(ω) ∈ N such
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that τn(ω)(ω) = T . For any n ∈ N, applying Itô’s formula to process e−poγ Y and using the fact

that α + βx ≤


α ∨

β

(p2
o−po)γ


e(p2

o−po)γ x , ∀ x ≥ 0, we obtain that P-a.s.

1
2

poγ

 τn

0
e−poγ Ys |Zs |

2ds ≤
1

poγ
e−poγ Yτn −

 τn

0
e−poγ Ys f (s, Ys, Zs)ds

−

 τn

0
e−poγ Ys d Ks +

 τn

0
e−poγ Ys Zsd Bs

≤
1

poγ
epoγ Y −

∗ +


α ∨

β

(p2
o − po)γ


×

 τn

0
e−poγ Ys+(p2

o−po)γ |Ys |ds

+
γ

2

 τn

0
e−poγ Ys |Zs |

2ds +

 τn

0
e−poγ Ys Zsd Bs

 . (2.13)

Observe that
 τn

0 e−poγ Ys+(p2
o−po)γ |Ys |ds ≤

 τn
0 e−p2

oγ 1{Ys<0}Ys ds ≤ T ep2
oγ Y −

∗ , P-a.s., which
together with the Burkholder–Davis–Gundy inequality and (2.13) implies that

E

 τn

0
e−poγ Ys |Zs |

2ds

λp−2
o


≤ cλ,λ′,p E


eλγ Y −

∗ + e
λ

2po
γ Y −

∗

 τn

0
e−poγ Ys |Zs |

2ds

 1
2 λp−2

o


≤ cλ,λ′,p E

eλγ Y −

∗


+

1
2

E

 τn

0
e−poγ Ys |Zs |

2ds

λp−2
o


.

Since E

 τn
0 e−poγ Ys |Zs |

2ds
λp−2

o


≤ nλp−2

o < ∞, it follows that E

 τn
0 e−poγ Ys |Zs |

2

ds
λp−2

o


≤ cλ,λ′,p E


eλγ Y −

∗


. As n → ∞, the Monotone Convergence Theorem gives that

E

 T
0 e−poγ Ys |Zs |

2ds
λp−2

o


≤ cλ,λ′,p E

eλγ Y −

∗


. Since λpo p

λ−p2
o p

<
λp2

o p
λ−p2

o p
≤ λ′, applying

Young’s inequality with p =
λ

λ−p2
o p

andq =
λ

p2
o p

yields that

E

 T

0
|Zs |

2ds

p
≤ E


epo pγ Y +

∗

 T

0
e−poγ Ys |Zs |

2ds

p

≤ cλ,λ′,p E

eλ′γ Y +

∗ + eλγ Y −
∗


< ∞. (2.14)

On the other hand, since Y∗ ≤ Y −
∗ + Y +

∗ , it holds P-a.s. that

KT = Y0 − ξ −

 T

0
f (s, Ys, Zs)ds +

 T

0
Zsd Bs

≤ αT + (2 + βT )(Y −
∗ + Y +

∗ ) +
γ

2

 T

0
|Zs |

2ds +

 T

0
Zsd Bs

 .
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Then the Burkholder–Davis–Gundy inequality and (2.14) imply that

E

K p

T


≤ cp E


1 +


Y −

∗

p
+

Y +

∗

p
+

 T

0
|Zs |

2ds

p
≤ cλ,λ′,p E


eλγ Y −

∗ + eλ′γ Y +
∗


< ∞. �

3. Existence

As usually, the existence is based on the following monotone stability result.

Theorem 3.1. For any n ∈ N, let

(ξn, fn, Ln)


n∈N be a parameter set and let (Y n, Zn, K n) ∈

C0
F[0, T ] × H2,loc

F ([0, T ]; Rd) × KF[0, T ] be a solution of the RBSDE (ξn, fn, Ln) such that

(M1) All generators fn, n ∈ N satisfy (H1) with the same constants α, β ≥ 0 and γ > 0;
(M2) There exists a function f : [0, T ] × Ω × R × Rd

→ R such that for dt ⊗ d P-a.e.
(t, ω) ∈ [0, T ] × Ω , the mapping f (t, ω, ·, ·) is continuous and fn(t, ω, y, z) converges
to f (t, ω, y, z) locally uniformly in (y, z);
and that for some L ∈ C0

F[0, T ] and some real-valued, F-adapted process Y , either of the
following two holds:

(M3a) It holds P-a.s. that for any t ∈ [0, T ], {Ln
t }n∈N and {Y n

t }n∈N are both increasing
sequences in n with limn→∞ ↑ Ln

t = L t and limn→∞ ↑ Y n
t = Yt respectively;

(M3b) It holds P-a.s. that for any t ∈ [0, T ], {Ln
t }n∈N and {Y n

t }n∈N are both decreasing
sequences in n with limn→∞ ↓ Ln

t = L t and limn→∞ ↓ Y n
t = Yt respectively.

Denote Lt , (L1
t )

−
∨ L−

t and Yt , (Y 1
t )+ ∨ Y +

t , ∀ t ∈ [0, T ]. If Ξ , E

eλγL∗ +

eλ′γY∗


< ∞ for some λ, λ′ > 6 with 1

λ
+

1
λ′ < 1

6 , then Y ∈ Eλγ,λ′γ

F [0, T ] and there exist

(Z , K ) ∈ ∩
p ∈


1, λλ′

λ+λ′

H2,2p
F ([0, T ]; Rd)× Kp

F[0, T ] such that the triplet (Y, Z , K ) is a solution

of the RBSDE (ξ, f, L) with ξ , YT .

Proof. Since it holds P-a.s. that

− Lt ≤ L1
t ∧ L t ≤ Ln

t ≤ Y n
t ≤ Y 1

t ∨ Yt ≤ Yt , t ∈ [0, T ], ∀ n ∈ N. (3.1)

(1) Let λo , 5 +
1
2


λλ′

λ+λ′ − 6


< λλ′

λ+λ′ − 1. It follows that po , λλ′

λλ′−λo(λ+λ′)
∈


1, λλ′

λ+λ′


.

For any n ∈ N, since E

eλγ (Y n)−∗ + eλ′γ (Y n)+∗


≤ E


eλγL∗ + eλ′γY∗


< ∞ by (3.1), applying

Proposition 2.2 with p = po yields that

E

 T

0
|Zn

s |
2ds

po

+

K n

T

po


≤ cλ,λ′ E


eλγ (Y n)−∗ + eλ′γ (Y n)+∗


≤ cλ,λ′Ξ < ∞, (3.2)

which shows that {Zn
}n∈N is a bounded subset of the reflexive Banach space H2,2po

F ([0, T ]; Rd).
Then Theorem 5.2.1 of [26] implies that {Zn

}n∈N has a weakly convergent subsequence (we still
denote it by {Zn

}n∈N) with limit Z ∈ H2,2po
F ([0, T ]; Rd).

(2) In this step, we will show that {Zn
}n∈N strongly converges to Z in H2

F([0, T ]; Rd).
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We define φ(x) , 1
λoγ


eλoγ |x |

− λoγ |x | − 1


≥ 0, ∀ x ∈ R. Fix n ∈ N. For any m ≥ n, we

set ξm,n , ξm − ξn and Θm,n , Θm
− Θn for Θ = Y, Z , K , L . Applying Itô’s formula to the

process φ

Y m,n

·


yields that

φ

Y m,n

t

+

1
2

 T

t
φ′′

Y m,n

s


|Zm,n

s |
2ds

= φ

ξm,n


+

 T

t
φ′

Y m,n

s

 
fm(s, Y m

s , Zm
s ) − fn(s, Y n

s , Zn
s )

ds

+

 T

t
φ′

Y m,n

s


d K m,n

s −

 T

t
φ′

Y m,n

s


Zm,n

s d Bs, t ∈ [0, T ]. (3.3)

Since |φ′(x)| = eλoγ |x |
− 1, x ∈ R, applying Young’s inequality with

p1 =
λ

λo
, p2 =

λ′

λo
and

p3 =


1 −

1
p1

−
1
p2

−1

=
λλ′

λλ′ − λo(λ + λ′)
= po,

(3.4)

we can deduce from (3.1), the Burkholder–Davis–Gundy inequality, and (3.2) that

E


sup

t∈[0,T ]

 t

0
φ′

Y m,n

s


Zm,n

s d Bs




≤ c0 E


eλoγ (L∗+Y∗)


1 +

 T

0
|Zm,n

s |
2ds



≤ cλ,λ′ E


eλo p1γL∗ + eλo p2γY∗ +


1 +

 T

0
|Zm,n

s |
2ds

po


≤ cλ,λ′


1 + Ξ


< ∞. (3.5)

Thus


·

0 φ′

Y m,n

s


Zm,n
s d Bs is a uniformly integrable martingale. Letting t = 0, taking

expectation in (3.3), and using (H1) we obtain

E

φ

Y m,n

0


+

1
2

E
 T

0
φ′′

Y m,n

s


|Zm,n

s |
2ds

≤ E

φ

ξm,n


+ E

 T

0
φ′

Y m,n

s


d K m,n

s + E
 T

0
|φ′(Y m,n

s )|


2α + β|Y m

s | + β|Y n
s |

+
1
2
γ


2|Zm,n

s |
2
+ (λo − 2)|Zs − Zn

s |
2
+


3 +

9
λo − 5


|Zs |

2


ds, (3.6)

where we used the fact that |Zm
s |

2
+ |Zn

s |
2

≤ 2|Zm,n
s |

2
+ 3|Zn

s |
2 and |Zn

s |
2

≤

1 +

λo−5
3


|Zs −

Zn
s |

2
+

1 +

3
λo−5


|Zs |

2.
Since P


|Y m,n

t | ≤ |Yt − Y n
t | ≤ |Yt − Y 1

t |, ∀ t ∈ [0, T ]


= 1, the monotonicity of φ and |φ′
|

implies that P-a.s.

φ(ξm,n) ≤ φ(ξ − ξn) and |φ′(Y m,n
t )| ≤ |φ′(Yt − Y n

t )| ≤ |φ′(Yt − Y 1
t )|,

t ∈ [0, T ]. (3.7)



1166 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 122 (2012) 1155–1203

Similar, it holds P-a.s. that

|φ′(Lm,n
t )| ≤ |φ′(L t − Ln

t )| ≤ |φ′(L t − L1
t )|, t ∈ [0, T ]. (3.8)

We also see from (3.5) that

E
 T

0
|φ′(Y m,n

s )| |Zm,n
s |

2ds ≤ E


sup

s∈[0,T ]

|φ′(Y m,n
s )|

 T

0
|Zm,n

s |
2ds


< ∞, (3.9)

which together with (3.6), (3.7) and (3.1) implies that

E
 T

0


φ′′

− 2γ |φ′
|
 

Y m,n
s


|Zm,n

s |
2ds ≤ 2E [φ (ξ − ξn)] + 2E

 T

0
φ′

Y m,n

s


d K m,n

s

+ E
 T

0
|φ′(Ys − Y n

s )|


4α + 2β(Ls + Ys) + (λo − 2)γ |Zs − Zn

s |
2

+


3 +

9
λo − 5


γ |Zs |

2


ds. (3.10)

Now we estimate the second term on the right-hand-side of (3.10) by two cases of assumption
(M3). Assume (M3a) first. Since φ′ is an increasing and continuous function on R, the flat-off
condition of (Y m, Zm, K m), (3.2) and (3.8) imply that

E
 T

0
φ′

Y m,n

s


d K m,n

s ≤ E
 T

0
φ′

Y m,n

s


d K m

s ≤ E
 T

0
φ′

Y m

s − Ln
s


d K m

s

= E
 T

0
1{Y m

s =Lm
s }φ

′

Lm,n

s


d K m

s

≤
K m

T


Lpo (FT )

φ′

Lm,n

C
po

po−1
F [0,T ]

≤ cλ,λ′ Ξ
1
po
φ′


L − Ln

C
po

po−1
F [0,T ]

. (3.11)

On the other hand, it holds for the case of (M3b) that

E
 T

0
φ′

Y m,n

s


d K m,n

s ≤ −E
 T

0
1{Y n

s =Ln
s }φ

′

Lm,n

s


d K n

s

≤ cλ,λ′Ξ
1
po
φ′


L − Ln

C
po

po−1
F [0,T ]

.

Since


|φ′(Y m,n)|Zm,n


m≥n
weakly converges to

|φ′(Y − Y n)|

Z − Zn in H2

F([0, T ]; Rd), (3.12)

which is proved in Appendix A.1, Theorem 5.1.1(ii) of [26] shows that

E
 T

0
|φ′(Ys − Y n

s )| |Zs − Zn
s |

2ds ≤ lim
m→∞

E
 T

0
|φ′(Y m,n

s )| |Zm,n
s |

2ds. (3.13)

As H2,2po
F ([0, T ]; Rd) ⊂ H2

F([0, T ]; Rd), the sequence {Zm
}m≥n also weakly converges to Z

in H2
F([0, T ]; Rd). Applying Theorem 5.1.1(ii) of [26] once again, we can deduce from (3.10),

(3.11) and (3.13) that
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λoγ E
 T

0
|Zs − Zn

s |
2ds ≤ lim

m→∞
E
 T

0


φ′′

− λoγ |φ′
|


Y m,n
s


|Zm,n

s |
2ds

∵ φ′′(x) − λoγ |φ′(x)| = λoγ, ∀ x ∈ R


= lim
m→∞

E
 T

0


φ′′

− 2γ |φ′
|
 

Y m,n
s


|Zm,n

s |
2ds − (λo − 2)γ

× lim
m→∞

E
 T

0
|φ′(Y m,n

s )||Zm,n
s |

2ds

≤ 2E

φ(ξ − ξn)


+ cλ,λ′ Ξ

1
po ∥φ′(L − Ln)∥

C
po

po−1
F [0,T ]

+ cλ,λ′ E
 T

0
|φ′(Ys − Y n

s )|

1 + Ls + Ys + |Zs |

2ds. (3.14)

Since λo < λλ′

λ+λ′ , it follows that λ′ > λoλ
λ−λo

. Applying Young’s inequality with p =
λ
λo

andq =
λ

λ−λo
, we can deduce from (3.1) that P-a.s., 0 ≤ φ (ξ − ξn) ≤

1
λoγ

eλoγ (L∗+Y∗) ≤

cλ,λ′


eλγL∗ + eλ′γY∗


, ∀ n ∈ N. As E


eλγL∗ + eλ′γY∗


< ∞, the continuity of φ and the

Dominated Convergence Theorem imply that

lim
n→∞

↓ E [φ (ξ − ξn)] = 0. (3.15)

In light of Dini’s Theorem and (M3), it holds P-a.s. that

lim
n→∞

sup
t∈[0,T ]

|Ln
t − L t | = lim

n→∞
sup

t∈[0,T ]

|Y n
t − Yt | = 0. (3.16)

The continuity of φ′ implies that

0 = lim
n→∞

|φ′( sup
t∈[0,T ]

|L t − Ln
t |)| = lim

n→∞
sup

t∈[0,T ]

exp

λoγ |L t − Ln

t |


− 1

= lim
n→∞

sup
t∈[0,T ]

φ′

L t − Ln

t

 , P-a.s.

It follows from (3.8) that P-a.s. supt∈[0,T ]

φ′

L t − Ln

t

 po
po−1 ≤ supt∈[0,T ]

φ′

L t − L1

t

 po
po−1 ,

∀ n ∈ N. Applying Young’s inequality with p =
λ+λ′

λ′ andq =
λ+λ′

λ
, one can deduce from (3.1)

that

E


sup

t∈[0,T ]

φ′


L t − L1

t

 po
po−1


≤ E


e

λλ′γ

λ+λ′ (L∗+Y∗)


≤ cλ,λ′ E


eλγL∗ + eλ′γY∗


< ∞. (3.17)

The Dominated Convergence Theorem then implies that

lim
n→∞

↓ E


sup

t∈[0,T ]

φ′

L t − Ln

t

 po
po−1


= 0. (3.18)

Next, we can deduce from (3.1) and (3.7) that P-a.s.

|φ′(Yt − Y n
t )|

1 + Lt + Yt + |Z t |

2
≤ cλ,λ′e

λλ′γ

λ+λ′ (Lt +Yt )
+ |φ′(Yt − Y 1

t )| |Z t |
2, ∀ t ∈ [0, T ], ∀ n ∈ N.
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Similar to (3.17), one has E


supt∈[0,T ]

φ′

Yt − Y 1

t

 po
po−1


≤ cλ,λ′Ξ < ∞, which together

with Young’s inequality and (3.17) shows that

E
 T

0


e

λλ′γ

λ+λ′ (Lt +Yt )
+ |φ′(Yt − Y 1

t )| |Z t |
2


dt

≤ cλ,λ′ E


e

λλ′γ

λ+λ′ (L∗+Y∗)
+ sup

t∈[0,T ]

|φ′(Yt − Y 1
t )|

po
po−1 +

 T

0
|Z t |

2dt

po


< ∞.

Then the continuity of φ′ and the Dominated Convergence Theorem imply that
limn→∞ E

 T
0 |φ′(Ys − Y n

s )|

1 + Lt + Yt + |Z t |

2

ds = 0, which together with (3.15), (3.18)

and Doob’s martingale inequality leads to that

lim
n→∞

E
 T

0
|Zs − Zn

s |
2ds = 0 and lim

n→∞
E


sup

t∈[0,T ]

 t

0
(Zs − Zn

s )d Bs

2


= 0.(3.19)

(3) Next, we show that Y ∈ Eλγ,λ′γ

F [0, T ].
By (3.19), we can extract a subsequence of {Zn

}n∈N (we still denote it by {Zn
}n∈N) such

that limn→∞ Zn
t = Z t , dt ⊗ d P-a.e. In fact, we can choose this subsequence so that Z∗ ,

supn∈N |Zn
| ∈ H2

F[0, T ]; see [16] or [14, Lemma 2.5]. By (M2), it holds dt ⊗ d P-a.e. that

f

t, ω, y, z


= lim

n→∞
fn

t, ω, y, z


, ∀ (y, z) ∈ R × Rd , (3.20)

which together with the measurability of fn, n ∈ N implies that f is also P × B(R) ×

B(Rd)/B(R)-measurable. Moreover, we see from (3.20) and (M1) that f also satisfies (H1).
For dt ⊗ d P-a.e. (t, ω) ∈ [0, T ] × Ω , the continuity of mapping f (t, ω, ·, ·) shows that

lim
n→∞

 f

t, ω, Y n

t (ω), Zn
t (ω)


− f


t, ω, Yt (ω), Z t (ω)

 = 0. (3.21)

On the other hand, (M2) implies that for dt ⊗ d P-a.e. (t, ω) ∈ [0, T ] × Ω ,

0 ≤ lim
n→∞

 fn

t, ω, Y n

t (ω), Zn
t (ω)


− f


t, ω, Y n

t (ω), Zn
t (ω)


≤ lim

n→∞


sup

 fn

t, ω, y, z


− f


t, ω, y, z

 : |y| ≤ |Y 1
t (ω)| ∨ |Yt (ω)| < ∞,

|z| ≤ Z∗
t (ω) < ∞


= 0,

which together with (3.21) yields that dt ⊗ d P-a.e.

lim
n→∞

 fn

t, ω, Y n

t (ω), Zn
t (ω)


− f


t, ω, Yt (ω), Z t (ω)

 = 0. (3.22)

Moreover, (H1) and (3.1) show that dt ⊗ d P-a.e. fn(t, Y n
t , Zn

t ) − f

t, Yt , Z t

 ≤ 2α + 2β(L∗ + Y∗) +
γ

2


|Z∗

t |
2
+ |Z t |

2,
∀ n ∈ N. (3.23)

Let us assume that except on a P-null set N , (3.22), (3.23) hold for a.e. t ∈ [0, T ] and
L∗ + Y∗ +

 T
0


|Z∗

t |
2
+ |Z t |

2

dt < ∞. For any ω ∈ N c, the Dominated Convergence Theorem
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implies that

lim
n→∞

 T

0

 fn

t, ω, Y n

t (ω), Zn
t (ω)


− f


t, ω, Yt (ω), Z t (ω)

 dt = 0. (3.24)

For any n ∈ N, integrating with respect to t in (3.23) yields that T

0

 fn

t, ω, Y n

t (ω), Zn
t (ω)


− f


t, ω, Yt (ω), Z t (ω)

 dt

≤ cλ,λ′e
λλ′γ

(λ+λ′) po
(L∗(ω)+Y∗(ω))

+
γ

2

 T

0


|Zn

t (ω)|2 + |Z t (ω)|2


dt.

Then it follows from (3.17) and (3.2) that

E

 T

0

 fn

t, , Y n

t , Zn
t


− f


t, Yt , Z t

 dt

po


≤ cλ,λ′Ξ + cλ,λ′ E

 T

0
|Z t |

2dt

po


< ∞, ∀ n ∈ N,

which implies that
 T

0

 fn

t, , Y n

t , Zn
t


− f


t, Yt , Z t

 dt
 1+po

2


n∈N
is uniformly integrable

sequence in L1(FT ). Hence, one can deduce from (3.24) that

lim
n→∞

E

 T

0

 fn

t, Y n

t , Zn
t


− f


t, Yt , Z t

 dt

 1+po
2


= 0. (3.25)

Since φ(x) ≥
λoγ

2 |x |
2 and |φ′(x)| ≥ λoγ |x |, x ∈ R, we can deduce from (3.15) and (3.18)

that

lim
n→∞

↓ E


ξ − ξn
2

= 0 and lim
n→∞

↓ ∥L − Ln
∥

C
po

po−1
F [0,T ]

= 0. (3.26)

Moreover, for any p ∈ [1, ∞), (3.1) and (3.17) imply that

∥Y n
∥

p
Cp

F[0,T ]
≤ E


L∗ + Y∗

p


≤ cλ,λ′,p E


e

λλ′

λ+λ′ γ (L∗+Y∗)


≤ cλ,λ′,p Ξ ,

∀ n ∈ N. (3.27)

Now for any m, n ∈ N with m ≥ n, applying Itô’s formula to the process

Y m,n

·

2 yields that

(Y m,n
t )2

≤ ξ2
m,n + 2

 T

t
Y m,n

s


fm(s, Y m

s , Zm
s ) − fn(s, Y n

s , Zn
s )

ds + 2

 T

t
Y m,n

s d K m,n
s

− 2
 T

t
Y m,n

s Zm,n
s d Bs, t ∈ [0, T ].

The flat-off condition of (Y m, Zm, K m) implies that P-a.s. T

t
Y m,n

s d K m,n
s

≤


 T

t
(Y m

s − Ln
s )d K m

s =

 T

t
Lm,n

s d K m
s ≤ K m

T sup
s∈[0,T ]

|Lm,n
s |, t ∈ [0, T ], in case (M3a); T

t
(Y n

s − Lm
s )d K n

s = −

 T

t
Lm,n

s d K n
s ≤ K n

T sup
s∈[0,T ]

|Lm,n
s |, t ∈ [0, T ], in case (M3b).
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Then Hölder’s inequality, (3.2), the Burkholder–Davis–Gundy inequality and (3.27) imply that

E


sup

t∈[0,T ]

|Y m,n
t |

2


≤ E

ξ2

m,n


+ cλ,λ′Ξ

po−1
po+1

 fm(·, Y m
· , Zm

· )

− fn(·, Y n
· , Zn

· )
H1,

1+po
2

F ([0,T ];R)

+ cλ,λ′ Ξ
1
po ∥Lm,n

∥

C
po

po−1
F [0,T ]

+ cλ,λ′Ξ
1
2
Zm,n


H2

F([0,T ];Rd )
.

Hence, we can deduce from (3.26), (3.25) and (3.19) that {Y n
}n∈N is a Cauchy sequence

in C2
F[0, T ]. Let Y be its limit in C2

F[0, T ]. There is a subsequence

ni


i∈N of N such that
limi→∞ ↓ supt∈[0,T ] |Y

ni
t − Yt | = 0, P-a.s., which together with (M3) implies that P

Yt =

Yt , ∀ t ∈ [0, T ]


= 1. So Y is a continuous process satisfying

lim
n→∞

↓ sup
t∈[0,T ]

|Y n
t − Yt | = 0, P-a.s. (3.28)

Since E

eλγ Y −

∗ + eλ′γ Y +
∗


≤ E


eλγL∗ + eλ′γY∗


< ∞ by (3.1), we see that Y ∈ Eλγ,λ′γ

F [0, T ].

(4) Now let us define an F-adapted, continuous process Kt , Y0 − Yt −
 t

0 f (s, Ys, Zs) ds + t
0 Zsd Bs, t ∈ [0, T ]. By (3.25) and (3.19),


(Y n, Zn)


n∈N has a subsequence (we still denote it

by

(Y n, Zn)


n∈N) such that P-a.s.

lim
n→∞

 T

0

 fn(t, Y n
t , Zn

t ) − f

t, Yt , Z t

 dt + sup
t∈[0,T ]

 t

0


Zn

s − Zs

d Bs




= 0.

This together with (3.28) leads to that

lim
n→∞

sup
t∈[0,T ]

|K n
t − Kt | = 0, P-a.s., (3.29)

which implies that K is an increasing process. To wit, K ∈ KF[0, T ]. Letting n → ∞ in (3.1)
yields that P-a.s.

L t ≤ Yt = ξ +

 T

t
f (s, Ys, Zs) ds + KT − Kt −

 T

t
Zsd Bs, t ∈ [0, T ].

(5) For P-a.s. ω ∈ Ω , since


Y n
· (ω), Ln

· (ω), K n
· (ω)


n∈N uniformly converges


Y·(ω), L ·(ω),

K·(ω)


in t by (3.16) and (3.29), one can deduce from standard arguments and the flat-off
condition of each


Y n

t , Ln
t , K n

t


that T

0


Yt (ω) − L t (ω)


d Kt (ω) = lim

n→0

 T

0


Y n

t (ω) − Ln
t (ω)


d K n

t (ω) = 0,

which together with the previous steps show that (Y, Z , K ) is a solution of the quadratic

RBSDE(ξ, f, L). Since Y ∈ Eλγ,λ′γ

F [0, T ], Proposition 2.2 shows that (Z , K ) ∈

H2,2p
F ([0, T ]; Rd) × Kp

F[0, T ] for any p ∈


1, λλ′

λ+λ′


. �

As a consequence of Theorem 3.1, we have the following existence result.

Theorem 3.2. Let (ξ, f, L) be a parameter set such that f satisfies (H1) and that

For dt ⊗ d P-a.e. (t, ω) ∈ [0, T ] × Ω , the mapping f (t, ω, ·, ·) is continuous. (3.30)
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If E

eλγ L−

∗ + eλ′γ eβT (ξ+
∨L+

∗ )


< ∞ for some λ, λ′ > 6 with 1
λ

+
1
λ′ < 1

6 , then the quadratic

RBSDE (ξ, f, L) admits a solution (Y, Z , K ) ∈ ∩
p∈


1, λλ′

λ+λ′

 Eλγ,λ′γ

F [0, T ]×H2,2p
F ([0, T ]; Rd)×

Kp
F[0, T ] that satisfies (2.1).
In addition, if ξ+

∨ L∗ ∈ Le(FT ), then this solution (Y, Z , K ) belongs to Sp
F[0, T ] for all

p ∈ [1, ∞). More precisely, for any p ∈ (1, ∞) we have

E

epγ Y∗


≤ E


epγ L−

∗


+ cp E


epγ eβT (ξ+

∨L+
∗ )


< ∞;

E

 T

0
|Zs |

2ds

p

+ K p
T


≤ cp E


e3pγ Y∗


< ∞.

(3.31)

Sketch of the proof. For any i, n ∈ N, we set ξi,n ,

ξ ∨ (−i)


∧ n and L i,n ,


L ∨ (−i)


∧ n.

Theorem 1 of [15] shows that the quadratic RBSDE

ξ i,n, f, L i,n


admits a maximal bounded

solution

Y i,n, Z i,n, K i,n


∈ C∞

F [0, T ] × H2
F([0, T ]; Rd) × KF[0, T ]. Letting n → ∞ and

then letting i → ∞, we can deduce from Theorem 3.1 as well as Proposition 2.1 that
the RBSDE (ξ, f, L) has such a solution (Y, Z , K ). If ξ+

∨ L∗ ∈ Le(FT ), one can use
Proposition 2.2 and Doob’s martingale inequality to obtain (3.31). See [2] for details. �

4. Uniqueness

In the rest of the paper, we impose two more hypotheses on generator f which together imply
(3.30).

(H2) f is Lipschitz in y: For some κ ≥ 0, it holds dt ⊗ d P-a.e. that

| f (t, ω, y1, z) − f (t, ω, y2, z)| ≤ κ|y1 − y2|, ∀ y1, y2 ∈ R, ∀ z ∈ Rd . (4.1)

(H3) f is concave in z: i.e., it holds dt ⊗ d P-a.e. that

f

t, ω, y, θ z1 + (1 − θ)z2


≥ θ f (t, ω, y, z1) + (1 − θ) f (t, ω, y, z2),

∀ (θ, y) ∈ (0, 1) × R, ∀ z1, z2 ∈ Rd . (4.2)

From now on, for any λ ≥ 0 the generic constant cλ also depends on κ implicitly. The
following uniqueness result derives from a Legendre–Fenchel transformation argument, which
was used in [9], [10, Section 7] and [1, Section 4].

Theorem 4.1. Let (ξ, f, L) be a parameter set such that f satisfies (H2) and (H3). Assume that
for three constants α, β ≥ 0 and γ > 0, it holds dt ⊗ d P-a.e. that

f (t, ω, y, z) ≥ −α − β|y| −
γ

2
|z|2, ∀ (y, z) ∈ R × Rd . (4.3)

Then the RBSDE(ξ, f, L) has at most one solution (Y, Z , K ) ∈ Eλ,λ′

F [0, T ] ×H2,loc
F ([0, T ]; Rd) × KF[0, T ] with λ ∈ (γ, ∞) and λ′

∈ (0, ∞).

Proof. Suppose that the RBSDE(ξ, f, L) has two solutions

(Y i , Z i , K i )


i=1,2 ⊂ Eλi ,λ

′
i

F [0, T ]×H2,loc
F ([0, T ]; Rd) × KF[0, T ] with λi ∈ (γ, ∞) and λ′

i ∈ (0, ∞). We set λ , λ1 ∧ λ2 and
λ′ , λ′

1 ∧ λ′

2. Clearly, − f is convex in z. For any (t, ω, y) ∈ [0, T ] × Ω × R, it is well-known
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that the Legendre–Fenchel transformation of f (t, ω, y, ·): f (t, ω, y, q) , supz∈Rd

⟨q, z⟩ +

f (t, ω, y, z)

, ∀ q ∈ Rd is an R ∪ {∞}-valued, convex and lower semicontinuous function.

Let N be the dt ⊗ d P-null set except on which (4.1)–(4.3) hold. Given (t, ω) ∈ Nc, f has the
following properties:

(1) By (4.3), f (t, ω, y, q) ≥ −α − β|y| +
1

2γ
|q|2, ∀ (y, z) ∈ R × Rd . (4.4)

(2) For any q ∈ Rd , if f (t, ω, y, q) < ∞ for some y ∈ R, then (H2) implies that for any y′
∈ R,f (t, ω, y′, q) < ∞ and |f (t, ω, y, q) − f (t, ω, y′, q)| ≤ κ|y − y′

|. (4.5)

(3) For any y ∈ R, since − f (t, ω, y, ·) is convex on Rd , the conjugacy relation shows that

− f (t, ω, y, z) = sup
q∈Rd


⟨z, q⟩ − f (t, ω, y, q)


, ∀ z ∈ Rd . (4.6)

Moreover, the convexity of − f (t, ω, y, ·) on Rd implies its continuity on Rd , thusf (t, ω, y, q) = supz∈Qd

⟨q, z⟩+ f (t, ω, y, z)


, ∀ q ∈ Rd , which implies that f is P ×B(R)×

B(Rd)/B(R)-measurable.
(4) For any (y, z) ∈ R × Rd , let ∂(− f )(t, ω, y, z) denote the subdifferential of the function
− f (t, ω, y, ·) at z (see e.g., [25]). It is a non-empty convex compact subset of q ∈ Rd such that
− f (t, ω, y, z′) + f (t, ω, y, z) ≥ ⟨q, z′

− z⟩ for any z′
∈ Rd , to wit,

⟨q, z⟩ + f (t, ω, y, z) = sup
z′∈Rd


⟨q, z′

⟩ + f (t, ω, y, z′)


= f (t, ω, y, q). (4.7)

Let i = 1, 2. For any (t, ω) ∈ Nc, we choose a qi (t, ω) ∈ ∂(− f )

t, ω, Y i

t (ω), Z i
t (ω)


.

By (4.7),f t, ω, Y i
t (ω), qi (t, ω)


= ⟨Z i

t (ω), qi (t, ω)⟩ + f

t, ω, Y i

t (ω), Z i
t (ω)


< ∞. (4.8)

Thanks to the Measurable Selection Theorem (see e.g., Lemma 1 of [4] or Lemma 16.34 of [12]),
there exists an F-progressively measurable processqi such that

f

t, ω, Y i

t (ω), Z i
t (ω)


= f t, ω, Y i

t (ω),qi
t (ω)


− ⟨Z i

t (ω),qi
t (ω)⟩, ∀ (t, ω) ∈ Nc, (4.9)

which together with (4.4) leads to that

f

t, ω, Y i

t (ω), Z i
t (ω)


≥ −α − β|Y i

t (ω)| +
1

2γ
|qi

t (ω)|2

−
1
2


2γ |Z i

t (ω)|2 +
1

2γ
|qi

t (ω)|2


, ∀ (t, ω) ∈ Nc. (4.10)

Since (Y i , Z i , K i ) ∈ Eλi ,λ
′
i

F [0, T ] × H2,loc
F ([0, T ]; Rd) × KF[0, T ] solves the RBSDE(ξ, f, L),

it holds P-a.s. that Y i
∗ +

 T
0 |Z i

t |
2dt + |

 T
0 f (t, Y i

t , Z i
t )dt | < ∞. Then it follows from (4.10)

that

1
4γ

 T

0
|qi

t |
2dt ≤

 T

0
f

t, Y i

t , Z i
t


dt +


α + βY i

∗


T + γ

 T

0
|Z i

t |
2dt < ∞,

P-a.s. (4.11)
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Next, let us pick up an N ∈ N such that T
N ≤

λλ′

2β(λ+λ′)


1
γ

−
1
λ


. Let t0 , 0. For

j ∈ {1, . . . , N }, we set t j , jT
N and define the process M i, j

t , exp

−
 t

0 1{s≥t j−1}qi
sd Bs −

1
2 t

0 1{s≥t j−1}|qi
s |

2ds

, t ∈ [0, t j ].

Given n ∈ N, we define the F-stopping time τ
j

n , inf


t ∈ [t j−1, t j ] :
 t

t j−1

2
i=1


|Z i

s |
2

+

|qi
s |

2

ds > n


∧ t j . Clearly, limn→∞ ↑ τ

j
n = t j , P-a.s. by (4.11), and


M i, j

τ
j

n ∧t


t∈[0,t j ]

is a uniformly integrable martingale thanks to Novikov’s Criterion. Hence, d Qi, j
n

d P , M i, j

τ
j

n

induces a probability Qi, j
n that is equivalent to P . Girsanov Theorem shows that


Bi, j,n

t ,

Bt +
 t

0 1
{t j−1≤s≤τ

j
n }
qi

sds


t∈[0,t j ]
is a Brownian Motion under Qi, j

n and

E


M i, j

τ
j

n
ln M i, j

τ
j

n


= E

Qi, j
n


ln M i, j

τ
j

n


= E

Qi, j
n


−

 τ
j

n

t j−1

qi
sd Bi, j,n

s +
1
2

 τ
j

n

t j−1

|qi
s |

2ds



=
1
2

E
Qi, j

n

 τ
j

n

t j−1

|qi
s |

2ds


. (4.12)

It is well-known that for any (x, µ) ∈ R × (0, ∞), xµ ≤ ex
+ µ(ln µ − 1) ≤ ex

+ µ ln µ,
thus xµ = λx µ

λ
≤ eλx

+
µ
λ


ln µ − ln λ


, which together with (4.12) implies that for k = 1, 2

E
Qi, j

n


sup

t∈[0,t j ]


Y k

t

−
= E


sup

t∈[0,t j ]


Y k

t

−M i, j

τ
j

n


≤ E


eλ(Y k )−∗


+

1
λ

E
Qi, j

n


ln M i, j

τ
j

n
− ln λ


≤ c k

λ +
1

2λ
E

Qi, j
n

 τ
j

n

t j−1

|qi
s |

2ds


. (4.13)

where c k
λ , E


eλ(Y k )−∗


+

(ln λ)−

λ
. Similarly, E

Qi, j
n


supt∈[0,t j ]


Y k

t

+
≤ c k

λ′ +

1
2λ′ E

Qi, j
n

 τ
j

n
t j−1

|qi
s |

2ds


.

We can deduce from (4.9), (4.4) and Girsanov Theorem that

Y i
t j−1

− Y i
τ

j
n

=

 τ
j

n

t j−1

f (s, Y i
s , Z i

s)ds + K i
τ

j
n

− K i
t j−1

−

 τ
j

n

t j−1

Z i
sd Bs

≥

 τ
j

n

t j−1

f s, Y i
s ,qi

s


− ⟨Z i

s,qi
s⟩


ds −

 τ
j

n

t j−1

Z i
sd Bs

≥

 τ
j

n

t j−1


−α − β|Y i

s | +
1

2γ
|qi

s |
2


ds −

 τ
j

n

t j−1

Z i
sd Bi, j,n

s , P-a.s. (4.14)
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By Bayes’ rule (see e.g., [13, Lemma 3.5.3]), E
Qi, j

n
[Y i

t j−1
] = E[Y i

t j−1
M i, j

t j−1
] = E[Y i

t j−1
]. Then

taking E
Qi, j

n
in (4.14), one can deduce from (4.13) that

1
2γ

E
Qi, j

n

 τ
j

n

t j−1

|qi
s |

2ds


≤ E


Y i +

∗


+

αT

N
+


1 +

βT

N


E

Qi, j
n


sup

t∈[0,t j ]


Y i

t

−
+

βT

N
E

Qi, j
n


sup

t∈[0,t j ]


Y i

t

+

≤ Ξ +


1

2λ
+

βT

N


1

2λ
+

1
2λ′


E

Qi, j
n

 τ
j

n

t j−1

|qi
s |

2ds


,

where Ξ , 1
λ′ E


eλ′(Y i )+∗


+

αT
N + (1 + βT )c i

λ + βTc i
λ′ . It follows from (4.12) and the

setting of N that 1
2

 1
γ

−
1
λ


E

M i, j

τ
j

n
ln M i, j

τ
j

n


=

1
4

 1
γ

−
1
λ


E

Qi, j
n

 τ
j

n
t j−1

|qi
s |

2ds


≤ Ξ . In light

of de la Vallée–Poussin’s lemma,


M i, j

τ
j

n


n∈N

is uniformly integrable. Hence, E


M i, j
t j


=

limn→∞ E


M i, j

τ
j

n


= 1, which shows that M i, j is a martingale. Thus d Qi, j

d P , M i, j
t j

induces a

probability Qi, j that is equivalent to P , and


Bi, j
t , Bt +

 t
0 1{s≥t j−1}qi

sds


t∈[0,t j ]
is a Brownian

Motion under Qi, j . Then Fatou’s lemma implies that

EQi, j

 t j

t j−1

|qi
s |

2ds


= E


M i, j

t j

 t j

t j−1

|qi
s |

2ds


≤ lim

n→∞

E


M i, j

τ
j

n

 τ
j

n

t j−1

|qi
s |

2ds



= lim
n→∞

E
Qi, j

n

 τ
j

n

t j−1

|qi
s |

2ds


≤

4λγΞ
λ − γ

.

And an analogy to (4.12) shows that

EQi, j


ln M i, j

t j


=

1
2

EQi, j

 t j

t j−1

|qi
s |

2ds


≤

2λγΞ
λ − γ

. (4.15)

Now for any n ∈ N, applying Tanaka’s formula to the process

Y 1

− Y 2
+, we can deduce

from (4.6), (4.9), the flat-off condition of (Y 1, Z1, K 1), (4.8), (4.5) as well as Girsanov Theorem
that 

Y 1
τ n

j ∧t − Y 2
τ n

j ∧t

+

=


Y 1

τ n
j
− Y 2

τ n
j

+

+

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }


f (s, Y 1

s , Z1
s ) − f (s, Y 2

s , Z2
s )

ds

+

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }(d K 1
s − d K 2

s ) −

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }(Z1
s − Z2

s ) d Bs

−
1
2

 τ n
j

τ n
j ∧t

dLs

≤


Y 1

τ n
j
− Y 2

τ n
j

+

+

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }

f s, Y 1
s ,q2

s
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− ⟨Z1
s ,q2

s ⟩ − f s, Y 2
s ,q2

s


+ ⟨Z2

s ,q2
s ⟩


ds +

 τ n
j

τ n
j ∧t

1{Ls=Y 1
s >Y 2

s }d K 1
s

−

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }(Z1
s − Z2

s ) d Bs

≤


Y 1

τ n
j
− Y 2

τ n
j

+

+ κ

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }


Y 1

s − Y 2
s

+ ds

−

 τ n
j

τ n
j ∧t

1{Y 1
s >Y 2

s }(Z1
s − Z2

s ) d B2, j
s , t ∈ [t j−1, t j ], (4.16)

where L is a real-valued, F-adapted, increasing and continuous process known as “ local time”.
Taking the expectation EQ2, j and using Fubini’s Theorem, we obtain

EQ2, j


Y 1

τ n
j ∧t − Y 2

τ n
j ∧t

+
≤ EQ2, j


Y 1

τ n
j
− Y 2

τ n
j

+
+ κ

 t j

t
EQ2, j


Y 1

s − Y 2
s

+
ds,

t ∈ [t j−1, t j ].

Then an application of Gronwall’s inequality yields that

EQ2, j


Y 1

τ n
j ∧t − Y 2

τ n
j ∧t

+
≤ eκT EQ2, j


Y 1

τ n
j
− Y 2

τ n
j

+
, t ∈ [t j−1, t j ]. (4.17)

Similar to (4.13), one can deduce from (4.15) that

EQ2, j


sup

t∈[0,t j ]


Y 1

t − Y 2
t

+


≤ EQ2, j


sup

t∈[0,t j ]


Y 1

t

+
+ sup

t∈[0,t j ]


Y 2

t

−

≤ c 1
λ′ +c 2

λ +


1

2λ′
+

1
2λ


EQ2, j

 t j

t j−1

|q2
s |

2ds


< ∞.

If Y 1
t j

≤ Y 2
t j

, P-a.s., as n → ∞ in (4.17), dominated convergence theorem implies that for
any t ∈ [t j−1, t j ]

EQ2, j


Y 1

t − Y 2
t

+
= 0, thus Y 1

t ≤ Y 2
t , P-a.s. (4.18)

In particular, Y 1
t j−1

≤ Y 2
t j−1

, P-a.s. On the other hand, if Y 2
t j

≤ Y 1
t j

, P-a.s., interchanging

(Y 1, Z1, Z1) with (Y 2, Z2, Z2) and estimating under Q1, j in the above arguments (from (4.16)
to (4.18)) give that for any t ∈ [t j−1, t j ], Y 2

t ≤ Y 1
t , P-a.s. Therefore, starting from Y 1

T = Y 2
T = ξ ,

P-a.s., we can use backward induction to conclude that for any t ∈ [0, T ], Y 1
t = Y 2

t , P-a.s. Then
the continuity of processes Y 1 and Y 2 shows that Y 1 and Y 2 are indistinguishable, which implies
that

0 = Y 1
0 − Y 1

t − (Y 2
0 − Y 2

t )

=

 t

0


f (s, Y 1

s , Z1
s ) − f (s, Y 2

s , Z2
s )


ds + K 1
t − K 2

t −

 t

0
(Z1

s − Z2
s )d Bs

=

 t

0


f (s, Y 1

s , Z1
s ) − f (s, Y 1

s , Z2
s )


ds + K 1
t − K 2

t −

 t

0
(Z1

s − Z2
s )d Bs,

t ∈ [0, T ]. (4.19)
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Since the set of continuous martingales and that of finite variation processes only intersect at
constants, one can deduce that Z1

t = Z2
t , dt ⊗ d P-a.e. Putting it back into (4.19) shows that K 1

and K 2 are indistinguishable. �

5. An optimal stopping problem for quadratic g-evaluations

In this section, we will solve an optimal stopping problem in which the objective of the stopper
is to determine an optimal stopping time τ∗ that satisfies

sup
τ∈S0,T

E g
0,τ


Rτ


= E g

0,τ∗


Rτ∗


, (5.1)

where E g is a “quadratic g-evaluation” (a type of non-linear expectation to be defined below),
and R is a reward process that we will specify shortly.

Let g : [0, T ] × Ω × R × Rd
→ R be a P × B(R) × B(Rd)/B(R)-measurable

function that satisfies (H1)–(H3). For any τ ∈ S0,T , It is clear that gτ (t, ω, y, z) ,
1{t<τ }g(t, ω, y, z), (t, ω, y, z) ∈ [0, T ] × Ω × R × Rd is also a P × B(R) × B(Rd)/B(R)-
measurable function that satisfies (H1)–(H3). Thus, we know from Corollary 6 of [6] that for any
ξ ∈ Le(FT ), the following quadratic BSDE

Yt = ξ +

 T

t
1{s<τ }g(s, Ys, Zs)ds −

 T

t
Zsd Bs, t ∈ [0, T ] (5.2)

admits a unique solution (Y τ,ξ , Z τ,ξ ) in ∩p∈(1,∞) Ep
F[0, T ] × H2,2p

F ([0, T ]; Rd). If ξ ∈ Le(Fτ ),
one can deduce that

P


Y τ,ξ
t = Y τ,ξ

τ∧t , ∀ t ∈ [0, T ]


= 1 and Z τ,ξ

t = 1{t<τ }Z τ,ξ
t , dt ⊗ d P-a.e. (5.3)

Definition 5.1. A “quadratic g-evaluation” with domain Le(FT ) is a family of operators


E g
ν,τ :

Le(Fτ ) → Le(Fν)

ν∈S0,T ,τ∈Sν,T

such that E g
ν,τ [ξ ] , Y τ,ξ

ν , ∀ ξ ∈ Le(Fτ ). In particular, for any
ξ ∈ Le(FT ), we can define the “quadratic g-expectation” of ξ at a stopping time ν ∈ S0,T by
E g

[ξ |Fν] , E g
ν,T [ξ ].

The g-evaluation was introduced by Peng [24] for Lipschitz generators over L2(FT ).
Then [19] extended the notion for quadratic generators, however, on L∞(FT ). Thanks to
Theorem 5 of [6] and the uniqueness of the solution (Y τ,ξ , Z τ,ξ ), one can show that the
quadratic g-evaluation E g

ν,τ inherit the basic properties of g-evaluations with Lipschitz generators
such as: Monotonicity, Time-Consistency, Constant-Preserving, Zero-one Law and Translation
Invariance (see [2]).

Now, we assume that the reward process R is in the form of

Rt , 1{t<T }Lt + 1{t=T }ξ, t ∈ [0, T ], (5.4)

for some L ∈ C0
F[0, T ] and ξ ∈ L0(FT ) with LT ≤ ξ , P-a.s. One can regard L as the running

reward and ξ as the final reward with a possible bonus.
When ξ+

∨ L∗ ∈ Le(FT ), the quadratic RBSDE (ξ, g, L) admits a unique solution (Y, Z, K)

in ∩p∈[1,∞) Sp
F[0, T ] thanks to Theorems 3.2 and 4.1. In fact, the continuous process Y is the snell

envelope of the reward process R under the quadratic g-evaluation, and the first time process Y
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meets process R after time t = 0 is an optimal stopping time for (5.1). More precisely, we have
the following result.

Theorem 5.1. Let g : [0, T ] × Ω × R × Rd
→ R be a P × B(R) × B(Rd)/B(R)-

measurable function that satisfies (H1)–(H3), and let R be a reward process in the form of (5.4).
If ξ+

∨ L∗ ∈ Le(FT ), then for any ν ∈ S0,T ,

Yν = esssup
τ∈Sν,T

E g
ν,τ


Rτ


= E g

ν,τ∗(ν)


Rτ∗(ν)


, P-a.s.,

where Y is of the unique solution to the quadratic RBSDE (ξ, g, L) and τ∗(ν) , inf

t ∈ [ν, T ] :

Yt = Rt


∈ Sν,T .

This theorem extends Section 3 of [21], it also extends Theorem 5.3 of [3] except that the
continuity condition on the reward process R is strengthened. The proof of Theorem 5.1 depends
on the following comparison theorem for quadratic BSDEs, which generalizes Theorem 5 of [6].

Proposition 5.1. For i = 1, 2, let fi : [0, T ]×Ω×R×Rd
→ R be a P×B(R)×B(Rd)/B(R)-

measurable function, and let (Y i , Z i , V i ) ∈ C0
F[0, T ]×H2,loc

F ([0, T ]; Rd)×VF[0, T ] solves the
following BSDE

Y i
t = Y i

T +

 T

t
fi (s, Y i

s , Z i
s) ds + V i

T − V i
t −

 T

t
Z i

sd Bs, t ∈ [0, T ] (5.5)

such that Y 1
T ≤ Y 2

T , P-a.s., that E

eλ(Y 1)+∗ + eλ(Y 2)−∗


< ∞ for all λ ∈ (1, ∞), and that for

some θ0 ∈ (0, 1), θV 1
− V 2 is a decreasing process for any θ ∈ (θ0, 1). If either of the following

two holds:

(i) f1 satisfies (H1′), (H2); f1 is concave in z; and 1 f (t) , f1(t, Y 2
t , Z2

t )− f2(t, Y 2
t , Z2

t ) ≤ 0,
dt ⊗ d P-a.e.;

(ii) f2 satisfies (H1′), (H2); f2 is concave in z; and 1 f (t) , f1(t, Y 1
t , Z1

t )− f2(t, Y 1
t , Z1

t ) ≤ 0,
dt ⊗ d P-a.e.;

(where (H1′) is an extension of (H1) in that the constant α is replaced by an F-progressively
measurable, non-negative process {αt }t∈[0,T ] such that E


exp


p
 T

0 αr dr


< ∞ for some
p > γ e2κT ) then it holds P-a.s. that Y 1

t ≤ Y 2
t for any t ∈ [0, T ].

In addition, if Y 1
τ = Y 2

τ , P-a.s. for some τ ∈ S0,T , then

P


Y 1

T = Y 2
T ,

 T

τ

1 f (s)ds = 0


> 0. (5.6)

Proof of Theorem 5.1. Fix ν ∈ S0,T . For any τ ∈ Sν,T , it holds P-a.s. that

Yτ∧ t = Yτ +

 τ

τ∧ t
g

s, Ys, Zs


ds + Kτ − Kτ∧ t −

 τ

τ∧ t
Zsd Bs

= Yτ +

 T

t
1{s<τ }g


s, Yτ∧s, 1{s<τ }Zs


ds + Kτ − Kτ∧ t

−

 T

t
1{s<τ }Zsd Bs, t ∈ [0, T ]. (5.7)
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Since Yτ ≥ 1{τ<T }Lτ + 1{τ=T }ξ = Rτ , P-a.s., applying Proposition 5.1 with (Y 1, Z1, V 1) =
Y τ,Rτ , Z τ,Rτ , 0


and (Y 2, Z2, V 2) =


Yτ∧ t , 1{t<τ }Zt , Kτ∧t


t∈[0,T ]

yields that P-a.s.,

Yτ∧t ≥ Y τ,Rτ
t for any t ∈ [0, T ]. In particular, we have Yν ≥ Y τ,Rτ

ν = E g
ν,τ [Rτ ], P-a.s. So it

remains to show that Yν = E g
ν,τ∗(ν)


Rτ∗(ν)


, P-a.s. To see this, we define

Yt , 1{t<ν}Y
ν,Yν
t + 1{t≥ν}Yτ∗(ν)∧t and Zt , 1{t<ν}Zν,Yν

t + 1{ν≤t<τ∗(ν)}Zt ,

∀ t ∈ [0, T ].

Clearly,
Y, Z ∈ ∩p∈(1,∞) Ep

F[0, T ] × H2,2p
F ([0, T ]; Rd). The flat-off condition of (Y, Z, K)

and the continuity of K imply that P-a.s.

0 =


[ν,τ∗(ν))

1{Ys>Ls }d Ks =


[ν,τ∗(ν))

1{Ys>Rs }d Ks =


[ν,τ∗(ν))

d Ks = lim
s↗τ∗(ν)

Ks − Kν

= Kτ∗(ν) − Kν .

Hence, taking τ = τ∗(ν) and t = ν ∨ t in (5.7), we can deduce that P-a.s.

Y(ν∨t)∧τ∗(ν) = Rτ∗(ν) +

 T

ν∨t
1{s<τ∗(ν)}g


s, Ys, Zs


ds −

 T

ν∨t

Zsd Bs, t ∈ [0, T ]. (5.8)

In particular, we have

Yν = Rτ∗(ν) +

 T

ν

1{s<τ∗(ν)}g

s, Ys, Zs


ds −

 T

ν

Zsd Bs, P-a.s. (5.9)

Fix t ∈ [0, T ]. One can deduce from (5.3) and (5.9) that

1{t<ν}Y
ν,Yν
t = 1{t<ν}Yν + 1{t<ν}

 ν

t
g


s, Y ν,Yν
s , Zν,Yν

s


ds − 1{t<ν}

 ν

t
Zν,Yν

s d Bs

= 1{t<ν}Yν + 1{t<ν}

 ν

t
g

s, Ys, Zs


ds − 1{t<ν}

 ν

t

Zsd Bs

= 1{t<ν}Rτ∗(ν) + 1{t<ν}

 T

t
1{s<τ∗(ν)}g


s, Ys, Zs


ds − 1{t<ν}

 T

t

Zsd Bs,

which together with (5.8) implies that P-a.s.

Yt = Rτ∗(ν) +

 T

t
1{s<τ∗(ν)}g


s, Ys, Zs


ds −

 T

t

Zsd Bs . (5.10)

The continuity of process Yt further shows that P-a.s., (5.10) holds for any t ∈ [0, T ]. To wit,
(Y, Z) ∈ ∩p∈(1,∞) Ep

F[0, T ] × H2,2p
F ([0, T ]; Rd) is the unique solution of the BSDE (5.2) with

(τ, ξ) =

τ∗(ν), Rτ∗(ν)


. Therefore, it follows that Yν = Yν = E g

ν,τ∗(ν)


Rτ∗(ν)


. �

6. Stability

Inspired by the “θ -difference” method introduced in [6], we obtain the following stability
result.

Theorem 6.1. Let {(ξm, fm, Lm)}m∈N0
be a sequence of parameter sets such that

(S1) With the same constants α, β, κ ≥ 0 and γ > 0, f0 satisfies (H1) and { fn}n∈N
satisfy (H1)–(H3);
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(S2) It holds P-a.s. that ξn converges to ξ0 and that Ln
t converges to L0

t uniformly in t ∈ [0, T ];

(S3) Ξ (p) , supm∈N0
E

ep (ξ+

m ∨Lm
∗ )


< ∞ for all p ∈ (1, ∞).

We let (Y 0, Z0, K 0) ∈ ∩p∈[1,∞) Sp
F[0, T ] be a solution of the quadratic RBSDE(ξ0, f0, L0),

and for any n ∈ N we let (Y n, Zn, K n) be the unique solution of the quadratic
RBSDE(ξn, fn, Ln) in ∩p∈[1,∞) Sp

F[0, T ]. If fn

t, Y 0

t , Z0
t


converges dt ⊗ d P-a.e. to

f0

t, Y 0

t , Z0
t


, then for any p ∈ [1, ∞),


supt∈[0,T ] |Y

n
t − Y 0

t |
p


n∈N
is a uniformly integrable

sequence in L1(FT ) and

lim
n→∞

E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
p


= lim
n→∞

E

 T

0
|Zn

s − Z0
s |

2ds

p
= 0.

Moreover, if it holds dt ⊗d P-a.e. that fn(t, ω, y, z) converges to f0(t, ω, y, z) locally uniformly

in (y, z), then up to a subsequence, we further have limn→∞ E


supt∈[0,T ] |K
n
t − K 0

t |
p


=

0, ∀ p ∈ [1, ∞).

Proof. (1) Fix n ∈ N, θ ∈ (0, 1) and ε > 0. We first show that P-a.s.

|Y n
t − Y 0

t | ≤ (1 − θ)

|Y 0

t | + |Y n
t |

+

1 − θ

γ
ln


4

i=1

I n,i
t


, t ∈ [0, T ], (6.1)

where I n,i
t , E


I n,i
T |Ft


for i = 1, 2, 3, 4 such that

I n,1
T , DT ηn with Dt , exp


γ e2κT

 t

0


α + (β + κ)|Y 0

s |

ds


, t ∈ [0, T ] and

ηn , exp

ζθ eκT 

|ξn − θξ0| ∨ |ξ0 − θξn|


;

I n,2
T , ζθ eκT DT Υn

 T

0
|∆n f (s)|ds with ζθ ,

γ eκT

1 − θ
, Υn , exp


ζθ eκT Y n

∗ + Y 0
∗


and ∆n f (t) , fn


t, Y 0

t , Z0
t


− f0


t, Y 0

t , Z0
t


, t ∈ [0, T ];

I n,3
T ,


1 + ζθ exp


κT + εζθ eκT 1 + DT exp


γ e2κT Y 0

∗ + Y n
∗

 
K 0

T + K n
T


;

I n,4
T ,

ζθ

ε
eκT DT Υn


sup

t∈[0,T ]

|Ln
t − L0

t |


K 0

T + K n
T


.

We set U n , θY 0
− Y n, V n , θ Z0

− Zn and define two processes

an
t , 1{U n

t ≠0}

fn(t, θY 0
t , Zn

t ) − fn(t, Y n
t , Zn

t )

U n
t

− κ1{U n
t =0}, An

t ,
 t

0
an

s ds,

t ∈ [0, T ].

Applying Itô’s formula to the process Γ n
t , exp


ζθ eAn

t U n
t


, t ∈ [0, T ] yields that

Γ n
t = Γ n

T +

 T

t
Gn

s ds + ζθ

 T

t
Γ n

s eAn
s (θd K 0

s − d K n
s ) − ζθ

 T

t
Γ n

s eAn
s V n

s d Bs,

t ∈ [0, T ],
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where Gn
t = ζθ Γ n

t eAn
t


θ f0(t, Y 0

t , Z0
t ) − fn(t, Y n

t , Zn
t ) − an

t U n
t −

1
2ζθ eAn

t |V n
t |

2


. In light of

(H1) and the concavity of fn in z, it holds dt ⊗ d P-a.e. that for any y ∈ R

fn(t, y, Zn
t ) ≥ θ fn


t, y, Z0

t


+ (1 − θ) fn


t, y,

−V n
t

1 − θ


≥ θ fn


t, y, Z0

t


− (1 − θ) (α + β|y|) −

γ

2(1 − θ)
|V n

t |
2, (6.2)

which together with (H2) implies that dt ⊗ d P-a.e.

Gn
t = ζθΓ n

t eAn
t


−θ∆n f (t) + θ fn(t, Y 0

t , Z0
t ) − fn(t, θY 0

t , Zn
t ) −

1
2
ζθ eAn

t |V n
t |

2


≤ ζθΓ n
t eAn

t


|∆n f (t)| + θ fn(t, Y 0

t , Z0
t ) − fn(t, Y 0

t , Zn
t )

+ | fn(t, Y 0
t , Zn

t ) − fn(t, θY 0
t , Zn

t )| −
γ

2(1 − θ)
|V n

t |
2


≤ γ e2κT Γ n

t


α + (β + κ)|Y 0

t |

+ ζθ eκT Γ n

t |∆n f (t)|.

Integration by parts gives that

Γ n
t ≤ DtΓ n

t ≤ DT Γ n
T + ζθ eκT

 T

t
DsΓ n

s |∆n f (s)|ds + ζθ

 T

t
DsΓ n

s eAn
s d K 0

s

− ζθ

 T

t
DsΓ n

s eAn
s V n

s d Bs

≤ I n,1
T + I n,2

T + ζθ eκT DT

 T

0
Γ n

s d K 0
s − ζθ

 T

t
DsΓ n

s eAn
s V n

s d Bs, t ∈ [0, T ]. (6.3)

The flat-off condition of (Y 0, Z0, K 0) implies that T

0
Γ n

s d K 0
s =

 T

0
1{Y 0

s =L0
s }
Γ n

s d K 0
s

=

 T

0
1{Y 0

s =L0
s ≤Ln

s +ε}Γ
n
s d K 0

s +

 T

0
1{Y 0

s =L0
s >Ln

s +ε}Γ
n
s d K 0

s

≤

 T

0
1{Y 0

s ≤Y n
s +ε} exp


γ e2κT

|Y n
s | + εζθ eκT


d K 0

s

+Υn

 T

0
1{|Ln

s −L0
s |>ε}d K 0

s

≤ exp

γ e2κT Y n

∗ + εζθ eκT


K 0
T +

1
ε
Υn


sup

t∈[0,T ]

|Ln
t − L0

t |


K 0

T , P-a.s.

(6.4)

For each p ∈ (1, ∞), (3.31) and (S3) imply that

sup
n′∈N

E


epγ Y n′

∗ +

 T

0
|Zn′

s |
2ds

p

+

K n′

T

p


≤ cp sup

n′∈N
E

e3pγ eβT


ξ+

n′∨Ln′

∗


≤ cp Ξ


3pγ eβT


.
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Thus, it follows that

sup
m∈N0

E


epγ Y m

∗ +

 T

0
|Zm

s |
2ds

p

+

K m

T

p



≤ cp Ξ


3pγ eβT


+ E


epγ Y 0

∗ +

 T

0
|Z0

s |
2ds

p

+

K 0

T

p


, Ξ (p), (6.5)

which together with (S1) implies that

E[η
p
n ] ≤ E


ep ζθ eκT (|ξn |+|ξ0|)


≤

1
2

E

e2p ζθ eκT (ξ+

n ∨Ln
∗)

+ e2p ζθ eκT (ξ+

0 ∨L0
∗)


≤ Ξ


2p ζθ eκT

, (6.6)

E[Υ p
n ] ≤

1
2

E

e2p ζθ eκT Y n

∗ + e2p ζθ eκT Y 0
∗


≤ Ξ 2p

1 − θ
e2κT


, (6.7)

E

 T

0
|∆n f (s)|ds

p
≤ E


2T (α + βY 0

∗ ) + γ

 T

0
|Z0

s |
2ds

p

≤ cp E


epγ Y 0

∗ +

 T

0
|Z0

s |
2ds

p
, (6.8)

E


sup

t∈[0,T ]

|Ln
t − L0

t |
p


≤ cp E


Ln
∗

p
+

L0

∗

p


≤ cp E

epLn

∗ + epL0
∗


≤ cp Ξ (p). (6.9)

Since DT ≤ c0 exp

γ (β + κ)T e2κT Y 0

∗


, P-a.s., we also see that DT ∈ Lp(FT ). Thus, one

can deduce from Young’s inequality and (6.5)–(6.9) that random variables I n,i
T , i = 1, 2, 3, 4 are

all integrable. Moreover, the Burkholder–Davis–Gundy inequality and Hölder’s inequality imply
that

E


sup

t∈[0,T ]

 t

0
DsΓ n

s eAn
s V n

s d Bs




≤ c0 E

 T

0


DsΓ n

s

2e2An
s |V n

s |
2ds

1/2

≤ c0 E


DT Υn

 T

0
|V n

s |
2ds

1/2
≤ c0 ∥DT ∥L4(FT ) ∥Υn∥L4(FT )

V n


H2
F([0,T ];Rd )

< ∞,

(6.10)

thus


·

0 DsΓ n
s eAn

s V n
s d Bs is a uniformly integrable martingale.

For any t ∈ [0, T ], taking E[·|Ft ] in (6.3) and (6.4) yields that Γ n
t ≤

4
i=1 I n,i

t , P-a.s. It then
follows that

Y 0
t − Y n

t ≤ (1 − θ)|Y 0
t | + θY 0

t − Y n
t ≤ (1 − θ)|Y 0

t | +
1 − θ

γ
ln


4

i=1

I n,i
t


, P-a.s.

(6.11)
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To show the other half of (6.1), we set U n , θY n
− Y 0, V n , θ Zn

− Z0 and define two
processes

ãn
t , 1

{Y 0
t ≠Y n

t }

fn(t, Y 0
t , Zn

t ) − fn(t, Y n
t , Zn

t )

Y 0
t − Y n

t
− κ1

{Y 0
t =Y n

t }
, An

t ,
 t

0
ãn

s ds,

t ∈ [0, T ].

Applying Itô’s formula to the process Γ n
t , exp


ζθ eAn

t U n
t


, t ∈ [0, T ], yields that

Γ n
t = Γ n

T +

 T

t

Gn
s ds + ζθ

 T

t

Γ n
s e

An
s (θd K n

s − d K 0
s ) − ζθ

 T

t

Γ n
s e

An
s V n

s d Bs,

t ∈ [0, T ],

where Gn
t = ζθ

Γ n
t eAn

t


θ fn(t, Y n

t , Zn
t ) − f0(t, Y 0

t , Z0
t ) − ãn

t
U n

t −
1
2ζθ eAn

t |V n
t |

2


. Similar to

(6.2), (H1) and the concavity of fn in z show that dt ⊗ d P-a.e.

fn(t, y, Z0
t ) ≥ θ fn


t, y, Zn

t


− (1 − θ) (α + β|y|) −

γ

2(1 − θ)
|V n

t |
2, ∀ y ∈ R,

which together with (H2) implies that dt ⊗ d P-a.e.

Gn
t ≤ ζθ

Γ n
t e

An
t


θ fn


t, Y n

t , Zn
t


− fn(t, Y 0

t , Z0
t ) + ∆n f (t) − ãn

t
U n

t −
γ

2(1 − θ)
|V n

t |
2


≤ ζθ
Γ n

t e
An

t


θ fn


t, Y n

t , Zn
t


− θ fn


t, Y 0

t , Zn
t


+ |∆n f (t)| − ãn

t
U n

t + (1 − θ)

α + β|Y 0

t |


= ζθ

Γ n
t e

An
t


(1 − θ)ãn

t Y 0
t + |∆n f (t)| + (1 − θ)


α + β|Y 0

t |


≤ γ e2κTΓ n

t


α + (β + κ)|Y 0

t |

+ ζθ eκTΓ n

t |∆n f (t)|.

Similarly to (6.3), integration by parts gives that

Γ n
t ≤ I n,1

T + I n,2
T + ζθ eκT DT

 T

0

Γ n
s d K n

s − ζθ

 T

t
DsΓ n

s e
An

s V n
s d Bs,

t ∈ [0, T ], (6.12)

where


·

0 DsΓ n
s eAn

s V n
s d Bs is a uniformly integrable martingale, which can be shown by using

similar arguments to those lead to (6.10). And similar to (6.4), the flat-off condition of
(Y n, Zn, K n) implies that T

0

Γ n
s d K n

s ≤ exp

γ e2κT Y 0

∗ + εζθ eκT


K n
T +

1
ε
Υn


sup

t∈[0,T ]

|Ln
t − L0

t |


K n

T , P-a.s.

(6.13)

For any t ∈ [0, T ], taking E[·|Ft ] in (6.12) and (6.13) yields that Γ n
t ≤

4
i=1 I n,i

t , P-a.s. It
then follows that

Y n
t − Y 0

t ≤ (1 − θ)|Y n
t | + θY n

t − Y 0
t ≤ (1 − θ)|Y 0

t | +
1 − θ

γ
ln


4

i=1

I n,i
t


, P-a.s.,

which together with (6.11) as well as the continuity of processes Y n, Y 0 and
4

i=1 I n,i implies
(6.1).
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(2) For any δ > 0, (6.1), (6.5), (6.7), Doob’s martingale inequality and Hölder’s inequality imply
that

P


sup

t∈[0,T ]

|Y n
t − Y 0

t | ≥ δ



≤ P

(1 − θ)


Y 0

∗ + Y n
∗


≥ δ/2


+ P


1 − θ

γ
ln


4

i=1

I n,i
∗


≥ δ/2



≤ 2
1 − θ

δ
E

Y 0

∗ + Y n
∗


+

4
i=1

P


I n,i
∗ ≥

1
4

e
δγ

2(1−θ)



≤
1 − θ

δγ
E

e2γ Y 0

∗ + e2γ Y n
∗


+ 4e

−δγ
2(1−θ)

4
i=1

E


I n,i
T



≤ 2
1 − θ

δγ
Ξ (2) + 4eκT e

−δγ
2(1−θ) C


∥ηn∥L2(FT ) + ζθ

Ξ 8
1 − θ

e2κT

 1
4

×

 T

0
|∆n f (s)|ds


L4(FT )

+ 1 + ζθ eεζθ eκT

+
ζθ

ε

Ξ 8
1 − θ

e2κT

 1
4

∥Ln
− L0

∥C4
F[0,T ]


, (6.14)

with C = 1 + ∥DT ∥L2(FT ) + supn∈N


E


DT eγ e2κT (Y 0
∗ +Y n

∗ )

K 0

T + K n
T


+ ∥DT (K 0

T +

K n
T )∥L2(FT )


. Hölder’s inequality and (6.5) show that C is a finite constant. The convergence

of ∆n f to 0 and (S1) imply that dt ⊗ d P-a.e.

lim
n→∞

∆n f (t, ω) = 0 and |∆n f (t, ω)| ≤ 2α + 2βY 0
∗ (ω) + γ |Z0

t (ω)|2,

∀ n ∈ N. (6.15)

Hence, for P-a.s. ω ∈ Ω we may assume that (6.15) holds for a.e. t ∈ [0, T ], and
that Y 0

∗ (ω) +
 T

0 |Z0
s (ω)|2ds < ∞. The Dominated convergence theorem then yields that

limn→∞

 T
0 |∆n f (s, ω)|ds = 0. By (S2), it also holds P-a.s. that limn→∞ ηn = eγ e2κT

|ξ0|

and limn→∞


supt∈[0,T ] |L

n
t − L0

t |


= 0. Applying (6.6), (6.8) and (6.9) with any p > 4

shows that

η2

n


n∈N,

 T
0 |∆n f (s)|ds

4
n∈N

and


supt∈[0,T ] |L
n
t − L0

t |
4


n∈N
are all uniformly

integrable sequences in L1(FT ), which leads to that limn→∞ E

η2

n


= E


e2γ e2κT

|ξ0|


and

limn→∞ E
 T

0 |∆n f (s)|ds
4

+ supt∈[0,T ] |L
n
t − L0

t |
4


= 0. Hence, letting n → ∞ in (6.14)

and then letting ε → 0 yield that

lim
n→∞

P


sup

t∈[0,T ]

|Y n
t − Y 0

t | ≥ δ


≤ 2

1 − θ

δγ
Ξ (2) + 4eκT e

−δγ
2(1−θ) C


1 + ∥eγ e2κT

|ξ0|∥L2(FT ) +
γ eκT

1 − θ


.
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As θ → 1, we obtain limn→∞ P


supt∈[0,T ] |Y

n
t − Y 0

t | ≥ δ


= 0, which implies that for any

p ∈ [1, ∞), exp


pγ · supt∈[0,T ] |Y
n
t − Y 0

t |


converges to 1 in probability.

(3) Fix p ∈ [1, ∞). Since E

exp


2pγ · supt∈[0,T ] |Y

n
t − Y 0

t |


≤

1
2 E


e4pγ Y n

∗ + e4pγ Y 0
∗


≤Ξ (4p) holds for any n ∈ N by (6.5), we see that


exp


pγ · supt∈[0,T ] |Y

n
t − Y 0

t |


n∈N

is a uniformly integrable sequence in L1(FT ), which implies that limn→∞ E

exp


pγ ·

supt∈[0,T ] |Y
n
t −Y 0

t |


= 1. In particular, it follows that


supt∈[0,T ] |Y

n
t −Y 0

t |
p


n∈N
is a uniformly

integrable sequence in L1(FT ) and that

lim
n→∞

E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
p


= 0. (6.16)

For any n ∈ N, applying Itô’s formula to the process |Y n
− Y 0

|
2, we can deduce from (S1)

that  T

0
|Zn

s − Z0
s |

2ds

= |ξn − ξ0|
2
− |Y n

0 − Y 0
0 |

2
+ 2

 T

0
(Y n

s − Y 0
s )


fn(s, Y n
s , Zn

s ) − f0(s, Y 0
s , Z0

s )


ds

+ 2
 T

0
(Y n

s − Y 0
s )(d K n

s − d K 0
s ) − 2

 T

0
(Y n

s − Y 0
s )(Zn

s − Z0
s ) d Bs

≤ 2 sup
t∈[0,T ]

|Y n
t − Y 0

t |


2αT + βT


Y n

∗ + Y 0
∗


+

γ

2

 T

0


|Zn

s |
2
+ |Z0

s |
2ds + K n

T + K 0
T



+ sup
t∈[0,T ]

|Y n
t − Y 0

t |
2
+ 2

 T

0
(Y n

s − Y 0
s )(Zn

s − Z0
s ) d Bs

 , P-a.s.

Then the Burkholder–Davis–Gundy inequality, Hölder’s inequality, and (6.5) imply that

E

 T

0
|Zn

s − Z0
s |

2ds

p

≤ cp E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
2p


+ cp E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
p

·

 T

0
|Zn

s − Z0
s |

2 ds

 p
2


+ cp


E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
2p
 1

2

×


sup

m∈N0

E


e2pγ Y m

∗ +

 T

0
|Zm

s |
2ds

2p

+

K m

T

2p

 1
2
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≤ cp E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
2p


+
1
2

E

 T

0
|Zn

s − Z0
s |

2ds

p

+ cp

Ξ (2p)


E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
2p
 1

2

.

It is clear that E
 T

0 |Zn
s − Z0

s |
2ds

p
< ∞ as Zn, Z0

∈ H2,2p
F ([0, T ]; Rd). Hence, it follows

that

E

 T

0
|Zn

s − Z0
s |

2ds

p
≤ cp E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
2p


+ cp

Ξ (2p)


E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
2p
 1

2

.

As n → ∞, (6.16) implies

lim
n→∞

E

 T

0
|Zn

s − Z0
s |

2ds

p
= 0. (6.17)

(4) Let us further assume that dt ⊗ d P-a.e., fn(t, ω, y, z) converges to f0(t, ω, y, z) locally
uniformly in (y, z). By (6.16) and (6.17) with p = 1,


(Y n, Zn)


n∈N has a subsequence (we

still denote it by

(Y n, Zn)


n∈N) such that limn→∞ supt∈[0,T ] |Y

n
t − Y 0

t | = 0, P-a.s. and
limn→∞ Zn

t = Z0
t , dt ⊗ d P-a.e. In fact, we can choose this subsequence so that supn∈N |Zn

| ∈

H2
F[0, T ]; see [16] or [14, Lemma 2.5]. Fix p ∈ [1, ∞). Using similar arguments to those lead

to (3.25), we can deduce from (S1) and (6.5) that

lim
n→∞

E

 T

0
| fn(s, Y n

s , Zn
s ) − f0(s, Y 0

s , Z0
s )|ds

p
= 0. (6.18)

For any n ∈ N, it holds P-a.s. that

K n
t − K 0

t = Y n
0 − Y 0

0 − (Y n
t − Y 0

t ) −

 t

0


fn(s, Y n

s , Zn
s ) − f0(s, Y 0

s , Z0
s )


ds

+

 t

0
(Zn

s − Z0
s ) d Bs, t ∈ [0, T ].

The Burkholder–Davis–Gundy inequality then implies that

E


sup

t∈[0,T ]

|K n
t − K 0

t |
p


≤ cp E


sup

t∈[0,T ]

|Y n
t − Y 0

t |
p

+

 T

0
| fn(s, Y n

s , Zn
s ) − f0(s, Y 0

s , Z0
s )|ds

p

+

 T

0
|Zn

s − Z0
s |

2ds

 p
2

,
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where E

 T
0 |Zn

s − Z0
s |

2ds
 p

2


≤


E
 T

0 |Zn
s − Z0

s |
2ds

p 1
2

due to Hölder’s inequality.

As n → ∞, (6.16)–(6.18) lead to limn→∞ E


supt∈[0,T ] |K

n
t − K 0

t |
p


= 0. �

7. An obstacle problem for PDEs

In this section, we show that in the Markovian case, quadratic RBSDEs with unbounded
obstacles provide a probabilistic interpretation of solutions of some obstacle problem for semi-
linear parabolic PDEs, in which the non-linearity appears as the square of the gradient.

For any t ∈ [0, ∞), Bt
= {Bt

s , Bt+s −Bt }s∈[0,∞) is also a d-dimensional standard Brownian
Motion on the probability space (Ω , F , P). Let Ft be the augmented filtration generated by Bt ,

i.e., Ft
=


F t

s , σ

σ

Bt

r ; r ∈ [0, s]

∪ N


s≥0

. Let k ∈ N, κ ≥ 0 and ϖ ∈ [1, 2). We consider

the following functions:

(1) b : [0, T ] × Rk
→ Rk and σ : [0, T ] × Rk

→ Rk×d are two continuous functions such that
σ∗ , sup(t,x)∈[0,T ]×Rk |σ(t, x)| < ∞, and that

|b(t, x) − b(t, x ′)| + |σ(t, x) − σ(t, x ′)| ≤ κ|x − x ′
|,

∀ t ∈ [0, T ], ∀ x, x ′
∈ Rk . (7.1)

(2) h : Rk
→ R and l : [0, T ] × Rk

→ R are two continuous functions such that

l(T, x) ≤ h(x), ∀ x ∈ Rk and |h(x)| ∨ |l(t, x)| ≤ κ

1 + |x |

ϖ

,

∀ (t, x) ∈ [0, T ] × Rk .
(7.2)

(3) f : [0, T ] × Rk
× R × Rd

→ R is a jointly continuous function that satisfies
(i) There exist α, β ≥ 0 and γ > 0 such that for any (t, x, z) ∈ [0, T ] × Rk

× Rd and
y, y′

∈ R

| f (t, x, y, z)| ≤ α + β|y| +
γ

2
|z|2 and

| f (t, x, y, z) − f (t, x, y′, z)| ≤ κ|y − y′
|;

(7.3)

(ii) The mapping z → f (t, x, y, z) is concave for all (t, x, y) ∈ [0, T ] × Rk
× R.

(7.4)

For any λ ≥ 0, we letcλ denote a generic constant, depending on λ, α, β, γ, κ,ϖ, T, σ∗ and on
b0 , supt∈[0,T ] |b(t, 0)| < ∞, whose form may vary from line to line.

Given (t, x) ∈ [0, T ] × Rk , it is well-known that the SDE

Xs = x +

 s

t
b(r, Xr )dr +

 s

t
σ(r, Xr )d Br , s ∈ [t, T ] (7.5)

admits a unique solution


X t,x
s


s∈[t,T ]
, an Rk-valued continuous process, such that X t,x

s ∈

F t
s−t ⊂ Fs for any s ∈ [t, T ]. In addition, we set X t,x

s , x, ∀ s ∈ [0, t].
We recall from [9, Section 5] the following estimate for the exponential moments of process

|X t,x
s |

ϖ


s∈[t,T ]
.
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Lemma 7.1. Let p ∈ [1, ∞). For any (t, x) ∈ [0, T ] × Rk , we have

E


exp


p sup

s∈[t,T ]

X t,x
s

ϖ ≤cp exp


p 3ϖ−1eκϖ T
|x |

ϖ


.

Our objective in this section is to find a unique viscosity solution of the following obstacle
problem for semi-linear parabolic PDEs:

min

(u − l)(t, x), −∂t u(t, x) − Lu(t, x) − f


t, x, u(t, x), (σ T

· ∇x u)(t, x)


= 0,

∀ (t, x) ∈ (0, T ) × Rk,

u(T, x) = h(x), ∀ x ∈ Rk,

(7.6)

where σ T denotes the transpose of σ and Lu(t, x) , 1
2 trace


(σσ T D2

x u)(t, x)


+ ⟨b(t, x),

∇x u(t, x)⟩.

Definition 7.1. A function u ∈ C([0, T ] × Rk) is called a viscosity subsolution (resp. viscosity
supersolution) of (7.6) if u(T, x) ≤ (resp. ≥) h(x), ∀ x ∈ Rk , and if for any (t0, x0, ϕ) ∈

(0, T ) × Rk
× C1,2


[0, T ] × Rk


such that u(t0, x0) = ϕ(t0, x0) and that u − ϕ attains a local

maximum (resp. local minimum) at (t0, x0), we have

min

(u − l)(t0, x0), −∂tϕ(t0, x0) − f


t0, x0, u(t0, x0), (σ

T
· ∇x u)(t0, x0)


≤ (resp. ≥) 0.

A function u ∈ C([0, T ] × Rk) is called a viscosity solution of (7.6) if it is both a viscosity
subsolution and a viscosity supersolution of (7.6).

For any (t, x) ∈ [0, T ] × Rk , let P t denote the Ft -progressively measurable σ -field on
[0, T − t] × Ω . Since X t,x

s , X t,x
t+s, s ∈ [0, T − t] is an Ft -adapted continuous process, the joint

continuity of f implies that

f̃ t,x (s, ω, y, z) , f


t + s, X t,x
s (ω), y, z


, ∀ (s, ω, y, z) ∈ [0, T − t] × Ω × R × Rd

is a P t
× B(R) × B(Rd)/B(R)-measurable function, namely, it is a generator with respect to

Ft over the period [0, T − t]. By (7.3) and (7.4), f̃ t,x also satisfies (H1)–(H3). On the other hand,
(7.2) shows that

L t,x
s , l


t + s, X t,x

s


s∈[0,T −t] is also an Ft -adapted continuous process such

that L t,x
T −t = l


T, X t,x

T


≤ h


X t,x

T


∈ F t

T −t . For any p ∈ [1, ∞), (7.2) and Lemma 7.1 imply
that

E

exp


p

|h

X t,x

T


| ∨ L t,x

∗


≤ epκ E


exp


(1 ∨ pκ) sup

s∈[t,T ]

|X t,x
s |

ϖ


≤ cp exp

(1 ∨ pκ) 3ϖ−1eκϖ T

|x |
ϖ


. (7.7)

Hence, Theorems 3.2 and 4.1 show that the quadratic RBSDE


h(X t,x
T ), f̃ t,x ,L t,x


with respect

to Bt over the period [0, T − t] admits a unique solution
Y t,x ,Z t,x , K t,x


in ∩p∈[1,∞) Sp

Ft

[0, T − t].
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The continuity of process


X t,x
s


s∈[0,T ]
, (7.3) and (7.4) imply that

f t,x (s, ω, y, z) , 1{s≥t} f̃ t,x (s − t, ω, y, z) = 1{s≥t} f

s, X t,x

s (ω), y, z

,

∀ (s, ω, y, z) ∈ [0, T ] × Ω × R × Rd

is a P × B(R) × B(Rd)/B(R)-measurable function that satisfies (H1)–(H3) with the same
constants α, β, κ ≥ 0 and γ > 0 as f . Let L t,x

s , L t,x
(s−t)+ = l


s ∨ t, X t,x

s∨t

, s ∈ [0, T ], which is

clearly an F-adapted continuous process with L t,x
T = L t,x

T −t ≤ h

X t,x

T


. Then one can show that

Y t,x
s , Z t,x

s , K t,x
s


,
Y t,x

(s−t)+ , 1{s≥t}Z t,x
s−t , 1{s≥t}K t,x

s−t


, s ∈ [0, T ]

satisfies the quadratic RBSDE

h(X t,x

T ), f t,x , L t,x


over the period [0, T ], and that
Y t,x , Z t,x , K t,x


∈ ∩p∈[1,∞) Sp

F[0, T ]. Since E

exp


p

|h

X t,x

T


| ∨ L t,x

∗


< ∞ by (7.7),

Theorems 3.2 and 4.1 again show that

Y t,x , Z t,x , K t,x


is the unique solution of the quadratic

RBSDE

h(X t,x

T ), f t,x , L t,x


in ∩p∈[1,∞) Sp
F[0, T ].

The main objective of this section is to demonstrate that

u(t, x) , Y t,x
0 = Y t,x

t , ∀ (t, x) ∈ [0, T ] × Rk (7.8)

is a viscosity solution of (7.6).

Proposition 7.1. The function u defined in (7.8) is continuous such that |u(t, x)| ≤c0

1+|x |

ϖ


for any (t, x) ∈ [0, T ] × Rk .

Sketch of the Proof : Given (t, x) ∈ [0, T ] × Rk , for each sequence {(tn, xn)}n∈N ⊂ [0, T ] × Rk

that converges to (t, x), a standard calculation shows that limn→∞ E


sups∈[0,T ] |X

tn ,xn
s −

X t,x
s |

2


= 0. Thus, up to a subsequence, we can deduce from the continuity of functions h, l

and f that P-a.s.

lim
n→∞

h

X tn ,xn

T


= h


X t,x

T


, lim

n→∞
sup

s∈[0,T ]

|L tn ,xn
s − L t,x

s | = 0,

and lim
n→∞

f tn ,xn (s, y, z) = f t,x (s, y, z), ∀ (s, y, z) ∈ [0, T ] × R × Rd .

Then applying Theorem 6.1 yields that limn→∞ sups∈[0,T ] |Y
tn ,xn
s − Y t,x

s | = 0, P-a.s. In
particular, one has limn→∞ u


tn, xn


= limn→∞

Y tn ,xn
0 = limn→∞ Y tn ,xn

0 = Y t,x
0 = Y t,x

0 =

u(t, x). Moreover, Theorem 3.2, (7.2) and Lemma 7.1 imply that

−κ

1 + |x |

ϖ


≤ l(t, x) = L t,x
0 ≤ u(t, x) = Y t,x

0 ≤c0

+
1
γ

ln E

exp


γ eβT 

|h(X t,x
T )| ∨ L t,x

∗


≤ c0 +

1
γ

ln E


exp


γ κeβT sup

s∈[t,T ]

|X t,x
s |

ϖ


≤c0


1 + |x |

ϖ

. �

For any ξ ∈ Ot,x ,

ξ ∈ L0(FT ) : ξ ≥ L t,x

T , P-a.s. and E

ep ξ+

< ∞, ∀ p ∈

(1, ∞)

, Theorems 3.2 and 4.1 assure a unique solution


Y t,x,ξ , Z t,x,ξ , K t,x,ξ


of the quadratic

RBSDE

ξ, f t,x , L t,x


in ∩p∈[1,∞) Sp

F[0, T ]. For each s ∈ [0, T ], we can regard E t,x
[ξ |Fs] ,
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Y t,x,ξ
s , ξ ∈ Ot,x as a non-linear conditional expectation on Ot,x with respect to Fs (cf.

g-expectations in the case of BSDEs, see e.g., [23,19], Subsection 5.4 of [3] and Section 5 of
the current paper). Then the diffusion X t,x has the following Markov property under E t,x :

Proposition 7.2. Let u be the function defined in (7.8). For any (t, x) ∈ [0, T ] × Rk it holds
P-a.s. that

u

s, X t,x

s


= Y t,x

s = Y t,x
s−t , s ∈ [t, T ]. (7.9)

For case of quadratic BSDEs, [14] pointed out that the flow property derives from the
Markovian property of the diffusion process X t,x and from the uniqueness of the quadratic BSDE
(see line 1–5 of page 591 therein). However, the author neither proved it in details nor mentioned
the role of the stability result. So we would like to provide a complete proof of the flow property
(7.9):

Proof of Proposition 7.2. (1) We fix s ∈ [ t, T ] and denote Θ0
t ′ , Θ t,x

t ′ , t ′ ∈ [s, T ] for Θ =

X, Y, Z , K . Given n ∈ N, there exist a finite subset


xn
i

 jn
i=1 of B2n (0) , {x ∈ Rk

: |x | < 2n
}

and a disjoint partition


I n
i

 jn
i=1 of B2n (0) such that xn

i ∈ I n
i ∈ B(Rk) and I n

i ⊂ B2−n (xn
i ) for

i = 1, . . . , jn . Let An
i ,


X0

s ∈ I n
i


∈ Fs, i = 1, . . . , jn and let An

0 ,


X0
s ∈ Bc

2n (0)


∈ Fs .

For any t ′ ∈ [s, T ] and Θ = X, Y, Z , K , we define Θn
t ′ ,

 jn
i=0 1An

i
Θ

s,xn
i

t ′ ∈ Ft ′ with xn
0 , 0.

Then for any i = 0, . . . , jn ,

1An
i

X s,xn
i = xn

i 1An
i
+

 t ′

s
1An

i
b


r, X
s,xn

i
r


dr +

 t ′

s
1An

i
σ


r, X
s,xn

i
r


d Br

= xn
i 1An

i
+

 t ′

s
1An

i
b

r, Xn

r


dr +

 t ′

s
1An

i
σ

r, Xn

r


d Br , P-a.s.;

and that

1An
i
l

t ′, Xn

t ′


= 1An
i
l

t ′, X

s,xn
i

t ′


= 1An
i
L

s,xn
i

t ′ ≤ 1An
i
Y

s,xn
i

t ′

= 1An
i
h

X

s,xn
i

T


+

 T

t ′
1An

i
f

r, X

s,xn
i

r , Y
s,xn

i
r , Z

s,xn
i

r

dr

+ 1An
i
K

s,xn
i

T − 1An
i
K

s,xn
i

t ′ −

 T

t ′
1An

i
Z

s,xn
i

r d Br

= 1An
i
h

Xn

T


+

 T

t ′
1An

i
f

r, Xn

r , Y n
r , Zn

r


dr + 1An

i
K n

T − 1An
i
K n

t ′

−

 T

t ′
1An

i
Zn

r d Br , P-a.s.

Summing up both expressions over i = 0, . . . , jn , one can deduce from the continuity of function
l as well as the continuity of processes {Xn

t ′}t ′∈[s,T ], {Y n
t ′ }t ′∈[s,T ] and {K n

t ′}t ′∈[s,T ] that P-a.s.

Xn
t ′ = Xn

s +

 t ′

s
b(r, Xn

r )dr +

 t ′

s
σ(r, Xn

r )d Br , t ′ ∈ [s, T ]; (7.10)

l

t ′, Xn

t ′


≤ Y n
t ′ = h(Xn

T ) +

 T

t ′
f (r, Xn

r , Y n
r , Zn

r )dr + K n
T − K n

t ′ −

 T

t ′
Zn

r d Br ,

t ′ ∈ [s, T ]. (7.11)
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Moreover, we also have T

s


Y n

r − l(r, Xn
r )

d K n

r =

jn
i=0

1An
i

 T

s


Y

s,xn
i

r − L
s,xn

i
r


d K

s,xn
i

r = 0, P-a.s. (7.12)

By (7.5), it holds P-a.s. that X0
t ′ = X0

s +
 t ′

s b(r, X0
r )dr +

 t ′

s σ(r, X0
r )d Br , ∀ t ′ ∈ [s, T ].

Subtracting it from (7.10), we see from (7.1) that P-a.s.

sup
s′∈[s,t ′]

|Xn
s′ − X0

s′ | ≤ |Xn
s − X0

s | + κ

 t ′

s
|Xn

r − X0
r |dr

+ sup
s′∈[s,t ′]


 s′

s


σ(r, Xn

r ) − σ(r, X0
r )

d Br

 , t ′ ∈ [s, T ]. (7.13)

Similar to Lemma 7.1, we can deduce that (see [2] for details)

E


exp


p sup

t ′∈[s,T ]

|Xn
t ′ − X0

t ′ |
ϖ


≤ cp


E


exp


p 2ϖ eκϖ T

|Xn
s − X0

s |
ϖ
 1

2

≤ cp


E

exp


p 22ϖ−1eκϖ T

|X0
s |

ϖ
 1

2
,

where we used the fact that

|Xn
s − X0

s | = 1{|X0
s |<2n}|X

n
s − X0

s | + 1{|X0
s |≥2n}|X

0
s | ≤ 2−n

+ 1{|X0
s |≥2n}|X

0
s |. (7.14)

Thus it follows that for any p ∈ [1, ∞)

E


exp


p sup

t ′∈[s,T ]

|Xn
t ′ |

ϖ


≤

1
2

E


exp


p2ϖ sup

t ′∈[s,T ]

|Xn
t ′ − X0

t ′ |
ϖ


+

1
2

E


exp


p2ϖ sup

t ′∈[s,T ]

|X0
t ′ |

ϖ


≤ cp + E


exp


p 23ϖ−1eκϖ T sup

t ′∈[s,T ]

|X0
t ′ |

ϖ


. (7.15)

As


Y s,xn
i , Z s,xn

i , K s,xn
i


i=0,..., jn
⊂ ∩p∈[1,∞) Sp

F[0, T ], it holds for any p ∈ [1, ∞) that

E


exp


p sup

t ′∈[s,T ]

|Y n
t ′ |


+

 T

s
|Zn

r |
2dr

p

+

K n

T

p



≤

jn
i=0

E


exp


p sup

t ′∈[s,T ]

Y s,xn
i

t ′

+

 T

s

Z s,xn
i

r

2 dr

p

+


K

s,xn
i

T

p


< ∞. (7.16)

(2) Fix m ∈ N0. As X m
t ′ , 1{t ′<s}E[Xm

s |Ft ′ ]+ 1{t ′≥s} Xm
t ′ , t ′ ∈ [0, T ] is an F-adapted continuous

process, the continuity of function l and f shows that Lm
t ′ , l


t ′, X m

t ′

, t ′ ∈ [0, T ] is also an

F-adapted continuous process and

fm(t ′, ω, y, z) , f

t ′, X m

t ′ (ω), y, z

, ∀ (t ′, ω, y, z) ∈ [0, T ] × Ω × Rk

× Rd
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is a P × B(R) × B(Rd)/B(R)-measurable function. Moreover, (7.3)–(7.4) show that fm
satisfies (H1)–(H3) with the same constants α, β, κ ≥ 0 and γ > 0 as f . For any p ∈

(1, ∞), the convexity of function y → e|y|
ϖ

on R and Jensen’s inequality imply that
exp


E

|Xn

s | |Ft ′
ϖ

t ′∈[0,∞)
is a continuous positive submartingale. Doob’s Martingale

Inequality then shows that

E


sup

t ′∈[0,s]


exp


E

|Xm

s | |Ft ′
ϖp

≤


p

p − 1

p

E


exp


|Xm

s |
ϖ
p


,

which together with (7.15) and Lemma 7.1 leads to that

E

exp


p


X m
∗

ϖ
≤ E


sup

t ′∈[0,s]
exp


p


E

|Xm

s | |Ft ′
ϖ

+ E


sup

t ′∈[s,T ]

exp


p|Xm
t ′ |

ϖ


≤ cp E


exp


p sup

t ′∈[s,T ]

|Xm
t ′ |

ϖ


≤ cp +cp E


exp


p 23ϖ−1eκϖ T sup

t ′∈[s,T ]

|X0
t ′ |

ϖ


≤ cp +cp exp


p 23ϖ−13ϖ−1e2κϖ T

|x |
ϖ


.

Hence it follows from (7.2) that

E

exp


p

|h


X m
T


| ∨ Lm

∗


≤ epκ E


exp


(1 ∨ pκ)


X m

∗

ϖ 
≤ cp +cp exp


(1 ∨ pκ) 23ϖ−13ϖ−1e2κϖ T

|x |
ϖ


. (7.17)

As Y t,x
∈ Ep

F[0, T ], we also see from (7.16) that E

ep |Y m

s |


< ∞. Since Y m

s ≥ l

s, Xm

s


=

l

s, X m

s


= Lm

s , P-a.s., Theorems 3.2 and 4.1 imply that the quadratic RBSDE(Y m
s , fm, Lm)

over time interval [0, s] admits a unique solution

(Y m

r , Z m
r , Km

r )


r∈[0,s] in ∩p∈[1,∞) Sp
F[0, s].

We extend the processes (Y m, Z m, Km) to the period (s, T ] by setting (Y m
t ′ , Z m

t ′ , Km
t ′ ) ,

(Y m
t ′ , Zm

t ′ , Km
s + K m

t ′ − K m
s ), ∀ t ′ ∈ (s, T ]. Then (7.11) and (7.12) imply that

{(Y m
t ′ , Z m

t ′ , Km
t ′ )}t ′∈[0,T ] solves the quadratic RBSDE


h(X m

T ), fm, Lm

. As (Y t,x , Z t,x , K t,x ) ∈

∩p∈[1,∞) Sp
F[0, T ], (7.16) shows that (Y m, Z m, Km) ∈ ∩p∈[1,∞) Sp

F[0, T ]. Moreover,
Theorems 3.2 and 4.1 and (7.17) yield that (Y m, Z m, Km) is the unique solution of the quadratic
RBSDE


h(X m

T ), fm, Lm


in ∩p∈[1,∞) Sp
F[0, T ].

(3) Squaring both sides of (7.13), one can deduce from Hölder’s inequality, Doob’s martingale
inequality, Fubini’s Theorem and (7.1) that

E


sup

s′∈[s,t ′]
|Xn

s′ − X0
s′ |

2


≤ 3E

|Xn

s − X0
s |

2


+ 3κ2(T + 4)

 t ′

s
E


sup

s′∈[s,r ]

|Xn
s′ − X0

s′ |
2


dr, t ′ ∈ [s, T ].
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Then Gronwall’s inequality and (7.14) imply that

E


sup

t ′∈[s,T ]

|Xn
t ′ − X0

t ′ |
2


≤ 3E

|Xn

s − X0
s |

2


e3κ2(T 2
+4T )

≤ c0


2−2n

+ E[1{|X0
s |≥2n}|X

0
s |

2
]


.

As E

|X t,x

s |
2


< ∞, letting n → ∞ yields that limn→∞ E


supt ′∈[s,T ] |X

n
t ′ − X0

t ′ |
2


= 0. By

Doob’s martingale inequality

E


sup

t ′∈[0,T ]

|X n
t ′ − X 0

t ′ |
2


≤ E


sup

t ′∈[0,s]
|E[Xn

s − X0
s |Ft ′ ] |

2


+ E


sup

t ′∈[s,T ]

|Xn
t ′ − X0

t ′ |
2


≤ 5E


sup

t ′∈[s,T ]

|Xn
t ′ − X0

t ′ |
2

.

It follows that limn→∞ E


supt ′∈[0,T ] |X n

t ′ − X 0
t ′ |

2


= 0. Hence, we can pick up a subsequence

of {X n
}n∈N (we still denote it by {X n

}n∈N) such that except on a P-null set N ,

lim
n→∞


sup

t ′∈[0,T ]

|X n
t ′ − X 0

t ′ |


= 0 and the path t ′ → X 0

t ′ is continuous. (7.18)

To apply Theorem 6.1 to the sequence


Y n, Z n, Kn


n∈N, let us check the assumptions of
this theorem first. We have seen that the sequence { fm}m∈N0 satisfies (S1), and that (7.17) justifies
(S3). Fix ω ∈ N c. For any ε > 0, the continuity of h assures that there exists a δ(ω) ∈ (0, 1)

such that

|h(x̃) − h(x ′)| ∨ |l(s̃, x̃) − l(s′, x ′)| < ε, ∀ (s̃, x̃), (s′, x ′) ∈ [0, T ] × D(ω) with

|s̃ − s′
|
2
+ |x̃ − x ′

|
2 < δ2(ω),

where D(ω) ,


x̃ ∈ Rk
: |x̃ | ≤ 1 + supt ′∈[0,T ] |X 0

t ′ (ω)| < ∞


. In light of

(7.18), there exists an N (ω) ∈ N such that for any n ≥ N (ω), supt ′∈[0,T ] |X n
t ′ (ω) −

X 0
t ′ (ω)| < δ(ω). Then it holds for any n ≥ N (ω) that |h


X n

T (ω)


− h


X 0
T (ω)


| < ε

and that | Ln
t ′(ω) − L0

t ′(ω)| = | l

t ′X n

t ′ (ω)


− l

t ′X 0

t ′ (ω)

| < ε for any t ′ ∈ [0, T ].

Thus (S2) is satisfied. Given (t ′, ω) ∈ [0, T ] × N c, the continuity of f and (7.18)
imply that limn→∞ fn


t ′, ω, Y 0

t ′(ω), Z 0
t ′(ω)


= limn→∞ f


t ′, X n

t ′ (ω), Y 0
t ′(ω), Z 0

t ′(ω)


=

f

t ′, X 0

t ′ (ω), Y 0
t ′(ω), Z 0

t ′(ω)


= f0

t ′, ω, Y 0

t ′(ω), Z 0
t ′(ω)


.

Now, applying Theorem 6.1 yields that limn→∞ E

exp


supt ′∈[0,T ] |Y n

t ′ − Y 0
t ′ |


= 1, thus

{Y n
}n∈N has a subsequence (we still denote it by {Y n

}n∈N) such that limn→∞ supt ′∈[0,T ] |Y n
t ′ −

Y 0
t ′ | = 0, P-a.s. In particular,

lim
n→∞

Y n
s = lim

n→∞
Y n

s = Y 0
s = Y 0

s = Y t,x
s , P-a.s. (7.19)

where Y n
s =

 jn
i=0 1An

i
Y

s,xn
i

s =
 jn

i=0 1An
i
u

s, xn

i


=
 jn

i=0 1An
i
u

s, Xn

s


= u


s, Xn

s


for any

n ∈ N. Since limn→∞ Xn
s = X0

s = X t,x
s , P-a.s. by (7.14), Proposition 7.1 and (7.19) then

imply that Y t,x
s = limn→∞ u


s, Xn

s


= u


s, X t,x

s

, P-a.s. Eventually, the continuity of processes

X t,x , Y t,x and Proposition 7.1 leads to (7.9). �
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Theorem 7.1. The function u defined in (7.8) is a viscosity solution of (7.6).

Proof. (1) For any x ∈ Rk , it is clear that u(T, x) = Y T,x
0 = h


X T,x

T


= h(x). We first show

that u is a viscosity subsolution of (7.6). Let (t0, x0, ϕ) ∈ (0, T ) × Rk
× C1,2


[0, T ] × Rk


be

such that u(t0, x0) = ϕ(t0, x0) and that u − ϕ attains a local maximum at (t0, x0). We prove by
contradiction. Suppose that

ε ,
1
2

min {(u − l)(t0, x0), −∂tϕ(t0, x0) − Lϕ(t0, x0)

− f


t0, x0, ϕ(t0, x0), (σ
T
∇xϕ)(t0, x0)


> 0.

Since ϕ ∈ C1,2

[0, T ]×Rk


, the continuity of functions u, l, b, σ and f as well as the assumption

on local maximum of u − ϕ assure that there is a δ ∈

0, T − t0


such that for any t ∈ [t0, t0 + δ]

and any x ∈ Rk with |x − x0| ≤ δ

|u(t, x) − u(t0, x0)| ≤
1
3
ε, (u − l)(t, x) ≥ ε, (u − ϕ)(t, x) ≤ 0, (7.20)

and − ∂tϕ(t, x) − Lϕ(t, x) − f


t, x, ϕ(t, x), (σ T
∇xϕ)(t, x)


≥ ε. (7.21)

Since
X t0,x0

s


s∈[0,T −t0]
and Y t0,x0 are both Ft0 -adapted continuous processes,

ν , inf


s ∈ [0, δ] : |X t0,x0
s − x0| > δ


∧ inf


s ∈ [0, δ] : |Y t0,x0

s − Y t0,x0
0 | >

1
3
ε


∧ δ

(7.22)

defines an Ft0 -stopping time such that ν > 0, P-a.s. For any ω ∈ Ω and s ∈ [0, ν(ω)], (7.20)
implies that

Y t0,x0
s (ω) ≥ Y t0,x0

0 −
1
3
ε = u(t0, x0) −

1
3
ε ≥ u


t0 + s, X t0,x0

s (ω)

−

2
3
ε

≥ l

t0 + s, X t0,x0

s (ω)

+

1
3
ε = L t0,x0

s (ω) +
1
3
ε.

Because
Y t0,x0 ,Z t0,x0 , K t0,x0


∈ ∩p∈[1,∞) Sp

Ft0 [0, T −t0] solves the quadratic RBSDE


h

X t0,x0

T


, f̃ t0,x0 ,L t0,x0


with respect to Bt0 over the period [0, T − t0], its flat-off condition shows that

P-a.s., K t0,x0
s = 0 for any s ∈ [0, ν]. Hence, it holds P-a.s. that

Y t0,x0
ν∧s = Y t0,x0

ν +

 ν

ν∧s
f̃ t0,x0


r,Y t0,x0

r ,Z t0,x0
r


dr −

 ν

ν∧s

Z t0,x0
r d Bt0

r , s ∈ [0, δ].

To wit,


Y, Z


,
Y t0,x0

ν∧s , 1{s<ν}
Z t0,x0

s


s∈[0,δ]

∈ C∞

Ft0 [0, δ] × ∩p∈[1,∞) H2,2p
Ft0 ([0, δ]; Rd)

solves the BSDE:

Ys = Y t0,x0
ν +

 δ

s
f (r, Yr , Zr ) dr −

 δ

s
Zr d Bt0

r , s ∈ [0, δ],

with f(s, ω, y, z) , 1{s <ν(ω)} f̃ t0,x0(s, ω, y, z),

∀ (s, ω, y, z) ∈ [0, δ] × Ω × R × Rd . (7.23)



1194 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 122 (2012) 1155–1203

Like f̃ t0,x0 , f is a generator with respect to Ft0 over the period [0, δ] that satisfies (H1)–(H3).
On the other hand, since

X t0,x0
s = x +

 s

0
b(r + t0, X t0,x0

r )dr +

 s

0
σ(r + t0, X t0,x0

r )d Bt0
r , s ∈ [0, T − t0],

applying Itô’s formula to the process ϕ(t0 + ·, X t0,x0
· ) yields that

ϕ

t0 + ν ∧ s, X t0,x0

ν∧s


= ϕ

t0 + ν, X t0,x0

ν


−

 ν

ν∧s


∂tϕ + Lϕ


t0 + r, X t0,x0

r


dr

−

 ν

ν∧s
(σ T

∇xϕ)

t0 + r, X t0,x0

r


d Bt0

r , s ∈ [0, δ].

Namely,


Y ′, Z ′


,


ϕ

t0 + ν ∧ s, X t0,x0

ν∧s

, 1{s<ν}(σ

T
∇xϕ)


t0 + s, X t0,x0

s


s∈[0,δ]
solves the

BSDE

Y ′
s = ϕ


t0 + ν, X t0,x0

ν


+

 δ

s
f′r dr −

 δ

s
Z ′

r d Bt0
r , s ∈ [0, δ],

where f′s , −1{s <ν}


∂tϕ + Lϕ


t0 + s, X t0,x0

s

, ∀ s ∈ [0, δ]. Since X t0,x0 is an Ft0 -adapted

continuous process, and since ϕ ∈ C1,2

[0, T ] × Rk


, the continuity of function σ implies that

Y ′ is an Ft0 -adapted continuous process as well as that Z ′ and f′ are both Ft0 -progressively
measurable processes. Moreover, since |X t0,x0

s − x0| ≤ δ holds for P-a.s. ω ∈ Ω and
s ∈


0, ν(ω)


, and since ϕ ∈ C1,2


[0, T ] × Rk


, we further see from the continuity of function b

and the boundedness of function σ that Y ′, Z ′ and f′ are all bounded processes.
Proposition 7.2 and (7.20)–(7.22) imply that Y t0,x0

ν = u

t0 + ν, X t0,x0

ν


≤ ϕ


t0 + ν, X t0,x0

ν


,

P-a.s., and that on Ω

f′s − f

s, Y ′

s, Z ′
s


= −1{s <ν}


∂tϕ + Lϕ


t0 + s, X t0,x0

s


− 1{s<ν} f


t0 + s, X t0,x0

s , ϕ

t0 + s, X t0,x0

s


,

(σ T
∇xϕ)


t0 + s, X t0,x0

s


≥ ε1{s <ν}, ∀ s ∈ [0, δ]. (7.24)

The first part of Proposition 5.1 gives that P-a.s., Y ′
s ≥ Ys for any s ∈ [0, δ]. Since

Y ′

0 = ϕ(t0, x0) = u(t0, x0) = Y t0,x0
0 = Y0, the second part of Proposition 5.1 further shows

that P
 δ

0


f′s − f


s, Y ′

s, Z ′
s


ds = 0


> 0. However, (7.24) and (7.22) show that P-a.s., δ

0


f′s − f


s, Y ′

s, Z ′
s


ds ≥ εν > 0, which leads to a contradiction.

(2) Next, we show that u is a viscosity supersolution of (7.6). Let (t0, x0, ϕ) ∈ (0, T ) × Rk
×

C1,2

[0, T ] × Rk


be such that u(t0, x0) = ϕ(t0, x0) and that u − ϕ attains a local minimum at

(t0, x0). Since u(t0, x0) = Y t0,x0
t0 ≥ L t0,x0

t0 = l

t0, X t0,x0

t0


= l(t0, x0), it suffices to show that

−∂tϕ(t0, x0) − Lϕ(t0, x0) − f


t0, x0, ϕ(t0, x0), (σ
T
∇xϕ)(t0, x0)


≥ 0.

To make a contradiction, we assume that

ε ,
1
2


∂tϕ(t0, x0) + Lϕ(t0, x0) + f


t0, x0, ϕ(t0, x0), (σ

T
∇xϕ)(t0, x0)


> 0.

Since ϕ ∈ C1,2

[0, T ] × Rk


, the continuity of functions b, σ and f as well as the assumption

on local minimum of u −ϕ assures that there is a δ ∈

0, T − t0


such that for any t ∈ [t0, t0 + δ]
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and any x ∈ Rk with |x − x0| ≤ δ

∂tϕ(t, x) + Lϕ(t, x) + f


t, x, ϕ(t, x), (σ T
∇xϕ)(t, x)


≥ ε and (u − ϕ)(t, x) ≥ 0.

(7.25)

We still define the Ft0 -stopping time ν as in (7.22). It is easy to see that the processes
Y, Z, V


,
Y t0,x0

ν∧s , 1{s<ν}
Z t0,x0

s , K t0,x0
ν∧s


s∈[0,δ]

∈ C∞

Ft0 [0, δ]

×


p∈[1,∞)

H2,2p
Ft0 ([0, δ]; Rd) ×


p∈[1,∞)

Kp
Ft0 [0, δ]

solves the BSDE (5.5) with generator f defined in (7.23) over the period [0, δ]. Let (Y ′, Z ′) be
the pair of processes considered in part 1. Proposition 7.2, (7.25) and the definition of ν imply
that Y t0,x0

ν = u

t0 + ν, X t0,x0

ν


≥ ϕ


t0 + ν, X t0,x0

ν


, P-a.s., and that on Ω

f

s, Y ′, Z ′


− f′s = 1{s<ν} f


t0 + s, X t0,x0

s , ϕ

t0 + s, X t0,x0

s


, (σ T

∇xϕ)

t0 + s, X t0,x0

s


+1{s<ν}


∂tϕ + Lϕ


t0 + s, X t0,x0

s


≥ ε1{s<ν}, ∀ s ∈ [0, δ].

Using similar arguments to those that follow (7.24), we reach a contradiction. �

For the uniqueness of the viscosity solution of (7.6), we establish a comparison principle
between its viscosity subsolution and viscosity supersolution, whose proof is inspired by the
techniques used in Theorem 3.1 of [8].

Theorem 7.2. Suppose that there exists an increasing function M : (0, ∞) → (0, ∞) such that
for any R > 0,

| f (t, x, y, z) − f (t, x ′, y, z)| ≤ M(R)

1 + |z|


|x − x ′

| (7.26)

holds for any (t, x, x ′, y, z) ∈ [0, T ] × Rk
× Rk

× R × Rd with |x | ∨ |x ′
| ∨ |y| ≤ R. Let

u ∈ C

[0, T ] × Rk


(resp. v ∈ C


[0, T ] × Rk


) be a viscosity subsolution (resp. viscosity

supersolution) of (7.6) such that for someκ > 0,

|u(t, x)| ∨ |v(t, x)| ≤κ(1 + |x |
ϖ ), ∀ (t, x) ∈ [0, T ] × Rk . (7.27)

Then u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × Rk .

Proof. For any θ ∈ (0, 1], we define

ũθ (t, x) , θeκt u(t, x) and ṽθ (t, x) , θeκtv(t, x), ∀ (t, x) ∈ [0, T ] × Rk .

One can show that ũθ and ṽθ are respectively a viscosity subsolution and a viscosity supersolu-
tion of

min


ũ(t, x) − θeκt l(t, x), −∂t ũ(t, x) − Lũ(t, x) − f̃θ


t, x, ũ(t, x), ∇x ũ(t, x)


= 0,

∀ (t, x) ∈ (0, T ) × Rk ,

ũ(T, x) = θeκT h(x), ∀ x ∈ Rk ,

(7.28)

with f̃θ (t, x, y, z) , −κy + θeκt f


t, x, 1
θ

e−κt y, 1
θ

e−κt σ T (t, x) · z

, ∀ (y, z) ∈ R × Rk (see

e.g., Lemma 9.3 of [2]).
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Let λ , 8(b0 + κ) + 4(1 + 4γ e)σ 2
∗ + 2(α + 4κκ)eκT . Suppose that we have proven the

following statement:

For any [T1, T2] ⊂ [0, T ] with T2 − T1 ≤
1
λ

, if u(T2, x) ≤ v(T2, x),

∀ x ∈ Rk, thenu(t, x) ≤ v(t, x), ∀ (t, x) ∈ [T1, T2] × Rk .

(7.29)

Set N , ⌈λT ⌉ and ti , i T
N , for i = 0, 1, . . . , N . Starting from u(T, x) ≤ h(x) ≤ v(T, x), ∀ x ∈

Rk , one can use (7.29) to iteratively shows that u(t, x) ≤ v(t, x) over [ti−1, ti ] × Rk for
i = N , . . . , 1. Hence, it suffices to show (7.29).

Assume that (7.29) does not hold, i.e., there exists a time interval [T1, T2] ⊂ [0, T ] with
T2 − T1 ≤

1
λ

such that u(T2, x) ≤ v(T2, x), ∀ x ∈ Rk and that u(t̂, x̂) − v(t̂, x̂) > δ for some
(t̂, x̂) ∈ [T1, T2)×Rk and some δ > 0. By the continuity of u and v, we may assume that t̂ > T1.
We fix a θ ∈ (0, 1) such that

|eκ t̂ u(t̂, x̂)| ∨ |eκ t̂v(t̂, x̂)| ∨ eλ(T2−t̂)(1 + 2|x̂ |
2) <

δ

4(1 − θ)
, (7.30)

and fix a ϱ ∈

0, δ

4 (t̂ − T1)

. For any ε > 0, we define

Φε(t, x, x ′) ,
ϱ

t − T1
+ eλ(T2−t)


|x − x ′

|
2

ε
+ (1 − θ)(1 + |x |

2
+ |x ′

|
2)


∀ t ∈ (T1, T2], ∀ x, x ′

∈ Rk,

and Mε , sup
(t,x,x ′)∈(T1,T2]×Rk×Rk


ũθ (t, x) − ṽ1(t, x ′) − Φε(t, x, x ′)


.

Since r2
≥

4κeκT

1−θ
(1 + rϖ ) holds for any r ≥ Rθ , 1 ∨


8κeκT

1−θ

 1
2−ϖ

, (7.27) shows that for

any (t, x, x ′) ∈ [T1, T2] × Rk
× Rk with |x | ∨ |x ′

| ≥ Rθ

ũθ (t, x) − ṽ1(t, x ′) ≤ eκT 
|u(t, x)| + |v(t, x ′)|


≤ 2κeκT 1 + (|x | ∨ |x ′

|)ϖ


≤
1
2

eλ(T2−t)(1 − θ)

1 + |x |

2
+ |x ′

|
2, (7.31)

which implies that lim 1
t−T1

∨|x |∨|x ′|→∞


ũθ (t, x) − ṽ1(t, x ′) − Φε(t, x, x ′)


= −∞. Hence, Mε is

finite and attainable at some (tε, xε, x ′
ε) ∈ (T1, T2] × Rk

× Rk . Then it follows from (7.30) that

ũθ (tε, xε) − ṽ1(tε, x ′
ε) − Φε(tε, xε, x ′

ε)

= Mε ≥ ũθ (t̂, x̂) − ṽ1(t̂, x̂) −
ϱ

t̂ − T1
− eλ(T2−t̂)(1 − θ)(1 + 2|x̂ |

2)

≥ u(t̂, x̂) − v(t̂, x̂) + (θ − 1)eκ t̂ u(t̂, x̂) −
ϱ

t̂ − T1
− eλ(T2−t̂)(1 − θ)(1 + 2|x̂ |

2)

>
δ

4
, (7.32)

which implies that

δ

4
+ eλ(T2−t)


|xε − x ′

ε|
2

ε
+ (1 − θ)


1 + |xε|

2
+ |x ′

ε|
2 < ũθ (tε, xε) − ṽ1(tε, x ′

ε). (7.33)
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Hence, we see from (7.31) that

|xε| ∨ |x ′
ε| < Rθ . (7.34)

As

(tε, xε, x ′

ε) : ε > 0


⊂ (T1, T2] × BRθ (0) × BRθ (0), we can pick up a sequence

{εn}n∈N ⊂ (0, ∞) with limn→∞ ↓ εn = 0 such that the sequence

(tεn , xεn , x ′

εn
)


n∈N con-
verges to some (t∗, x∗, x ′

∗) ∈ [T1, T2] × B Rθ (0) × B Rθ (0). Then (7.32) and the continuity of
function u and v imply that

lim
n→∞

ϱ

tεn − T1
≤ lim

n→∞
Φεn (tεn , xεn , x ′

εn
) ≤ ũθ (t∗, x∗) − ṽ1(t∗, x ′

∗) −
δ

4
< ∞,

which implies that t∗ = limn→∞ tεn > T1, i.e., t∗ ∈ (T1, T2]. One can also deduce from (7.33)

that limn→∞

|xεn −x ′
εn |

2

εn
≤ ũθ (t∗, x∗)− ṽ1(t∗, x ′

∗) < ∞, which leads to that limn→∞ |xεn − x ′
εn

| =

0, namely, x∗ = x ′
∗. For any n ∈ N,

ũθ (tεn , xεn ) − ṽ1(tεn , x ′
εn

) − Φεn (tεn , xεn , x ′
εn

)

= Mεn ≥ ũθ (t∗, x∗) − ṽ1(t∗, x∗) −
ϱ

t∗ − T1
− eλ(T2−t∗)(1 − θ)(1 + 2|x∗|

2).

As n → ∞, the continuity of functions u and v implies that

lim
n→∞

|xεn − x ′
εn

|
2

εn
= 0. (7.35)

Now we claim that

{εn}n∈N has a subsequence {εn}n∈N such that for any n ∈ N, either tεn = T2 or

u(tεn , xεn ) ≤ l(tεn , xεn ). (7.36)

Assume not. Then there exists an no
∈ N such that for any n ≥ no, tεn ∈ (T1, T2) and

u(tεn , xεn ) > l(tεn , xεn ).
Fix n ≥ no. The continuity of u and l shows that (tεn , xεn ) has an open neighborhood

On , (tεn − rn, tεn + rn)× Brn (xεn ) ⊂ (T1, T2)× Rk for some rn > 0 such that u(t, x) > l(t, x)

for any (t, x) ∈ On . Then ũθ becomes a viscosity subsolution of (7.28) without obstacle and
terminal condition over On , i.e.,

− ∂t ũ(t, x) − Lũ(t, x) + κ ũ(t, x)

− θeκt f


t, x,

1
θ

e−κt ũ(t, x),
1
θ

e−κt (σ T
· ∇x ũ)(t, x)


= 0, ∀ (t, x) ∈ On . (7.37)

As ṽ1 is a viscosity supersolution of (7.28), it is clearly a viscosity supersolution of (7.28) without
obstacle and terminal condition over (0, T )×Rk (thus over O′

n , (tεn −rn, tεn +rn)× Brn (x ′
εn

)),
i.e.,

− ∂t ṽ(t, x) − Lṽ(t, x) + κṽ(t, x)

− eκt f


t, x, e−κt ṽ(t, x), e−κt (σ T
· ∇x ṽ)(t, x)


= 0, ∀ (t, x) ∈ O′

n . (7.38)

Since the mapping (t, x, x ′) → ũθ (t, x)− ṽ1(t, x ′)−Φεn (t, x, x ′) is maximized at (tεn , xεn , x ′
εn

)

over (T1, T2]×Rk
×Rk (thus over (tεn −rn, tεn +rn)× Brn (xεn )× Brn (x ′

εn
)), Theorem 8.3 of [7]
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shows that there exist pn, p′
n ∈ R and Wn, W ′

n ∈ Sk such that
pn, ∇xΦεn (tεn , xεn , x ′

εn
), Wn


∈ P 2,+

ũθ (tεn , xεn ), (7.39)
p′

n, −∇x ′Φεn (tεn , xεn , x ′
εn

), W ′
n


∈ P 2,−

ṽ1(tεn , x ′
εn

), (7.40)

pn − p′
n = ∂tΦεn (tεn , xεn , x ′

εn
) = −

ϱ

(tεn − T1)2 − λΦεn (tεn , xεn ), (7.41)

and


Wn 0
0 −W ′

n


≤ D2

x,x ′Φεn (tεn , xεn , x ′
εn

) + ε3
n


D2

x,x ′Φεn (tεn , xεn , x ′
εn

)
2

, (7.42)

where P 2,+
ũθ is the second-order superjets of ũθ and P 2,−

ṽ1 is the second-order subjets of ṽ1
(see [7]).

As ũθ is a viscosity subsolution of (7.37), one can deduce from (7.39) that

− pn −
1
2

trace

Wn · (σσ T )(tεn , xεn )


− 2eλ(T2−tεn )


b(tεn , xεn ),

xεn − x ′
εn

εn
+ (1 − θ)xεn


+ θκeκtεn u(tεn , xεn ) − θeκtεn f


tεn , xεn , u(tεn , xεn ),

2
θ

e−κtεn +λ(T2−tεn )σ T (tεn , xεn )

×


xεn − x ′

εn

εn
+ (1 − θ)xεn


≤ 0. (7.43)

Since ṽ1 is a viscosity supersolution of (7.38), it follows from (7.40) that

− p′
n −

1
2

trace

W ′

n · (σσ T )(tεn , x ′
εn

)


− 2eλ(T2−tεn )


b(tεn , x ′

εn
),

xεn − x ′
εn

εn
− (1 − θ)x ′

εn


+ κeκtεn v(tεn , x ′

εn
) − eκtεn f


tεn , x ′

εn
, v(tεn , x ′

εn
), 2e−κtεn +λ(T2−tεn )σ T (tεn , x ′

εn
)

×


xεn − x ′

εn

εn
− (1 − θ)x ′

εn


≥ 0. (7.44)

Subtracting (7.44) from (7.43), we see from (7.41) that

ϱ

(tεn − T1)2 + λΦεn (tεn , xεn ) ≤ I 1
n + 2eλ(T2−tεn ) I 2

n + eκtεn

6
j=3

I j
n , (7.45)

where

I 1
n ,

1
2

trace

Wn · (σσ T )(tεn , xεn )


−

1
2

trace

W ′

n · (σσ T )(tεn , x ′
εn

)

,

I 2
n ,


b(tεn , xεn ) − b(tεn , x ′

εn
),

xεn − x ′
εn

εn


+ (1 − θ)


⟨b(tεn , xεn ), xεn ⟩ + ⟨b(tεn , x ′

εn
), x ′

εn
⟩


,

I 3
n , −θκu(tεn , xεn ) + κv(tεn , x ′

εn
),
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I 4
n ,


θ f


tεn , xεn , u(tεn , xεn ),

1
θ

Jn


− θ f


tεn , xεn , v(tεn , x ′

εn
),

1
θ

Jn


, with

Jn , 2e−κtεn +λ(T2−tεn )σ T (tεn , xεn ) ·


xεn − x ′

εn

εn
+ (1 − θ)xεn


,

I 5
n ,


θ f


tεn , xεn , v(tεn , x ′

εn
),

1
θ

Jn


− θ f


tεn , x ′

εn
, v(tεn , x ′

εn
),

1
θ

Jn


,

I 6
n , θ f


tεn , x ′

εn
, v(tεn , x ′

εn
),

1
θ

Jn


− f


tεn , x ′

εn
, v(tεn , x ′

εn
), J ′

n


, with

J ′
n , 2e−κtεn +λ(T2−tεn )σ T (tεn , x ′

εn
) ·


xεn − x ′

εn

εn
− (1 − θ)x ′

εn


.

• One can deduce from (7.42) and (7.1) that

I 1
n =

1
2


σ(tεn , xεn )

σ (tεn , x ′
εn

)

T 
Wn 0
0 −W ′

n


σ(tεn , xεn )

σ (tεn , x ′
εn

)


≤


1
εn

eλ(T2−tεn )
+ 4εne2λ(T2−tεn )

+ 4ε2
n(1 − θ)e2λ(T2−tεn )


× |σ(tεn , xεn ) − σ(tεn , x ′

εn
)|2 +


(1 − θ)eλ(T2−tεn )

+ 2ε3
n(1 − θ)2e2λ(T2−tεn )


×


|σ(tεn , xεn )|

2
+ |σ(tεn , x ′

εn
)|2


≤ eκ2 |xεn − x ′
εn

|
2

εn
+ 2(1 − θ)eλ(T2−tεn )σ 2

∗ + cσ∗


εn + ε2

n + ε3
n


. (7.46)

• By (7.1), I 2
n ≤ κ

|xεn − x ′
εn

|
2

εn
+ (1 − θ)


b0|xεn | + b0|x

′
εn

| + κ|xεn |
2
+ κ|x ′

εn
|
2. (7.47)

• We see from (7.33) that θu(tεn , xεn ) − v(tεn , x ′
εn

) > 0. Then (7.3) shows that I 4
n ≤

κ|θu(tεn , xεn ) − θv(tεn , x ′
εn

)| ≤ κ

θu(tεn , xεn ) − v(tεn , x ′

εn
)

+ κ(1 − θ)|v(tεn , x ′

εn
)|. Thus,

I 3
n + I 4

n ≤ κ(1 − θ)|v(tεn , x ′
εn

)|. (7.48)

• (7.34) and (7.27) imply that supi∈N

|xεi | ∨ |x ′

εi
| ∨ |v(tεi , x ′

εi
)|


≤ Rθ ,

1 ∨κ1 + Rϖ

θ


.

Then (7.26) shows that

I 5
n ≤ M(Rθ )


1 +

1
θ
|Jn|


|xεn − x ′

εn
|

≤ M(Rθ )


1 +

2eσ∗

θ


|xεn − x ′

εn
|

εn
+ Rθ


|xεn − x ′

εn
|. (7.49)

• The concavity of the mapping z → f


tεn , x ′
εn

, v(tεn , x ′
εn

), z


, (7.3) implies that

I 6
n ≤ −(1 − θ) f


tεn , x ′

εn
, v(tεn , x ′

εn
),

J ′
n − Jn

1 − θ



≤ −(1 − θ) f


tεn , x ′

εn
, 0,

J ′
n − Jn

1 − θ


+ κ(1 − θ)|v(tεn , x ′

εn
)|,
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where J ′
n−Jn
1−θ

=
2e−κtεn +λ(T2−tεn )

1−θ


σ(tεn , x ′

εn
) − σ(tεn , xεn ),

xεn −x ′
εn

εn


+ (1 − θ)


σ T (tεn , xεn ) ·

xεn + σ T (tεn , x ′
εn

) · x ′
εn


. Since

σ(tεn , x ′
εn

) − σ(tεn , xεn ),
xεn −x ′

εn
εn

 ≤ κ
|x ′

εn −xεn |
2

εn
, (7.35) and

the continuity of function σ that

lim
n→∞

J ′
n − Jn

1 − θ
= 4e−κt∗+λ(T2−t∗)σ T (t∗, x∗) · x∗. (7.50)

Letting n → ∞ in (7.45) and using the continuity of all functions involved, we can deduce from
(7.35), (7.46) through (7.50) that

λ(1 − θ)eλ(T2−t∗)(1 + 2|x∗|
2) ≤ 2(1 − θ)eλ(T2−t∗)σ 2

∗ + 4(1 − θ)(b0 + κ)eλ(T2−t∗)

×

1 + |x∗|

2
+ 2κeκt∗(1 − θ)|v(t∗, x∗)| − eκt∗(1 − θ)

× f


t∗, x∗, 0, 4e−κt∗+λ(T2−t∗)σ T (t∗, x∗) · x∗


. (7.51)

Conditions (7.27) and (7.3) imply that

2κeκt∗ |v(t∗, x∗)| − eκt∗ f


t∗, x∗, 0, 4e−κt∗+λ(T2−t∗)σ T (t∗, x∗) · x∗


≤ 2κκeκt∗(1 + |x∗|

ϖ ) + eκt∗

α + 8γ e−2κt∗+2λ(T2−t∗)σ 2

∗ |x∗|
2


.

Plugging it back into (7.51) yields that

λ(1 − θ)eλ(T2−t∗)(1 + 2|x∗|
2)

≤ (1 − θ)eλ(T2−t∗)(1 + |x∗|
2)


4(b0 + κ) + 2(1 + 4γ e)σ 2
∗ + (α + 4κκ)eκT


=

1
2
λ(1 − θ)eλ(T2−t∗)(1 + 2|x∗|

2),

which results in a contradiction. Thus we proved claim (7.36). Let {εn}n∈N be the subsequence of
{εn}n∈N as described in (7.36). For any n ∈ N, since the maximum is attained at (tεn , xεn , x ′εn

),

θ ũ(t̂, x̂) − ṽ(t̂, x̂) −
ϱ

t̂ − T1
− eλ(T2−t̂)(1 − θ)(1 + 2|x̂ |

2)

≤ Mεn ≤ θ ũ(tεn , xεn ) − ṽ(tεn , x ′εn
). (7.52)

If tεn = T2, u(tεn , xεn ) = u(T2, xεn ) ≤ v(T2, xεn ) = v(tεn , xεn ) by our condition. Otherwise,
tεn ∈ (T1, T2) and u(tεn , xεn ) ≤ l(tεn , xεn ). As v is a viscosity supersolution of (7.6), we always
have v(tεn , xεn ) − l(tεn , xεn ) ≥ 0. Thus we still have u(tεn , xεn ) ≤ v(tεn , xεn ). Then (7.52)
reduces to

θ ũ(t̂, x̂) − ṽ(t̂, x̂) −
ϱ

t̂ − T1
− eλ(T2−t̂)(1 − θ)(1 + 2|x̂ |

2) ≤ θṽ(tεn , xεn ) − ṽ(tεn , x ′εn
).

As n → ∞, we obtain θ ũ(t̂, x̂)− ṽ(t̂, x̂)−
ϱ

t̂−T1
− eλ(T2−t̂)(1− θ)(1+2|x̂ |

2) ≤ (θ −1)ṽ(t∗, x∗).

Letting ϱ → 0 and letting θ → 1 yield that ũ(t̂, x̂) − ṽ(t̂, x̂) ≤ 0. Thus u(t̂, x̂) ≤ v(t̂, x̂), which
contradicts with our initial assumption. Therefore, (7.29) holds, proving the theorem. �

Thanks to Theorems 7.1 and 7.2, (7.6) has a unique viscosity solution.
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Appendix

A.1. Proof of (3.12)

Fix n ∈ N. We have seen from (3.9) that
√

|φ′(Y m,n)|Zm,n


m≥n ⊂ H2
F([0, T ]; Rd). Similar

to (3.5),

E
 T

0
|φ′(Ys − Y n

s )| |Zs − Zn
s |

2ds ≤ cλ,λ′Ξ + cλ,λ′ E

 T

0
|Zs |

2ds

po


< ∞.

Thus
√

|φ′(Y − Y n)|

Z − Zn


∈ H2

F([0, T ]; Rd). (Note that since Y n, n ∈ N are F-adapted
continuous processes, Y = limn→∞ Y n is at least an F-predictable process.)

For any X ∈ H2
F([0, T ]; Rd), since 1

p1
+

1
p2

+1 = 2−
1
po

by (3.4), applying Young’s inequality

with q1 = p1

2 −

1
po


, q2 = p2


2 −

1
po


and q3 = 2 −

1
po

, we can deduce from (3.1) and (3.2)
that

E

 T

0
|φ′(Ys − Y n

s )||Xs |
2ds

 po
2po−1



≤ cλ,λ′ E


e

λo poq1γ

2po−1 L∗
+ e

λo poq2γ

2po−1 Y∗
+

 T

0
|Xs |

2ds



≤ cλ,λ′


Ξ + E

 T

0
|Xs |

2ds


< ∞.

Thus X
√

|φ′(Y − Y n)| ∈ H
2,

2po
2po−1

F ([0, T ]; Rd). As {Zm
}m≥n weakly converges to Z in

H2,2po
F ([0, T ]; Rd),

lim
m→∞

E
 T

0
Xs


|φ′(Ys − Y n
s )|


Zs − Zm

s


ds = 0. (A.1)

On the other hand, for any m ≥ n Hölder’s inequality and (3.2) imply thatE  T

0
Xs


|φ′(Ys − Y n

s )| −


|φ′(Y m,n

s )|


Zm,n
s ds


≤ cλ,λ′ Ξ

1
2po

 |Xs |


|φ′(Ys − Y n

s )| −


|φ′(Y m,n

s )|


H
2,

2po
2po−1

F ([0,T ];R)

. (A.2)

It follows from (3.7) that P-a.s.

0 ≤ |X t |


|φ′(Yt − Y n

t )| −


φ′|(Y m,n

t )|


≤ |X t |


|φ′(Yt − Y n
t )|,

∀ t ∈ [0, T ], ∀ m ≥ n.
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Since |X |
√

|φ′(Y − Y n)| ∈ H
2,

2po
2po−1

F ([0, T ]; R), the continuity of φ′ and Dominated Conver-

gence Theorem imply limm→∞ ∥ |Xs |


|φ′(Ys − Y n

s )| −


|φ′(Y m,n

s )|

∥

H
2,

2po
2po−1

F ([0,T ];R)

= 0,

which together with (A.2) and (A.1) gives

lim
m→∞

E
 T

0
Xs


|φ′(Ys − Y n

s )|

Zs − Zn

s


−


|φ′(Y m,n

s )|

Zm,n

s


ds = 0,

proving (3.12).
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