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Abstract

Given p ∈ (1, 2), we study Lp−solutions of a reflected backward stochastic differential equation with jumps

(RBSDEJ) whose generator g is Lipschitz continuous in (y, z, u). Based on a general comparison theorem as well as

the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ

with p−integrable parameters admits a unique Lp solution via a fixed-point argument. The Y−component of the

unique Lp solution can be viewed as the Snell envelope of the reflecting obstacle L under g−evaluations, and the

first time Y meets L is an optimal stopping time for maximizing the g−evaluation of reward L.
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1 Introduction

Let p ∈ (1, 2) and T ∈ (0,∞). In this paper, we study Lp solutions of a reflected backward stochastic differential

equation with jumps (RBSDEJ)
Lt≤Yt=ξ+

∫ T

t

g(s, Ys, Zs, Us)ds+KT−Kt−
∫ T

t

Zs dBs−
∫

(t,T ]

∫
X
Us(x)Ñp(ds, dx), t ∈ [0, T ],∫ T

0

(Yt−−Lt−)dKt = 0 (flat-off condition)

(1.1)

over a probability space (Ω,F , P ) on which B is a Brownian motion and p is an X−valued Poisson point process

independent of B. Practically speaking, if the Brownian motion represents the noise from the financial market, then

the Poisson random measure can be viewed as the randomness of insurance claims. In RBSDEJ (1.1) with generator

g, terminal data ξ and obstacle L, a solution consists of an adapted càdlàg process Y , a locally square-integrable

predictable process Z, a locally p−integrable predictable random fields U and an adapted càdlàg increasing process

K. The role of the increasing process K is to keep Y stay above the obstacle L at the minimal effort: i.e., Only

when Y tends to drop below L, K will generates an upward momentum.

When the generator g is Lipschitz in (y, z, u) and the obstacle L is a p−integrable adapted càdlàg process, we

mainly demonstrate that for any p−integrable terminal data ξ, the RBSDEJ (1.1) admits a unique Lp−solution (see

Theorem 3.1).

The backward stochastic differential equation (BSDE) was introduced by Bismut [4] and later systematically

developed by Pardoux and Peng [32] to a fully nonlinear version. Since then, the theory of BSDEs has grown rapidly

and has been applied to various areas such as mathematical finance, theoretical economics, stochastic control and

optimization, partial differential equations, differential geometry and etc (see the references in [16, 9]).

As a variation of BSDEs, the reflected BSDEs (RBSDEs) are closely related to the theory of optimal stopping: By

utilizing the martingale characterization of the Snell envelope of the reward process in an optimal stopping problem,

El Karoui et al. [14] deduced that the Snell envelope is exactly the Y−solution of a RBSDE with null generator.

These authors then used either fixed-point argument or penalization method to show the existence and uniqueness

of a L2−solution to a RBSDE with Lipschitz generator and square-integrable terminal data.
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Main Contributions

Given U ∈U2
loc, unlike the case of Brownian stochastic integrals, the Burkholder-Davis-Gundy inequality is not

applicable for the p/2−th power of the Poisson stochastic integral
∫

(0,t]

∫
X Us(x)Ñp(ds, dx), t∈ [0, T ] (see e.g. Theorem

VII.92 of [11]): i.e. E

[
sup
t∈[0,T ]

( ∫
(0,t]

∫
X Us(x)Ñp(ds, dx)

) p
2

]
can not be dominated by E

[( ∫
(0,T ]

∫
X |Ut(x)|2Np(dt, dx)

) p
4

]
.

So to derive a priori Lp estimates for BSDEJs and RBSDEJs, we could not follow the classical argument in the

proof of [6, Proposition 3.2], neither could we employ the space U2,p :=
{
U : E

[( ∫ T
0

∫
X |Ut(x)|2ν(dx)dt

) p
2

]
<∞

}
or the space Ũ2,p :=

{
U : E

[( ∫
(0,T ]

∫
X |Ut(x)|2Np(dt, dx)

) p
2

]
< ∞

} (
Actually, one may not be able to compare

E
[( ∫

(0,T ]

∫
X |Ut(x)|2Np(dt, dx)

) p
2

]
with E

[( ∫ T
0

∫
X |Ut(x)|2ν(dx)dt

) p
2

])
.

To address these technical difficulties, we first generalize in [42] the Poisson stochastic integral for a random field

U ∈Up by constructing a càdlàg uniformly integrable martingale MU
t :=

∫
(0,t]

∫
X Us(x)Ñp(ds, dx), t ∈ [0, T ], whose

quadratic variation [MU,MU ] is still
∫

(0,t]

∫
X |Us(x)|2Np(ds, dx), t ∈ [0, T ]. In deriving the key Lp−type inequality

(see Lemma 3.1 of [42]) about the difference Y = Y 1−Y 2 of two p−integrable solutions to BSDEJs with different

parameters, the estimation of the variational jump part∑
s

(
|Ys|p−|Ys−|p−p

〈
|Ys−|p−1,∆Ys

〉)
(1.2)

in the dynamics of |Y |p is full of analytical subtleties. By exploiting some new methods and techniques, we managed

to boil down the expectation of (1.2) to the term E
∫ T

0

∫
X |U

1
t (x)−U2

t (x)|pν(dx)dt, which justifies our choice of Up

over U2,p or Ũ2,p as the space for jump diffusion
(
see (5.11)−(5.21) of [42] for details

)
. These method and techniques

still play important roles in the main result of the present paper (see Part 2 in the proof of Theorem 3.1).

In the present paper, we start with a comparison result for generalized BSDEJs (Proposition 3.1), which directly

leads to the uniqueness of Lp−solutions to a RBSDEJ. For the existence result, we first generalize the optimal

stopping theory for right-continuous reward processes of class (D) that may take unbounded negative values. Since

the classic method ([13] or Appendix D of [26]) heavily relies on the non-negativity of the Snell envelope
(
see four

lines below (2.32.1) of [13] or line 16 on page 357 of [26]
)
, we take a different approach by proving a dynamic

programming principle for the Snell envelope S of a p−integrable càdlàg obstacle L (Proposition A.3) and then

deriving the martingale property of S (Theorem A.1). In virtue of the Doob-Meyer decomposition, the Snell envelope

S can be decomposed as the difference between a p−integrable càdlàg martingale M and a p−integrable increasing

càdlàg process K such that
∫ T

0
(St−−Lt−)dKt = 0, P−a.s. (see Proposition A.5 and A.6). Applying a generalized

martingale representation theorem from [42] to M , we then show in Proposition 3.2 that a RBSDEJ with simple

generator (generator that does not depend on (y, z, u)) and p−integrable parameters admits a unique Lp−solution,

which together with a fixed-point argument proves our main result (Theorem 3.1).

Based on our study [42] on Lp solutions of BSDEJs, we generalized in [41] the notion of (conditional) g−evaluations

to the jump case with Lp domain, which are closely related to a large class of coherent/convex risk measures for

p−integrable financial positions in a market with jumps. We can also derive from the comparison result (Proposition

3.1) that the Y−component of the unique Lp solution to a RBSDEJ with generator g is the Snell envelope of the

obstacle L under g−evaluations, and the first time Y meets L is an optimal stopping time for maximizing the

g−evaluation of reward L.

Relevant Literature

Li and Tang [40] introduced into the BSDE a jump term that is driven by a Poisson random measure independent of

the Brownian motion. Hamadene and Ouknine [20] made a similar extension to RBSDEs, they showed that when the

square-integrable obstacle has only inaccessible jump times, a RBSDE with Lipschitz generator and square-integrable

terminal data admits a unique square-integrable solution. Then [1, 8, 18, 21, 38, 12] among others commenced an

extensive study of RBSDEJs with càdlàg obstacles and the related optimal stopping under dynamic risk measures.

To match with the fact that linear BSDEs are well-posed for integrable terminal data: El Karoui et al. [16]

studied the BSDE with p−integrable terminal data and showed that such a BSDE with Lipschitz generator admits

a unique Lp−solution. Later Briand et al. [5, 6] reduced the Lipschitz condition of the generator to a monotonicity

condition, while some other researches [22, 2, 28, 29] were made on the wellposedness of RBSDEs with Lipschitz or

monotonic generators in Lp sense.
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The present paper analyzes RBSDEJs with Lipschitz generators in Lp sense, which generalizes [18, 21] for

Lp−solutions and also extends [22] to the jump case. Klimsiak [30] studied a similar problem of Lp−solutions

to reflected BSDEs under a general right-continuous filtration, however, they only obtained a wellposedness result

for simple generators.

There are many recent developments on reflected BSDEs with jumps in various interesting directions: See e.g.

[17] for a class of constrained BSDEJs which includes multi-dimensional BSDEs with oblique reflection and is thus

closely related to the optimal switching problem; see [7] for RBSDEs and RBSDEJs with right upper-semicontinuous

obstacles and the related optimal stopping; see [19] for a class of reflected BSDEs with non-positive jumps and

upper obstacles, which provides a Feynman-Kac type formula for PDEs associated to general zero-sum controller-

and-stopper games and etc.

The rest of the paper is organized as follows: After we list necessary notations in Section 1.1, Section 2 quotes some

basic results for Lp solutions of BSDEJs with Lipschitz generator g and reviews the corresponding g−evaluations.

In Section 3, we present the main results of our paper: the comparison theorem and the wellposedness result for

Lp−solutions to RBSDEJs with Lipschitz generators and p−terminal data. Section 4 discusses the optimal stopping

under g−evaluations as an application of the comparison theorem. The proofs of our results are relegated to Section 5.

We generalize the optimal stopping theory for the reward processes with unbounded negative values in the appendix.

1.1 Notation and Preliminaries

Throughout this paper, we fix a time horizon T ∈ (0,∞). Let (Ω,F , P ) be a complete probability space on which a

d−dimensional Brownian motion B is defined.

For a generic càdlàg process X, let us denote its corresponding jump process by ∆Xt :=Xt−Xt−, t∈ [0, T ] with

X0− :=X0. Given a measurable space (X ,FX ), let p denote an X−valued Poisson point process on (Ω,F , P ) which

is independent of B. For any scenario ω ∈ Ω, let Dp(ω) be the set of all jump times of the path p(ω), which is a

countable subset of (0, T ] (see e.g. Section 1.9 of [23]). We assume that for some finite measure ν on
(
X ,FX

)
,

the counting measure Np(dt, dx) of p on [0, T ]×X has compensator E
[
Np(dt, dx)

]
= ν(dx)dt. The corresponding

compensated Poisson random measure Ñp will be denoted by Ñp(dt, dx) :=Np(dt, dx)−ν(dx)dt.

For any t∈ [0, T ], we define sigma-fields

FBt := σ
{
Bs; s ≤ t

}
, FNt := σ

{
Np

(
(0, s], A

)
; s ≤ t, A ∈ FX

}
, Ft :=σ

(
FBt ∪FNt

)
and augment them by all P−null sets of F . Clearly, the jump filtration F={Ft}t∈[0,T ] satisfies the usual hypotheses

(cf. e.g., [36]). Denote by P
(
resp. P̂

)
the F−progressively measurable (resp. F−predictable) sigma-field on

[0, T ]×Ω, and let T be the set of all F−stopping times. For any γ∈T , we set Tγ :={τ ∈T : τ≥γ, P−a.s.}.
Recall that a B

(
[0, T ]

)
⊗F−measurable process X is of class (D) if {Xτ}τ∈T is P−uniformly integrable. Also,

we say that an adapted process X is quasi left-continuous if for any increasing sequence {τn}n∈N in T , it holds

P−a.s. that lim
n→∞

E[Xτn |Fτ1 ]≤ E[Xτ |Fτ1 ], where τ := lim
n→∞

↑ τn ∈ T . Clearly, a quasi left-continuous process X is

left upper semi-continuous in expectation along stopping times (l.u.s.c.e.): for any increasing sequence {τn}n∈N in T ,

lim
n→∞

E[Xτn ]≤E[Xτ ].

For any i ∈ N, as
{
Np((0, t],X )

}
t∈[0,T ]

is an F−adapted càdlàg process, its i−th jump time

τNi := inf
{
t ∈ (0, T ] : Np((0, t],X ) ≥ i

}
is a totally inaccessible F−stopping time (see e.g. the comment below Theorem III.4 of [36]). For each ω∈Ω, τNi (ω)

is actually the i−th smallest element in Dp(ω) or T . Put in another way, τNi (ω) := min
{
t∈Dp(ω) : t>τNi−1(ω)

}
∧T ,

with τN0 (ω) :=0 and min ∅ :=∞.

The following spaces of functions will be used in the paper:

1) For any p∈ [1,∞), let Lp+[0, T ] be the space of all measurable functions ψ : [0, T ]→ [0,∞) with
∫ T

0

(
ψ(t)

)p
dt<∞.

2) For p ∈ (1,∞), let Lpν := Lp(X ,FX , ν;R) be the space of all real-valued, FX−measurable functions u with

‖u‖Lpν :=
( ∫
X |u(x)|pν(dx)

) 1
p <∞. For any u1, u2∈Lpν , we say u1 =u2 if u1(x)=u2(x) for ν−a.s. x ∈X.

3) For any sub-sigma-field G of F , let L0(G) be the space of all real-valued, G−measurable random variables and set
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• Lp(G) :=
{
ξ ∈ L0(G) : ‖ξ‖Lp(G) :=

{
E
[
|ξ|p
]} 1

p <∞
}

for any p∈(1,∞);

• L∞(G) :=
{
ξ ∈ L0(G) : ‖ξ‖L∞(G) := esssup

ω∈Ω
|ξ(ω)|<∞

}
.

4) Let D0 be the space of all real-valued, F−adapted càdlàg processes and set V0 :={X∈D0 : X is of finite variation},
let K0 be a subspace of V0 that includes all F−predictable càdlàg increasing processes X with X0 =0.

5) Set Z2
loc :=L2

loc

(
[0, T ]×Ω, P̂, dt×dP ;Rd

)
, the space of all Rd−valued, F−predictable processes Z with

∫ T
0
|Zt|2 dt

<∞, P−a.s.

6) For any p ∈ [1, 2), we let

• Dp :=
{
X∈D0 : ‖X‖Dp :=

{
E[Xp

∗ ]
} 1
p <∞

}
, where X∗ := sup

t∈[0,T ]

|Xt|<∞.

• Kp :=K0∩Dp=
{
K∈K0 : E[Kp

T ]<∞
}

.

• Z2,p :=
{
Z ∈ Z2

loc : ‖Z‖Z2,p :=
{
E
[( ∫ T

0
|Zt|2 dt

) p
2

]} 1
p

< ∞
}

. For any Z ∈ Z2,p, the Burkholder-Davis-Gundy

inequality implies that

E

[
sup
t∈[0,T ]

∣∣∣ ∫ t

0

ZsdBs

∣∣∣p]≤CpE[(∫ T

0

∣∣Zs∣∣2ds)p2 ]<∞ (1.3)

for some constant Cp>0 depending on p. So
{ ∫ t

0
ZsdBs

}
t∈[0,T ]

is a uniformly integrable martingale.

• Uploc := Lploc
(
[0, T ]×Ω×X , P̂⊗FX , dt×dP ×ν(dx);R

)
be the space of all P̂⊗FX−measurable random fields

U : [0, T ]×Ω×X→R such that
∫ T

0

∫
X |Ut(x)|pν(dx)dt=

∫ T
0
‖Ut‖pLpνdt<∞, P−a.s.

• Up :=
{
U ∈Uploc : ‖U‖Up :=

{
E
∫ T

0

∫
X |Ut(x)|pν(dx)dt

} 1
p <∞

}
=Lp

(
[0, T ]×Ω×X , P̂⊗FX , dt×dP×ν(dx);R

)
.

Given U ∈Uploc

(
resp. Up

)
, it is clear that U(t, ω)∈Lpν for dt×dP−a.s. (t, ω)∈ [0, T ]×Ω. According to Section 1.2

of [42], one can define a Poisson stochastic integral of U :

MU
t :=

∫
(0,t]

∫
X
Us(x)Ñp(ds, dx), t ∈ [0, T ], (1.4)

which is a càdlàg local martingale (resp. uniformly integrable martingale) with quadratic variation [MU,MU ]t =∫
(0,t]

∫
X |Us(x)|2Np(ds, dx), t∈ [0, T ]. The jump process of MU is ∆MU

t (ω) =1{t∈Dp(ω)}U
(
t, ω, pt(ω)

)
, t∈ (0, T ]. For

any U ∈Up, an analogy to (5.1) of [42] shows that

E
[( ∫

(t,s]

∫
X
|Ut(x)|2Np(dt, dx)

) p
2

]
≤E

∫ s

t

∫
X

∣∣Ut(x)
∣∣pν(dx)dt, ∀ 0≤ t<s≤T. (1.5)

• We simply denote Dp×Z2,p×Up by Sp.
As usual, we set x+ :=x∨0 for any x∈R, and use the convention inf ∅ := ∞. For any p ∈ (0,∞), the following

inequality will be frequently applied in this paper: for any finite subset {a1, · · · , an} of (0,∞)

(1 ∧ np−1)

n∑
i=1

api ≤
( n∑
i=1

ai

)p
≤ (1 ∨ np−1)

n∑
i=1

api . (1.6)

Also, we let cp denote a generic constant depending only on p (in particular, c0 stands for a generic constant depending

on nothing), whose form may vary from line to line.

2 BSDEs with Jumps and Related g−Evaluations

From now on, we fix p∈(1, 2) and set q := p
p−1 .

A mapping g : [0, T ]×Ω×R×Rd×Lpν → R is called a p−generator if it is P⊗B(R)⊗B(Rd)⊗B
(
Lpν
)
/B(R)−

measurable. For any τ ∈T ,

gτ (t, ω, y, z, u) :=1{t<τ(ω)} g(t, ω, y, z, u), ∀ (t, ω, y, z, u)∈ [0, T ]×Ω×R×Rd×Lpν

is also P⊗B(R)⊗B(Rd)⊗B
(
Lpν
)
/B(R)−measurable.
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Definition 2.1. Given p ∈ (1, 2), let ξ ∈ L0(FT ) and g be a p−generator. A triplet (Y,Z, U) ∈ D0×Z2
loc×Uploc is

called a solution of a backward stochastic differential equation with jumps that has terminal data ξ and generator g(
BSDEJ (ξ, g) for short

)
if
∫ T

0
|g(s, Ys, Zs, Us)|ds<∞, P−a.s. and if it holds P−a.s. that

Yt = ξ +

∫ T

t

g(s, Ys, Zs, Us)ds−
∫ T

t

Zs dBs −
∫

(t,T ]

∫
X
Us(x)Ñp(ds, dx), t ∈ [0, T ].

We shall make the following standard assumptions on p−generators g:

(A1)
∫ T

0
|g(t, 0, 0, 0)|dt∈Lp(FT ).

(A2) There exist two [0,∞)−valued, B[0, T ]⊗FT−measurable processes β, Λ with
∫ T

0

(
βqt ∨Λ2

t

)
dt∈L∞(FT ) such

that for dt×dP−a.s. (t, ω)∈ [0, T ]×Ω∣∣g(t, ω, y1, z1, u)−g(t, ω, y2, z2, u)
∣∣≤β(t, ω)|y1−y2|+Λ(t, ω)|z1−z2|, ∀ (y1, z1), (y2, z2)∈R×Rd, ∀u∈Lpν .

(A3) There exists a function h : [0, T ]×Ω×R×Rd×Lpν×Lpν → Lqν such that

(i) h is P⊗B(R)⊗B(Rd)⊗B(Lpν)⊗B(Lpν)/B(Lqν)−measurable;

(ii) There exist κ1∈(−1, 0] and κ2≥−κ1 such that for any (t, ω, y, z, u1, u2, x)∈ [0, T ]×Ω×R×Rd×Lpν×Lpν×X

κ1 ≤
(
h(t, ω, y, z, u1, u2)

)
(x) ≤ κ2;

(iii) It holds for dt×dP−a.s. (t, ω) ∈ [0, T ]×Ω that

g(t, ω, y, z, u1)−g(t, ω, y, z, u2)≤
∫
X

(
u1(x)−u2(x)

)
·
(
h(t, ω, y, z, u1, u2)

)
(x) ν(dx), ∀ (y, z, u1, u2)∈R×Rd×Lpν×Lpν .

Remark 2.1. Let p∈(1, 2) and let g be a p−generator.

(1 ) (A2 ) and (A3 ) imply

(A2’) There exist two [0,∞)−valued, B[0, T ]⊗FT−measurable processes β, Λ with
∫ T

0

(
βqt ∨Λ2

t

)
dt∈L∞(FT ) such

that for dt×dP−a.s. (t, ω)∈ [0, T ]×Ω∣∣g(t, ω, y1, z1, u1)−g(t, ω, y2, z2, u2)
∣∣≤β(t, ω)

(
|y1−y2|+‖u1−u2‖Lpν

)
+Λ(t, ω)|z1−z2|, ∀ (yi, zi, ui)∈R×Rd×Lpν , i=1, 2.

(2 ) If g satisfies (A2’ ) and
∫ T

0
|g(t, 0, 0, 0)|dt < ∞, P−a.s., then for any (Y,Z, U) ∈ D1×Z2

loc×Uploc, one has∫ T
0
|g(s, Ys, Zs, Us)|ds<∞, P−a.s.

(3 ) We need the assumption “κ1>−1” in (A3 ) (ii) for the comparison theorem of generalized BSDEJs (Proposition

3.1). Actually, it is necessary for the Doléans-Dade exponential E·(M) in (5.8) to be a strictly positive martingale

(see e.g. [27]), which then allows us to apply Girsanov Theorem to change probability in the proof of Proposition 3.1.

We simply set Ĉ :=
∥∥ ∫ T

0
(1∨βqt ∨Λ2

t )dt
∥∥
L∞(FT )

. For Lp solutions of BSDEs with jumps, let us first quote a

wellposedness result, the corresponding martingale representation theorem as well as a strict comparison theorem

from Theorem 4.1, Corollary 4.1, Corollary 2.1, Lemma 3.1 of [42] and Theorem 2.2 of [41].

Theorem 2.1. Given p ∈ (1, 2), Let g be a p−generator satisfying (A1 ) and (A2’ ). For any ξ ∈ Lp(FT ), the

BSDEJ (ξ, g) admits a unique solution
(
Y ξ,g, Zξ,g, Uξ,g

)
∈ Sp. In particular, for any τ ∈ T and ξ ∈ Lp(Fτ ), the

unique solution
(
Y ξ,gτ , Zξ,gτ , Uξ,gτ

)
of the BSDEJ (ξ, gτ ) in Sp satisfies that P

{
Y ξ,gτt =Y ξ,gττ∧t , t∈ [0, T ]

}
=1 and that(

Zξ,gτt , Uξ,gτt

)
=1{t≤τ}

(
Zξ,gτt , Uξ,gτt

)
, dt×dP−a.s.

Corollary 2.1. Let p∈(1, 2). For any ξ∈Lp(FT ), there exists a unique pair (Z,U)∈Z2,p×Up such that P−a.s.

E[ξ|Ft] = E[ξ] +

∫ t

0

ZsdBs +

∫
(0,t]

∫
X
Us(x)Ñp(ds, dx), t∈ [0, T ].

Proposition 2.1. Let p∈ (1, 2). For i=1, 2, let ξi∈L0(FT ), gi be a p−generator, and (Y i, Zi, U i) be a solution of

BSDEJ (ξi, g
i) such that Y 1−Y 2∈Dp. If gi satisfies (A2’ ), then

∥∥Y 1−Y 2
∥∥p
Dp+

∥∥Z1−Z2
∥∥p
Z2,p+

∥∥U1−U2
∥∥p
Up≤CE

[
|ξ1−ξ2|p+

(∫ T

0

∣∣g1(t, Y 2
t , Z

2
t , U

2
t )−g2(t, Y 2

t , Z
2
t , U

2
t )
∣∣dt)p ] (2.1)

for some constant C depending on T , ν(X ), p and Ĉ.
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Theorem 2.2. Let p ∈ (1, 2), τ ∈ T and γ ∈ Tτ . For i = 1, 2, let ξi ∈ L0(FT ), let gi be a p−generator, and let

(Y i, Zi, U i) be a solution of BSDEJ (ξi, g
i) such that Y 1

γ ≤ Y 2
γ , P−a.s. and that Y 1−Y 2 ∈ Dp. For either i= 1 or

i=2, if gi satisfies (A2 ), (A3 ), and if g1(t, Y 3−i
t , Z3−i

t , U3−i
t )≤g2(t, Y 3−i

t , Z3−i
t , U3−i

t ), dt×dP−a.s. on ]]τ, γ[[ , then

it holds P−a.s. that Y 1
t ≤Y 2

t for any t ∈ [τ, γ]. If one further has Y 1
τ = Y 2

τ , P−a.s., then

(i) it holds P−a.s. that Y 1
t =Y 2

t for any t ∈ [τ, γ];

(ii) it holds dt×dP−a.s. on ]]τ, γ]] that (Z1
t , U

1
t )=(Z2

t , U
2
t ) and g1(t, Y it , Z

i
t , U

i
t )=g2(t, Y it , Z

i
t , U

i
t ), i = 1, 2.

The wellposedness result of BSDEs with jumps in Lp sense (Theorem 2.1) gives rise to a nonlinear expectation,

called g−evaluations with Lp domains, which generalizes the one introduced in [33] and [34]:

Definition 2.2. Given p ∈ (1, 2), let g be a p−generator satisfying (A1 ), (A2’ ), and let τ ∈ T , γ ∈ Tτ . Define

g−evaluation Egτ,γ : Lp(Fγ)→Lp(Fτ ) by

Egτ,γ [ξ] :=Y ξ,gγτ , ∀ ξ ∈ Lp(Fγ).

When γ=T , we call Eg[ξ|Fτ ] :=Egτ,T [ξ] the (conditional) g−expectation of ξ∈Lp(FT ) at time τ . According to Lemma

3.1 of [41], if g further satisfies that dt×dP−a.s.

g(t, y, 0, 0)=0, ∀ y∈R, (2.2)

then it holds for any ξ∈Lp(Fγ) that Egτ,γ [ξ]=Eg[ξ|Fτ ], P−a.s. In particular, when g≡0, the g−evaluation degenerates

to the classic linear expectation: Egτ,γ [ξ] = E[ξ|Fτ ], P−a.s. for any ξ∈Lp(Fγ).

Let p∈ (1, 2) and let g be a p−generator satisfying (A1) and (A2’). We know from [41] that the g−evaluations

with Lp domains possess the following basic properties (cf. [35]): Let τ ∈T , γ∈Tτ and ξ∈Lp(Fγ).

(g1) “Strict Monotonicity”: If g further satisfies (A3), then for any η∈Lp(Fγ) with ξ≤η, P−a.s. one has Egτ,γ [ξ]≤
Egτ,γ [η], P−a.s.; Moreover, if it further holds that Egτ,γ [ξ]=Egτ,γ [η], P−a.s., then ξ=η, P−a.s.

(g2) “Constant Preserving”: Under (2.2), if ξ is Fτ−measurable, then Egτ,γ [ξ]=ξ, P−a.s.

(g3) “Time Consistency”: For any ζ∈T with τ≤ζ≤γ, P−a.s., it holds P−a.s. that Egτ,ζ
[
Egζ,γ [ξ]

]
=Egτ,γ [ξ].

(g4) “Zero−One Law”: For any A ∈ Fτ , we have 1AEgτ,γ [1Aξ] = 1AEgτ,γ [ξ], P−a.s.; In addition, if g(t, 0, 0, 0) = 0,

dt×dP−a.s., then Egτ,γ [1Aξ]=1AEgτ,γ [ξ], P−a.s.

(g5) “Translation Invariance”: If g is independent of y, then Egτ,γ [ξ+η]=Egτ,γ [ξ]+η, P−a.s. for any η∈Lp(Fτ ).

We can define the corresponding g−martingales with Lp domains under jump filtration as usual: A real-valued,

F−adapted process X is called a g−submartingale
(
resp. g−supermartingale or g−martingale

)
if for any 0≤ t≤s≤T ,

E[|Xs|p]<∞ and

Egt,s[Xs] ≥ (resp. ≤ or =)Xt, P−a.s.

The g−martingales retain many classic martingale properties such as “upcrossing inequality”, “optional sampling

theorem”, “Doob-Meyer decomposition” and etc, which relate the g−evaluations with Lp domains to risk measures

with Lp domains in mathematical markets with jumps, see [41] for details.

3 Reflected BSDEs with Jumps

When saying a parameter pair (ξ,L), we mean a random variable ξ∈L0(FT ) and a real-valued, F−adapted càdlàg

process L such that LT ≤ξ, P−a.s.

Definition 3.1. Given p∈(1, 2), let (ξ,L) be a parameter pair and let g be a p−generator. A quadruplet (Y, Z, U,K)∈
D0×Z2

loc×U
p
loc×K0 is called a solution of a reflected backward stochastic differential equation with jumps that has

terminal data ξ, generator g and obstacle L
(
RBSDEJ (ξ, g,L) for short

)
if
∫ T

0

∣∣g(s, Ys, Zs, Us)
∣∣ds<∞, P−a.s. and

if (1.1) holds P−a.s.

Remark 3.1. Given p∈ (1, 2), let g be a p−generator satisfying (A2’ ) and
∫ T

0
|g(t, 0, 0, 0)|dt<∞, P−a.s. Then it

holds for any (Y, Z, U)∈D1×Z2
loc×U

p
loc that

∫ T
0
|g(s, Ys, Zs, Us)|ds<∞, P−a.s.
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Remark 3.2. Given p∈(1, 2), let (ξ,L) be a parameter pair, let g be a p−generator, and let (Y,Z, U,K) be a solution

of RBSDEJ (ξ, g,L). We denote by Kc (resp. Kd) the continuous part (resp. purely discontinuous part) of K.

(1 ) The process Y has two jumps sources: the jump times of the stochastic integral MU are totally inaccessible, while

the jumps of the F−predictable càdlàg increasing process K are exhausted by a sequence {ζn}n∈N of F−predictable

stopping times
(
i.e. {(t, ω) ∈ [0, T ]×Ω : ∆Kd

t (ω) > 0} is a union of graphs [[ζn]] and these graphs are disjoint on

(0, T ), see e.g. “Complements to Chapter IV” of [11] or Proposition I.2.24 of [24] for details
)
. In particular, one

can deduce that for P−a.s. ω∈Ω

1{t∈Dp(ω)}∆K
d
t (ω) = 0 and thus ∆Yt(ω)=1{t∈Dp(ω)}U

(
t, ω, pt(ω)

)
−1{t/∈Dp(ω)}∆K

d
t (ω), ∀ t ∈ [0, T ]. (3.1)

(2 ) According to Remark 2.2 of [18] or Remark 2.1 of [21], the “flat-off condition” is equivalent to

P
{∫ T

0
(Ys−Ls)dKc

s =0 and ∆Kd
τ =1{Yτ−=Lτ−}(Lτ−−Yτ )+ for any F−predictable stopping time τ

}
=1. (3.2)

The second part in (3.2) characterizes the F−predictable jump times of Y : For P−a.s. ω ∈ Ω, if ∆Yτ (ω) =

−∆Kd
τ (ω)<0 for some F−predictable stopping time τ , then (3.2) implies that Lτ−(ω)>Yτ (ω)≥Lτ (ω), or ∆Lτ (ω)<

0. Roughly speaking, the F−predictable jumps of Y stem from the F−predictable negative jumps of L.

(3 ) Since the càdlàg increasing processes K and the Poisson stochastic integral MU jump countably many times along

their P−a.s. paths, so does process Y :
{
t ∈ [0, T ] : Yt−(ω) 6= Yt(ω)

}
is a countable subset of [0, T ] for P−a.s. ω ∈ Ω.

To demonstrate the wellposedness of reflected BSDEs with jumps in Lp sense, we start with a comparison result

for generalized BSDEJs over stochastic intervals.

Proposition 3.1. Let p ∈ (1, 2), τ ∈ T and γ ∈ Tτ . For i= 1, 2, let gi be a p−generator and let (Y i, Zi, U i, V i) ∈
D0×Z2

loc×U
p
loc×V0 such that Y 1−Y 2∈Dp and that P−a.s.

Y it = Y iγ +

∫ γ

t

gi(s, Y is , Z
i
s, U

i
s)ds+ V iγ − V it −

∫ γ

t

ZisdBs −
∫

(t,γ]

∫
X
U is(x)Ñp(ds, dx), ∀ t ∈ [τ, γ]. (3.3)

Assume also that Y 1
γ ≤Y 2

γ , P−a.s. and that P−a.s.∫ s

t

1{Y 1
r−>Y

2
r−}(dV

1
r −dV 2

r )≤0, ∀ t, s∈ [τ, γ] with t<s. (3.4)

For either i = 1 or i = 2, if gi satisfies (A2 ), (A3 ), and if g1(t, Y 3−i
t , Z3−i

t , U3−i
t ) ≤ g2(t, Y 3−i

t , Z3−i
t , U3−i

t ),

dt×dP−a.s. on ]]τ, γ[[ , then it holds P−a.s. that Y 1
t ≤Y 2

t for any t ∈ [τ, γ].

Corollary 3.1. Let p∈(1, 2), τ ∈T and γ∈Tτ . For i=1, 2, let (ξi,L
i) be a parameter pair, let gi be a p−generator,

and let (Y i, Zi, U i,Ki) be a solution of RBSDEJ (ξi, g
i,Li) such that Y 1−Y 2 ∈ Dp and that P

{
Y 1
γ ≤Y 2

γ

}
=P

{
L1
t ≤

L2
t , ∀ t ∈ (τ, γ)

}
= 1. For either i = 1 or i = 2, if gi satisfies (A2 ), (A3 ), and if g1(t, Y 3−i

t , Z3−i
t , U3−i

t ) ≤
g2(t, Y 3−i

t , Z3−i
t , U3−i

t ), dt×dP−a.s. on ]]τ, γ[[, then it holds P−a.s. that Y 1
t ≤Y 2

t for any t ∈ [τ, γ].

Corollary 3.1 directly implies the uniqueness of the Lp−solution to a RBSDEJ. As to the existence result, we

adapt [15]’s Snell envelope approach by first extending the optimal stopping theory for right-continuous processes of

class (D) and with unbounded negative values (see the appendix). Then a Doob-Meyer decomposition and a flat-off

condition of the Snell envelope of L (Proposition A.5 and A.6) as well as a generalized martingale representation

theorem from [42] give rise to the following wellposedness result for RBSDEJs with simple generators in Lp sense.

Proposition 3.2. Given p ∈ (1, 2), let (ξ,L) be a parameter pair with (ξ,L+) ∈ Lp(FT )×Dp and let g be a

F−progressively measurable process with
∫ T

0
|gt|dt ∈ Lp(FT ). Then RBSDEJ (ξ, g,L) admits a unique solution

(Y, Z, U,K)∈Sp×Kp. Moreover, the process K is continuous if one of the following conditions holds:

(L1 ) ∆Lτ ≥ 0 for any F−predictable stopping time τ ;

(L2 ) L∈Dp and L is l.u.s.c.e.

With Proposition 3.2, we can then employ a fixed-point argument (or a Picard iterative approximation) to derive

the main result of the present paper.

Theorem 3.1. Given p ∈ (1, 2), let (ξ,L) be a parameter pair with (ξ,L+)∈Lp(FT )×Dp and let g be a p−generator

satisfying (A1 ) and (A2’ ). Then RBSDEJ (ξ, g,L) admits a unique solution (Y,Z, U,K)∈Sp×Kp. Moreover, the

process K is continuous if either (L1 ) or (L2 ) holds.
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4 Optimal Stopping under g−Evaluations

We derived the wellposedness result (Proposition 3.2) of RBSDEJs with simple generators from the optimal stopping

of uniformly integrable reward processes under jump filtration. Conversely, the general wellposedness result (Theorem

3.1) as well as the comparison theorem (Proposition 3.1) give rise to the optimal stopping under g−evaluations: Let

R be a p−integrable reward process consisting of a running reward L and a terminal reward ξ. The Y−component

of the unique Lp solution to RBSDEJ (ξ, g,L) is exactly the Snell envelope of R in the optimal stopping problem

under g−evaluations:

Proposition 4.1. Given p ∈ (1, 2), let (ξ,L) be a parameter pair such that (ξ,L+) ∈ Lp(FT )×Dp, let g be a

p−generator satisfying (A1 )−(A3 ) and let (Y, Z, U,K) be the unique solution of RBSDEJ (ξ, g,L) in Sp×Kp.

(1 ) Y is a g−supermartingale: for any γ∈T and ζ∈Tγ , Yγ≥Egγ,ζ
[
Yζ
]
, P−a.s.; For any n∈N, Y is a g−martingale

up to time τn(0) :={t∈ [0, T ] : Yt≤Rt+1/n}∈T : for any γ, ζ∈T with 0≤γ≤ζ≤τn(0), Yγ =Egγ,ζ
[
Yζ
]
, P−a.s.

(2 ) Y is the Snell envelope of the reward process Rt :=1{t<T}Lt+1{t=T}ξ, t∈ [0, T ] under the g−evaluations:

Yγ =esssup
ζ∈Tγ

Egγ,ζ
[
Rζ
]
, P−a.s. for any γ∈T . (4.1)

(3 ) If process K is continuous, then for any γ ∈ T , τ∗(γ) := inf{t ∈ [γ, T ] : Yt =Rt} (resp. τ̂(γ) := inf{t ∈ (γ, T ] :

Kt>Kγ}) is the minimal (resp. maximal) optimal stopping time for esssup
ζ∈Tγ

Egγ,ζ
[
Rζ
]
, and Y is a g−martingale up

to time τ̂(0).

This result generalizes Theorem 3.3 and Theorem 3.7 of [38] to the Lp case.

5 Proofs

Proof of Remark 3.1: Let (Y,Z, U)∈D1×Z2
loc×U

p
loc. Fix n∈N and define

τn :=inf

{
t ∈ [0, T ] :

∫ t

0

|g(s, 0, 0, 0)|ds+

∫ t

0

∣∣Zs∣∣2ds+

∫ t

0

∫
X
|Us(x)|pν(dx)ds>n

}
∧T ∈T .

Hölder’s inequality and (A2’) imply that

E

∫ τn

0

∣∣g(t, Yt, Zt, Ut)
∣∣dt≤E∫ τn

0

(∣∣g(t, 0, 0, 0)
∣∣+βt|Yt|+Λt|Zt|+βt‖Ut‖Lpν

)
dt

≤n+E

[
sup

t∈[0,τn]

|Yt|·
∫ τn

0

βtdt

]
+
(
E

∫ τn

0

Λ2
tdt
) 1

2
(
E

∫ τn

0

|Zt|2dt
) 1

2

+
(
E

∫ τn

0

βqt dt
) 1
q
(
E

∫ τn

0

‖Ut‖pLpνdt
) 1
p

≤n+βE[Y∗]+Ĉ
1
2n

1
2 +Ĉ

1
q n

1
p <∞.

So
∫ τn

0

∣∣g(t, Yt, Zt, Ut)
∣∣dt <∞ except on a P−null set Nn. Since

∫ T
0
|g(t, 0, 0, 0)|dt <∞, P−a.s. and since (Z,U) ∈

Z2
loc×U

p
loc, one can find a P−null set N0 such that for any ω∈N c

0 , τn(ω) =T for some n= n(ω)∈N. Now, for any

ω∈ ∩
n∈N∪{0}

N c
n, one can deduce that

∫ T
0

∣∣g(t, ω, Yt(ω), Zt(ω), Ut(ω))
∣∣dt=∫ τn(ω)

0

∣∣g(t, ω, Yt(ω), Zt(ω), Ut(ω))
∣∣dt<∞. �

Proof of Remark 3.2: 1) We just prove (3.1): Let {ζn}n∈N be the sequence of F−predictable stopping times that

exhausts the jumps of process K and set Ni := ∪
n∈N
{τNi =ζn}, which is a P−null set. For all ω∈Ω except on ∪

n∈N
Ni,

since the path K·(ω) only jumps at t ∈
(
∪
i∈N
{ζn(ω)}

)
and since

(
∪
i∈N
{ζn(ω)}

)
∩
(
∪
i∈N
{τNi (ω)}

)
=∅, we see that the

path K·(ω) does not jump at t∈Dp(ω) =
(
∪
i∈N
{τNi (ω)}

)
. Thus it holds for any t ∈ [0, T ] that 1{t∈Dp(ω)}∆K

d
t (ω)=0

and thus that

∆Yt(ω) = 1{t∈Dp(ω)}U
(
t, ω, pt(ω)

)
− 1{t/∈Dp(ω)}∆K

d
t (ω).

2) Now, we show the equivalence of (3.2) to the flat-off condition. It holds for any ω ∈ Ω except on a P−null set N
that (1.1) holds and the path Y·(ω)−L·(ω) is càdlàg. Fix ω∈N c,

∫ T
0

(
Ys−(ω)−Ls−(ω)

)
dKs(ω)=0 is equivalent to∫ T

0

(
Ys−(ω)−Ls−(ω)

)
dKc

s(ω)=0 (5.1)
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plus

0 =
∑

t∈[0,T ]

(
Ys−(ω)− Ls−(ω)

)
∆Kd

s (ω) =
∑
n∈N

(
Y
(
ζn(ω)−, ω

)
− L

(
ζn(ω)−, ω

))
∆Kd

(
ζn(ω), ω

)
, (5.2)

where {ζn}n∈N is sequence of F−predictable stopping times that exhausts the jumps of process K.

As the path Y·(ω)−L·(ω) is càdlàg, the continuity of path Kc
· (ω) implies that (5.1) is amount to∫ T

0

(
Ys(ω)−Ls(ω)

)
dKc

s(ω)=0. (5.3)

Clearly, the equality (5.2) holds if(
Y
(
τ(ω)−, ω

)
− L

(
τ(ω)−, ω

))
∆Kd

(
τ(ω), ω

)
= 0 holds for any F−predictable stopping time τ . (5.4)

Conversely, given an F−predictable stopping time τ , there exists a m = m(ω) ∈ N such that τ(ω) = ζm(ω). Then

we can deduce from (5.2) that

0 ≤
(
Y
(
τ(ω)−, ω

)
− L

(
τ(ω)−, ω

))
∆Kd

(
τ(ω), ω

)
=
(
Y
(
ζm(ω)−, ω

)
− L

(
ζm(ω)−, ω

))
∆Kd

(
ζm(ω), ω

)
≤

∑
n∈N

(
Y
(
ζn(ω)−, ω

)
− L

(
ζn(ω)−, ω

))
∆Kd

(
ζn(ω), ω

)
= 0.

So (5.2) is equivalent to (5.4).

Now, let τ be an F−predictable stopping time. It is easy to see that “
(
Y
(
τ(ω)−, ω

)
−L
(
τ(ω)−, ω

))
∆Kd

(
τ(ω), ω

)
=

0” amounts to

∆Kd
(
τ(ω), ω

)
= 1{Y (τ(ω)−,ω)=L(τ(ω)−,ω)}∆K

d
(
τ(ω), ω

)
. (5.5)

Since the stochastic integralMU does not jump at F−predictable stopping times, one has ∆Y
(
τ(ω), ω

)
=−∆Kd

(
τ(ω), ω

)
≤

0. Then (5.5) is equivalent to

∆Kd
(
τ(ω), ω

)
=1{Y (τ(ω)−,ω)=L(τ(ω)−,ω)}

(
−∆Y

(
τ(ω), ω

))+
=1{Y (τ(ω)−,ω)=L(τ(ω)−,ω)}

(
L
(
τ(ω)−, ω

)
−Y

(
τ(ω), ω

))+
. �

Proof of Proposition 3.1: Without loss of generality, we suppose that g1 satisfies (A2), (A3) and that

g1(t, Y 2
t , Z

2
t , U

2
t )≤g2(t, Y 2

t , Z
2
t , U

2
t ), dt×dP−a.s. on ]]τ, γ[[ . (5.6)

1) Set (Y,Z, U) :=(Y 1−Y 2, Z1−Z2, U1−U2) and consider the following F−progressively measurable processes:

at := 1{Yt 6=0}
g1(t, Y 1

t , Z
1
t , U

1
t )− g1(t, Y 2

t , Z
1
t , U

1
t )

Yt
, Θt := e

∫ t
0
a+s ds>0, and

bt := 1{Zt 6=0}
g1(t, Y 2

t , Z
1
t , U

1
t )− g1(t, Y 2

t , Z
2
t , U

1
t )

|Zt|2
Zt, ∀ t ∈ [0, T ].

By (A2), it holds dt×dP−a.s. that

|at| ≤ βt and |bt| ≤ Λt. (5.7)

Set Ht := h(t, Y 2
t , Z

2
t , U

1
t , U

2
t ), t∈ [0, T ]. Using similar arguments to those in the proof of [41, Theorem 2.2], we

know that Mt :=
∫ t

0
bsdBs+

∫
(0,t]

∫
XHs(x)Ñp(ds, dx), t∈ [0, T ] is a BMO martingale and its Doléans-Dade exponential

Et(M) := eMt− 1
2 〈M

c〉t
∏

0<s≤t

(1 + ∆Ms)e
−∆Ms > 0, t ∈ [0, T ] (5.8)

is thus a uniformly integrable martingale, where M c denotes the continuous part of M .

Define a probability measure Q by dQ
dP := ET (M), which satisfies dQ

dP

∣∣
Ft

:= Et(M), ∀ t ∈ [0, T ]. The Girsanov’s

Theorem (e.g. [24, 36]) shows that BQt :=Bt−
∫ t

0
bsds, t∈ [0, T ] is a Q−Brownian motion and ÑQ

p (t, A) :=Ñp(t, A)−∫
(0,t]

∫
XHs(x)ν(dx)ds, t∈ [0, T ], A∈FX is a Q−compensated Poisson random measure. By (5.7),

Θ∗ ≤ e
∫ T
0
βtdt ≤ eĈ , P−a.s. and thus Q−a.s. (5.9)
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2) Since E[|Yτ |p]≤ ‖Y ‖pDp <∞, Corollary 2.1 implies that there exists a unique pair
(
Z,U

)
∈ Z2,p×Up such that

P
{
E[Yτ |Ft]=E[Yτ ]+

∫ t
0
ZsdBs+

∫
(0,t]

∫
XUs(x)Ñp(ds, dx), t∈ [0, T ]

}
=1. This together with (3.3) shows that P−a.s.

Yt := E[Yτ |Fτ∧t]+Yγ∧t−Yτ∧t=E[Yτ |Fτ∧t]+Yτ∨(γ∧t)−Yτ =E[Yτ ]+

∫ τ∧t

0

ZsdBs+

∫
(0,τ∧t]

∫
X
Us(x)Ñp(ds, dx)

−
∫ τ∨(γ∧t)

τ

gsds−V 1
τ∨(γ∧t)+V 1

τ +V 2
τ∨(γ∧t)−V

2
τ +

∫ τ∨(γ∧t)

τ

ZsdBs+

∫
(τ,τ∨(γ∧t)]

∫
X
Us(x)Ñp(ds, dx)

= E[Yτ ]−
∫ t

0

1{τ<s≤γ}gsds−
∫ t

0

1{τ<s≤γ}(dV
1
s −dV 2

s )+

∫ t

0

(
1{s≤τ}Zs+1{τ<s≤γ}Zs

)
dBs

+

∫
(0,t]

∫
X

(
1{s≤τ}Us(x)+1{τ<s≤γ}Us(x)

)
Ñp(ds, dx), t ∈ [0, T ],

with gs :=g1(s, Y 1
s , Z

1
s , U

1
s )−g2(s, Y 2

s , Z
2
s , U

2
s ). Similar to Remark 3.2 (3), the càdlàg processes V 1, V 2 of finite vari-

ation and the Poisson stochastic integral
{∫

(0,t]

∫
X
(
1{s≤τ}Us(x)+1{τ<s≤γ}Us(x)

)
Ñp(ds, dx)

}
t∈[0,T ]

jump countably

many times along their P−a.s. paths, so does the F−adapted càdlàg process Y. Namely, there exists a P−null set

N such that for any ω∈N c,{
t∈ [0, T ] : Yt−(ω) 6=Yt(ω)

}
is a countable subset of [0, T ]. (5.10)

Applying Tanaka-type formula (see e.g. Theorem IV.68 of [36]) to process Y+ yields that P−a.s.

Y+
t =

(
E[Yτ ]

)+−∫ t

0

1{Ys−>0}1{τ<s≤γ}gsds−
∫ t

0

1{Ys−>0}1{τ<s≤γ}(dV
1
s −dV 2

s )+Γt+
1

2
Ot

+

∫ t

0

1{Ys−>0}
(
1{s≤τ}Zs+1{τ<s≤γ}Zs

)
dBs+

∫
(0,t]

∫
X

1{Ys−>0}
(
1{s≤τ}Us(x)+1{τ<s≤γ}Us(x)

)
Ñp(ds, dx), t∈ [0, T ],

where Γt :=
∑
s∈(0,t]

(
1{Ys−>0}Y−s +1{Ys−≤0}Y+

s

)
, s∈ [0, T ] and

{
Ot
}
t∈[0,T ]

is an F−adapted continuous increasing

process known as the “local time” of process Y at 0. By (5.10), Γ is an F−adapted càdlàg increasing process with

countably many jumps.

3) Now, fix t∈ [0, T ] and n∈N. We define γn := inf
{
s∈ [τ, T ] :

∫ s
τ
|Zr|2dr+

∫ s
τ

∫
X |Ur(x)|pν(dx)dr > n

}
∧γ ∈ Tτ and

set ζn := (τ ∨ t)∧γn. Applying integration-by-parts formula (see e.g. Corollary II.2 of [36]) to process ΘY+ over

[ζn, γn]=[τ, γn]∩[t, T ] yields that

ΘζnY+
ζn

= ΘγnY+
γn+

∫ γn

ζn

Θr

(
1{Yr−>0}gr−a+

r Y+
r

)
dr+

∫ γn

ζn

1{Yr−>0}Θr(dV
1
r−dV 2

r )−
∫ γn

ζn

ΘrdΓr−
1

2

∫ γn

ζn

ΘrdOr

−
∫ γn

ζn

1{Yr−>0}ΘrZrdBr −
∫

(ζn,γn]

∫
X

1{Yr−>0}ΘrUr(x)Ñp(dr, dx), P−a.s.

Since Yτ∨(γ∧t) = E[Yτ |Fτ ]+Yτ∨(γ∧t)−Yτ =Yτ∨(γ∧t) for any t∈ [0, T ] (i.e. Yt =Yt for any t∈ [τ, γ]), we see from

(3.4) that P−a.s.

ΘζnY
+
ζn
≤ΘγnY

+
γn+

∫ γn

ζn

Θr

(
1{Yr−>0}gr−a+

r Y
+
r

)
dr−

∫ γn

ζn

1{Yr−>0}ΘrZrdBr −
∫

(ζn,γn]

∫
X

1{Yr−>0}ΘrUr(x)Ñp(dr, dx).

By (A3) (iii) and (5.6), it holds dr×dP−a.s. on ]]τ, γ[[ that

1{Yr−>0}gr=1{Yr−>0}
(
arYr+brZr+g1

(
r, Y 2

r , Z
2
r , U

1
r

)
−g2

(
r, Y 2

r , Z
2
r , U

2
r

))
≤1{Yr−>0}

(
arYr+brZr+

∫
X
Hr(x)Ur(x)ν(dx)

)
.

Also, (5.10) implies that for P−a.s. ω∈Ω

1{Yr−(ω)>0}ar(ω)Yr(ω)=1{Yr(ω)>0}ar(ω)Yr(ω)=1{Yr(ω)>0}ar(ω)Y +
r (ω)≤a+

r (ω)Y +
r (ω) holds for a.e. r∈

(
τ(ω), γ(ω)

)
.

Combining the above three inequalities yields that

ΘζnY
+
ζn
≤ΘγnY

+
γn−

(
Mn

γn−M
n
ζn+M n

γn−M n
ζn

)
, P−a.s. and thus Q−a.s., (5.11)
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where Mn
t :=

∫ t
0
1{r∈(τ,γn]}1{Yr−>0}ΘrZrdB

Q
r and M n

t :=
∫

(0,t]

∫
X1{r∈(τ,γn]}1{Yr−>0}ΘrUr(x)ÑQ

p (dr, dx), t∈ [0, T ].

The Burkholder-Davis-Gundy inequality, (1.5) and (5.9) show that

EQ

[
sup
t∈[0,T ]

∣∣Mn
t

∣∣p+ sup
t∈[0,T ]

∣∣M n
t

∣∣p]≤ cpEQ[(∫ γn

τ

|Θr|2|Zr|2dr
)p

2

+
(∫

(τ,γn]

∫
X
|Θr|2|Ur(x)|2Np(dr, dx)

) p
2

]
≤ cpepĈEQ

[(∫ γn

τ

|Zr|2dr
) p

2

+

∫ γn

τ

∫
X
|Ur(x)|pν(dx)dr

]
≤cpepĈ

(
n
p
2 +n

)
<∞,

thus Mn and M n are two uniformly integrable Q−martingales. Taking the conditional expectation EQ[ |Fζn ] in

(5.11) yields that Q−a.s.

ΘζnY
+
ζn
≤EQ

[
ΘγnY

+
γn |Fζn

]
=1{γn<(τ∨t)∧γ}EQ

[
ΘγnY

+
γn |Fγn

]
+1{γn≥(τ∨t)∧γ}EQ

[
ΘγnY

+
γn |F(τ∨t)∧γ

]
:=ηn1 +ηn2 . (5.12)

As (Z,U)∈Z2
loc×U

p
loc, one has

∫ T
0

(
|Zr|2+‖Ur‖pLpν

)
dr<∞, P−a.s. and thus Q−a.s. So for Q−a.s. ω∈Ω there exists

a Nω∈N such that

for any n ≥ Nω, γn(ω) = γ(ω) and thus ηn1 (ω) = 0. (5.13)

It follows that lim
n→∞

ηn1 =0, Q−a.s. On the other hand, the first equality in (5.13) also shows that lim
n→∞

ΘγnY
+
γn =ΘγY

+
γ

and lim
n→∞

ΘζnY
+
ζn

= Θ(τ∨t)∧γY
+
(τ∨t)∧γ , Q−a.s. even though the process Y may not be left-continuous. For any

n ∈ N, (5.9) shows that ΘγnY
+
γn ≤ eĈY∗, P−a.s. Since a slight extension of [37, Proposition A.1 (a)] shows that

E
[
E q
T (M)

]
<∞, we can deduce from Hölder’s inequality that EQ[Y∗]=E[ET (M)Y∗]≤‖ET (M)‖Lq(FT )‖Y ‖Dp<∞.

As n→∞ in (5.12), a conditional-expectation version of dominated convergence theorem and (5.13) yield that

0≤Θ(τ∨t)∧γY
+
(τ∨t)∧γ≤ lim

n→∞
EQ
[
ΘζnY

+
ζn
|F(τ∨t)∧γ

]
=EQ

[
ΘγY

+
γ |F(τ∨t)∧γ

]
=0, Q−a.s. and thus P−a.s.

It follows that Y +
(τ∨t)∧γ = 0 or Y 1

(τ∨t)∧γ ≤Y
2
(τ∨t)∧γ , P−a.s. By the right continuity of processes Y 1 and Y 2, it holds

P−a.s. that Y 1
t ≤ Y 2

t for any t∈ [τ, γ]. �

Proof of Corollary 3.1: Since P
{
L1
t ≤ L2

t , ∀ t ∈ (τ, ζ)
}

= 1, implies that P
{
L1
t− ≤ L2

t−, ∀ t ∈ (τ, ζ]
}

= 1 we can

deduce from the flat-off condition of reflected BSDEs that P−a.s.

0≤
∫ s

t

1{Y 1
r−>Y

2
r−}dK

1
r =

∫ s

t

1{L1
r−=Y 1

r−>Y
2
r−}dK

1
r ≤
∫ s

t

1{L1
r−>L2

r−}dK
1
r = 0, ∀ t, s∈ [τ, ζ] with t<s.

It follows that P−a.s.∫ s

t

1{Y 1
r−>Y

2
r−}(dK

1
r − dK2

r ) = −
∫ s

t

1{Y 1
r−>Y

2
r−}dK

2
r ≤ 0, ∀ t, s∈ [τ, ζ] with t<s.

Then applying Proposition 3.1 with V i=Ki, i=1, 2 leads to the conclusion. �

Proof of Proposition 3.2: 1) Let (Y i, Zi, U i,Ki), i= 1, 2 be two Lp−solutions of RBSDEJ (ξ, g,L). Applying

Corollary 3.1 with parameters (ξ1, g
1,L1) = (ξ2, g

2,L2) = (ξ, g,L) over period [[τ, γ]] = [0, T ], we directly obtain that

P{Y 1
t =Y 2

t , ∀ t∈ [0, T ]}=1. So it suffices to show that there exists a Lp−solution to the RBSDEJ (ξ, g,L).

In light of Theorem 2.1, the BSDEJ (ξ, g) admits a unique solution (Y,Z,U)∈Sp. Set L̃ :=L∨(Y−1).

1a) We first show that process {Yt+
∫ t

0
gsds}t∈[0,T ] is the Snell envelope of a real-valued, F−adapted càdlàg process

Rt :=
∫ t

0

gsds+
(
Yt∧L̃t

)
1{t<T}+ξ1{t=T}, t∈ [0, T ]. (5.14)

Since Yt−1≤Yt∧L̃t≤ L̃t≤L+
t ∨
(
|Yt|+1

)
, P−a.s. for any t∈ [0, T ), one can deduce from the right-continuity of

processes L and Y that R∗≤1+
∫ T

0
|gs|ds+Y∗+L+

∗ +|ξ|, P−a.s. It follows from (1.6) that

E
[
Rp∗
]
≤ 5p−1E

[
1+
(∫ T

0

|gs|ds
)p

+Yp∗+(L+
∗ )p+|ξ|p

]
<∞, thus R ∈ Dp. (5.15)
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Let t∈ [0, T ]. For any ρ∈Tt, since Yρ≥
(
Yρ∧L̃ρ

)
1{ρ<T}+ξ1{ρ=T}=Rρ−

∫ ρ
0
gsds, P−a.s., it holds P−a.s. that

Yt+
∫ t

0

gsds=Yρ+

∫ ρ

0

gsds−
(
Mρ +Mt −Mρ +Mt

)
≥Rρ−

(
Mρ +Mt −Mρ +Mt

)
. (5.16)

where Ms :=
∫ s

0
ZrdBr and Ms :=

∫
(0,s]

∫
X Ur(x)Ñp(dr, dx), s ∈ [0, T ] are two uniformly integrable martingales by

(1.3) and (1.4). Taking conditional expectation E[·|Ft] in (5.16) yields

Yt+
∫ t

0

gsds ≥ E[Rρ|Ft], P−a.s. (5.17)

In light of the Debut Theorem (see e.g. Theorem IV.50 of [10]), τt := inf
{
s ∈ [t, T ] : Ys−Ls ≤ 0

}
∧T defines a

Tt−stopping time. The right-continuity of process Y−L shows that for P−a.s. ω∈{τt<T}, one has Y
(
τt(ω), ω

)
≤

L
(
τt(ω), ω

)
. Then it holds P−a.s. that

Yt+
∫ t

0

gsds = Yτt +

∫ τt

0

gsds−
∫ τt

t

ZsdBs−
∫

(t,τt]

∫
X
Us(x)Ñp(ds, dx)

=
(
Yτt ∧ L̃τt

)
1{τt<T} + ξ1{τt=T} +

∫ τt

0

gsds−
∫ τt

t

ZsdBs−
∫

(t,τt]

∫
X
Us(x)Ñp(ds, dx).

Taking conditional expectation E[·|Ft] yields that Yt+
∫ t

0
gsds=E

[
Rτt |Ft

]
, P−a.s., which together with (5.17) shows

Yt+
∫ t

0

gsds=esssup
ρ∈Tt

E[Rρ|Ft], P−a.s. (5.18)

1b) Next, we denote by S the Snell envelope of the real-valued, F−adapted càdlàg process

Rt :=

∫ t

0

gsds+L̃t1{t<T}+ξ1{t=T}, t∈ [0, T ] (5.19)

and set Yt :=St−
∫ t

0
gsds, t∈ [0, T ]. By (A.5), it holds for any t∈ [0, T ] that

Yt = esssup
ρ∈Tt

E[Rρ|Ft]−
∫ t

0

gsds ≥ Rt−
∫ t

0

gsds = L̃t1{t<T}+ξ1{t=T} ≥ Lt, P−a.s.

It follows from the right-continuity of processes Y and L that P{Yt≥Lt, ∀ t∈ [0, T ]}=1.

Similar to (5.15), one can show that E
[
Rp
∗
]
≤ 5p−1E

[
1+
( ∫ T

0
|gs|ds

)p
+Yp∗+(L+

∗ )p+ |ξ|p
]
<∞, namely, R∈Dp.

In light of Proposition A.5 and Proposition A.6, there exist a martingale M ∈Dp and a process K ∈Kp such that

P−a.s.

Yt+

∫ t

0

gsds=St=Mt−Kt, t∈ [0, T ], (5.20)

and that ∫ T

0

1{Yt−>L̃t−}dKt =

∫ T

0

1{Yt−+
∫ t
0
gsds>Rt−}dKt = 0, P−a.s. (5.21)

The equality (5.20) together with (1.6) shows that E[Y p∗ ]≤3p−1E
[( ∫ T

0
|gt|dt

)p
+Mp

∗+Kp
T

]
<∞, i.e. Y ∈Dp.

As MT ∈ Lp(FT ), a martingale representation theorem, Corollary 2.1, implies that there exists a unique pair

(Z,U)∈Z2,p×Up such that P−a.s.

Mt = E[MT |Ft] = E[MT ] +

∫ t

0

ZsdBs +

∫
(0,t]

∫
X
Us(x)Ñp(ds, dx), t ∈ [0, T ]. (5.22)

which together with (5.20) leads to that P−a.s.

Yt = ξ +

∫ T

t

gsds+KT −Kt −
∫ T

t

ZsdBs −
∫

(t,T ]

∫
X
Us(x)Ñp(ds, dx), t ∈ [0, T ]. (5.23)



5. Proofs 13

Since Rt≥Rt, ∀ t∈ [0, T ], (5.18) shows that P{Yt≥Yt, ∀ t∈ [0, T ]}=1. Then we can deduce from (5.21) that

0 ≤
∫ T

0

1{Yt−>Lt−}dKt =

∫ T

0

1{Yt−>L̃t−}dKt = 0, P−a.s.

It follows that
∫ T

0
(Yt−−Lt−) dKt=0, P−a.s. Therefore, (Y,Z, U,K) is a solution of RBSDEJ (ξ, g,L).

2) Next, let us show the continuity of process K under (L1 ) or (L2 ).

2a) Assume first that (L1) holds and carry on all notations/results of Part (1). For any F−predictable stop-

ping time τ , the flat-off condition in RBSDE (ξ, g,L) and (3.2) imply that 0 ≤ ∆Kd
τ = 1{Yτ−=Lτ−}(Lτ−−Yτ )+ ≤

1{Yτ−=Lτ−}(Lτ−−Lτ )+ =0, P−a.s. Then one can deduce from Remark 3.2 (1) that P{∆Kd
t =0, ∀ t∈ [0, T ]}=1 or

K is a continuous process.

2b) Then, let us assume that L satisfies (L2). We have to adjust the arguments in Part (1) by resetting L̃=L: we

still set process R as in (5.14). Since −|Yt|−|Lt|≤Yt∧L̃t≤Lt, P−a.s. for any t∈ [0, T ), the right-continuity of L and

Y implies that R∗≤
∫ T

0
|gs|ds+Y∗+L∗+|ξ|, P−a.s. Analogous to (5.15), one can deduce from (1.6) and L∈Dp that

R∈Dp. Then following the same arguments in Part (1a), we can again show that {Yt+
∫ t

0
gsds}t∈[0,T ] is the Snell

envelope of R.

Still set process R as in (5.19), which is clearly of Dp. Let S denote the Snell envelope of R and set Yt :=St−
∫ t

0
gsds,

t∈ [0, T ]. By Proposition A.5 and Proposition A.6, one can still find a martingale M ∈Dp and a process K∈Kp such

that (5.20) holds and that∫ T

0

1{Yt−>Lt−}dKt=

∫ T

0

1{Yt−>L̃t−}dKt =

∫ T

0

1{Yt−+
∫ t
0
gsds>Rt−}dKt = 0, P−a.s.

The equality (5.20) and (1.6) shows Y ∈Dp.
As MT ∈Lp(FT ), Corollary 2.1 implies that there exists a unique pair (Z,U)∈Z2,p×Up such that (5.22) holds,

which together with (5.20) leads to (5.23). Hence (Y,Z, U,K) solves RBSDEJ (ξ, g,L). Since ξ≥LT , P−a.s. , we can

deduce from the l.u.s.c.e. of L that the process Rt=
∫ t

0
gsds+Lt1{t<T}+ξ1{t=T}, t∈R is also l.u.s.c.e. By Example

A.1, process K is continuous. �

Proof of Theorem 3.1 1): By the Burkholder-Davis-Gundy inequality, there exists a constant κ>0 such that

E[M∗] ≤ κE
{

[M,M ]
1/2
T

}
(5.24)

for any càdlàg local martingale M . We set constants ℘1 :=
(
q
4

) 1
q , ℘2 := (ν(X )T )

1
p 2

2
p+1κp1− 1

p℘−1
1 , ℘3 := T+1− p

2 +

℘−p2 ν(X )T , ℘4 := 2
p−1

(
16κ2p2℘3+p

2

)
, ℘5 := 2

p−1 (1+℘2)2−p(22+pκppp−1℘−p1 ℘3+1
)

and ℘6 :=(4p℘3+℘4+℘5)−
1
p . Define

processes

at :=
2βqt +Ĉ

q
2−1Λ2

t

q℘p+q6 (℘4+℘5)
and At :=p

∫ t

0

asds, t∈ [0, T ] .

Then CA :=‖AT ‖L∞(FT )≤
(p−1)(4p℘3+℘4+℘5)

℘q6(℘4+℘5)

(
2Ĉ+Ĉ

q
2

)
.

Let us introduce the following norm on Sp:

∥∥(Y,Z, U)
∥∥
]
:=

{
E

[
T sup
t∈[0,T ]

(
eAt |Yt|p

)
+
(∫ T

0

e
2
pAt |Zt|2 dt

) p
2

+

∫ T

0

∫
X
eAt |Ut(x)|pν(dx)dt

]} 1
p

, ∀ (Y,Z, U)∈Sp.

Fix (Y, Z, U)∈ Sp. The P⊗B(R)⊗B(Rd)⊗B
(
Lpν
)
/B(R)−measurability of generator g, the F−predictability

of processes (Y, Z) as well as the P̂⊗FX−measurability of random field U implies that process gt :=g(t, Yt, Zt, Ut),

t ∈ [0, T ] is F−progressively measurable. Similar to (5.81) of [42], we can deduce from (A2’), (1.6) and Hölder’s

inequality that

E

[(∫ T

0

|gt|dt
)p]
≤4p−1E

[(∫ T

0

∣∣g(t, 0, 0, 0)
∣∣dt)p]+4p−1

(
Ĉp−1T‖Y ‖pDp+Ĉ

p
2 ‖Z‖pZ2,p+Ĉp−1‖U‖pUp

)
<∞.
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As g clearly satisfies (A2’), Proposition 3.2 shows that the RBSDEJ (ξ, g,L) admits a unique solution (Y,Z,U ,K)∈
Sp×Kp.

We set Ψ(Y,Z, U) :=(Y,Z,U). To see that Ψ defines a contraction map on Sp under the norm ‖ · ‖], let
(
Ỹ , Z̃, Ũ

)
be another triplet in Sp and let

(
Ỹ, Z̃, Ũ , K̃

)
be the unique solution to the RBSDEJ

(
ξ, g̃,L

)
with g̃t :=g

(
t, Ỹt, Z̃t, Ũt

)
,

t ∈ [0, T ], so Ψ
(
Ỹ , Z̃, Ũ

)
=
(
Ỹ, Z̃, Ũ

)
. For simplicity, we denote (Y ,Z,U ) :=

(
Y−Ỹ,Z−Z̃,U−Ũ

)
.

2) Given ε∈(0, 1], the function ϕε(x) :=
(
|x|2+ε

)1
2 , x∈R has the following derivatives of its p−th power:

Dϕpε(x) = pϕp−2
ε (x)x and D2 ϕpε(x) = pϕp−2

ε (x) + p(p−2)ϕp−4
ε (x)x2 ≥ p(p−1)ϕp−2

ε (x). (5.25)

Let (t, ε)∈ [0, T ]×(0, 1]. Applying Itô’s formula to process eAsϕpε(Ys) over the interval [t, T ], we see from Remark

3.2 (3) that P−a.s.

eAtϕpε(Yt)+
1

2

∫ T

t

eAsD2ϕpε(Ys)|Zs|2ds+
∑

s∈(t,T ]

eAs
(
ϕpε(Ys)−ϕpε(Ys−)−Dϕpε(Ys−)∆Ys

)
= eAT ε

p
2 +p

∫ T

t

eAs
[
ϕp−2
ε (Ys)Ys(gs−g̃s)−asϕpε(Ys)

]
ds+p

∫ T

t

eAsϕp−2
ε (Ys−)Ys−

(
dKs−dK̃s

)
−p
(
MT−Mt+MT−Mt

)
, (5.26)

where Ms := M ε
s =

∫ s
0
eArϕp−2

ε (Yr−)Yr−ZrdBr and Ms := Mε
s =

∫
(0,s]

∫
X e

Arϕp−2
ε (Yr−)Yr−Ur(x)Ñp(dr, dx), ∀ s ∈

[0, T ]. Similar to (5.10) of [42], we can deduce from Taylor’s Expansion Theorem and (5.25) that

ϕpε
(
Ys
)
−ϕpε

(
Ys−

)
−Dϕpε

(
Ys−

)
∆Ys≥p(p−1)|∆Ys|2

∫ 1

0

(1−α)ϕp−2
ε (Ys−+α∆Ys)dα.

When |Ys−| ≤ ℘2|∆Ys|, one has ϕp−2
ε (Ys−+α∆Ys) ≥

(
(|Ys−| + α|∆Ys|)2 + ε

) p
2−1 ≥

(
(1 + ℘2)2|∆Ys|2 + ε

) p
2−1 ≥

(1 + ℘2)p−2
(
|∆Ys|2 + ε

) p
2−1

, ∀α∈ [0, 1]. So an analogy to (5.11) of [42] and (3.1) show that for P−a.s. ω∈Ω∑
s∈(t,T ]

eAs
(
ϕpε
(
Ys(ω)

)
−ϕpε

(
Ys−(ω)

)
−Dϕpε

(
Ys−(ω)

)
∆Ys(ω)

)
≥ 1

2
(1+℘2)p−2p(p−1)

∑
s∈(t,T ]

1{|Ys−(ω)|≤℘2|∆Ys(ω)|}e
As(ω)

∣∣∆Ys(ω)
∣∣2(|∆Ys(ω)|2+ε

) p
2−1

≥ 1

2
(1+℘2)p−2p(p−1)

∑
s∈Dp(ω)∩(t,T ]

1{|Ys−|≤℘2|Us(x)|}e
As
∣∣U (s, ω, ps(ω)

)∣∣2(∣∣U (s, ω, ps(ω)
)∣∣2+ε

) p
2−1

=
1

2
(1+℘2)p−2p(p−1)

(∫
(t,T ]

∫
X

1{|Ys−|≤℘2|Us(x)|}e
As
∣∣Us(x)

∣∣2(|Us(x)|2+ε
) p

2−1
Np(ds, dx)

)
(ω).

The function ψ(x) := xϕp−2
ε (x) = x(x2 + ε)

p
2−1, x ∈R has strictly positive derivative d

dxψ(x) = (x2 +ε)
p
2−2
(
(p−

1)x2+ε
)
>0, so it satisfies ψ(x)≤ψ(x+)≤(x+)p−1, ∀x∈R. Then the flat-off condition implies that P−a.s.∫ T

t

eAsϕp−2
ε (Ys−)Ys−

(
dKs−dK̃s

)
=

∫ T

t

1{Ys−=Ls−}e
Asψ

(
Ls−−Ỹs−

)
dKs+

∫ T

t

1{Ỹs−=Ls−}e
Asψ

(
Ls−−Ys−

)
dK̃s

≤
∫ T

t

1{Ys−=Ls−}e
As
(
(Ls−−Ỹs−)+

)p−1
dKs+

∫ T

t

1{Ỹs−=Ls−}e
As
(
(Ls−−Ys−)+

)p−1
dK̃s = 0.

Set ηεt :=
∫ T
t
eAs
[
ϕp−1
ε (Ys)|gs−g̃s|−asϕpε(Ys)

]
ds, then (5.26) and (5.25) imply that P−a.s.

eAtϕpε(Yt)+
p(p−1)

2

∫ T

t

eAsϕp−2
ε (Ys)|Zs|2ds+

p(p−1)

2
(1+℘2)p−2

∫
(t,T ]

∫
X

1{|Ys−|≤℘2|Us(x)|}e
As
∣∣Us(x)

∣∣2(|Us(x)|2+ε
) p

2−1
Np(ds, dx)

≤ eCAε
p
2 +p ηεt−p

(
MT−Mt+MT−Mt

)
. (5.27)
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Since the random variable Φε := sup
t∈[0,T ]

(
eAtϕpε(Yt)

)
satisfies E

[
Φε
]
≤ eCAE

[
Y p
∗ +ε

p
2

]
= eCA

(
‖Y ‖pDp+ε

p
2

)
<∞ by

(1.6), we can deduce from (5.24), Young’s inequality and (1.5) that

E

[
sup

s∈[0,T ]

|Ms|+ sup
s∈[0,T ]

|Ms|
]
≤ κE

[
(Φε)

p−1
p

(∫ T

0

e
2
pAs |Zs|2ds

)1
2

+(Φε)
p−1
p

(∫
(0,T ]

∫
X
e

2
pAs |Us(x)|2Np(ds, dx)

)1
2

]

≤ κ

p
E

[
2(p−1)Φε+eCA

(∫ T

0

|Zs|2ds
)p

2

+eCA
∫ T

0

∫
X
|Us(x)|pν(dx)ds

]
<∞.

So both M and M are uniformly integrable martingales. Taking t=0 and taking expectation in (5.27) yields that

E

∫ T

0

eAsϕp−2
ε (Ys)|Zs|2ds+(1+℘2)p−2E

∫ T

0

∫
X

1{|Ys−|≤℘2|Us(x)|}e
As
∣∣Us(x)

∣∣2(|Us(x)|2+ε
) p

2−1
ν(dx)ds

≤ 2

p(p−1)

(
eCAε

p
2 +E[ηε0]

)
.

Using similar arguments to those that lead to (5.94) of [42], we can deduce that
∥∥(Y−Ỹ,Z−Z̃,U−Ũ)∥∥p

]
≤ 1

p

∥∥(Y −
Ỹ , Z−Z̃, U−Ũ

)∥∥p
]
. Hence, Ψ is a contraction mapping on Sp under the norm ‖ · ‖], which admits a unique fixed

point (Y,Z, U)∈Sp.
Let K be the process in Kp that is associated to Ψ(Y,Z, U)=(Y, Z, U). Then (Y,Z, U,K) forms a unique solution

of RBSDEJ (ξ, g,L) in Sp×Kp. If either (L1) or (L2) holds, Proposition 3.2 shows that K is a continuous process. �

Proof of Proposition 4.1 1): Let γ∈T and ζ∈Tγ . Theorem 2.1 implies that P−a.s.

Y
Yζ ,gζ
t =Yζ+

∫ ζ

t

g
(
s, Y

Yζ ,gζ
s , Z

Yζ ,gζ
s , U

Yζ ,gζ
s

)
ds−

∫ ζ

t

Z
Yζ ,gζ
s dBs−

∫
(t,ζ]

∫
X
U
Yζ ,gζ
s (x)Ñp(ds, dx), ∀ t∈ [0, ζ]. (5.28)

Since it holds P−a.s. that

Yt = Yζ+

∫ ζ

t

g(s, Ys, Zs, Us)ds+Kζ−Kt−
∫ ζ

t

ZsdBs−
∫

(t,ζ]

∫
X
Us(x)Ñp(ds, dx), ∀ t∈ [0, ζ],

applying Proposition 3.1 with (Y 1, Z1, U1, V 1) =
(
Y Yζ ,gζ , ZYζ ,gζ , UYζ ,gζ , 0

)
and (Y 2, Z2, U2, V 2) = (Y, Z, U,K) over

period [0, ζ] yields that P
{
Y
Yζ ,gζ
t ≤ Yt, ∀ t ∈ [0, ζ]

}
= 1. In particular, Egγ,ζ [Yζ ] = Y

Yζ ,gζ
γ ≤ Yγ , P−a.s., thus Y is a

g−supermartingale.

As Yζ≥1{ζ<T}Lζ+1{ζ=T}ξ=Rζ , P−a.s., the monotonicity of g−evaluation further shows that

Yγ ≥ Egγ,ζ [Yζ ] ≥ E
g
γ,ζ [Rζ ], P−a.s. (5.29)

Let ζ̃∈Tγ satisfies that Kζ̃ =Kγ , P−a.s. Then it follows that P−a.s.

Yt=Yζ̃+

∫ ζ̃

t

g(s, Ys, Zs, Us)ds−
∫ ζ̃

t

ZsdBs−
∫

(t,ζ̃]

∫
X
Us(x)Ñp(ds, dx), ∀ t∈

[
γ, ζ̃

]
.

Similar to (5.28), It holds P−a.s. that

Y
Y
ζ̃
,g
ζ̃

t =Yζ̃+

∫ ζ̃

t

g
(
s, Y

Y
ζ̃
,g
ζ̃

s , Z
Y
ζ̃
,g
ζ̃

s , U
Y
ζ̃
,g
ζ̃

s

)
ds−

∫ ζ̃

t

Z
Y
ζ̃
,g
ζ̃

s dBs−
∫

(t,ζ̃]

∫
X
U
Y
ζ̃
,g
ζ̃

s (x)Ñp(ds, dx), ∀ t∈
[
0, ζ̃

]
.

Applying Proposition 3.1 with (Y 1, Z1, U1, V 1) =
(
Y Yζ̃ ,gζ̃ , ZYζ̃ ,gζ̃ , UYζ̃ ,gζ̃ , 0

)
and (Y 2, Z2, U2, V 2) = (Y, Z, U, 0) over

period
[
γ, ζ̃

]
gives that P

{
Yt=Y

Y
ζ̃
,g
ζ̃

t , ∀ t∈
[
γ, ζ̃

]}
=1. In particular,

Eg
γ,ζ̃

[
Yζ̃
]
=Y

Y
ζ̃
,g
ζ̃

γ =Yγ , P−a.s. (5.30)
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Let n∈N and define τn(γ) :={t∈ [γ, T ] : Yt≤Rt+1/n}∈Tγ . As Ys>Rs+1/n=Ls+1/n>Ls for any s∈
[
γ, τn(γ)

)
,

we see that Ys−≥Ls−+1/n>Ls− for any s∈
(
γ, τn(γ)

]
. Then the flat-off condition in RBSDE (ξ, g,L) and Remark

3.2 (1), (2) imply that P−a.s.,

Kc
τn(γ)−K

c
γ =

∫ τn(γ)

γ

1{Ys=Ls}dK
c
s =0 and 0≤Kd

τn(γ)−K
d
γ≤

∑
s∈(γ,τn(γ)]

1{Ys−=Ls−}(Ls−−Ys)
+ =0.

Putting them together shows that

Kτn(γ) =Kγ , P−a.s. (5.31)

For any γ, ζ ∈T with 0≤γ≤ ζ≤ τn(0), as Kτn(0) =K0 =0, P−a.s. by (5.31), The monotonicity of K shows that

Kζ =Kγ =0, P−a.s. Taking ζ̃=ζ in (5.30) yields that Egγ,ζ [Yζ ]=Yγ , P−a.s. So Y is a g−martingale up to τn(0).

2) Let γ∈T and denote τn(γ) by τ̃ . Since YT =ξ=RT <RT+1/n, P−a.s., the right-continuity of processes Y and R
implies that Yτ̃ ≤Rτ̃+1/n, P−a.s. Applying Theorem 2.2 with (Y 1, Z1, U1)=

(
Y Yτ̃ ,gτ̃ , ZYτ̃ ,gτ̃ , UYτ̃ ,gτ̃

)
and (Y 2, Z2,

U2)=
(
Y Rτ̃+1/n,gτ̃ , ZRτ̃+1/n,gτ̃ , URτ̃+1/n,gτ̃

)
over period [0, τ̃ ] and taking ζ̃= τ̃ in (5.30), we see from (5.31) that

Yγ =Y Yτ̃ ,gτ̃γ ≤Y Rτ̃+1/n,gτ̃ =Y Rτ̃ ,gτ̃γ +ηn=Egγ,τ̃ [Rτ̃ ]+ηn≤esssup
ζ∈Tγ

Egγ,ζ [Rζ ]+ηn, P−a.s., (5.32)

where ηn := Y
Rτ̃+1/n,gτ̃
γ −Y Rτ̃ ,gτ̃γ . By (2.1), E

[
|ηn|p

]
≤
∥∥Y Rτ̃+1/n,gτ̃ −Y Rτ̃ ,gτ̃

∥∥p
Dp ≤

C
np for some constant C only

depending on T , ν(X ), p and Ĉ. So there exists a subsequence {ni}i∈N of N such that lim
i→∞

ηni = 0, P−a.s. Taking

n=ni in (5.32) and letting i→∞, we can deduce from (5.29) that Yγ =esssup
ζ∈Tγ

Egγ,ζ [Rζ ], P−a.s.

3) Next, assume that the process K is continuous and let γ ∈ T . As Yt > Rt = Lt for any t ∈
[
γ, τ∗(γ)

)
, the

flat-off condition in RBSDE (ξ, g,L) and (3.2) imply that P−a.s., Kt−Kγ =Kc
t −Kc

γ =
∫ t
γ

1{Ys=Ls}dK
c
s = 0 for any

t ∈
[
γ, τ∗(γ)

]
. In particular, one has Kτ∗(γ) = Kγ , P−a.s. Since YT = ξ = RT , P−a.s., we can deduce from the

right-continuity of processes Y and R that Yτ∗(γ) =Rτ∗(γ), P−a.s., Taking ζ̃=τ∗(γ) in (5.30) and using (4.1) yield

esssup
ζ∈Tγ

Egγ,ζ
[
Rζ
]
=Yγ =Egγ,τ∗(γ)

[
Yτ∗(γ)

]
=Egγ,τ∗(γ)

[
Rτ∗(γ)

]
, P−a.s. (5.33)

Set N :={ω∈Ω: the path K·(ω) is continuous and the path Y·(ω)−R·(ω) is right-continuous} and A :={Yτ̂(γ)>

Rτ̂(γ)}∈FT . Clearly, N is a P−null set. Given ω ∈A ∩ N c ∩ {τ̂(γ) < T}, there exists a δ(ω) ∈
(
0, T− τ̂(γ)

]
such

that m(δ) := inf
t∈[τ̂(γ)(ω),τ̂(γ)(ω)+δ(ω)]

(
Yt(ω)−Rt(ω)

)
>0. Since

∫ T

0

(
Ys(ω)−Ls(ω)

)
dKc

s(ω)≥
∫ τ̂(γ)(ω)+δ(ω)

τ̂(γ)(ω)

(
Ys(ω)−Ls(ω)

)
dKc

s(ω)≥m(δ)
(
K
(
τ̂(γ)(ω) + δ(ω), ω

)
−K

(
τ̂(γ)(ω), ω

))
>0,

we see from (3.2) that P
(
A ∩N c ∩ {τ̂(γ) < T}

)
=0 and thus P

(
A ∩ {τ̂(γ) < T}

)
=0. It follows that Yτ̂(γ)−Rτ̂(γ) =

1{τ̂(γ)=T}(YT−ξ)+1Ac∩{τ̂(γ)<T}
(
Yτ̂(γ)−Rτ̂(γ)

)
=0, P−a.s. As the continuity of K implies that Kτ̂(γ) =Kγ , P−a.s.,

taking ζ̃= τ̂(γ) in (5.30) and using (4.1) yield that

esssup
ζ∈Tγ

Egγ,ζ
[
Rζ
]
=Yγ =Egγ,τ̂(γ)

[
Yτ̂(γ)

]
=Egγ,τ̂(γ)

[
Rτ̂(γ)

]
, P−a.s.,

which together with (5.33) shows that both τ∗(γ) and τ̂(γ) are optimal stopping times for esssup
ζ∈Tγ

Egγ,ζ
[
Rζ
]
.

Let τ ∈Tγ be an arbitrary optimal stopping time for esssup
ζ∈Tγ

Egγ,ζ
[
Rζ
]
. By the g−supermartingality of Y and (4.1),

Egγ,τ
[
Yτ
]
≤Yγ =esssup

ζ∈Tγ
Egγ,ζ

[
Rζ
]
=Egγ,τ

[
Rτ
]
, P−a.s. (5.34)

As Yτ ≥ Rτ , P−a.s., the strict monotonicity (g1) of g−evaluations shows that Yτ = Rτ , P−a.s. and thus that

τ∗(γ)≤τ , P−a.s.
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Since K is an absolutely continuous process, there exists a positive, F−progressively measurable process Υ such

that P{Kt=
∫ t

0
Υsds, t∈ [0, T ]}=1. Then it holds P−a.s.that

Yt=Yτ+

∫ τ

t

(
g(s, Ys, Zs, Us)+Υs

)
ds−

∫ τ

t

ZsdBs−
∫

(t,τ ]

∫
X
Us(x)Ñp(ds, dx), ∀ t∈ [0, τ ].

Also, an analogy to (5.28) shows that P−a.s.

Y Yτ ,gτt =Yτ+

∫ τ

t

g
(
s, Y Yτ ,gτs , ZYτ ,gτs , UYτ ,gτs

)
ds−

∫ τ

t

ZYτ ,gτs dBs−
∫

(t,ζ̃]

∫
X
UYτ ,gτs (x)Ñp(ds, dx), ∀ t∈ [0, τ ].

Applying Theorem 2.2 with (Y 1, Z1, U1, g1) =
(
Y Yτ ,gτ , ZYτ ,gτ , UYτ ,gτ , g

)
and (Y 2, Z2, U2, V 2) = (Y,Z, U, g+Υ) over

period [γ, τ ] yields that Y Yτ ,gτγ ≤ Yγ , P−a.s., which together with (5.34) shows that Y Yτ ,gτγ ≤ Yγ = Egγ,τ
[
Rτ
]

=

Egγ,τ
[
Yτ
]

=Y Yτ ,gτγ , P−a.s. Then we further see from Theorem 2.2 that Υt= 0 dt×dP−a.s. on ]]γ, τ [[. It follows that

Kτ =Kγ , P−a.s. and thus that τ≤ τ̂(γ), P−a.s. �

A Appendix

In this appendix, we study the optimal stopping problem for a reward process of class (D) and with unbounded

negative values. It is worth pointing out that our results are not simple extension of [13] or Appendix D of [26] since

their method heavily depends on the non-negativity of the Snell envelope
(
see four lines below (2.32.1) of [13] or

line 16 on page 357 of [26]
)
. Instead, we take a different approach: we first derive a dynamic programming principle

(DPP) for the Snell envelope of a reward process. Then we use the DPP as well as a different approximate stopping

time (A.15) from [13] to show the martingale property of the Snell envelope.

Assume that F = {Ft}t∈[0,T ] is a general filtration satisfying the usual hypotheses, and let T still denote the

collection of all F−stopping times. We consider a real-valued, F−adapted right-continuous process X of class (D)

such that E[X+
∗ ]<∞.

Let us start with a convergence result of uniformly integrable random variables under conditional expectations.

Lemma A.1. Let {ξn}n∈N be a sequence of uniformly integrable random variable that converges P−a.s. to a random

variable ξ. Then for any sub-sigma-field G of F , there exists a subsequence {ni}i∈N of N such that

lim
i→∞

E[ξni |G]=E[ξ|G], P−a.s. (A.1)

Proof: First, we know from e.g. Theorem 16.13 of [3] that ξ is integrable, so the conditional expectation E[ξ|G]

exists. Clearly, the uniform integrability of {ξn}n∈N and the integrability of ξ implies the uniform integrability of

{ξn−ξ}n∈N. Applying Theorem 16.13 of [3] again shows that lim
n→∞

E[|ξn−ξ|] = 0. Since E
[∣∣E[ξn|G]−E[ξ|G]

∣∣] ≤
E
[
E[|ξn−ξ| |G]

]
=E[|ξn − ξ|] for any n∈N, it follows that lim

n→∞
E
[∣∣E[ξn|G]−E[ξ|G]

∣∣]= 0. Thus, we can extract a

subsequence {ni}i∈N from N such that (A.1) holds. �

Given γ∈T , the following lemma shows that esssup
ρ∈Tζ

E[Xρ|Fγ ] with γ≤ ζ can be approximated by an increasing

sequence, which will play an important role in the arguments of this section.

Lemma A.2. For any γ∈T and ζ∈Tγ , there exists a sequence {ρn}n∈N in Tζ such that

esssup
ρ∈Tζ

E[Xρ|Fγ ] = lim
n→∞

↑ E[Xρn |Fγ ], P−a.s. (A.2)

Proof: Let ρ1, ρ2∈Tζ and set A :=
{
E[Xρ1 |Fγ ]≥E[Xρ2 |Fγ ]

}
. As the set A is Fγ−measurable, ρ3 :=1Aρ1+1Acρ3 is

also a stopping time in Tζ . It follows that

E[Xρ3 |Fγ ] = E[1AXρ1 +1AcXρ2 |Fγ ] = 1AE[Xρ1 |Fγ ]+1AcE[Xρ2 |Fγ ] = E[Xρ1 |Fγ ]∨E[Xρ2 |Fγ ], P−a.s.

Thus the family
{
E[Xρ|Fγ ]

}
ρ∈Tζ

is closed under pairwise maximization. In light of [31, Proposition VI-1-1], we can

find a sequence {ρn}n∈N⊂Tζ such that (A.2) holds. �
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Now, we define

S(γ) := esssup
ρ∈Tγ

E[Xρ|Fγ ] ∈ Fγ , ∀ γ∈T .

By Lemma A.2, we have the following basic properties of the family {S(γ)}γ∈T .

Proposition A.1. (i) {S(γ)}γ∈T is uniformly integrable; (ii) For any γ, σ ∈T , S(γ) =S(σ), P−a.s. on {γ = σ};
(iii) For any γ∈T and ζ∈Tγ , E[S(ζ)|Fγ ]=esssup

ρ∈Tζ
E[Xρ|Fγ ]≤S(γ), P−a.s.

Proof: 1) Let γ∈T , since E[Xρ|Fγ ]≤E[X+
∗ |Fγ ], P−a.s. for any ρ∈Tγ , taking supremum of the left-hand-side over

ρ∈Tγ yields that E[XT |Fγ ]≤S(γ)≤E[X+
∗ |Fγ ], P−a.s., it follows that

|S(γ)|≤E
[
|XT |+X+

∗ |Fγ
]
, P−a.s. (A.3)

As E[|XT |+X+
∗ ] <∞, the uniformly integrability of

{
E
[
|XT |+X+

∗ |Fγ
]}
γ∈T implies that of {S(γ)}γ∈T .

2) For any ρ ∈ Tσ, define ρ
A

:= ρ1A + T1Ac . Since A := {γ = σ} ∈ Fγ∧σ by e.g. Lemma 1.2.16 of [25], one can

deduce that ρ
A

is a stopping time belonging to Tγ . It then holds P−a.s. that

1AE
[
Xρ|Fσ

]
= 1AE

[
Xρ|Fγ

]
= E

[
1AXρ|Fγ

]
= E

[
1AXρ

A

∣∣Fγ] = 1AE
[
Xρ

A

∣∣Fγ] ≤ 1AS(γ), P−a.s.

Taking the essential supremum over ρ∈Tσ on the left-hand-side, we obtain

1AS(σ) = 1A esssup
ρ∈Tσ

E
[
Xρ

∣∣Fσ] = esssup
ρ∈Tσ

(
1AE

[
Xρ

∣∣Fσ]) ≤ 1AS(γ), P−a.s.

Reversing the roles of γ and σ yields that 1AS(σ)=1AS(γ), P−a.s.

3) Let ζ∈Tγ . As Tζ⊂Tγ , one clearly has esssup
ρ∈Tζ

E
[
Xρ

∣∣Fγ]≤esssup
ρ∈Tγ

E
[
Xρ

∣∣Fγ]=S(γ), P−a.s. By Lemma A.2, there

exists a sequence
{
ρ̃n
}
n∈N⊂Tζ such that S(ζ) = lim

n→∞
↑E
[
Xρ̃n

∣∣Fζ], P−a.s. A conditional-expectation version of the

monotone convergence theorem implies that

E[S(ζ)|Fγ ] = E
[
S(ζ)−E[Xρ̃1 |Fζ ]

∣∣Fγ]+E[Xρ̃1 |Fγ ]= lim
n→∞

↑ E
[
E[Xρ̃n−Xρ̃1 |Fζ ]

∣∣Fγ]+E[Xρ̃1 |Fγ ]

= lim
n→∞

↑ E[Xρ̃n |Fγ ] ≤ esssup
ρ∈Tζ

E
[
Xρ

∣∣Fγ], P−a.s. (A.4)

On the other hand, it holds for any ρ ∈ Tζ that E
[
Xρ

∣∣Fγ] = E
[
E
[
Xρ

∣∣Fζ]∣∣Fγ] ≤ E[S(ζ)
∣∣Fγ], P−a.s. Taking the

essential supremum over ρ∈Tζ on the left-hand-side, we see from (A.4) that esssup
ρ∈Tζ

E
[
Xρ

∣∣Fγ]=E
[
S(ζ)

∣∣Fγ], P−a.s. �

Proposition A.2. The supermartingale
{
S(t)

}
t∈[0,T ]

admits an càdlàg modification S such that for any γ ∈ T

S(γ)=Sγ , P−a.s. (A.5)

Moreover, S is the smallest càdlàg supermartingale that dominates X
(
i.e. for any càdlàg supermartingale M with

P{Mt≥Xt, ∀ t∈ [0, T ]}=1, it holds P−a.s. that Mt≥St, ∀ t∈ [0, T ]
)
.

We call S the “Snell envelope” of process X. Proposition A.1 and (A.5) imply that

{Sγ}γ∈T is uniformly integrable (A.6)

and that for any γ∈T and ζ∈Tγ

E[Sζ |Fγ ] ≤ Sγ , P−a.s. (A.7)

Proof: 1) For any 0 ≤ t < t′ ≤ T , we see from Proposition A.1 (iii) that E
[
S(t′)

∣∣Ft] ≤ S(t), P−a.s. So {S(t)}t∈[0,T ]

is a supermartingale.
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For any t∈ [0, T ], define St := lim
n→∞

S
(
q+
n (t)

)
, where q+

n (t) := d2
nte

2n ∧T . By Proposition 1.3.14 of [25] and the right-

continuity of filtration F, the process S is a real-valued càdlàg supermartingale such that P
{
St = lim

n→∞
S
(
q+
n (t)

)
∈

R, ∀ t ∈ [0, T ]
}

= 1 and that P{St ≤ S(t)} = 1 for any t ∈ [0, T ]. So to see that S is a modification of process

{S(t)}t∈[0,T ], one only needs to show that P{St≥S(t)}=1 for any t∈ [0, T ].

Fix t ∈ [0, T ] and ρ ∈ Tt. For any n ∈ N, we set tn := q+
n (t) and define ρn := (ρ+2−n)∧T ∈ Tt. Let m ≥ n,

since tm ≤ tn ≤ (t+2−n)∧T ≤ ρn, P−a.s. (i.e. ρn ∈ Ttm), one has E
[
Xρn

∣∣Ftm] ≤ S(tm), P−a.s. As m → ∞, the

right-continuity of the processes E
[
Xρn

∣∣F·] shows that

E
[
Xρn

∣∣Ft] = lim
m→∞

E
[
Xρn

∣∣Ftm] ≤ lim
m→∞

S(tm) = St, P−a.s. (A.8)

Since lim
n→∞

↓ ρn = ρ, P−a.s., the right continuity of process X implies that lim
n→∞

Xρn = Xρ, P−a.s. Then the uni-

form integrability of
{
Xρn

}
n∈N, Lemma A.1 and (A.8) yield that for some subsequence {ni}i∈N of N, E

[
Xρ

∣∣Ft]=

lim
i→∞

E[Xρni
|Ft]≤St, P−a.s. Letting ρ run throughout Tt yields that

S(t) = esssup
ρ∈Tt

E
[
Xρ

∣∣Ft] = St, P−a.s. (A.9)

Namely, S is a modification of {S(t)}t∈[0,T ] and thus a supermartingale. For any t ∈ [0, T ], taking ρ = t in the

definition of S(t), we see from (A.9) that Xt≤S(t)=St, P−a.s. The right continuity of X and S then implies that

P{St≥Xt, t∈ [0, T ]} = 1. (A.10)

2) Let γ ∈T takes values in a finite subset {t1< · · ·<tn} of [0, T ]. For any i∈{1, · · · , n}, Proposition A.1 (ii) and

(A.9) imply that 1{γ=ti}S(γ)=1{γ=ti}S(ti)=1{γ=ti}Sti =1{γ=ti}Sγ , P−a.s. Summing up over i leads to (A.5).

Next, let γ be a general stopping time in T . Given n ∈N, we set γn :=
∑2n

i=1 1{(i−1)2−nT<γ≤i2−nT}i2
−nT ∈ T .

Since S is a supermartingale, the optional sampling theorem imply that E
[
Sγn

∣∣Fγn+1

]
≤Sγn+1 , P−a.s. and thus

E
[
Sγn

∣∣Fγ] = E
[
E
[
Sγn

∣∣Fγn+1

]∣∣Fγ] ≤ E[Sγn+1

∣∣Fγ] ≤ Sγ , P−a.s. (A.11)

This means lim
n→∞

↑E
[
Sγn

∣∣Fγ]≤Sγ , P−a.s. Clearly, lim
n→∞

↓ γn=γ. The right-continuity of S shows that lim
n→∞

Sγn =

Sγ , P−a.s. Since
{
Sγn =S(γn)

}
n∈N is uniformly integrable by (A.6), Lemma A.1 and (A.11) imply that for some

subsequence {ni}i∈N of N, Sγ =E
[
Sγ

∣∣Fγ]= lim
i→∞
↑E
[
Sγni

∣∣Fγ]≤Sγ , P−a.s. Then by Proposition A.1 (iii),

Sγ = lim
i→∞
↑E
[
Sγni

∣∣Fγ] = lim
i→∞
↑E
[
S(γni)

∣∣Fγ] ≤ S(γ), P−a.s. (A.12)

On the other hand, for any ρ∈Tγ and n∈N, we define ρn :=ρ∨γn∈Tγn . As E
[
Xρn

∣∣Fγn]≤S(γn), P−a.s., taking

the conditional expectation E
[
·
∣∣Fγ] on both sides gives that

E[Xρn |Fγ ] = E
[
E[Xρn |Fγn ]

∣∣Fγ] ≤ E[S(γn)
∣∣Fγ], P−a.s.

As lim
n→∞

↓ ρn = ρ ∨ γ = ρ, the uniform integrability of
{
Xρni

}
i∈N, Lemma A.1 and (A.12) imply that for some

subsequence {ñi}i∈N of {ni}i∈N, E
[
Xρ

∣∣Fγ]= lim
i→∞

E
[
Xρ

ñi

∣∣Fγ]≤ lim
i→∞
↑E
[
S(γ

ñi
)
∣∣Fγ]=Sγ , P−a.s. Taking the essential

supremum over ρ∈Tγ , we see from (A.12) that S(γ)=Sγ , P−a.s.

3) Let M be a càdlàg supermartingale with P{Mt≥Xt, t∈ [0, T ]}= 1. Given t∈ [0, T ], since the optional sampling

theorem shows that E
[
Xγ

∣∣Ft] ≤ E
[
Mγ

∣∣Ft] ≤ Mt, P−a.s. for any γ ∈ Tt, taking the essential supremum of the

left-hand-side over γ ∈Tt yields that St=S(t) = esssup
γ∈Tt

E
[
Xγ

∣∣Ft]≤Mt, P−a.s. Then the right-continuity of S and

M implies that P{St≤Mt, t∈ [0, T ]}=1. �

We have the following dynamic programming principle of Snell envelope S.

Proposition A.3. For any γ∈T and ζ∈Tγ , Sγ =esssup
ρ∈Tγ

E
[
1{ρ<ζ}Xρ+1{ρ≥ζ}Sζ |Fγ

]
, P−a.s.
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Proof: Let γ∈T and ζ∈Tγ . For any ρ∈Tγ , one can deduce from (A.5) that P−a.s.

E[Xρ|Fγ ] =E
[
1{ρ<ζ}Xρ∧ζ+1{ρ≥ζ}Xρ∨ζ |Fγ

]
= E

[
E
[
1{ρ<ζ}Xρ∧ζ+1{ρ≥ζ}Xρ∨ζ |Fζ

]∣∣Fγ]
=E

[
1{ρ<ζ}Xρ∧ζ+1{ρ≥ζ}E

[
Xρ∨ζ |Fζ

]∣∣Fγ] ≤ E[1{ρ<ζ}Xρ+1{ρ≥ζ}S(ζ)
∣∣Fγ]=E

[
1{ρ<ζ}Xρ+1{ρ≥ζ}Sζ

∣∣Fγ].
Taking supremum over ρ ∈ Tγ on both sides yields that Sγ =S(γ)≤esssup

ρ∈Tγ
E
[
1{ρ<ζ}Xρ+1{ρ≥ζ}Sζ |Fγ

]
, P−a.s.

On the other hand, Lemma A.2 and (A.5) show that for some sequence {ρn}n∈N in Tζ ,

Sζ =S(ζ)=esssup
ρ∈Tζ

E[Xρ|Fζ ]= lim
n→∞

↑ E[Xρn |Fζ ], P−a.s. (A.13)

For any ρ∈Tγ and n∈N, we set ρ̃n :=1{ρ<ζ}ρ+1{ρ≥ζ}ρn≥γ. Since {ρ<ζ}∈Fρ∧ζ ⊂Fρn , it holds for any t∈ [0, T ]

that {ρ̃n≤ t}=
(
{ρ<ζ}∩{ρ∧ζ≤ t}

)
∪
(
{ρ≥ζ}∩{ρn≤ t}

)
∈Ft, which shows that ρ̃n∈Tγ . It follows from (A.5) that

E
[
1{ρ<ζ}Xρ+1{ρ≥ζ}E

[
Xρn |Fζ

]∣∣Fγ]=E
[
E
[
1{ρ<ζ}Xρ+1{ρ≥ζ}Xρn |Fζ

]∣∣Fγ]=E
[
Xρ̃n |Fγ

]
≤S(γ)=Sγ , P−a.s. (A.14)

Since a conditional-expectation version of the monotone convergence theorem and (A.13) imply that

E
[
1{ρ≥ζ}

(
Sζ−E[Xρ1 |Fζ ]

)∣∣Fγ] = lim
n→∞

↑ E
[
1{ρ≥ζ}

(
E[Xρn−Xρ1 |Fζ ]

)∣∣Fγ], P−a.s.

we see from (A.14) that E
[
1{ρ<ζ}Xρ + 1{ρ≥ζ}Sζ |Fγ

]
= lim
n→∞

↑ E
[
1{ρ<ζ}Xρ + 1{ρ≥ζ}E

[
Xρn |Fζ

]∣∣Fγ]≤Sγ , P−a.s.

Taking supremum over ρ ∈ Tγ yields that esssup
ρ∈Tγ

E
[
1{ρ<ζ}Xρ+1{ρ≥ζ}Sζ |Fγ

]
≤Sγ , P−a.s. �

To solve the optimal stopping problem, let us introduce approximately optimal stopping times: Given k∈N and

γ∈T , we define

τk(γ) :=inf
{
t∈ [γ, T ] : St≤Xt+1/k

}
∈ Tγ . (A.15)

The next result shows that the Snell envelope S is a martingale over each period
[
γ, τk(γ)

]
.

Proposition A.4. Let k∈N and γ∈T . It holds for any ζ∈Tγ that Sζ∧τk(γ) =E
[
Sτk(γ)

∣∣Fζ], P−a.s.

Proof: Let k ∈N, γ ∈T and ζ ∈Tγ . We set ζk := ζ∧τk(γ). An analogy to Proposition A.3 as well as Lemma A.2

imply that for some sequence {ρkn}n∈N⊂Tζk ,

Sζk = esssup
ρ∈Tζk

E
[
1{ρ<τk(γ)}Xρ+1{ρ≥τk(γ)}Sτk(γ)|Fζk

]
= lim
n→∞

↑ ξkn, P−a.s., (A.16)

where ξkn :=E
[
1{ρkn<τk(γ)}Xρkn

+1{ρkn≥τk(γ)}Sτk(γ)

∣∣Fζk].
Given n∈N, since it holds for any ω∈{ρkn<τk(γ)} that S

(
ρkn(ω), ω

)
>X

(
ρkn(ω), ω

)
+1/k, (A.7) shows that

ξkn+
1

k
E
[
1{ρkn<τk(γ)}|Fζk

]
≤E

[
1{ρkn<τk(γ)}Sρkn

+1{ρkn≥τk(γ)}Sτk(γ)|Fζk
]
=E

[
Sρkn∧τk(γ)|Fζk

]
≤ Sζk , P−a.s.

It follows that E
[
1{ρkn<τk(γ)}

]
≤kE

[
Sζk−ξkn

]
. The uniform integrability of

{
Xγ

}
γ∈T and (A.6) show that

E
[
Sζk−ξk1

]
≤E

[
|Sζk |+|ξk1 |

]
≤E

[
|Sζk |+E[|Xρk1

|+|Sτk(γ)||Fζk ]
]
≤ sup
ρ∈T

E
[
|Xρ|

]
+2sup

ρ∈T
E
[
|Sρ|

]
<∞.

Then (A.16) and the dominated convergence theorem imply that lim
n→∞

E
[
1{ρkn<τk(γ)}

]
= lim
n→∞

kE
[
Sζk−ξkn

]
= 0. So

there exists a subsequence {ni =ni(k)}i∈N of N such that lim
i→∞

1{ρkni<τk(γ)}= 0. Applying a conditional-expectation

version of the dominated convergence theorem and using (A.16), we can deduce from (A.7) that

Sζk = lim
i→∞
↑ ξkni ≤ lim

i→∞
E
[
1{ρkni<τk(γ)}X

+
∗ +1{ρkni≥τk(γ)}Sτk(γ)

∣∣Fζk] = E
[
Sτk(γ)

∣∣Fζk] ≤ Sζk , P−a.s.,

which leads to that Sζ∧τk(γ) = E
[
Sτk(γ)

∣∣Fζk] = E
[
E[Sτk(γ)|Fτk(γ)]

∣∣Fζ] = E
[
Sτk(γ)

∣∣Fζ], P−a.s. �

Moreover, the Snell envelope S admits a Doob-Meyer decomposition.
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Proposition A.5. There exist a uniformly integrable càdlàg martingale M and a F−predictable càdlàg increasing

process K with K(0)=0 such that P−a.s.

St = Mt −Kt, t∈ [0, T ]. (A.17)

For any F−predictable stopping time γ ∈ T , {∆Kγ > 0} ∩ {Sγ− >Xγ−} is a P−null set. Moreover, If E
[
|XT |p+

(X+
∗ )p

]
<∞ for some p∈ [1,∞), then E

[
Mp
∗ +Kp

T

]
<∞.

Proof: 1) We have seen from Proposition A.2 and (A.6) that the Snell envelope S is a càdlàg supermartingale of

class (D). In light of Theorem VII.12 of [11] (or Theorem III.3.8 of [36]), there exist a uniformly integrable càdlàg

martingale M and a F−predictable càdlàg increasing process K with K(0) = 0 such that (A.17) holds.

Let γ ∈ T be a F−predictable stopping time. In virtue of Meyer’s PFA Theorem (see e.g. Theorem VI.12.6 of

[39] or Theorem IV.77 of [10]), γ is announceable, i.e. there exists an increasing sequence {ρn}n∈N in T such that

P−a.s.

ρn ≤ ρn+1 < γ, ∀n ∈ N and lim
n→∞

↑ ρn = γ.

Let k∈N and n∈N. applying Proposition A.4 with γ=ζ=ρn, we can deduce from the optional sampling theorem

Kρn = Mρn −Sρn = E[Mτk(ρn) −Sτk(ρn)|Fρn ] = E[Kτk(ρn)|Fρn ], P−a.s.

So the monotonicity of K shows that Kτk(ρn) =Kρn holds except on a P−null set N k
n . As

ST =S(T )=XT , P−a.s., (A.18)

by (A.5), the set
{
t∈ [ρn, T ] : St≤Xt+1/k

}
is not empty P−a.s. Then (A.10) and the right-continuity of processes

X, S imply that

Xτk(ρn)≤Sτk(ρn)≤Xτk(ρn)+1/k (A.19)

holds except on a P−null set Ñ k
n .

Let ω∈{∆Kγ>0}∩
(
∩

k,n∈N

(
N k
n ∪ Ñ k

n

)c)
and let k∈N. For any n∈N, one can deduce that K

(
(τk(ρn))(ω), ω

)
=

K
(
ρn(ω), ω

)
≤K

(
γ(ω)−, ω

)
<K

(
γ(ω), ω

)
. It follows that

(τk(ρn))(ω)<γ(ω) and thus γ(ω)= lim
i→∞
↑ ρn(ω)≤ lim

i→∞
↑ (τk(ρn))(ω)≤γ(ω).

Then letting n→∞ in (A.19) yields that X
(
γ(ω)−, ω

)
≤S

(
γ(ω)−, ω

)
≤X

(
γ(ω)−, ω

)
+1/k. As k→∞, we obtain

S
(
γ(ω)−, ω

)
=X

(
γ(ω)−, ω

)
, which implies that {∆Kγ>0} ∩ {Sγ−>Xγ−}⊂N∪

(
∪

k,n∈N

(
N k
n ∪ Ñ k

n

))
.

2) Assume further that E
[
|XT |p+(X+

∗ )p
]
<∞ for some p∈ [1,∞). For any t∈ [0, T ], (A.18) and the supermartingality

of S show that S̃t :=St−E[XT |Ft] =St−E[ST |Ft]≥ 0, P−a.s. As {E[XT |Ft]}t∈[0,T ] is an càdlàg martingale, we

see from Proposition A.2 that S̃ is an non-negative càdlàg supermartingale.

By (A.5) and (A.3), |St|∨
∣∣S̃t

∣∣≤E[2|XT |+X+
∗ |Ft], P−a.s. for any t∈ [0, T ]. The right-continuity of processes S,{

E
[
|XT |

∣∣Ft]}t∈[0,T ]
and

{
E[X+

∗ |Ft]
}
t∈[0,T ]

then implies that P
{
|St|∨

∣∣S̃t

∣∣≤E[2|XT |+X+
∗ |Ft

]
, t∈ [0, T ]

}
= 1. It

follows that S∗∨S̃∗≤ sup
t∈[0,T ]

E
[
2|XT |+X+

∗ |Ft
]
, P−a.s. Thus Doob’s martingale inequality yields that

E
[
Sp
∗∨S̃p

∗

]
≤
(

p
p−1

)p
E
[(

2|XT |+X+
∗
)p]

<∞.

As the Doob-Meyer decomposition of S̃ is S̃= M̃−K with M̃t :=Mt−E[XT |Ft], t∈ [0, T ], we can deduce from

the estimate (VII.15.1) of [11] that E[Kp
T ]≤ppE

[
S̃p
∗

]
<∞. It follows that E

[
Mp
∗
]
≤E

[
(S∗+KT )p

]
<∞. �

Let γ∈T , as τk(γ)≤τk+1(γ), one can define a limiting stopping time

τ(γ) := lim
k→∞

↑ τk(γ) ∈ Tγ .

WhenX is further quasi left-continuous, the next theorem demonstrates that the Snell envelope S ofX is a martingale

over period
[
γ, τ(γ)

]
. Consequently, τ(γ) is not only an optimal stopping time after γ but also the first time when

X meets S after γ.
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Theorem A.1. Assume that X is additionally quasi left-continuous and let γ∈T .

(1 ) For any ζ∈Tγ , Sζ∧τ(γ) =E[Sτ(γ)|Fζ ], P−a.s.

(2 ) It holds P−a.s. that esssup
ρ∈Tγ

E[Xρ|Fγ ] = E[Xτ(γ)|Fγ ] and that τ(γ)=τ∗(γ) :=inf
{
t∈ [γ, T ] : St=Xt

}
.

Proof: 1) Let ζ∈Tγ . For any k∈N, an analogy to (A.19) shows that

Xτk(γ)≤Sτk(γ)≤Xτk(γ)+
1

k
(A.20)

holds except on a P−null set Nk. So we see from Proposition A.4 that

Sζ∧τk(γ) = E
[
Sτk(γ)

∣∣Fζ] ≤ E[Xτk(γ)

∣∣Fζ]+ 1/k, P−a.s. (A.21)

Since X is quasi left-continuous, (A.10) and (A.7) imply that P−a.s.

1{ζ<τ(γ)}Sζ∧τ(γ) =1{ζ<τ(γ)}Sζ = lim
k→∞

1{ζ<τ(γ)}Sζ∧τk(γ) =1{ζ<τ(γ)} lim
k→∞

Sζ∧τk(γ) =1{ζ<τ(γ)} lim
k→∞

E
[
Xτk(γ)

∣∣Fζ]
≤1{ζ<τ(γ)}E

[
Xτ(γ)

∣∣Fζ]≤1{ζ<τ(γ)}E
[
Sτ(γ)

∣∣Fζ]=1{ζ<τ(γ)}E
[
Sτ(γ)

∣∣Fζ∧τ(γ)

]
≤1{ζ<τ(γ)}Sζ∧τ(γ) . (A.22)

It follows that 1{ζ<τ(γ)}Sζ∧τ(γ) = 1{ζ<τ(γ)}E
[
Sτ(γ)

∣∣Fζ] = E
[
1{ζ<τ(γ)}Sτ(γ)

∣∣Fζ], P−a.s. As we also have

E[1{ζ≥τ(γ)}Sτ(γ)|Fζ ]=E[1{ζ≥τ(γ)}Sζ∧τ(γ)|Fζ ]=1{ζ≥τ(γ)}Sζ∧τ(γ), P−a.s.,

it then holds P−a.s. that Sζ∧τ(γ) =E[Sτ(γ)|Fζ ].
2) For any ω ∈ {γ = τ(γ)}∩

(
∪
k∈N
Nk
)c

and k ∈ N, since
(
τk(γ)

)
(ω) = γ(ω), one has X

(
γ(ω), ω

)
≤ S

(
γ(ω), ω

)
≤

X
(
γ(ω), ω

)
+1/k. Letting k→∞, we obtain

1{γ=τ(γ)}Sγ =1{γ=τ(γ)}Xγ = E[1{γ=τ(γ)}Xγ |Fγ ] = 1{γ=τ(γ)}E
[
Xτ(γ)|Fγ

]
, P−a.s. (A.23)

On the other hand, taking ζ = γ in (A.22) gives that 1{γ<τ(γ)}Sγ = 1{γ<τ(γ)}E
[
Xτ(γ)

∣∣Fγ], P−a.s., which together

with (A.23) and (A.5) shows that esssup
ρ∈Tγ

E[Xρ|Fγ ] = S(γ) = Sγ = E[Xτ(γ)|Fγ ], P−a.s.

By (A.10) and (A.7) again, Sγ =E
[
Xτ(γ)

∣∣Fγ]≤E[Sτ(γ)

∣∣Fγ]≤Sγ , P−a.s., which implies that Sτ(γ) =Xτ(γ),

P−a.s. For any k∈N, it follows that τ(γ)≥ τ∗(γ)= inf
{
t∈ [γ, T ] : St=Xt

}
≥ inf

{
t∈ [γ, T ] : St≤Xt+1/k

}
= τk(γ),

P−a.s. Letting k→∞ yields that τ(γ)=τ∗(γ), P−a.s. �

The optimal stopping time also exists in the following situation:

Theorem A.2. Assume that the process K in decomposition (A.17) is continuous. Let γ∈T and set τ̂(γ) :=inf{t∈
(γ, T ] : Kt>Kγ}∧T ∈T .

(1 ) For any ζ∈Tγ , Sζ∧τ̂(γ) =E[Sτ̂(γ)|Fζ ], P−a.s.

(2 ) It holds P−a.s. that Sτ̂(γ) =Xτ̂(γ). Consequently, esssup
ρ∈Tγ

E[Xρ|Fγ ]=E[Xτ̂(γ)|Fγ ] = E[Xτ∗(γ)|Fγ ], P−a.s.

(3 ) For any τ ∈ Tγ satisfying esssup
ρ∈Tγ

E[Xρ|Fγ ] =E[Xτ |Fγ ], P−a.s. one has τ∗(γ)≤ τ ≤ τ̂(γ), P−a.s. To wit, τ∗(γ)(
resp. τ̂(γ)

)
is the minimal (resp. maximal) optimal stopping time for S(γ).

Proof: 1) Let ζ ∈Tγ . Since the continuity of K shows that Kτ̂(γ) = Kγ , P−a.s., we see from the monotonicity of

K that Kτ̂(γ) = Kζ∧τ̂(γ), P−a.s. The optional sampling theorem then implies that

E[Sτ̂(γ)|Fζ∧τ̂(γ)] = E[Mτ̂(γ) −Kζ∧τ̂(γ)|Fζ∧τ̂(γ)] = Mζ∧τ̂(γ) −Kζ∧τ̂(γ) = Sζ∧τ̂(γ), P−a.s.

It follows that 1{ζ≤τ̂(γ)}E[Sτ̂(γ)|Fζ ] = 1{ζ≤τ̂(γ)}Sζ∧τ̂(γ), P−a.s. On the other hand, one clearly has

1{ζ>τ̂(γ)}E[Sτ̂(γ)|Fζ ] = E[1{ζ>τ̂(γ)}Sτ̂(γ)|Fζ ] = E[1{ζ>τ̂(γ)}Sζ∧τ̂(γ)|Fζ ] = 1{ζ>τ̂(γ)}Sζ∧τ̂(γ), P−a.s.

Thus, Sζ∧τ̂(γ) = E[Sτ̂(γ)|Fζ ], P−a.s.

2) Let k∈N. Since ρn :=(τ̂(γ)+ 1
n )∧T , n∈N is a decreasing sequence in Tτ̂(γ) with lim

n→∞
↓ ρn = τ̂(γ), {τk(ρn)}n∈N is

also a decreasing sequence in Tτ̂(γ) with limit ζk := lim
n→∞

↓ τk(ρn)∈Tτ̂(γ).
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Given n∈N, applying Proposition A.4 with γ=ζ=ρn and using the optional sampling theorem yield that

Kρn = Mρn −Sρn = E[Mτk(ρn) −Sτk(ρn)|Fρn ] = E[Kτk(ρn)|Fρn ], P−a.s.

The monotonicity of K and an analogy to (A.20) then show that P−a.s.

Kτk(ρn) =Kρn and Xτk(ρn)≤Sτk(ρn)≤Xτk(ρn)+1/k

Letting n→∞, we can deduce from the continuity of K and the right-continuity of processes X, S that P−a.s.

Kζk =Kτ̂(γ) =Kγ and Xζk≤Sζk≤Xζk+1/k.

The former and the definition of τ̂(γ) imply that ζk = τ̂(γ), P−a.s., which together with the latter shows that

Xτ̂(γ)≤Sτ̂(γ)≤Xτ̂(γ)+1/k, P−a.s. As k→∞, we obtain

Sτ̂(γ) =Xτ̂(γ), P−a.s., (A.24)

it follows that τ∗(γ)=inf
{
t∈ [γ, T ] : St=Xt

}
≤ τ̂(γ), P−a.s.

Now, applying part (1) with ζ=γ, we see from (A.5) and (A.24) that S(γ) =Sγ =E
[
Sτ̂(γ)|Fγ

]
=E

[
Xτ̂(γ)|Fγ

]
,

P−a.s. Since (A.18) shows that the set
{
t∈ [γ, T ] : St=Xt

}
is not empty P−a.s., the right-continuity of processes

X and S implies that Sτ∗(γ) =Xτ∗(γ), P−a.s. Using part (1) with ζ= τ∗(γ) and taking the conditional expectation

E[·|Fγ ] yield that

E
[
Xτ∗(γ)|Fγ

]
=E

[
Sτ∗(γ)|Fγ

]
=E

[
E[Sτ̂(γ)|Fτ∗(γ)]

∣∣Fγ] = E
[
Sτ̂(γ)|Fγ

]
= S(γ), P−a.s.

3) Let τ ∈ Tγ satisfy S(γ) =E[Xτ |Fγ ], P−a.s. Since (A.5), (A.10) and (A.7) show that Sγ = S(γ) =E[Xτ |Fγ ]≤
E[Sτ |Fγ ]≤Sγ , P−a.s., we have

E[Xτ |Fγ ]=E[Sτ |Fγ ]=Sγ , P−a.s. (A.25)

The first equality and (A.10) imply that Sτ =Xτ , P−a.s. and thus that τ∗(γ)≤ τ , P−a.s. On the other hand, one

can deduce from the second equality of (A.25) and the optional sampling theorem that

Kγ = Mγ −Sγ = E[Mτ −Sτ |Fγ ] = E[Kτ |Fγ ], P−a.s.

It follows from the monotonicity of K that Kτ =Kγ , P−a.s. and thus that τ ≤ τ̂(γ), P−a.s. �

Example A.1. When X is l.u.s.c.e., the process K in decomposition (A.17) is continuous.

Proof: Let γ ∈ T . For any k ∈ N, taking ζ = γ in (A.21) and then taking expectation yield that E
[
Sγ

]
≤

E
[
Xτk(γ)

]
+1/k. As k →∞, the l.u.s.c.e. of X, (A.10) and (A.7) imply that

E
[
Sγ

]
≤ lim
k→∞

E
[
Xτk(γ)

]
≤E

[
Xτ(γ)

]
≤E

[
Sτ(γ)

]
=E

[
E
[
Sτ(γ)|Fγ

]]
≤E

[
Sγ

]
. (A.26)

Next, fix {γn}n∈N be an increasing sequence in T and set γ := lim
n→∞

↑ γn∈T . Given n∈N, we see from (A.7) that

Sγn≥E
[
Sγn+1

|Fγn
]
≥E

[
E
[
Sγ |Fγn+1

]∣∣Fγn]≥E[Sγ |Fγn
]
, P−a.s.

Taking expectation gives that E
[
Sγn

]
≥E

[
Sγn+1

]
≥E

[
Sγ

]
, it follows that lim

n→∞
↓ E

[
Sγn

]
≥E

[
Sγ

]
.

For any n∈N, taking γ=γn in (A.26) shows that E
[
Sγn

]
=E

[
Xτ(γn)

]
. Clearly,

{
τ(γn)

}
n∈N is also an increasing

sequence in T . As ζ := lim
n→∞

↑ τ(γn)∈T satisfies that ζ≥ lim
n→∞

↑ γn=γ, we can deduce from the l.u.s.c.e. of X, (A.10)

and (A.7) that

E
[
Sγ

]
≤ lim
n→∞

↓ E
[
Sγn

]
= lim
n→∞

↓ E
[
Xτ(γn)

]
≤E

[
Xζ

]
≤E

[
Sζ

]
=E

[
E[Sζ |Fγ ]

]
≤E

[
Sγ

]
.

So lim
n→∞

↓ E
[
Sγn

]
=E

[
Sγ

]
, which further implies that the F−predictable projection of S is {St−}t∈[0,T ]

(
see e.g.

Remark VI.50 of [11]
)
. Then we know from e.g. Theorem VII.10 of [11] that K is a continuous process. �
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Proposition A.6. Let K be the F−predictable càdlàg increasing process in the decomposition (A.17). If process X

is also càdlàg, then ∫ T

0

(St−−Xt−)dKt = 0, P−a.s. (A.27)

Proof: By Remark 3.2 (1), the jumps of process K are exhausted by a sequence {γn}n∈N of F−predictable stopping

times. Let us denote by Kc (resp. Kd) the continuous part (resp. purely discontinuous part) of K. Similar to (5.2)

and (5.3), the demonstration of (A.27) is equivalent to show that∫ T

0

(St −Xt)dK
c
t = 0, P−a.s., (A.28)

and that

0 =
∑

t∈[0,T ]

(
Ss− −Xs−

)
∆Kd

s =
∑
n∈N

(
Sγn− −Xγn−

)
∆Kd

γn , P−a.s. (A.29)

By Proposition A.2, S is the smallest càdlàg supermartingale that dominates X. Correspondingly, Ŝ :=S+Kd the

smallest càdlàg supermartingale that dominates X̂ :=X+Kd. To wit, Ŝ is the Snell envelope of X̂ with Doob-Meyer

decomposition Ŝ=M−Kc.

Given t ∈ [0, T ), we define τt :=inf{s∈(t, T ] : Kc
s>K

c
t }∧T ∈T . Theorem A.2 (2) show that Ŝτt =X̂τt , P−a.s. or

Sτt =Xτt holds except on a P−null set Nt. (A.30)

By (A.10) and (A.18), there exists another P−null set N̂ such that for any ω ∈ N̂ c, the path S·(ω)−X·(ω)≥ 0 is

càdlàg, ST (ω)=XT (ω) and the path Kc
· (ω) is continuous.

Let ω ∈ N̂ c∩
(

∩
r∈[0,T )∩Q

N c
r

)
and set I(ω) :=

{
t ∈ (0, T ) : Kc

t−ε(ω) =Kc
t+ε(ω) for some ε ∈

(
0, t ∧ (T−t]

)}
. As

an open set, I(ω) can be written as a countable union of disjoint open intervals: I(ω) = ∪
i∈N

(
ai(ω), bi(ω)

)
. The

continuity of Kc
· (ω) implies that

Kc
(
bi(ω), ω

)
=Kc

(
ai(ω), ω

)
∀ i ∈ N and (A.31)

Ĩ(ω) := ∪
i∈N

[
ai(ω), bi(ω)

)
=
{
t ∈ [0, T ) : Kc

t (ω) = Kc
t+ε(ω) for some ε ∈ (0, T−t]

}
. (A.32)

Let t∈ [0, T )\Ĩ(ω). By the continuity of Kc
· (ω) again, there exists a strictly decreasing sequence {tn(ω)}n∈N with

lim
n→∞

↓ tn(ω) = t such that Kc
(
tn(ω), ω

)
is also a strictly decreasing sequence with lim

n→∞
↓ Kc

(
tn(ω), ω

)
=Kc(t, ω).

Given n∈N, let rn∈(t, tn+1)∩Q. Since Kc(rn, ω)≤Kc
(
tn+1(ω), ω

)
<Kc

(
tn(ω), ω

)
, we see from the definition of τrn

that t < rn ≤ τrn(ω)<tn(ω), it follows that lim
n→∞

τrn(ω) = t. Then the continuity of S·(ω)−X·(ω) and (A.30) imply

that St(ω)−Xt(ω)= lim
n→∞

(
S
(
τrn(ω), ω

)
−X
(
τrn(ω), ω

))
=0, which shows that [0, T ]\Ĩ(ω)⊂{t∈ [0, T ] : St(ω)=Xt(ω)},

or equivalently, {t∈ [0, T ] : St(ω)>Xt(ω)}⊂ Ĩ(ω). Consequently, one can deduce from (A.31) and (A.32) that

0 ≤
∫ T

0

1{St(ω)>Xt(ω)}dK
c
t (ω) ≤

∫ T

0

1{t∈Ĩ(ω)}dK
c
t (ω) ≤

∑
i∈N

(
Kc
(
bi(ω), ω

)
−Kc

(
ai(ω), ω

))
= 0,

which leads to (A.28).

Moreover, for any n∈N, Proposition A.5 implies that 1{Sγn−>Xγn−}∆K
d
γn =1{Sγn−>Xγn−}∆Kγn =0, P−a.s. or

equivalently (Sγn−−Xγn−)∆Kd
γn =0, P−a.s. Summing them up over n∈N leads to (A.29). �
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