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ON THE ROBUST OPTIMAL STOPPING PROBLEM*
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Abstract. We study a robust optimal stopping problem with respect to a set P of mutually
singular probabilities. This can be interpreted as a zero-sum controller-stopper game in which the
stopper is trying to maximize its payoff while an adverse player wants to minimize this payoff by
choosing an evaluation criteria from 7. We show that the upper Snell envelope Z of the reward
process Y is a supermartingale with respect to an appropriately defined nonlinear expectation &,
and Z is further an &-martingale up to the first time 7% when Z meets Y. Consequently, 7* is
the optimal stopping time for the robust optimal stopping problem and the corresponding zero-sum
game has a value. Although the result seems similar to the one obtained in the classical optimal
stopping theory, the mutual singularity of probabilities and the game aspect of the problem give rise
to major technical hurdles, which we circumvent using some new methods.
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1. Introduction. We solve a continuous-time robust optimal stopping problem
with respect to a nondominated set P of mutually singular probabilities on the canon-
ical space ) of continuous paths. This optimal stopping problem can also be inter-
preted as a zero-sum controller-stopper game in which the stopper is trying to maxi-
mize its payoff while an adverse player wants to minimize this payoff by choosing an
evaluation criteria from P. In our main result, Theorem 5.1, we construct an optimal
stopping time and show that the corresponding game has a value. More precisely, we
obtain that
(1.1) ftelgﬂjl)ngEp [YT} = Hy&f)Ep [YT*} = IPl’g7f3 igng [YT].

Here T denotes the set of all stopping times with respect to the natural filtra-
tion F of the canonical process B, Y is an F-adapted right-continuous-with-left-
limits (RCLL) (cadlag) process satisfying an one-sided uniform continuity condi-

tion (see (3.1)), and 7* is the first time Y meets its upper Snell envelope Z(w) 2
infpep(rw) sup,egt Ep[Y¥], (t,w) € [0,T] x Q. (Please refer to sections 2-5 for the
notation.)

The proof of this result turns out to be quite technical for three reasons. First,
since the probability set P does not admit a dominating probability, there is no dom-

. . . A
inated convergence theorem for the nonlinear expectation &;[-](w) = infpep o) Ep[],
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(t,w) € [0,T] x Q. So we cannot follow techniques similar to the ones used in the
classical theory of optimal stopping due to El Karoui [15] to obtain the martingale
property of the upper Snell envelope Z. Second, we do not have a measurable se-
lection theorem for stopping strategies, which complicates the proof of the dynamic
programming principle. Moreover, the local approach that used comparison principle
of viscosity solutions to show the existence of game value (see, e.g., [16] and [1]) does
not work for our path-dependent set-up.

In Theorem 5.1, we demonstrate that Z is an &-supermartingale, and an &-
martingale up to 7*, the first time Z meets Y, from which (1.1) immediately follows.
To prove this theorem, we use a more global approach rather than the local ap-
proach. We start with a dynamic programming principle, see Proposition 4.1, whose
“super-solution” part is technically difficult due to the lack of measurable selection
for stopping times. We overcome this issue by using a countable dense subset of 7
to construct a suitable approximation. This dynamic programming result is used to
show the continuity of the upper Snell envelope, which plays an important role in
the main theorem as our results heavily rely on the construction of approximating
stopping times for 7*. However, the dynamic programming principle directly enters
the proof of Theorem 5.1 to show the supermartingale property of Z only after we up-
grade the dynamic programming principle for random horizons in Proposition 4.3. We
would like to emphasize that the submartingale property of the upper Snell envelope
Z until 7* does not directly follow from the dynamic programming principle. Instead,
we build a delicate approximation scheme that involves carefully pasting probabilities
and leveraging the martingale property of the single-probability Snell envelopes until
they meet Y.

Let us say a few words about our assumptions. It should not come us a surprise
that as a function of (¢,w), the probability set P(¢,w) needs to be adapted. The most
important assumption on the probability class

{P(t,w)} w0, 150

is the weak stability under pasting; see (P2) in section 3. It is hard to envision that
a dynamic programming result could hold without a stability under pasting assump-
tion. This assumption along with the aforementioned continuity assumption (3.1)
on Y (the regularity assumptions on the reward are common and can be verified for
example of payoffs of all financial derivatives) allows us to construct approximate
strategies for the controller by appropriately choosing its conditional distributions.
Our stability assumption is weaker than its counterpart in Ekren, Touzi, and Zhang
[12]; see, for example, our Remark 3.4 for a further discussion. We show in section 6
that this assumption (along with other assumptions we make on the probability class)
are satisfied for some path-dependent SDEs with controls, which represents a large
class of models on simultaneous drift and volatility uncertainty. (A stronger stability
assumption as in [12] leads to results which is applicable only for volatility uncer-
tainty.) We see section 6, which we dedicate one third of our paper to, as one of the
main contributions of our paper. Another assumption we make on the probability
class is that the augmentation of the filtration generated by the canonical process
with respect to each probability in the class is right-continuous. This is because, as
mentioned above, we exploit the results from the classic optimal stopping theory on
the martingale property of the Snell envelopes for a given probability. Again, the
example in section 6 is shown to satisfy this assumption.

Relevant literature. Since the seminal work [34], the martingale approach was
extensively used in optimal stopping theory (see, e.g., [27, 15], and Appendix D of
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[21]) and has been applied to various problems stemming from mathematical finance,
the most important example of which is the computation of the super hedging price
of the American contingent claims [7, 18, 19, 23]. Optimal stopping under Knightian
uncertainty /nonlinear expectations/risk measures or the closely related controller-
stopper-games have attracted a lot of attention in the recent years [24, 25, 17, 9,
10, 32, 2, 3, 4, 5, 8, 26]. In this literature, the set of probabilities is assumed to be
dominated by a single probability or the controller is only allowed to influence the drift.

When the set of probabilities contain mutually singular probabilities or the con-
troller can influence not only the drift but also the volatility, results are available
only in some particular cases. Karazas and Sudderth [22] considered the controller-
stopper-game in which the controller is allowed to control the volatility as well as the
drift and resolved the saddle point problem for case of one-dimensional state variable
using the characterization of the value function in terms of the scale function of the
state variable. In the multidimensional case, [1] showed the existence of the value of
a game using a comparison principle for viscosity solutions.

Our technical set-up follows closely that of [12], which analyzed a control problem
with discretionary stopping (i.e., sup,cs suppep Ep[Y7]) in a non-Markovian frame-
work with mutually singular probability priors. (The solution of this problem was
an important technical step in extending the notion of viscosity solutions to the fully
nonlinear path-dependent PDEs in [13] and [14].) Nutz and Zhang [30] indepen-
dently and around the same time addressed the problem we are considering by using
a different (and an elegant) approach: They exploited the “tower property” of the
nonlinear expectation & developed in [29] to derive the &-martingale property of the

discrete time version of the lower Snell envelope Z,(w) 2 sup, eyt infpep s w) Ep[Y14],
(t,w) € [0,T] x . In contrast, we take an approach we consider to be very natu-
ral: We work with the upper Snell envelope and build our approximations directly in
continuous time leveraging the known results from the classical optimal stopping the-
ory. In the introduction, [30] states that they cannot work on upper Snell envelope
due to the measurability selection issue; see paragraph 3 on page 3 of that paper.
Our paper overcomes this issue. A major benefit of our approach is that we do not
have to assume that the reward process is bounded since we do not have to rely on
the approximation from discrete to continuous time. Another benefit is the weaker
continuity assumption we impose on the value function in the path; compare Assump-
tion 4.1 in our paper and Assumption 3.2 in [30]. The latter requires the value of any
stopping strategy to be continuous with the same modulus of continuity, which is an
assumption that is not easily verifiable. One strong suit of [30] is the saddle point
analysis, which works under the weak formulation of the problem.

The rest of the paper is organized as follows: In section 2 we will introduce
notation and some preliminary results such as the regular conditional probability
distribution. In section 3, we set up the stage for our main result by imposing some
assumptions on the reward process and the classes of mutually singular probabilities.
Then section 4 studies properties of the upper Snell envelope of the reward process
such as path regularity and dynamic programming principles. They are the essence to
resolve our main result on the robust optimal stopping problem stated in section 5. In
section 6, we give an example of path-dependent SDEs with controls that satisfies all
our assumptions. The proofs of our results are deferred to section 7, and the appendix
contains some technical lemmata needed for the proofs of the main results.

2. Notation and preliminaries. Let (M, g,,) be a generic metric space and
let (M) be the Borel o-field of M. For any € M and 6 > 0, Os(x) 2 {2’ €
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M : g, (x,2") < 6} and Os(x) 2 {2 € M : g, (w,2") < 0}, respectively, denote the
open and closed ball centered at = with radius . Fix d € N. Let Sd>0 stand for all
R¥*4_yalued positively definite matrices. We denote by %(S;°) the Borel o-field of
S7° under the relative Euclidean topology.

Given 0 <t < T < o0, let QT 2 {w € C([t, T);R?Y) : w(t) = 0} be the canonical
space over the period [t, T], whose null path w(-)=0 will be denoted by 0%7. For any
t <s <8 <T,we introduce a seminorm || - ||s,s on Q57: ||w||s.s 2 SUp,.¢(s,5)|w(r)|
for all w € Q4T In particular, || - ||; 7 is a norm on QT called uniform norm, under
which Q%7 is a separable complete metric space. Also, the truncation mapping Hzg

from Q8T to Q% is defined by
5L (w réwr—ws Vwe QBT vrels, S].
s,S

The canonical process B*T on Q%7 is a d-dimensional Brownian motion under the
Wiener measure Ph” on (207, B(Q4T)). Let F&T = {Fi.T So(BLT relt, s])}seqe, 1)
be the natural filtration of BT and let C47 collect all cylinder sets in FiT: ctT 2
{ia(Bf;T)_l(é'i): meN, t<t;<---<t, <T, {&}™, CB(RY)}. It is well known that

BQT) = 0(CT) = o{(BLT) T €) i re LT € BEN | = FyT.

Let 24T denote the F“T-progressively measurable o-field of [t, T] x Q4T and let 747
collect all FT-stopping times. We set 727 2 {7 € 77 : 7 > s} for each s € [t,T]
and will use the convention inf (J 2 00.

From now on, we shall fix a time horizon T € (0, c0) and drop it from the above
notation, i.e., (Q“T, 047 | ||,.7, B?T, PyT, FOT 20T THTY—yQF, 0, || ||, B!, P},
Ft, 2" T!). When S=T, H’;E_FF will be simply denoted by II%. For any 0<t<s<T,
we Q! and § >0, define OF(w) 2 {w e ||w' —w|lts <} (In particular, OF (w) =
Os(w) ={w € Q' : || —wllt,r < §}). Since QF is the set of R¥%-valued continuous
functions on [t, T] starting from 0,

03 (w) = LejN{w' € || —wlts <6—d/n}

U N Q{w'EQt: ' (1) —w(r)| <6 —6/n}

neN re(t,s)N

o o (e €9 B €T )} € 7
We fix a countable dense subset {&%}jen of QF under || - [|;, and set O 2 {03(@)) -

§€Qy,jeN}CFL

Given t € [0,7] and a probability P on (Qf, Z(Q!)) = (QF, FL), let us set AT 2
{N C Q' : N C A for some A € FL with P(A) = 0}. The P-augmentation F¥ of F!

consists of F¥ 2 o(FtU AP), s € [t,T]. (In particular, we will write 7 for NP
and F = {7§}Se[t7T] for F¥o = {ffﬂ}se[t7T].) We denote by T the collection of all

FP_stopping times and set 77 2 {7 € 7% : 7 > s} for each s € [t,T]. B
The completion of (Q, Ff,P) is the probability space (Q, Fr., P) with P|z; = P;

we still write P for P for convenience. In particular, the expectation on (Qt,f;, Pt)
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will be simply denoted by E;. A probability space (Qf, F',P) is called an extension
of (0, 7, P) if Ff C F' and P'| 5 =P.
For any metric space M and any M-valued process X = {X }se, 1), we set

FX = {F¥ 2 o(Xr;r € [t,s])}sepe,r) as the natural filtration of X and let FXF =
{FXF = o(FX U ANV ey If X is FP-adapted, it holds for any s € [t,T] that

FX c FF and thus FXF ¢ FP.
The following spaces about P will be frequently used in what follows:

(1) For any sub-o-field G of Fi, let L'(G,P) be the space of all real-valued,

G-measurable random variables & with [[£][z1(g,p) 2 Ep[l€]] < oo.
(2) Let DY(F!,P) (resp., SY(F!,P)) be the space of all real-valued, Ft-adapted
processes { X }s¢[¢,7) whose paths are all right-continuous (resp., continuous)

and satisfy Ep[X.] < oo, where X, 2 supsepy, 77| Xs|- Also, by setting ¢(z) =
zIn" (), z € [0,00), we define D(F*,P) 2 {X e DY(F!,P) : Eplop(X.)] < oo}
For any x,y € [0,00), if z Sav y <2, ¢(x +y) <od(22) < ¢(4); otherwise, if

2>2, ¢(x +y)<p(22) =221n(22) <2zIn 22 =4z In 2 =4¢(2) <4(p(z)+d(v)).
So

(2.2) Pz +y) <4o(x) +49(y) + ¢(4).

If the superscript t=0, we will drop them from the above notation. For example,
0=0%T and T =797,

2.1. Concatenation of sample paths. In the rest of this section, let us fix
0<t<s<T. We concatenate an w € 2 and an @ € Q° at time s by

(w®s@)(r) = w(r) ey + (w(s) +@(r) ey Vre [T,

which is still of Qf. For any nonempty ACQf wesetw®,0 =0 and w®, A 2
{w®sw:we A}

The next result shows that A € F! consists of elements w @4 Q° with w € A.

LEMMA 2.1. Let A € FL. Ifw € A, then w®sQ°% C A. Otherwise, if w ¢ A, then
w®s Q% C A°.

For any F!-measurable random variable 7, since {w’ € Q' : n(w’') = n(w)} € FL,
Lemma 2.1 shows that

(2.3) w0 C{W e :nW)=nw)}, ie, nw®s0)=nw) Yo'

On the other hand, for any A C Qf we set A5¥ 2 {We: we,wec A} as the
projection of A on Q° along w. In particular, (% = ().

For any r € [s,T], the operation ( )*“ projects an F!-measurable set to an F3-
measurable set while the operation w ®; - takes an Fj2-measurable set as input and
returns an F!-measurable set.

LEMMA 2.2. Given w € Q' and r€[s,T|, we have AS“ € FS for any A€ F., and
w®s A e Ft for any A € F5.

COROLLARY 2.1. Given T€T" and weQ?, if T7(w®:Q°) C [r, T| for some r €[s, T,
then 7% €7%.

For any D C[t, T] x QF, we accordingly set D% 2 {(r,@)€[s, T]xQ% : (r,w®s;w) e
D}.
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2.2. Regular conditional probability distributions. Let P be a probability
on (Qf, A(Q)). In virtue of Theorem 1.3.4 and (1.3.15) of [37], there exists a family
{P¥},cq: of probabilities on (Qf, Z(Q?)), called the reqular conditional probability
distribution of P with respect to F!, such that

(i) for any A € FL, the mapping w — P¥(A) is Fi-measurable;

(ii) for any & € L' (F%,P), Epo[] = Ep[¢|FL(w) for P-as. w € QF;

(iii) for any

(2.4) weQ PYwrs Q%) =1.

Given w € Qf, by Lemma 2.2, w ®, A € Fi for any A € F5. So we can deduce
from (2.4) that

(2.5) P (A) EP(we, A) VAe Fp

defines a probability on (Q°, 7). The Wiener measures, however, are invariant under
path shift.

LEMMA 2.3. Let 0<t<s<T. It holds for Pj-a.s. we Q" that (Ph)** =P§.

Thanks to the existence of regular conditional probability distribution we can
define conditional distributions using (2.5). Then by introducing path regularity for
the reward process Y, one can treat path-dependent problems in ways similar to
state-dependent problems. This can be seen as the general idea behind a dynamic
programming in the path-dependent setting and the path-dependent PDEs introduced
in [11].

2.3. Shifted random variables and shifted processes. Given a random vari-
able £ and a process X = {X,},¢[, 1) on Q¢ for any w € Qf we define the shifted

random variable 5% by £5“(w) 2 E(w®sw), Yw € Q° and the shifted process X«
by X5%(@0) = X(r,w ®s ), (r,w) € [s,T] x QF.

In light of Lemma 2.2 and the regular conditional probability distribution, shifted

random variables/processes “inherit” measurability and integrability as follows.

PROPOSITION 2.1. Let M be a generic metric space and let w € QF.

(1) If an M-valued random variable & on QF is F.-measurable for somer € [s,T],
then £5¢ is F; -measurable.

(2) If an M-valued process { X, } e 1) is F'-adapted (resp., F'-progressively mea-
surable), then the shifted process {X;“},c(s, ) is F*-adapted (resp., F*-pro-
gressively measurable).

PROPOSITION 2.2. If £ € LY (FL,P) for some probability P on (QF, B(QY)), then

it holds for P-a.s. w € Q! that the shifted random variable £5% € L' (F3,P**) and

(2.6) Eps.w [€7%] = Ep[¢|F!](w) € R.

As a consequence of (2.6), a shifted P§j—null set (or dr x dPi-null set) also has
Zero measure. .

LEMMA 2.4. For any N' € ¥, it holds for Ph-a.s. w € QO that N5 € V" ; for
any D € B([t,T]) @ Fk with (dr x dP)(D N ([s,T] x Q) = 0, it holds for Ph-a.s.
w € QF that (dr x dP§)(D5*) = 0.

The proofs of results in this section can be found in [36, 35], see also [6].

In the next three sections, we will gradually provide the technical set-up and
preparation for our main result (Theorem 5.1) on the robust optimal stopping prob-
lem.
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3. Weak stability under pasting. In the proof of Theorem 5.1, we will use an
approximation scheme which exploits results from the classic optimal stopping theory
for a given probability. For this purpose, we consider the following probability set.

DEFINITION 3.1. For anyt€[0,T], let B collect all probabilities P on (Qf, B(QY))
such that FY is right-continuous.

We will also need some regularity assumption on the reward process.

Standing assumptions on reward process Y.

(Y) Y is an F-adapted process that satisfies an one-sided continuity condition in
(t,w) with respect to some modulus of continuity function pg in the following sense:

iy (61) = Yoy (02) < po doe ((tr,00), (t2,02))
VO<t; <ty < T, le,wg S Q,

(3.1)

where doo ((t1,w1), (t2,w2)) =

Remark 3.1.

(1) As pointed out in Remark 3.2 of [12], (3.1) implies that each path of YV is
RCLL with positive jumps.

(2) Also, one can deduce from (3.1) that the process Y is left upper semicontin-
uous, i.e., for any (t,w) € (0,T]x 8, Y;(w) > lim, ~ Y (w). It follows that the
shifted process Y** is also left upper semicontinuous. Then we can apply the
classical optimal stopping theory to Y under each P € 3;. Actually, the

(tQ - tl) + ||W1(' A tl) — LUQ(' /\tz)”og‘.

proof of Theorem 5.1 relies on the comparison of 7" with the Snell envelope
of Y under each P € ;.
The next result shows that LLIn L-integrability of shifted reward process is inde-
pendent of the given path history.
LEMMA 3.1. Assume (Y). For anyt€0,T] and any probability P on (Qf, B(Q)),
if Yo eD(FL,P) for some we Y, then Y e D(F!,P) for all w' €.
We shall focus on the following subset of J3; that makes the shifted reward process
L In L-integrable. R
Assumption 3.1. For any t€ [0,T], the set mfé{ﬂbe%: Y40 e D(F!,P)} is not
empty.
Remark 3.2.
(1) IfY € D(F,Py), then Lemma 2.3, (2.6), and Lemma 3.1 imply that P} € B
for any t€ 0, T7.
(2) As we will see in Lemma 6.1, when the modulus of continuity py has polyno-
mial growth, the laws of solutions to the controlled SDEs (6.1) over period
[t, T] belong to By .
Under (Y) and Assumption 3.1, we see from Lemma 3.1 that for any t€[0, 7] and
Pepy,

(3.2) Yt eD(F,P) Vwe Q.

Next, we need the probability classes to be adapted and weakly stable under
pasting in the following sense.
Standing assumptions on probability class.
(PO) For any t € [0,T7, let us consider a family {P(t,w) = Py (t,w)}weq of subsets
of PBY which is adapted in the sense that P (t,w1) =P (t,w2) if w1 [0, =w2l[0,4-

So PéP(O, 0)="P(0,w) for all we.
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We further assume that the probability class {P(t,w)}(t,w)e[o,7)x satisfy the
following two conditions for some modulus of continuity function py: for any
0<t<s<T,weNand PeP(t,w).

(P1) There exist an extension (Qf, 7/, P') of (Qf, F&,P) and Q' € F’ with P/(Q') =
1 such that for any @ € ', P5% € P(s,w ®; @).

(P2) For any 6€Q, and AeN, let {A;}}_ be a Fl-partition of Q" such that for
j=1,...,\ A; C Oi(w;) for some w; € QF. Then for any P; € P(s,w ®; w,),
j=1,..., )\ there exists a @E”P(t,w) such that

(i) P(ANA))=P(ANA), VA€E Fl;
(i) for any j=1,..., A and A € F!, P(ANA;) = P(AN A;) and

(3.3) sup E@ [1AmAjY:’w}
TETY

< Ep

1QAAj sup Ep. ySeee +po(0 .
{en}(cgs S YT+ 00(0)

From now on, when writing Y**, we mean (Y*“), not (Y, ).

Remark 3.3.

(1) As we will show in section 7, both sides of (3.3) are finite. In particular,
the expectation on right-hand side is well-defined since the mapping w —
sup;ersEp; [ch,w®tw] is continuous.

(2) The condition (P2) can be viewed as a weak stability under pasting since it
is implied by the stability under finite pasting (see, e.g., (4.18) of [35]): for
any 0<t<s<T,weQ, PeP(tw), 6 €Qy, and A €N, let {Aj};zo be a
Fl-partition of QF such that for j =1,...,\, A; C Oj(w;) for some w; € Q.
Then for any P; € P(s,w ®; w;), j=1,..., A, there exists a Pe P(t,w) such
that

A
(84)  BA)=P(ANA) + Y Fp[lgea)Ps(4°F)] vAeF

j=1

Remark 3.4. The reason we assume (P2) rather than the stability of finite pasting
(3.4) lies in the fact that the latter does not hold for our example of path-dependent
SDEs with controls (section 6) as pointed out in Remark 3.6 of [28], while the former
is sufficient for our approximation methods in proving the main results.

4. The dynamic programming principle. The key to solving problem (1.1)
is the following upper Snell envelope of the reward processes:

2

(4.1) Z(w) inf sup Ep[Y*] V(t,w)€[0,T]x Q.

PEP(t,w) reTt

In this section, we derive some basic properties of Z and the dynamic programming
principles it satisfies. These results will provide an important technical step for the
proof of Theorem 5.1. Let (Y), (P0), (P1), and (P2) hold throughout the section.

Given (t,w) €[0, T]xQ, since Y; is Fy-measurable, (2.3) implies that Y;"* =Y;(w).
It then follows from (4.1) that

(4.2) Zi(w) > peinf Er V] = Yi(w) V(tw)e€[0,T]x Q.
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We need two additional assumptions on Z before discussing its path regularity
properties and dynamic programming principle.

Assumption 4.1. There exists a modulus of continuity function p; > po such that
for any t € [0, T

(43) |Zt(w1) —7t(LU2)| S pl(le — LU2||()’t) le,LUQ S Q.

Remark 4.1. If P(t,w) does not depend on w for all t€[0,T7], then (3.1) implies
Assumption 4.1.

Remark 4.2. Assumption 4.1 on Z implies that Z is F-adapted.

Assumption 4.2. For any a > 0, there exists a modulus of continuity function p,,
such that for any ¢t € [0,T)

(44)  sup sup Ep < pa(d) Vo€ (0,T].

w€eOl (0) PEP(t,w)

pr|6+2 sup B
ret,(t+0)AT]

Similar to (3.2), one has the following integrability result of shifted processes of
Z.

LEMMA 4.1. Given (t,w) € [0,T] x Q, it holds for any P € P(t,w) and s € [t,T
that IEPH?ZMH < o0.

As to the dynamic programming principle, we present first a basic version in
which the transit horizon is deterministic.

PROPOSITION 4.1. For any 0 <t <s<T and w € €,

45 Z:(w) = inf E[lTSYW 1787““]
(4.5) (@) = b SR e [1irey Vo™ + a0y 2,

Consequently, all paths of Z are continuous.

PROPOSITION 4.2. For any (t,w) € [0,T] x Q and P € P(t,w), 7" est (Ft,P).

The continuity of Z allows us to derive a general version of dynamic programming
principle with random horizons.

PROPOSITION 4.3. For any (t,w) € [0,T] x Q and v € T,

46 Zi(w)> inf E[lTl,Yt’“ 10774,
(4.6) tw) 2, il Sup Be e Vo™ 4+ 12y 2,

The reverse inequality holds under an additional condition; see [6] for details. (But
this is not needed for our main result.)

5. Robust optimal stopping. In this section, we state our main result on
robust optimal stopping problem. Let (Y), (P0), (P1), (P2), and Assumptions 3.1—
4.2 hold throughout the section.

For any t € [0,T], we set .% 2 {random variable ¢ on Q : ¢4 € LY(FL, P) f
all w € Q, P € P(t,w)} and define on .4 a nonlinear expectation: &,[¢](w)
infpep(t’w)ﬂ*:[p[ft’w] foralw e Q, € € 4.

Remark 5.1. Given 7 €T, Y,,Z,; € % for any t € [0,T], thanks to (3.2) and
Proposition 4.2. _

Similar to the classic optimal stopping theory, we will show that the first time Z
meets Y

]

T

1>

™ 2inf{t € [0,T]: Z, = i}
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is an optimal stopping time for (1.1), and the upper Snell envelope Z has a martingale

characterization with respect to the nonlinear expectation & 2 {&:}iero,m)-
THEOREM 5.1. Let (Y), (P0), (P1), (P2) and Assumptions 3.1-4.2 hold. If
SUD(¢ w)efo, 1] x0 Yt (W) = 00, we further assume that for some L >0

Vi, (W) = Y, () §L+¢< sup IYr(w)l> +m ( sup \w(r)—w(tl)o

ref0,t1] refty,ta]

(5.1)
VO<t; <ty <T, Vwe Q.

- . . —* A = . . .
Then Z is an &-supermartingale and {Z; = Zipnr=}refo,1) 15 an &-martingale in the
sense that

(652) Zuw) > &[Z:)w) and Zi(w)=&,[77](w)
V(t,w) €0, T] xQ, V1 eT.

In particular, the F-stopping time 7° satisfies (1.1).
Remark 5.2.
(1) Similar to [30], we can apply (1.1) to subhedging of American options in a
financial market with volatility uncertainty.

(2) Asto a worst-case risk measure (&) 2 suppep Ep[—£] defined for any bounded
financial position £, applying (1.1) to a given bounded reward process Y yields

that inf, 7 m(YT) = —SUp,c71 infpep ]EP[YT] = —inf[pep]E[p[YT*] e %(YT*).
So 7* is also an optimal stopping time for the optimal stopping problem of
R.

(3) From the perspective of a zero-sum controller-stopper game in which the
stopper chooses the termination time while the controller selects the distri-
bution law from P, (1.1) shows that such a game has a value &[Y;+] =
infpep Ep[Y--] as its lower value sup, g infpep Ep[Y;] coincides with the up-
per one infpep sup, g Ep[Y7].

6. Example: Path-dependent controlled SDEs. In this section we will
present an example of the probability class {P(t,w)}(+w)eo,17)xo in the case of path-
dependent SDEs with controls.

Let >0 and let b: [0, T]xQxR¥*? — R? be a Z@%(R4*?)/%(R?)-measurable
function such that

|b(t,w,u)—b(t,w u)| <kllw—wlos and [b(t,0,u)|<r(1+]ul)
Vw,w' €Q, (t,u)el0,T]xR¥>4,

Let (t,w)€[0,T] x Q. b (r, @, u) 2b(r,w @ @, u), (r,@,u) € [t,T] x QF x RI*4 is
clearly a 2 @ #(R4*?)/%(R?)- measurable function that satisfies

b5 (r, @, u) = b (r, &, u)| < k|| —&||¢,» and

b5 (r, 0, u)| §5(1+|\w||07t+|u|), Vo,o' et (r,u)€ft,T] x RI*,

For any ¢ € [0,7], let U collect all S U_valued, Fi-progressively measurable
processes {fis}sep, 7] such that |us| < &, ds x dPj-a.s. Given p € Uy, similar to the
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classical SDE theory, an application of fixed-point iteration shows that the following
SDE on the probability space (2, i, Pf):

(6.1) XS:/ bt7“(r,X,uT)dr+/ prdBE, s €t T],
t t

admits a unique solution X®“*, which is an Ft—adapted continuous process. Note
that the SDE (6.1) depends on w|j 4 via the generator b"*.
Without loss of generality, we assume that all paths of X¥*# are continuous

and starting from 0. (Otherwise, by setting NE {weQt: X[¥"(w)+#0 or the path
X" (w) is not continuous} € 7', one can take Xttt 2 Iy Xk s e (t,T). It
is an Ft—adapted process that satisfies (6.1) and whose paths are all continuous and
starting from 0.)

Applying the Burkholder-Davis—-Gundy inequality and Gronwall’s inequality and

using the Lipschitz continuity of b in w, one can easily derive the following estimates
for Xt«#: for any p > 1

E,
(6.2)

s?p]lXﬁ’“’“lpl < @p(lwloe) (s—t)"* and E, SL[lp]}Xﬁ’“”“—Xﬁ’“”“}p
relt,s relt,s

< Cpllw—u'[I§ s (s—1)F Vw'eQ,
where ¢, is a modulus of continuity function depending on p, x,T" and C),, denotes a
constant depending on p, x,T.

Similar to Lemma 3.3 of [30], the following result shows that the shift of X*«:#
is exactly the solution of SDE (6.1) with shifted drift coefficient and shifted control.
(See [6] for its proof.)

PROPOSITION 6.1. Given 0 <t <s<T,weQ, and p € Uy, let X 2 xtwn,
holds for Ph-a.s. & € QF that u>° € U, and that X>° = X5@&X @™ L x (@),

As a mapping from Qf to Qf, X< is F. /Ft-measurable for any s € [t,T]: To
see this, let us pick up an arbitrary £ € %(R?). The Ft—adaptness of XH“ " shows
that for any r € [t, s]
6y T(E)7T@) = @t xter@ e ()7 E))

={@weQ:X""w) ek}e 7

Thus (Bf)~1(£) e gX"" 2 {ACQt: (Xtwr)~L(A)eF.}, a o-field of Q. Tt follows
that Ff ¢ X" ie.,

(6.4) (Xt (M) e Fy VAR,
proving the measurability of the mapping X*“*. We define the law of X*“"* under
Py by

pren(A4) S Pho (X)) T (4) vAegE,

and denote by P4 the restriction of ph“# on (QF, FL). The filtrations FF"“" are
all right-continuous.
PROPOSITION 6.2. For any (t,w)€[0,T]xQ and pely, PH“* belongs to Py.
Remark 6.1. The reason we consider the law of X*“** under P§ over Q:,)ft
(the largest o-field to induce P} under the mapping X*“#) rather than F% is as

Wi
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follows. Our proofs for Propositions 6.2 and 6.3 rely heavily on the inverse mapping
Whtwott of Xtw:# which is an Ft-progessively measurable processes having only pt+-#-
a.s. continuous paths. Consequently, as we will show in the proof of the following
Proposition 6.3, it holds for p*“#-a.s. & € QF that the shifted probability (P*«:#)s®
is the law of the solution to the shifted SDE and thus belongs to P(s,w ®; w). This
explains why our assumption (P1) needs an extension (Qf, F',P') of the probability
space (', FL,P).
Given w >1, let pg be a modulus of continuity function such that

(6.5) po(8) < K(14+0%) ¥5>0,

and let YV satisfy (Y) with py. We set P(t,w)é{Pt’w’”: weU}.

LEMMA 6.1. Assume (Y) and (6.5). For any (t,w)€[0,T]x8, we have P(t,w) C
P

For any wy,ws € Q with wijog = w2l[,4, since (6.1) depends only on w4, we
see that Xtwik = Xtw2:k and thus Pbwi# = PHe2:F for any p € Uy. 1t follows that
P(t,w1) = P(t,ws). So assumption (P0) is satisfied.

PropOSITION 6.3.  Assume (Y) and (6.5).  Then the probability class
{P(t,w)}t,wyepo,rxq satisfies (P1), (P2), and Assumptions 4.1 and 4.2.

7. Proofs.

7.1. Proofs of the results in section 3.

Proof of Lemma 3.1. Let t€[0,T] and P be a probability on (2, Z(Q")). Suppose
that Y € D(F!,P) for some w € Q and fix ' € Q. The F-adaptness of ¥ and
Proposition 2.1 (2) show that Y%+ is Fi-adapted. Given & € QF, (3.1) implies that
for any selt,T]

V24 @) =¥ @) = |Vl ©03)~Yilw 9. D)|

(7.1) L B ,
< po(llo’ @ @—w @ @llo,s) = po (' ~wllo,t)-
It follows that Y2 (&) = sup, ey 71|V (@)] < sup,epe,r YL (@)]+po o’ ~wllo,) =
YD) + po(llw’ — wllog). Then (2.2) implies that Ep[p(Yy ™ )] < 4Ep[o(YV:E)] +
4¢(po(|lw’ —wllo4))+p(4) <oo. So Y« eD(F,P). O
Proof of Remark 3.3.
(1) Let wy,ws € QF. For any ¢ € T*, similar to (7.1), we can deduce that

‘YCSWJ@“TJI (ZJ) - YCS7UJ®tUTJ2 ((:J)‘ < pO(H(LU@t(:Ul)@S(:J—(w@ta2)®sa|
=po(@1—@2llss) V© e’

0.¢(@))

It follows that

(7'2) E]P’j [ch,w®t51] < E[Pj [ch,w®tﬁ2} + PO(Ha’l _ @2|

t,s)-

Taking supremum over { € 7 yields that sup;c7-Ep; [Ygs’w&wl] < sup;ersEp,
[YCS’W&@] + po(||lr — @2l 7). Exchanging the roles of w; and ws shows

that the mapping @ — sup;c7:Ep, [YCS’“&“T’] is continuous and thus Fi-
measurable. Then the expectation on the right-hand side of (3.3) is well-
defined.
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Next, let us show that both sides of (3.3) are finite: For any 7 € T}, (3.2)
shows that [Es[1ana, Y¢]| < Eg[[Y¢[] < Eg[Yi“] < oo, which leads to the

T

fact that —oo < —E@[Ktw] < SupTentE@[lAﬁ_AjY:’w] < E@[Kf’w] < 00.

On the other hand, given @ € AN A; and ( € T*, applying (7.2) with
(W1,02) = (W, w;) and (W1, w2) = (@5, ) respectively, yields that

e, [ 5] < [, [ )

S,wRw S,wRtW;
4 ‘]EIP’J- [YC two YC t J}

< Bp, [V ] + po (|8 —5lle.s) < B, [Y5F ] + po(6).
It then follows from (3.2) that

Ep 1{Q€AﬂAj} ( supSEPj [YCS"’J@“’T’} + Z)\O((S)>

< (Be, [V ] + po(0) + 50(6) ) P(A N A;) < o0, and

Ep | 1izeana;y (CSUP Ep, [V wE] +f70(5)>

( Ep, [Y2“9%1] — po(6) + ﬁ0(5))]P>(A NA;) > —oc.

(2) Given A € Ft, for any j = 1,...,A and w € A;, since A; € F!, Lemma 2.1
shows that (A;)®“ = Q° (or (14, )S “ = 1), which implies that (ANAg)*® = 0.

So it is easy to calculate that @(A N Ao) =P(ANA).
Next, let j =1,...,) and A € F.. We see from Lemma 2.1 again that

(73w € ANA; (resp., ¢ ANA;), and then (AN A;)5% = QF (resp., = 0).

Then P(ANA;) = 30— Eellzea, 1Py (ANA)*9)] = 30 Edl(zeana,)
Lizea, By (00)] = P(ANA;).
Given T € T}, since 7% € T* by Corollary 2.1, we can deduce from (7.3) again
that

A ~
e [1ana, 1] = 3 B 1ige, e, [(Lana 1) 7|
j'=1

=Ep |1zeana, Ep; [(th’w)s’aH

= Ep|1zecana, Ep, [Yf£§®tw}]

<Ep 1{weAmAj} sup E]P’] YS w®‘w }
ceT
(@ ®

where we used the fact that (Y/*)*%(@) = Y19 (0 @, @) = Y (1
©) =Y (r°9(@), (w @ @) ®s D) = Y29 (r58 (@), 0) = V250 (@) \mem. 0

7.2. Proofs of the results in section 4.

Proof of Remark 4.1. Let t € [0,T] and wy,ws € Q. For any P € Py, 7€ T,
and w € QF, (7.1) shows that |V (@) =Y 2 (@)| < po(|jwr —wallo,t), Vse[t,T]. In
particular, Y59 (7(@), @) —Y"“2(7(@), )| < po(|lw1 —wallo,t). It then follows that

(7.4) Ep [Y/“'] <Ep[Y*?] + po([lwr — wallo,)-
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Taking supremum over 7 € 7' and then taking infimum over P € P; yields that
Zi(w1) € Zi(wa) + po(||wr — wallo.). Exchanging the role of w; and wa, we obtain
(43) with P1 = Po- a

Proof of Lemma 4.1. Let 0<t<s<T,weQ, and PEP(t,w). If t=s, as Z; is Fy-
measurable by Remark 4.2, (2.3) shows that Ep[|7i’w|] = Ep[|Z(w)]] = | Z:(w)]| < oo.
So let us assume t < s. For any @ € Qf, one can deduce that

Yf“‘g’ta(@) = sup |Y(r,w ®t (W s @))| < sup ‘Y,,”"(Uu Qs @)|
(75) re(s,T] re(t,T)

— Y@ ®,0) = (V) @) Vo e 0.

By (P1), there exist an extension (Qf, F',P) of (!, FL,P) and Q' € F' with
P/() = 1 such that for any & € Q/, P*% € P(s,w @, &). Since Y € D(F!,P) C
DY(F!, P) by (3.2), we see from (2.6) that for all @ € Qf except on some N € AF,
Epes[(YD9)5%] = Ep[Y¥|F!(@). Let A be the Fh-measurable set containing A
with P(A) = 0. For any @ € Q' N A° € F’, (4.2) and (7.5) imply that

Yi(w®: @) < Z,(w®¢ @) < sup Epas [Yf’w@‘a’] < Eps.o [Yf“‘g’tw}
TETS

< Bpeo | (V24)"°] = Bp [V | F] @),

s0 Q' NA°C AE (Vi® < 79 < Ep[Y!*|F]}. Remark 4.2 and Proposition 2.1(2)
show that A € F!, and it then follows that P(A) = P/(A) > P'(Q' N A°) = 1. To wit,

(7.6) Yiv <707 < Ep[Y¥|F], Peas,

which leads to that Ep[|Z."[] < Ep[[Y5*| + Ep[YD“|FY]] < 2Bp[YI“] < 0o. O

Proof of Proposition 4.1. Fix 0<t<s<T and we . If t=s, Remark 4.2 and
(2.3) imply that Z,“ = Z;(w). Then (4.5) clearly holds. So we just assume ¢ < s and
define

(7.7) V. EYM and 2,270 vreltT)
(1) To show
7. Zy(w) < inf E1TST1”ZS},
(7.8) tW) < b SR Be e Vr 4 Lirzg)

we shall paste the local approximating minimizers Py of 7?)(@) according to
(P2) and then make some estimations.
Fix € >0 and let § >0 such that po(6)Vpo(d)Vp1(d) <e/4. Given & et we
can find a Pz € P(s,w ®; w) such that

(7.9) Zs(w®yw) > sup Ep_ [Yf’w&ﬂ —e/4.
TETS

Clearly, O3(w) is an open set of Q. For any &’ € Oj(w), an analogy to (7.4)
shows that

E]Pg, [YTs,w®t&’} S ]E]p@ [Y:’w®tw} + PO(HW ®t a/_w ®t @| O,s)
= Ep,, [V2®%] + po(|& — @es) VT ET
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Taking supremum over 7 € T°, we can deduce from (4.3) and (7.9) that

~ — - 1
Ts€u71_)s Ep_ [YTSM@“" } < Z, (w (o w) + 56

— - . - 1
(7.10) < Zg(w @y w’)—!—pl(Hw/—wHt,s) + 55

IN

Z,@) + ZE VI € 03(®).

Next, fix PEP(t,w) and A € N. For j=1,..., A, we set A; = (03(@)\(Uj <;
03(@5))) € Fi by (2.1) and set P; 2 Pg: (where @k is defined right after (2.1)).
Let Py be the probability of P(¢,w) in (P2) that corresponds to the partition
{A;}7_o and the probabilities {P;}_,, where Ay 2 (U} Aj)¢ € FL. So
(7.11) Ep,[]=Epl¢], V€L (F;, PA)NL (F;.P)

and  Ep, [14,]=Ep[14,&] VE€L'(FL,PA)NLY(Ff,P).

Given 7 € T, one can deduce from (3.2), (3.3), (7.11), and (7.10) that

A
Ep, [Vr] = Ep, [1{r<s}Vras + Lir>sinaoVrvs] + Z]EIP’X [1{Tgs}mAjY:’v°2]
i=1
S EP [1{7—<s}y‘r/\s + 1{T25}F1A0y7'\/s]
A

+>_Ep [1{r<a>zs}m{weAj} (f;lﬁs]EPj [y eoe] + ﬁo(é)ﬂ
=1

< Ep [1{T<s}yr + 1> spna, Ve + 1{725}0,4335} +e

< Ep [ e Vr + 1o 2] + Ep [La, (0 +1Z:])] +2.

Taking supremum over 7€ 7 yields that

Zt(w) S sup ]EIP’X [yr} S sup EP |:1{T<S}y7' + 1{T28}ZS:|
TET? TET?
(7.12)

+ Ep [1( 5 Av)c(y* - |ZS|)] +e.

j=1""

Since UjenA; = UjenOj(@05) = Q' and since Ep[Vs + [2Z;]] <oo by (3.2) and
Lemma 4.1, letting A — oo in (7.12), we can deduce from the dominated
convergence theorem that Z;(w) < sup,cr Ep[li;cVr + 150 26] + €.
Eventually, taking infimum over P € P(t,w) on the right-hand side and then
letting € — 0, we obtain (7.8).

As to the reverse of (7.8), it suffices to show for a given P € P(t,w) that

(7.13) sup Ep [1{T<S}y7+1{725}25} < sup Ep [yT] .
TET? TET?!

Let us start with the main idea of proving (7.13): Contrary to (7.9), we need
upper bounds for 72,&; this time. First note that 7?”(@) < supcegs Eps.a
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[ch,w&a] Vw e Q. Gen ¢ € T5, (2.6) implies that
(7.14) Eps.o [ch’w&w] =Ep [Veany)| Fe) (@) < Ee [ V2| Fi] (@)

holds for any w € Q' except on a P-null set N¢, where T is an optimal stopping
time. Since T is an uncountable set, we cannot take supremum over € T*°
for P-a.s. @ € QF in (7.14) to obtain

(7.15) Z, <Ep[Y:|F,], P-as.

To overcome this difficulty, we shall consider a “dense” countable subset T' of

T? in sense of (7.16).

(2a) Construction of I': For any n € N, we set %, 2 ((s,T)yN{i27"}ien) U
{T} and 2 = Unen%n. Given q € 2, we simply denote the countable
subset ©; of F¢ by {Of};en and define T} 2 {qlujeloj + 110, 00
I c{l,...,k}} C T° Vk € N. For any n,k € N, we set I'), » =

{Ne@,7q :7q € YL} C T°. Then I’ 2 Un, ken 'y 1 is clearly a countable
subset of 77°.

Since the filtration FT is right-continuous, and since the process ) is
right-continuous and left upper semi-continuous by Remark 3.1(2), the
classic optimal stopping theory shows that esssup, e Ep[Y, | FE] ad-
mits an optimal stopping time 7 € TF, which is the first time after
s the process Y meets the RCLL modification of its Snell envelope
{esssupTGm» EP[yT|fF]}r€[t,T] .

Fix € > 0. We claim that there exists a 7/ € T} such that

(7.16) Ep[| Vs — V2|] <e/4.
To see this, let n be an integer > 2. Given ¢ = 1,...,n, we set s} =
s+ L(T —s) and A? 2 {st, <7 < s} € Fi with s = —1.

By, e.g., Problem 2.7.3 of [20], there exists an (A")?" € F!, such that
AP A (A € NP, Define (A)" 2 (A')M\Uyoi(A')E € Ft, and A, 2

A : :
U (AP = U (AP € Fh. Then 7, = 31" 1an 57" is a T, -stopping

time while 7/ 2 Sy Lann s} + L(ar)eT defines an T-stopping time.
Clearly, 7, coincides with 7, over U, (A N (A")?), whose complement
L(AP\ (A7) is in fact of AF because for each i € {1,...,n}

u ()]

i <i

(s nay))

Az = Aara () u(
= (any u (L,
c (aramr) u (Y (@0 Ap))
C i,%(A?,A(A’);%) e NE

(7.17)

7, P-a.s. Since lim,, -7, = 7 and since Ep[).] < oo by
(3.2), we can deduce from the right-continuity of the shifted process )

To wit, 7, = 7/
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and the dominated convergence theorem that
(718) hmn%ooEIF’Hyﬂl - y?H = hmn—)ooEIF’Hy‘rn - y?H =0.

So there exists a N € N such that Ep[|V,; —V?|] < e/4,i.e., (7.16) holds
for 7" = 1}

In the next two steps, we will gradually demonstrate (7.15).

Since Ep[).] < oo and since ((ITY) € Tt C TE for any ¢ € T° by
Lemma A.1, applying Lemma A.2(1) with X = B show that except on
an N € 4T

Ep (Ve | Fe] = Er (Ve | Fi] < esssupEp (V-] 7]
(7.19) TETY
=Ep[V:|F,| =EBp[V:|F!] V(eT.

Also in light of (2.6), there exists another N € #F such that for any
weNe,
Er [Veqno) | 2] @) = Epes | (Vo)™

— Bpus [Yg’ww} Veer,

(7.20)

where we used the fact that for any @ € Q°

V)™ (@) = Veque) (@ 95 0) = Y(<(Hz<w ®sB)),w Ot (& O, @))
=Y (((@), (w @ @) ®: D) = Y9 (@).

By (P1), there exist an extension (Qf, F/,P’) of (Qf, F4,P) and ' € F’
with P/(Q') = 1 such that for any & € €, P*® € P(s,w @, &). Let A be
the Fl-measurable set containing AU N and with P(4) = 0.

Now, fix @ € ’NA° and set T5% = ’7?5'@, r € [s,T]. Analogous to T, the
first time (5 € 7% = TP"% when the process Y 54®:% meets the RCLL

modification of its Snell envelope {esssup_;-+.s Ep:. [YCS’W&UJ |ffs’&]}re[s7T]

Yo@®)  Similar to

is an optimal stopping time for sup cysa Epsa| c
(7.16), there exists a (5 € T° such that

(7.21) Ep..o [|Y<2“®@ - Yg“@’t“u <¢/d.

Next, we will approzimate (5 by a sequence {C"}nen in I': As P59 €
P(s,w @ @), (3.2) shows that Ep.s[V,7“®*“] < co. So there exists a
6 > 0 such that

(7.22) Epoa [14Y:59%°] < /4 for any A € Fj with P5¥(A) < 6.

Given n € N and i € {|2"s],...,|2"T]}, let ¢! 2 HLAT € 9, and
A

Ar = = <L <Hlye Fan- We can find a subsequence {07} sen of

92? = {O?? }jeN such that
)

(28) A g op md P >EE( 0 0F) -
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(See Lemma A.7 of [6] for details.) Moreover, there exists an £ € N
such that

_ _ . 5

7.24 PE(0r) > Py OpY) - o
( ) ( z) > PEN 14 L2nTJ2

. A o n.i yaN qfl
with OF = U, ,0," € .7-';;1. Clearly, (/' = ¢f'lor + T1(or)c € Ty for
some k7 € N. Set OF 2 (9?\LJ§,;1L2"SJ O} € Fjn. An analogy to (7.17)

shows that A7\OF = A7 N[(OF)°U (U~ ., O3] C ((UrenO*)\OF) U

(Uj,;lpnsj( n N (gf,)c)) It then follows from (7.23) and (7.24) that

P (A7\O}) < P* ((EENO/ ) \01)
(7.25) i—1 .
~ s\ 0 0
$,W n,i Tf < )
2 r ((£0)\B) < i < oy

Set 0, 2 U T Or = U2 T On and ky, 2 max{k? 1 i = [2"s), ...,

i=[27s) i=[27s)
|2"T'|}, we see that (" 2 /\iLi"L;JSJ G = Z}Zggsj 4i'lgn +1p. T is a
stopping time of ', ;.. , which equals to Z" = iﬁ;ﬂs | g1 in € T* over
A S 020 (A0 Op) € Fpo As U3 AP = @0, (7.25) implies
that P2 (A5) = PO T] (AMOp) = Y200 P2 (An\0F) < 0.
It then follows from (7.22) that Ep.,o [|ng®ta — chéw&a” = Eps.a[1ac]

g;w@ta - ng@,@” < 2Eps,@[1A%Yf’w®tw] < €/2, which together with
(7.19) and (7.20) shows that Ep.s[Y5“*] < Epus [V + /2 <
Ep[V|FL(@) +&/2. Since lim, so0) ¢ = ¢4 and since Ep. s [V79%) <
00, letting n — oo, we can deduce from (7.21), the right-continuity of the
shifted process Y $“®“ and the dominated convergence theorem that

Zy(@) = Zs(w@@) < sup Epeo [YCS’W&Q}

CeTs
< sup Epes [ch,u@t&] — Epes [ch:w&a]
ceT® s
< Epss [Yczw&&] +e/4 =lim, oo Eps.o [ Es:u&a}

+e/4 <Ep[V:|FL] (@) + %a Vi e 0 nA°

Since Z; € F! by Remark 4.2 and Proposition 2.1(2), an analogy to
(7.6) yields that

(7.26) Z, < Ep[ V5| F!] +Zs, P-a.s.

If sending € to 0 and applying Lemma A.2(1) with X = B? now, we will
immediately obtain (7.15).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/13/16 to 136.142.124.99. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ON THE ROBUST OPTIMAL STOPPING PROBLEM 3153

(2d) Given 7 € Tt let 7 = lirean T+ 1507 € Tt. We can deduce from
(7.26) and (7.16) that

Ep |:1{T<S}y7' + 1{T28}ZS:|

3
< Ep {1{T<S}JAAS + 1r>s Ep D’?|f§” T ¢

3
=Ep {EP [1{T<5}y7'/\3 + 1{725}y?|]:ﬂ:| +Z€
3
=Ep {1{T<s}% + 1{725}3)?} +te<Ep [1{r<s}3’7 + 1{725}%/} +e
=Ep[Vr] +¢ < supEp [V, ] +e.
TET?

Taking supremum over 7 € 7% on the left-hand side and then letting
e—0 yields (7.13). So we proved the proposition. O
Proof of Proposition 4.2.
(1) Fix w € Q. Letting 0 <t < s < T such that sup, ¢ glw(r) —w(t)| <T. We
shall show that

(7.27) |Zs(w)=Z1(w)] < 2pa(bt.s),

where a 21 + llwllo,r and d;,s 2 (s = 1) Vsup,¢cp qlw(r) —w®) < T.
Given >0, there exists a P=P(¢,w,e) € P(t,w) such that

Zy(w) > sup Ep[V¥] —¢
TET?

w —t,w
(7.28) > Sup Ep [1{T<S}Yf’ + 1r>5) 25
TET?

> Ep {7?} — &

where we used (7.13) in the second inequality and took 7 = s in the last
inequality. In light of (4.3)

|Zs(w) — Z, =|Zs(w) = Z(s,w @ )| < p1([|w — w @ D|o,s)
( sup w( w(t) —w(r)‘)
relt,s]
(7.29)
sup ‘w |—|— sup |o.) w(t)‘
relt,s] relt,s]
( sup } }—l—ét S) Ve 0.
[t,(t+8¢,6)AT]
Since , (7.28) and (4.4) imply that

t,w

Zo(w) — Zi(w) < EP[Z(w) 7" ] te

<Ep |p1 <5t,s + sup ‘BH)
reft,(t+0¢+,s)AT)

+e S pa(ét,s) +e
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Letting € — 0 yields that
(7.30) Z (W)= Z1(w) < pa(6t.s)-

On the other hand, let P be an arbitrary probability in P(t,w). Applying
Proposition 4.1 yields that

(7.31) Z, (w) — 75((,0) < sup Eg {1{T<S}Y:’w + 1{7—25}7?(‘)} — 75((,0).
TET?!
For any 7 € T' and @ € {7 < s}, (3.1) shows that
YE(@) — YIU@) = Y (r(@),w 9 D) — Y (8,0 @ )
< po (Ao ((7(@), w0 @1 2), (5,0 €1 8)))
< po <(s —t)+ sup |@(rAT@)) —@(rA s)|>

re(t,T)

<m <<s—t> +2 sup |B£<w>»> .

re(t,s]

Plugging this into (7.31), we can deduce from (4.4), (4.2), and (7.29) that

Zi(w) = Zs(w) < sup B

TET?! relft,s]

1{T<S}p1 <(S — t) + 2 sup |BH>

+ 1{T<s}}/st7w + 1{7—25}72"*" - ZS(“)

S Pa(S - t) + Efp? [7?00 - 7s(w):| S 2po¢(6t,s)7

which together with (7.30) proves (7.27). As limy »gl 0 s = limg ¢l ¢ = 0,
the continuity of Z easily follows.

(2) Let (t,w) € [0,T] x Q and P € P(t,w). As Ep[Y;"*] < 0o by (3.2), using (7.6)

U<

and applying Lemma A.2(1) with X = B? show that for any s € [t, T, Z0

Ep[Y.¥|Fl] = Ep[Y)*|FF], P-a.s. Then by the continuity of process Z and
the right continuity of process {Ep[Y;* | 751} sefe, 7, it holds P-a.s. that 7Z’w <
Ep[Y.“|FF] for any s € [t,T]. Tt follows that 70 < supse[t7T]Ep[Yf’w|ff],
P-a.s. Applying Doob’s martingale inequality and Jensen’s inequality and
using the convexity of ¢ yield that

B [72) < g (1 sp B fo(@ei170))

IN

e
(14 sup Ee[Ep[o(v!)|F!]])
e—1 sE[t,T)
= = (1+E:[o(v/*)]) <. D
Proof of Proposition 4.3. When t = T', (4.6) trivially holds as an equality. So let
us fix (t,w) € [0,T) x  and still define Y, Z as in (7.7). For (4.6), it suffices to show
for a given P € P(t,w) that

(7.32) sup Ep [1{7@}34 + 1{T2,,}z,,] < sup Ex[)].
TET? TET?!
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Fixe > 0,v,7 € T%,and n € N. We define 7, 2 Lyt 0y Lin  crcmyt} €

. . . . A ,L
T*. Let k be an integer > 2. Fori = 1,...,k, applying (7.15) with s = t} = t++(T—t)
yields that

(7.33) Zyp <Ep[Vor|Fi], P—as.,

t

where 7F € 7?,’3 is the optimal stopping time for esssup,c7+ Ep [:))T|.7-'f,l]. Similar to
i ik i
(7.16), we can find a 7} € T, such that

(7.34) B (| Ver — Vpr|] < e/k

N N
Define vy, = 1{u§t’f}tlf+25:2 1{155‘_1<u§t?}téC €T'and 7y = Zf:l 1A§‘(1{m<t§}7'n
+ 1, 577) € T, where A¥ 2 {vi = tF} € Fl.. We can deduce from (7.33) and
(7.34) that

Ep |:1{‘rn<vk}yrn +1{Tn2Vk}Z,,k]

< D Be [ (L, <ty + Lr ) B [V 7] )
i=1 B
k r
= > Ee[Be [Lar (Lgr oy Vra + L0y Vet |7
(7.35) -
=D Ee| Lt (1, <ty Vr + 1{rn2t§}yrf)]
i=1 B
k r
<Y Be[Lar (L oy Vr + Lty Vo) | +2
i=1 B
ZEP[ ?;]—I—&S SupEp[yg]—l—E.

CeT?

Since Ep[Yi + Z.] < 0o by (3.2) and Proposition 4.2, letting k& — oo in (7.35), we can
deduce from the continuity of Z and the dominated convergence theorem that

Ep [l{fngy}ym + 1{Tn>V}ZV} = limg oo Ep [1{rn<uk}yrn + Lr >0 2u
< sup Ep [yg] + €.
CeT?

As n — oo, the right continuity of Y and the dominated convergence theorem imply
that

Ep |:1{T<V}yT+1{TZV}ZU = lim, o Ep |:1{Tn§u}y‘rn+1{7'n>u}21/:| < SU7I_)EIPD7<]+6-
CET?

Taking supremum over 7 € 7! on the left-hand side and then letting ¢ — 0 yields
(7.32). O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/13/16 to 136.142.124.99. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3156 ERHAN BAYRAKTAR AND SONG YAO

7.3. Proofs of the results in section 5.

Proof of Remark 5.1. Let (t,w) € [0,T] x 2. As Y, is Fp-measurable, Lemma
2.1(1) shows that (Y;)"* is in turn Fi-measurable. Since Y;+ € Fi, we can deduce
from (2.3) that

(V) (@) = Y (T(w @ @), w @ @)
< Lr(wo) <ty | Yrne(w @0 0)| + 1irwe,)>0 Y (@)
= 1 (wem) <t} | Yrar )| + Lirwe,m)>n Y0 (@) Vo e QL

For any P € P(t,w), it then follows from (3.2) that Ep[|(Y;)"*]] < |Yrae(w)| +
Ep[Yf’“’] < o0o. Thus, Y, € %. Similarly, one can deduce from Remark 4.2 and
Proposition 4.2 that Z, € .%,. 0

Proof of Theorem 5.1. When t = T, (5.2) clearly holds. So let us fix (t,w) €
[0,7) x  and v € T;. We still define Y and Z as in (7.7). By Corollary 2.1,
vt € Tt Taking 7 = v = v»* in (4.6) yields that

Zi(w) > inf sup E [1 F<ptw T—I—]_ >ptw Zyt,w
ol )_PEP(uw)Teﬁt Pl fr=viey

2 ity B [Ze] = & 2] ),

(7.36)

which shows that Z is an &-supermartingale.

Next, let us show the &-martingality of Z Ifj\é ™w) <t ie,we{r*=t}e
F7 C Fi, Lemma 2.1 implies that w®, Q" C {7* =t }. Then for any (s,&) € [t,T]x ',
we have v(w ®, W) >t >t =7"(w Q¢ w). Applying (2.3) to Z; € F; C F; yields that
(Z)0%(@) = Zynre (W) = Z(0(wi@)AT* (@), w®D) = Z (1, w@@) = Z(t,w).
It follows that

£ (7)) w) = inf Ee(Z)"] = inf Ee[Z(,
gy DB =t B | )7 =t e (20
= 7(7?, w)=Z(tATH(w),w) = Z; (w).

We now suppose 7*(w) > t, i.e., w € {7* >t} € F;. Lemma 2.1 again shows that
(7.38) w® QFC{r* >t}

By Corollary 2.1, (7*)5% € T*. Similar to (7.36), taking 7 = v"“A(7%)4 = (LAT*)BY
in (4.6) yields that

(7.39)  Z,(w)=Z(t AT (W),w) = Z(t,w) > &, [ Zurr | (W) = 8,[Z,] (w).
The demonstration of
(7.40) Z,(w) <&, 7)) (w)

in the case of T*(w) > t is relatively lengthy. We split it into several steps. The

main idea is the following: We approzimate 7 by the hitting time 7" 2 inf{s €
[0,T]: Zs <Ys + 1/n} and then approximate the corresponding shifted stopping time

¢ 2 (v A (T V 1)5% by stopping time (' that takes finite values t¥ Sy LT —1),

1=1,...,k. Wewill paste in accordance with (P2) the local approzimating minimizers
PL of Z (@) over the set {¢} = t¥} backwardly to get a probability Py € P(t,w) that
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satisfies Ep, [y7|]:?§] < Z¢n + € for all stopping times 7. Taking essential supremum
over 7’s shows that

(741) ,@?IZ} < Zc;cl +é,

where 21 denotes the Snell envelope of ) under the single probability P1. By the
martingale property of 2T,

(7.42) Zuw) < 27 <Be (25, .
where Tp, is the optimal stopping time for ZF1. As the first time 21 meets Y,
T, > (7%)8%. Since 7% = limy, 0o 7" and limy_ooCp = ™, for n,k large enough
we have Tp, > (i except for a tiny probability. Then combining (7.42) with (7.41)
and applying a series of estimations yield that Zy(w) < Ep, [Z¢p] + & < Ep[Z¢n] + €.
Finally, letting k,n — o0, € — 0 and taking infimum over P € P(t,w) leads to (7.40).
(a) In the first step, we paste the local approzimating minimizers PL of Z,. (@)
over the set {C}' = tF} backwardly.
Fix P € P(t,w), e € (0,1) and o, n, k, A € N with k& > 2. We let {wf}jen be a
subsequence of {&%} jen in O, (0°) and define an F-stopping time 7" 2 inf {se
[0,T]: Zs < Yi+1/n}. By Corollary 2.1 and (7.38), both (" 2 (vA(T" Vi)
and ¢* 2 (%)t are T'-stopping times. We set t; = t¥ S +(T —t) for
. A
i =1,...,k and define (;; = Liencyyts + Zi-c:Q L <en<enti € Tt
There exists a § > 0 such that po(d) V po(d) V p1(d) < €/4. Given (i,7) €
VN v v
{1, kpx{1,..., A}, weset AL = {¢I' = ;}N(O} (w;-")\ujlﬂ-ogl (wg)) € F,
by (2.1). There exists a P} € P(t;,w ®; w§) such that Z; (w @ wf) >
sup, e+, Epi [Y:i’w&wj | — /4. For any @ € A} with A’ # 0, one can deduce
from (3.1) and (4.3) that

sup Epi [y:ﬂ = sup Ep [Y:i’“@tﬂ
reTt 7 7

TET
< sup E]p; [Yrti’w®twj} +PO(H‘T’ _“J?Hmi)
(7.43) TETH .
< Z4, (w®y wj) + 1 + po(HUJ - wjo'éHt,ti)
_ ~ _ 1 . 3
< Zpy(werw) + pl(”“" - wjo'éHt,ti) + 3¢ < Zy(w) + 1%

where we used in the first inequality the fact that for any 7 € 7% and @ € Q%
‘Y:nw@ta(@) _ Y:i)‘“&“’? (L/J)‘
_ ‘Y(T(@), (W @ 8) 21, 0) ~Y(r(@), (w @ w?) &@)\

= pO(H(w B4 W) @, W= (W @ W) ®tia||0,7’(@)) :pO(Ha_wﬂh,ti)'

Setting P 2 P, we recursively pick up P i =Fk—1,...,1 from P(t,w)
such that (P2) holds for (s, P,P, {A;}7 ¢, {P;})=) = (ti, P}, Pry, {AF} Iy,
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{Pj}7-1) with A 2 (U} Aj)e. In particular

sup Epx I:].AmAz Yy }
TET,

7.44 W ~
(7.44) < Ep, ll{weAﬁA§} ( sup Ep: [Y/9] +Po(5)>]
CeTti
Vi=1,...,A VA€ F.
Similar to (7.11), we have
(7.45) Ep» [€] = Epa_ [€] Ve e LN (FLPY) N LY (F, P,
(7.46) and Epa[14¢] =Epx [143€] VE€ LY(FL,PY) N LY (FL P ).
. P A - Py A
Now, let us consider the Snell envelope Z*v of Y under P7, i.e., Zs' =
]P;/\
essSUp e} Epy[Vr|Fst], s € [t,T).
Since the filtration FF1 is right-continuous, and since the process Y is right-
continuous and left upper semicontinuous by Remark 3.1 (2), the classic opti-
A
mal stopping theory shows that Z]P? admits an RCLL modification {ffspl Fsep,m)
A A
such that for any s € [t,T], 7 P* = mf{r € [s,T]: Z =YY eT. isan
optimal stopping time for esssup e Epx [))T|]-"S ] Simply denotlng by
TE s

A
7,, we also know that P (resp., {Q‘fil,\s}se[t;p] ) is a supermartingale (resp.,

martingale) with respect to (FP? ,P)). It follows from optional sampling the-
orem that

Zi(w) = f Ep[Y;] < E -
)= S B = s B ]
(7.47) P> B
< sup Eﬂj’)‘ D)T} Zt — % 1 = ]E]Pi\ [9@27;/\7_)} .
TGT]P
Moreover, for any s € [t,T], applying (7.15) with P = P} yields that Z, <

Py Py Py Py oA
IEP?[:))T;% Fs'] = esssup___») Epy[Vr|Fs'] = Zs' = 25, Pp-as. By the
continuity of Z and the right continuity of 2F1 | it holds for P}-a.s. & € Qf
A
that Z,(@) < 242 ' (@) for any s € [t,T]. Since 7*(w ®; W) >t by (7.38), one
can deduce that
@) =" (w®rw) =inf{s € [0,T] : Zs(w ®; @) = Ys(w @ @)}
=inf{s € [t,T]: Zs(w @ @) = Yi(w @ 0)}
=inf{s € [t,T]: Z,(@) = Vs (@)
<inf{s e [t,T]: Q‘OSPA (W) =Ys(w

(7.48)

—

)} =7, (@).
Neat, let us use (7.43)—(7.46) to show that

Py A
(749) 1k 1( ) ffck < ]-k 1(_A6) (ch —|—E) Pl a.s.

i=1
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To see this, we let (i,7) € {1,....k—1} x {1,...,A}, 7 € T and A € F{.

Since A’ C Al for i’ € {1,...,k —1}\{i}, we can deduce from (7.46), (3.2),
(7.44), (7.43), (7.45), and Proposition 4.2 that

Epy [1AﬂA§:yT} = =Ep [1AﬂA§:yT}

<Fp,,

1{5€AOA§} < sup ]E]P’; [}/Zuw@mu] i ﬁ0(5)>]
CET

< Epy [1Am4;1 (20 + 5)} = Ep» [1Am4;1 (Zi + 5)}
— ... :]E]Pi\ |:1AﬂA;(Zt7 +E):|,
where we used the fact that Z;, € F/ by Remark 4.2 and Proposition 2.1(1).

Letting A vary over F{ and applying Lemma A.2(1) with (P, X) = (P}, BY)
yields that

(7.50) 14; (20, +¢) > Ep {1A§y7\f;}i} —Ep [1A§yf

]P;/\
‘Ft'i1:|’ P{\ — a.s.

A .
For any 7 € 7;]1;1, similar to (7.18), one can find a sequence {7} }sen of T
such that lim/ecEpy([Vr — Vr[] = 0. Then {7j}sen in turn has a sub-

sequence (we still denote it by {7/}sen) such that limgﬁooyni =Y, P}-
a.s. As Epa[Ji] < oo by (3.2), a conditional-expectation version of the

A
dominated convergence theorem and (7.50) imply that Epx (14 yT|]-"£ 1] =

A .
limg—, o0 E pa [1A§y72:|]-"£1] <1lg (Zi, +¢), Py —a.s. Since A} € Ff, it follows
that

Py Py
1A;‘§p = ]'A; Zt'i = esssup 1~A;]E]Pi\ y—,—

Fi
g Y i
7'67—5;1

A
= esssupEP? |:1A;yT ]:51:| < 1A']i~ (Zq: + 6), ]P)% — a.s.

A
7'67}]}11

Summing them up over j € {1,..., A} and then over i € {1,...,k— 1} yields
(7.49).
In this step, we will use (7.47) and (7.49) to show

(7.51) Z(w) <Ep [Mzcg + 1y Vs | +e,

A * - i\€ n * - i
where oy = (G < YN (U] (AD)) = {¢GF < CF N (WIS U) A)).
A
We first claim that &\ € .7-'&} acs N F F1 . To see this claim, we set an

Co A T
auxiliary set % e {¢r < TA} N (Uf;ll (Af))c). Given s € [t,T], if s < t1, then
NG N < sh=ahn{( < s} =0and AAN{ AT, < s} =AN{{ <
s} = 0. Otherwise, let &’ be the largest integer from {1,...,k — 1} such that
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tr < s. Since (A})" =U)_ AL C{¢p =t;} fori=1,... k-1,

A N{GNAC <s}=ahn{¢ < s}

—@ =y (B nig <
and ZJ)\Q{CI?/\TA SS}Z%Q{C?SS}

@ <nn(bay)nig <k

! i\¢ Py n *
Clearly, Ui_, (A)) € Ff, C FLC Fo'. As {¢f < (*} € Fepner C Fép and
]PA ]PA * mn
{Gi <7} € Finr, C Fep's we also have {(f < "} N{( < s} € Ft and
A
{Cr<r3n{¢ <syeF, . It follows that & N {( AC* < s} € FL and
— P)\ — ]P)\
d\N{G AT, <s} € F,'. Hence o) € ]:ZZ/\C* and o7\ € ]:Cz?l/\n )
By (7.48), N 2 {¢* ; T} € ,/VPE. Since @ NN C {¢f < 7,} and since
{GF<¢nmte 'FC%/\C*ATX C ]:CIZ‘IAU’ one can deduce that
k=1 . ¢ .
AN =ahn (G <m)nne = < andn (D) na
n * - C ]PA
={G < ATINANNE Feily,
A
As oA NN € NP1, we see that o € ‘Fcﬂj‘lA
k T,\
A
Since {fﬁ[ilm}se[tﬂ is a martingale with respect to (FP?,]P’i\), it follows

P} | =

A A
from optional sampling theorem that 1. QFCHZ}ATA = 1ocEpa [fffﬂ? |F AT

A A
Epa [1ag Q‘”T[il |.7-'H;1A ], P}-a.s. Taking expectation Epy yields that

DY
A A
(7.52) Eps [1%3@%}} — Eqa [1m§3@ﬂ’;1} — Ep [1%6))3].

Since ¢ < 7, holds P{-a.s. on &/ by (7.48), we can deduce from (7.47),
(7.52), and (7.49) that

_ P P>
Zt(w) < ]EIP? |:QFC,?1/\T>\:| = ]EIP? [12%\ QFC]T; + 1M§yr>\:|
< Epa {1%245 n 1%%} te.

In the next step, we replace Epa (e, Z¢p + Lo Vi | on the right-hand side of
(7.51) by an expectation under P.

Forz':l,...,k—l,asbeﬁe]-'&mc* C]-"EZ,onehas&%)féﬁﬁﬂ{(}j:ti}:

{¢r < ¢ YN (A))" € FL. By (7.46), (7.45), Remark 4.2, and Proposition 4.2,
EPf []uzf)fztb] == EIF’;\ []uzf;\th] = EIP’;\JFI[]'M;\ZL] == EIF’Q []mzf;th] =
Ep[1.; Z;,]. Their sum over i € {1,...,k —1}is

(7.53) Epy [Lon Zp | = Be [ Loy 2z |.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/13/16 to 136.142.124.99. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ON THE ROBUST OPTIMAL STOPPING PROBLEM 3161

Since Z7(w') = infpep(7,w) EP[YQ?’WI] = infpep(rw) Ep[Y (T, w')] = Y(T,w')
for all W’ € , (7.48) implies that

7 5%% [1{T:<g§<*}3’a} =Ep [1{T:<g§<*}3’T}

As {T = ¢ < ¢} C{¢p =T} c N2} A, one can deduce from (7.46) and
Proposition 4.2 again that

Ep [1{T:<ss<*}2<;;] =Ep [1{T:<ss<*}zcrz]

and similarly that

Ep» [1 (s yﬁ] —

0 \(r=cp<cr) Y }

Ep|l,.

P{ ("nias) \tr=cp<cry
7.56 <Ep|l,_ ] -

(7.5 <Ee| (Fap)\r=gp=cr” }

Similar to (7.18), one can find a sequence {74 }sen of 7* such that lim_, o E P
(1Yre =Yr |l = 0. Let £ € N and (i,j) € {1,...,k—1} x {1,...,A}. Since
{¢* <} e ]:é*Ac,:‘ C ]—'ég, we have {¢* < (P} N AL = {¢* < i =
t;i} N A;- € F{. We can deduce from (3.2) and (7.44)—(7.46) that

Epx [1{<*<<;:}m;.yfd
= =Ep [Hg*«g}m;%ﬁ}
=Ep {1{4*<C;‘}ﬂA§ﬁ{r§§ti}yr§Ati + 1{(*<cg}mA;m{T§>t,i}yT§wi

7.57
(7.57) SEﬂml[1{0<<:}nA;m{r£Sti}yrﬁAti]

+Epr {1{4*@)«;1@)}1{&@;}1{T§<a>>ti}

( sup Ep: [YJ““W} + ﬁo@)]-

ceTti 7

If M 2 SUp(t,w/)e[mT]xQYt(w/) < o0, it follows that

Suppose otherwise that M = oo. The right continuity of process Y and
- . A
Proposition 2.1 (1) imply that & = supre[t7ti]|yr| = (supreQm[t’ti)WTD V|

is F{ -measurable. For any ( € 7", & € O, and & € Q", since 7a (@) >t
and since Y, (w ®; (W ®¢, @)) = Y, (w) for any r € [0,¢] by (2.3) again, (5.1)
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implies that

YICRE@) = Y (fw e (@@, @) <Y (ti,w @ (3@, 8)) + L

+¢< sup |Y (r,w ®¢ (@ @, OAJ))|> +p1 < supJ@(?“)‘)

re(0,t] reti,t)

= y(ti,fu ®t, @) +L+¢ < sup ‘Y(T‘,Lu)‘)

rel0,t]

\/¢< sup |y(7‘,@ R, ZJ)‘) + p1 ( sup |Bﬁb@)‘>

rE[t,t;) rEfti,t]

<L+&@E®,0)+0 ( sup \mw)\)
re(0,t]

+ (& (@ @, @) + p1 < sup |BJ (@)|>
re(t;,T]

rel0,t

=L+&(@)+¢ ( sup m(w)}> +0(&(®))
]
+p1 < sup ‘Bﬁ([&)‘) .
T‘G[ti,T]
Remark 3.1(1) implies that (see Lemma A.8 of [6] for details)

(7.59) Yi(w) = sup |V(w)| < oco.
re0,T]

. A

Since [lw ®¢ wilot < lwllos + lw§llee: < llwllos + lwsller < llwllos +a =

o/, (4.4) shows that Ep: [Ygi’“’@t”] < L+ Vi + 0(Vs) + por (T — t;), where
J

LE2L+ d(sup,.(0,4/Yr(w)]) < oo. Plugging this into (7.57) yields that
Epy[Lgerceppnai Vet S Epa [Lieecepynai (1+ LAY+ (Vi) + por (T — 1)),
which together with (7.58), (7.46), and (3.2) shows that
Epy 1{<*<<,?}0A;iyr§] < Epy, [1{c*<<g}mA;:(1 + ﬂa')]
== EP; [1{<*<<g}mA§(1 + 770/)}
=[Ep {1{<*<<g}m4§ (1+ 770/)}

for 1o/ = Tpco) MT + 1{M:oo}(z + Vi + (Vi) + por (T)). Summing them
up over j € {1,..., A} and then over i € {1,...,k — 1} gives that

el ]
R e <an(Tian) ™

<E [1 L
=R M e<aqin(f0l )

(]. + 770/):| + ]E]pi\ |:|y7')\ - y—,—fiH .

Vog| + ey [|9r, = V]

1 ~
gl {er<epn (o, (4h)°)
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As = 00, we obtain Epy [y cpynoi= (a9 Pm] < Bellye copmizi i)
(1 4+ 1o/)]. Putting this and (7.53)—(7.56) back into (7.51) yields that

Zi(w) <Ep| |1 - lipeenceny | Zen
. ;E:;) = Pl( (reen(iGlay) T HT=EsC }> g

+1(k—1 y*+ (1+770/) +5.

0y \{r=¢p <y

1 k—1 . e
{¢<¢pn (o) (4h)°)

In the last step, we will gradually send the parameters A\, k,n,a to oo to obtain

(7.40).

Let Aj 2 Unen UFZL(A8)° and ©¢ 2 UjenOs(w§). Since Os(w§) C O% (wg)

for (z,7) € {1,...,k — 1} x N, one can deduce that

k—1

« i\¢ k-1 4 k-1 n ti(,
= — =t.'N O (we
.k z‘L:J1 ALEJN (Ap) iL:Jl jLeJN Aj iL:Jl ({Ck i} (jLeJN 5 (] )>)

TG =ty =G < T} and

N

fe=0 (@ =0 (o)) oD@ =t nog)

(Tt =) nog = 6t <1y o5

As Ep[Z, + nor + Vs] < 00 by (3.2) and Proposition 4.2, letting A — oo in
(7.60) and applying the dominated convergence theorem yields that

Zu(w) < Ee| (Lgpscynaz,, + Lir=grect) Zap + Lias porgr=cpsc) Ve

n,k

+ 1{C*<C7f}ﬂAﬁ (]. =+ 770/):| + e
(7.61) ot
< Ep {Hc;gc*}zczg tLog)e 2 + Log)eufr=¢p>c Vs

+ 1{<*<<;;}(1+77a/)} + ¢,
where we used the fact that
Lip<crynaz, Zep = Ligp<cyniep<ry e — Ligp<cin((p<rivas ) 2¢p
< gep<einger<miZep + Licp<cynfep <Tin(©9g)e 2+
< Ligp<emyniep<ryZep + L(og)e Ze

Since limyoo(f = ¢" < (77 V)P < (7F)0Y = ¢* < T by (7.38), letting
k — oo in (7.61), using the continuity of Z (Proposition 4.2), and applying
the dominated convergence theorem again yields that

7t(w) < Ep [ch + 1(03‘)0 (Z* + j))*)] +e€
=Ep[Zuaimveyte + Logye (2 + V)] +e.

Since 7 = lim,, 00T 7" and UaenD§ = QF, letting n — oo, letting a — oo,
and then letting € — 0, we can deduce from the continuity of Z, the dominated
convergence theorem, and (7.38) that

7} (@) = Zu(w) < Ee[Zaireviye] = Be[Zparyes] = Ee[(Z2)"),
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where we used the fact that for any & € QF
~ —t,w *NE.W [ ~\ ~ A * ~ ~
Znryw (@) =Z (VAT (@),0) = Z((v AT (w @ @), w @ @)
= Torr )0 2:8) = (T 5) = (Z,)"“ @)
Eventually, taking infimum over P € P(¢,w) yields (7.40), which together
with (7.39) and (7.37) shows that Z~ is an &-martingale. In particular, taking
(t,w,v) = (0,0,T) yields that

inf sup Bp (V7] = Zo = &[Z7] = &[Z+] = jnf E([Z]

= inf EP[YT*] < sup inf Ep[Y;] < inf sup Ep [YT]. O
PeP reT PEP PEP 1T

7.4. Proofs of the results in section 6.

Proof of Proposition 6.2. Fix (t,w) € [0,T] x Q and p € U;. Let us set (P, p, X) =
(Phwsr phewn XE@m) - Similar to (3.6) of [28] and Lemma 2.2 of [35] (or see [6] for
details), one can find an F’-progressively measurable process W = WH“:# such that
for all @ € QF except on a P§-null set Nx

(7.62) BL(@) =W, (X(@)) VseltT],

which implies that for any w € N§, Xs(@0) = Xs(W(X(@))) Vs € [t,T]. It follows
that for any @’ € Ay 2 {@ e Q' : 30 e NS such that &' = X (@)} = {&' € Q :
NS NX~H@') # 0}, one has

(7.63) BL@) =X, (W(@)) Vselt,T).

As A% ={@' € Q' : X&) C Nx}, we see that X1 (AS) C Na, ie., X71(A%) €
' CF So A € GX = {AC Q' : X1 (A) € Fp} with p(AS) = Ph(X—1(AS)) =
0, namely, A% is a p-null set. (It is worth pointing out that A% may not belong to

FL though X~1(A%) € ?;. In general, the inverse conclusion of (6.4) may not be
true.) Since

(7.64) Ay = {@' € Q' : 3@ € N§ such that @' = X(@)} C {&' € Q' : W.(J') € O}

by (7.62), the process W has p-a.s. continuous paths starting from 0.

One can also deduce from (7.62) that the distribution of W under p is identical
to that of B! under P. To wit, VW is a Brownian motion on Q! under p. Then the
corresponding augmented Brownian filtration

(7.65) Fwe £ a(fsw U ,/VWvP), s € [t,T]

is right-continuous, where A#W® £ (A7 C Qf : N' C A for some A € FY¥ with
b(4) = 0},

To demonstrate the right-continuity of F¥, we first show that of FV'F: Since
FW C Fk by the F'-adaptedness of W, we see from Lemma A.3(1) that AP =
{N" CQF: N C A for some A € FYY with P(A) =0} € {N' C Q' : N7 C A for some
A € Fhowith P(A) = 0} = A#F. 1t follows that o (FYPUANTF) = o(FVUNTF) = FVP
Vs € [t,T]. Similar to Problem 2.7.3 of [20], one can show that

(7.66) .7-'SW’P:{ACQt:AAEEJVPforsomege]?SW’p} Vselt,T).
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2

A
Let s € [t,T) and A € f;/Yr’P = ﬂS/G(S’T]}';/,V’P. For any n > ng (Tlfsh as

A ¢ ]-";/_\:’F/n, there exists A,, € ]?;/_\:’f/n such that AAA, € #F. By (7.65), A 2
Msn.Uisndi € FLUP = FYP. Since A\A C Ny, Uisn(A\A) C NpspUisn(AAA;)
and since A\g = Up>n,Ni>n(A\A:) C Upsn,Mi>n(AAA4;), we see that AAA C
Unsn, (AAA,) € AF namely, A € F)V'F by (7.66). So f;/Yr’P = FVF which shows
that {F)V'F} e 7 is also a right-continuous filtration.

It remains to show that FF is exactly F'V'F and thus P € ,;: Fix s € [t, 7).
Since W is Ft-adapted, it is clear that FYV'F = o(FWV U AF) C o(FL U NTF) = FF.
To see the reverse inclusion, let r € [t,s] and £ € Z(R?). We can deduce from
(7.62) that {Z € Q' : BL@) € E}A{T € Q' : W,(X(@)) € E} C Ny € A, which
shows that (BL)~1(&) € A, 2 {AcCQt: AAA € 7" for some A € XY FM)}. As
X~Y(FY) is a o-field of Q, similar to Problem 2.7.3 of [20], A, forms a o-field of Q.
Then F! C A,. Clearly, Al As, so we further have .Tz C A,. For any A € FE
Lemma A.3(1) shows that X~1(A4) € .Tst C A, iec., for some A € FWV c Ft one
has X~1(AAA) = (X~1(A))AX-L(A) € 7. As AAA € FF ¢ FE, applying
Lemma A.3(1) again yields that P(AA A) = p(AA A) = P{(X "1 (AAA)) =0, ie.,
AAAe NP Tt follows that A= AA(AAA) € FV'F. Hence, FF = FIVE, O

Proof of Lemma 6.1. Fix (t,w) € [0,7] x Q@ and pu € U;,. We set (X,P) =
(Xtw-r Phet) . Given w € QF, (3.1) shows

[VP0(X(@)) = Ve (0)| = [Yr(0 @ X(@)) — Y (0)] < po(]|0 @4 X(@)]lo,r)
<k(1+|X@)|7,) Vrelt,T]

It follows that Y,"°(X(@)) = sup,.c(e. 7|V, 0(X(@))] < k(1 + | X(@)||F7) + my, where

my 2 sup,.cp, | Yr(0)] < oo by (7.59). Since ¢(z) = zInt(z) < 2? for all z € [0, 00),
(2.2) implies that

P(YLO(X(@))) < 4 (r(1+ | X@)|Fr)) + 4b(my) + 6(4)
< 8K (1 + [|X@)[7%) + 4p(my) + p(4).

Then we can deduce from (6.2) that Ep[p(Y:?)] = E[p(YL0(X))] < 852(1 + @ow
(lwllos) TZ) + 4p(my) + ¢(4) < oo. Namely, Y9 € D(F?, P), which together with
Proposition 6.2 shows that P = Ptw# ¢ 3Y. [0

Proof of Proposition 6.3. Fix 0 <t < s < T, w € Q and p € U;. We will
denote (Pb«:# ptw.n Xtwn JWhew) by (Pp, X, W). For any r € [t,T], (6.4) and
Lemma A.3(2) show that §, 2 a(FLUNP) CGE.

Let Ay as defined in (7.63). As A% € AP, we see from the F'-adaptedness of
W and (7.64) that the process WT(G) 2 Ligeay We(@) for all (r,@) € [t,T] x Q is
adapted to the filtration {§,} e, 77 and all its paths belong to Q. Given r € [t,T7,
for any 1’ € [t,r] and £ € Z(R?), an analogy to (6.3) shows that W1((B,)~1(€)) =
{ e :Ww) e (BYY &)} ={weQ : W.(0) € £} € FYY. Thus, (BL)L(E) €
A 2 {A C Q' : W (A) € FV}, which is clearly a o-field of Q. It follows that
Ft C Ay, e,

(7.67) WL A) e FY c§, YAeF, Vrelt,T)
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For any w € N§, set &’ 2 X(@). Asw € X H@')NNS, we see that &' = X () € Ax.
Then (7.62) shows that

(7.68) &= B'@) =W(X@) =W(X@) Y&eNs.

Given N’ € Wt, there exists an A € F} with P§(A4) = 0 such that N/ C A.
Since W’l(A) € §r C GF by (7.67), one can deduce from (7.68) that p(Wﬁl(A)) =
PL(X~LWL(A))) = PLON(X) € A} = PL(A) = 0, which implies that W—1(A4) €
AP and thus W=1(N”) € 4P, Hence, it holds for any r € [t,T] that 7 ek, 2
{A"CQt:WL(A) € §,}. Clearly A, is a o-field of QF, and then we see from (7.67)
that 7. C A, ie.,

(7.69) WA e§, VA eF. VreltT).

(1) Using similar arguments to those that lead to (3.8) of [28], we can deduce from
(7.62) and (7.63) that p-a.s. @ € O, P>¥ = Psw®d ™ o P(s,w ®@¢ @),
and thus the probability class {P(t,w)}twicpo,m)x0 satisfies (P1); see [6] for
details.

(2) We next show that the probability class {P(t,w)}.wycjo,r)xn satisfies (P2).
Given § € Qp and X\ € N, let {Aj};zo be a Fl-partition of Q such that for
j=1,...,) Aj C O3(@;) for some &; € QF, and let {p?}}_, C Us. We will
paste these Us-controls {p’ ]A-:l with the given Ui-control p to form a new
Uy-control [i; see (7.71) below. Then we will use the uniqueness of controlled
SDE (6.1), the continuity (3.1) of Y, and the estimates (6.2) of X"“* to
show that {P(t,w)}twicio,1)x0 satisfies the conditions (P2)(i)~(ii).

(2a) We first claim that

(7.70) AYAA; € T Vj=0,... A

Given j =1,..., A, (6.4) shows that A 2 XA € ?Z. So there ex-
ists an A; € F! such that AY AA; € 7' (see, e.g., Problem 2.7.3
of [20]). Set A; 2 A\Uj<jAj € Fio As {AF})_, is a partition
of O with Ay 2 X (4 € F., an analogy to (7.17) shows that
ANNA; C Upo(AYAA) € 7. Also, it is clear that A;\AY C
ANAY € A¥AAj € . Thus, A¥AA; € 7. On the other hand,
let Ag 2 (Ug\zlgj)c € Fl. As AF = (U)_; AT)*, one can deduce that

~ ~ A A~
A\AY = Ag N (jglAj‘) =0 (Ao N AT)

J
c 0 (ASnAf) C I (AYAL)) e 7'
J:

Jj=1

=

<
IC>

and .ASY\EQ = .ASV n <j©1;4vj> = 1(.,46\/ N AVJ)

A c ~ A ~ —t
C ng((Aj.‘) NA4;) c jgl(Aj?AAj) eN.
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So A¥AA, € Wt, proving the claim (7.70).
One can easily deduce from F_t—progressive measurability of p and F?-
progressive measurability of u/ that

o~

PUNIVAN ~
(@) = 1grepr,s)yir (@)
A

TT) e | Lpean @)+ Lger, i (1(@))
=1

Y (r,w) € [t, T] x Q

defines an Ft-progressively measurable process, and thus ji € U; (see
[6] for details). Let (r,w) € [s,T] x A; for some j = 0,...,A. For any
We N since w®sw € Aj by Lemma 2.1, we see from (7.71) that

e (@) = (@ @, 0)
(7.72) ] (@ 2,0) = pE@) if j = 0;
| M@ ®,0) =p@)  ifj=1...,A

(2b) Next, we use the uniqueness of controlled SDE (6.1) to show that ji = p
implies X 2 X' = X over ([t, s] x QY)Y U ([s,T] x Ag). It follows that
P 2 ptef satisfies (P2)(i) and the first part of (P2)(ii).
Since {X[ 9"}, cps) and {XP9F} o satisfy the same SDE, X, =
J o, X, o) dr' + [ e dBL,, v € [t, 5], the uniqueness of solution

to such a SDE shows that except on an Ne Wt
(7.73) X, = Xbor = Xb9l = X Yrelts].

Given A € F!, we claim that X~1(A) N AN (X~1(A))¢ = 0: Without
loss of generality, assume that X' ~*(A) N A is not empty and contains
some w. By (7.73) and Lemma 2.1, é?(fu) € X(w) @ 2 C A, ie.,
&€ X71(A). So X~1(A) NN C X~1(A), which shows that X~1(A) N
Nen (2?’1(14))‘3 = (), proving the claim. It then follows that X~(A4) N
(2?*1 (A))° C N. Exchanging the role of X~ (A) and 2?’1(14) gives that
X=1(A) N (X~1(A))° C N. Hence,

(7.74) XY A)AX (A e ¥ VAeF.

Multiplying 13 to the SDE (6.1) for X = X*“# and X = Xt over
period [s, T yields that for any r € [s,T]

1ZO(X7’_X5):/ 1ggbt’w(7’/,1goX,,ur/)dT'/+/ 1gglurldBi/ and
Pt T—XS):/ 1gobt’”(r’,1goX,ﬁr/)dr/—|—/ 15 fir dBL,

~

=/ lgobt’w(T/,lgox,uw)dT,+/ 1KOMT’dB£"
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By (7.73), {1 5, X }refs, 1) and {1502?7,}%[5);@ satisfy the same SDE:

XﬁzlgoXs—i—/ 1gobt’“(r’,X’,uw)dr'+/ 15,0 dBL, 7€ ls,T).
¢ ¢

Similar to (6.1), this SDE admits a unique solution. So it holds P}-a.s.
on Ag that

(7.75) X, =X, VrelsT).

Let j = 1,...,A. Proposition 6.1, (7.73), and (7.72) show that for all
& € Aj except on an N € Ve

(7.76) X8 = X X@ L B () = XX @ 4 x (@),

where we used the fact that X 5@ (@), depends only on w ®;
X(W)[0,s]- Lemma 2.4, an analogy to (3.8) of [28], and the continuity of

X imply that for all @ € QF except on an N € Wt

(7.77) N5 e ¥
and Py{@ €0 X (@@.0) = X.(@) Vrelts]) =1

Set /\7 A/\/ UN" € &', Given & € K ﬂJ\7 since {® € Q° : X,.(0 R4
)#X(w@s w) for some r € [t, S]}—{WEQS'W®SWGN} N&& ¢
¥°, we can deduce from (7.76) and (7.77) that for P-a.s. 0 € °
X (@ ®: B) = Lrefe,on X (@ D)
+ Lreporpy (O @) + X,(@))
= Lrefo) (@) + ey (X2 Y OH @) + X,(@))
= (X(@) @ XY@ (@) (r) Yre [t T).

(7.78)

For any A € Fk, applying (7.74) with A = Ay, we can deduce from
(7.70), (7.73), and (7.75) that

~

P(AN Ag) =P (X1 (A) N X7 (Ag)) = Ph (X1 (A) N X~ (A))
=P (X mﬁo)ng{aeﬁozf@)eA}
:Pg{wer (@) € A} =P (X~1(A) N Ap)
=Ph(x~ X7 (Ay)) =P(AN A).

On the other hand, for any A € F! and j = 1,..., ), applying (7.74)
with A = AN A; yields that

P(ANA;) =Py (XL ANA))) =B THANA)) = P(ANA)).

Now, we will use the continuity (3.1) of Y and the estimates (6.2) of
Xt n to verify (3.3) for P.
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Given j = 1,..., ), we set (P;,p;, X7, W) = (Ps’w&aﬁ“j,ps’w®“7’f’”j,
X 5w’ Jysw@@iny - Let us fix A € FL. By Proposition 2.1(2)
and Remark 3.1(1), the shifted process Y, e Y, re[t,T) as defined
in (7.7) is Ft-adapted and its paths are all RCLL. Then (6.4) implies
that Y(X) is an Ft—adapted process whose paths are all RCLL. Applying
Lemma A.2(3) with (P, X) = (P}, B*) shows that Y(X) has an (F!,P)-
version %/, which is F!-progressively measurable process with Ny =
(B Z(D) £V, (X(@)) for some r € [t,T]} € 7. By Lemma 2.4,
it holds for all & € Q except on an Ny € 7' that Nf/w eN.

Fix 7 € T} and set 7 = 7(X). For any r € [s,T], since A, 2 {r<r}e
Ft, (6.4) shows that

F<r={0eQ:7(X@) <r}={Be:X@) eA}

=X YA eF

[aR]

namely, 7 € TJ;
For any w € Ny, we have
(7.79) Y(r,@) =Y(r,X@) VYreltT).

In particular, taking r = 7(w) gives that Ye(w) =Y (T(0),w) = V(T (),
X (W) = V(r(X(w)), X (W) = Y- (X ())- So

Ep[Tana, Y] = Bg[Lana, 0] = B[ Ly 1400 Vv (%)

(7.80)

= E [1;?—1(AmAj)
Also, one can deduce from (7.79), Lemma 6.1, and (3.2) that

(781)  Ed#] = B[V (X)) = Bp[.] = Bg 1] < oo

Given € > 0, similar to (7.16), there exists 77 € T} such that E,[|% —
=[] < 5. Since X-1(4 NA;) e ?i by (6.4) and since %% € L' (FL,P})
by (7.81), applying Lemma A.2(1) and (2.6) with (P, X, &) = (P}, BY, %)
as well as using (7.74) with A = AN A;, we can deduce from (7.80),
Lemma 2.3, and (7.70) that

t,w [ ‘. €
Es[1ana, Y7 ¢ <E, 12?71(Am4j)%/] T3

B [%|F

—E, 1

X-1(ANA;)

(782) = Et _1X_1(AﬁAj)Et [%/ .F

]

= Et|lgex—1(a)nax)Bs (%)

=K _1{aex—1(A)ij}Es [(%’)S’aﬂ

S’

€1
[E—

DO ™

+
+

= NI,

Letw € A;Yﬂgj ﬂ/\N/jC ﬂj\7§. Corollary 2.1 shows that (5 = (7% € T*.

And one has

(7.83) {0€Q°: (@ ®0) # V (X(@®,s@)) for some r € [t,T]}
— {0V TR DeNy} =N eV .
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Similar to (7.62), it holds for all @ € Q° except on a P§-null set Ny;
that

(7.84) B (@) =WI(X(@)) Vrel[sT).

Set Ays 2 {@' € Q% : NS, (X9) L&) # 0} and §2 2 o(F2UANP) C
GX’ forall 7 € [s, T]. Similar to W, the process Wﬂ (@) £ Liaea , YWL(®)
for all (r,@) € [s, T] x QF is adapted to the filtration {F/},¢[s, 7] and all
its paths belong to °. B .
For any @ € Q° except Ny* UNy; € A4, similar to (7.68), we see
that X;(@W) € Ays, and can deduce from (7.84) that & = B*(W) =
WI(XI(@)) = W (XI(@)). Then (7.83), (7.78), and (3.1) imply that
()2 @) = ¥ (7 (@ ®,0),5 @, ) (Cw( ), X(@ @, 0))
- Y(aw >,w B L))

e (X(
@ (X (@) @s XT(@))) + po(AXL(@))
_|_

V@)
(7.85) — staw@t (w) (Xj(w)) PO(AX%(@))
5w X (D) ( i (75 e
<y (X7 (@)) 1{AX£@§61/2}p0(6/ )

sz @pmara} i (axz@) + (Axi@) ™),

where (5 (@) £ (W (@) for all &' € Q° and AXI (@) 2 || X5w0eX (@)
(@) = X @)|s,r-

For any r € [s,T), as A, = {Cw < r} € F;, an analogy to (7.67) shows
that{(w<r}—{w€QS WJ( )EA}—(WJ) 1(A,) € . So(w
is a stopping time with respect to the filtration {§’ }Te[sﬂ. Similar to

(7.16),

(7.86) Ey, [‘YS WX () Ygzw&/y@) ] < % for some Z'Q eT?.
As G € Af = X71(A)), ie., X(@) € A;j C O3(w)), we see that [lw @,
X (w) 0,s = ||X(@) —@jll,s <. It then follows from (7.85)
and (6.2) that

E,[(#)"%] < B, [Y20 @ (27) ] + po (672)
+ ROV C1T |w @ X (@) — w @4 jllo,s
+ O T w ®¢ X (@) — w @ wj Hw+1)
By, [Y2 0O 4 gy (61/2)
+ K(CLT6Y? 4 Copy T H 6741/2)

s,wR e X (w0 ~ £
SEp][ - o )} +p0(5)+§a

(7.87)

where p(d) 2 po(6Y2)+K(CY T2 +Cp T T16%+1/2). Since 6’ eT?,
the F-adaptedness of Y and Proposition 2.1(2) show that YS WX (@) ¢
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Fi, and thus

(788) Ep- [Yf7w®tX(@):| = Ep. [Yf7w®tX(@):| < sup Ep, {st@t/\’(&)]
e ilte, Sup B | e

Then plugging (7.87) into (7.82), we can deduce from (7.70) and Lem-
ma A.3(1) that

Es[1ana, Y7

< E; +e

1{U~J€X LA)NX—1(A4;)} (SupEP {YS w®t2€(w):| +P0(5)>

= Ep ll{aeAmAj} < sup Es, [Yf’“@t“} +ﬁo(5)> te,
e S

where we used the fact that the mapping @ — sup;cr.Ep, [YCS"“@“T’] is
continuous by Remark 3.3(1). Letting ¢ — 0 and taking supremum over
T € T}, we see that the inequality (3.3) holds.

(3) Let w’ € Q. We set (X', P') = (Xt # Ptw" 1) and § 2 lw" — wllo,¢. For any

w e O, define AX () 2 [|X (@) — X (@)||¢,r. Similar to (7.85), we can deduce
from (3.1) that for any r € [t,T]

Y (r,w' @ X'(@)) =Y (r,w @ X(@))
< po([lo’ @ X' (@) — w @4 X(@)]lo,r)
< po(llo” = wloe + X" (@) = X(@)lle,r)
< po(0+ AX(@)) < Lyax@)<sr/zypo(6+577%)
Fliax@)sorepid Y2 ((1+27710%)AX (@) + 27 HAX (@)= ).

Given 7 € T, it follows from (6.2) that
B [Y (r(X), /@0 X') = ¥ (r(X'), 0 @ X)|
< po(8 +8Y2) + k(1 +27716%) O, T2
+H2w710w+1Tw+15w+1/2 é P1 (5)

Clearly, p; is a modulus of continuity function greater than pg. Then (7.68)
implies that

By [Y1] = By [V (7(2), &')] = B[V (r(X), o @, X))
- Ec|Y (r(X),w 80 X))] + p1(6)
=B, |¥ (r(¥' (W(X)),0 @0 X) )| + p1(6)
By

where ( = T(X (W)). For any r € [t,T], as A, 2 {r <r} e F. (6.4) shows
that (X")"1(4,) € F.. By (7.69), {C <r} = {@ € Q' : XY(W@)) € 4,} =
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W‘l((X’)_l (A,)) € Fr. So ( is a stopping time with respect to the filtration
{3+ }refs,m)- Given € > 0, similar to (7.86) and (7.88), there exists a ¢’ € T*
such that B, [|Y)* — Y| < £ and Ep[V;*] = Ep[V;*] < sup,. 7 Ep[V,5*],
which together with (7.89) shows that

Ep/ [Y:’w,} < ]Ep [thw] + P1 (5) < sup E[P [Y:/’w] + P1 (5) +e.
T'eTt
Letting ¢ — 0, taking supremum over 7 € 7 on the left-hand side, and then
taking infimum over p € U; yields that

Zy(w') = inf supEw V'] < inf sup Ep[V/¥] + W —w
e “Eutreﬁt P[ T }7M€utr’e'l73’t P[ T } Pl(” ”0775)

=Zi(w) + p1 (||l — wllo,)-

Exchanging the roles of w’ and w shows that {P(t,w)}t.w)elo,r)x0 satisfies
Assumption 4.1. B B

(4) There exists a constant C, depending on w and 7" such that p(J) < kCx (14
§@T1/2) for all § > 0. Let a > |lwl|jos and § € (0,7]. We can deduce from
(6.2) that

Ep [pr |0+2 sup |Bl
ret,(t+0)AT]

=E;|p1|d+2 sup ‘XT| §p1(5—|—251/4)
ret,(t+5)AT]

+ K/é‘w]Et

} <1 + 2@—1/26@4—1/2

1
sup | X |>61/4
relt,(t+8)AT]

+2%%  sup |Xr|w+1/2>
rE[t,(t+-5)AT]

< p1(0 + 251/4) + néw5_1/4IEt {(1 + 2w_1/25w+1/2) sup |Xr‘
reft, (t+6)AT]

+22@ sup ‘Xr‘w%/z)}
reft, (t+6)AT]

< p1(8 4+ 26Y%) 4 KOy (142771267 12) ) (a) 61/
+ 55w22w§0w+% (a) 5w/2+1/2 é pa(5)~

Clearly, p, is a modulus of continuity function. Hence, {P(t,w)} . w)ef0,71x0
satisfies Assumption 4.2. O

Appendix A. Technical lemmata.
LEMMA A.l. Let 0 <t < s < S <T < 0. The mapping Hig 18 continuous

(under the uniform norms) and is FbT | FS° -measurable for any r € [s,S]. The law
of H’;g under P5T is exactly PSS, i.e.,

(A.1) PET(05) 7' (A)) =Py°(4) for atl A€ F3,

It also holds for any r € [s,S] and T € T,>° that T(Hig) eThHT.
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o t,T
Proof. For simplicity, let us denote IIg by IL

(1) We first show the continuity of II. Let A be an open subset of Q. Given
w € II71(A), since II(w) € A, there exist a § > 0 such that Os(II(w)) = {@ €
Q59 ¢ ||@ — I(w)||s,s < 6} C A. For any w’ € O;/5(w), one can deduce that

HH(w') — H(w)”s’s < ‘w'(s) — w(s)| + Hw' — st,s < 2w’ —wller <6,

which shows that II(w’) € Os(II(w)) C A or w’ € II"*(A). Hence, II"*(A) is
an open subset of Q57T
Let r € [s,5]. For any s’ € [s,7] and £ € #(R?), one can deduce that

m(B5%) 7€) = {we 0T By¥ (iw)) e &}
- {w e QT w(s) —w(s) € 5}
= (BT = BLT)TM(E) e FET.

Thus all the generating sets of F5% belong to A 2 {AcC Q% 17 1(A) €
FET}, which is clearly a o-field of Q°. Tt follows that F5 C A, i.e.,
I-1(A) € F4T for any A € F55.

(2) As a Brownian motion on (Q“T, Z(Q4T)) under P;", BT has independent
and stationary increments with standard normal IE”B’T-distribution. Then one
can easily deduce that B also has independent and stationary increments
with standard normal distribution under P £ PLT 0TI ! (see [6] for details),
which shows that B*S is a Brownian motion on (Q%5, 2(Q*5)) under P.
Since the Wiener measure on (%°,2(Q%9)) is unique (see, e.g., Proposi-
tion 1.3.3 of [31]), we have (A.1).

(3) Now, let r € [s,S] and 7 € T;>5. For any ' € [r,5], as A = {& € Q5 :
T(w) <r'}e ]—'f,’s, one can deduce that {w € Q47 : T(Hijz;(w) <r}t={we
Q8T UG (w) € A} = (IILG) " Y(A) e Fi So r(ILG) € THT. O

LEMMA A.2. Givent € [0,T] and d,d €N, let P be a probability on (Qf, B(QY))

and let { X} sep,m) be an Rg—valued, FP-adapted process.

~ >

(1) For any s € [t,T] and any RY -valued, f?’P-measumble random variable §
with Bp[|¢]] < oo, Bp[¢|F7] = Ep[(| F ], P-a.s.

(2) For any s € [t,T] and any R -valued, FXP-measurable random variable €,
there exists an RY -valued, FX -measurable random variable fN such that E: £,
P-a.s.

(3) For any RY -valued, F*F-adapted process {K}seqe,m with P-a.s. right-contin-
uous paths, there ewists an RY -valued, FX -progressively measurable process
{KYsepm such that {w € Q' : Ky(w) # Ks(w) for some s € [t,T]} € AF.
We call K the (FX,P)-version of K.

Proof. This result is similar to Lemma 2.4 of [36]. We refer the interested readers

to their proof; see also [6]. a

LEMMA A.3.

Let (t,w) € [0,T] x Q and let p be a Uy-control considered in section 6.

(1) It holds for any s € [t,T] that FE"“" < GX""", and pt# coincides with
PLw:t on _7_-%3““'“‘
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2

The o-field Q:,)fw’“ is complete under p<, and N " C 4P S (A€

GX" pten(A) = 0} € XU holds for any s € [t,T).

Proof.

(1)

Set ¥ = (,w, i) and let s € [t,T]. For any N € AP’ there exists an A € F,

with P?(A) = 0 such that N C A. By (6.4), (X?)"1(A) € Fy and thus
P:((X?)"1(A)) =PY(A) = 0. Then, as a subset of (X?)~1(A),

(A.2) (X" W) e A CF

So NP’ C Q;Xﬂ, which already contains F! by (6.4). It follows that .Ffﬁ C
gx".

Given A € .F%Piﬂ C g%(ﬂ, we know (see, e.g., Proposition 11.4 of [33]) that

A=AUWN for some A € Ft. and N € AP Since (X?)~1(A) € Fy by
(6.4) and since (X?)"1 (W) € Ve by (A.2), one can deduce that

b (4) = B (X)) 7 (4)) = By (X)) (A) U (") (V)
= Ph((X")7H(A)) = P'(A) = P(A).

Let 9 C A for some A € G&X* with p?(A4) = 0. As (X?)~1(MN)  (X?)~1(4) €
Foand 0 = p?(A) = P4((X?)1(A)), we see that

(A.3) (X" L) e 7.

In particular, ®t € GX ', so the o-field G is complete under p”. Then it

easily follows from part (1) that NP = {Ae FE PYA) =0} ={Ac
]-'%Plﬂ cpY(A) = 0} C {A € gx ( ) =0} = Pﬁ. Moreover taking
M= Aforany A € QT with p?(A ) in (A.3) shows that Ve QX for

all s € [t,T]. a
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