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Abstract 

This report details our calculations, data, and analysis used to design a wooden pile-and-plank 

retaining wall that is 80 feet long and will be used to create a 5-foot-high terrace.  The wall is to 

be made of standard structural timber and is subjected to a load in the form of a pressure 

distribution.   

 

We initially construct free-body and shear force diagrams to determine the maximum bending 

moment experienced by both the planks and the piles.  We then relate maximum bending 

moment to several different variables, including plank thickness, plank length, and minimum 

required section modulus.  Once we find a relationship between the minimum section modulus 

and the length of the planks, we can start analyzing costs.  Using a Microsoft Excel spreadsheet, 

we calculate the minimum overall cost based off the most optimum plank and pile combination.   

 

Introduction 

A plank and pile retaining wall is used to alter topography and mediate erosion due to storm 

water runoff.  An example of such a retaining wall is shown in Figure A.  Generally, these 

retaining walls can be constructed from wood, stone, or concrete.  In the case of this design 

however, we will consider a wall made of only standard structural timber. The wall must be able 

to support a load specified by what is being held up, which is most frequently going to be soil.  

For this specific design, the load is non-uniformly distributed and ranges from 500
𝑙𝑏

𝑓𝑡2 to 100
𝑙𝑏

𝑓𝑡2 

over a height of 5 feet as shown in Figure B.  Using this distributed load, the supplied allowable 

flexural stress of structural timber, 1200 𝑝𝑠𝑖, and the dimensions of the planks and piles, such as 

length and cross section, we can design the retaining wall so as to minimize the overall cost. 

Some constraints are given: 

• The wall must be 80 feet long and at least 5 feet high 

• Piles should all be of the same size, be evenly spaced, be square in cross section, 

extend 5 feet below grade, and there should be a pile at either end of the retaining 

wall 

• All planks should be the same size, and the length of the planks should be the same as 

the spacing between piles, so that each plank is supported by piles at either end 

 



 

 

 

 

 

 

 

 

Standard structural timbers are available in 8, 10, and 12 feet lengths and cost $14 per cubic foot 

(dressed size).  There is also an additional cost of $40 per pile for the concrete footing needed to 

support each pile. 

The overall goal is to design a wall the minimizes the cost of the wall that can also safely support 

the load.  Since the length of boards is a function of the number of piles, and the cost is a 

function of the total volume of material and the number of piles, we expect the optimum cost to 

fall where total volume and the number of piles is near a minimum value.   

Before starting the analysis, we note some key variables that will be used throughout the entirety 

of the report: 

• 𝜎𝑚𝑎𝑥 − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 

• 𝑀𝑚𝑎𝑥 − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 

• 𝑆𝑚𝑖𝑛 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

• ℎ − 𝑑𝑒𝑝𝑡ℎ 

• 𝑡 − 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

• 𝐿 − 𝑙𝑒𝑛𝑔𝑡ℎ 

• 𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑙𝑒𝑠 

  

Figure A Figure B 



Analysis & Design 

 

We approach this problem by analyzing the planks and the piles separately.  We will first 

consider the planks, treating them as simply-supported beams.  Since the overall force acting on 

the planks decreases as we move above the ground, we can simply analyze the bottom-most 

plank.  To be conservative, we assume that the pressure on this plank is uniform and equal to the 

maximum pressure of (500
𝑙𝑏

𝑓𝑡2).  Since the soil load on the plank wall is in terms of a pressure 

distribution, we can multiply by the depth (call this ℎ) in order to find the force per until length 

acting on the planks.  We obtain the following free-body diagram for the bottom plank: 
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Since the plank is of rectangular geometry, we can replace the distributed load with its statically 

equivalent concentrated load of (500
𝑙𝑏

𝑓𝑡2)ℎ𝐿 acting at 
𝐿

2
.  It is important that we accurately keep 

track of our units in these early steps.  We now have: 
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Figure 2 



Summing forces in the y-direction, we have 

∑ 𝐹𝑦 = 𝑅𝐴 + 𝑅𝐵 − (500
𝑙𝑏

𝑓𝑡2
) ℎ𝐿 = 0 

From symmetry,  

𝑅𝐴 =  𝑅𝐵 = (250
𝑙𝑏

𝑓𝑡2
) ℎ𝐿 

We can now construct our shear force diagram and calculate our corresponding maximum 

bending moment, 𝑀𝑚𝑎𝑥.   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By definition, our maximum bending moment for the plank is 

 

𝑀𝑚𝑎𝑥 =
1

2
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Figure 3 



Converting this result to units of 
𝑙𝑏

𝑖𝑛2
, 

 

𝑀𝑚𝑎𝑥 = (. 43403
𝑙𝑏

𝑖𝑛2
) ℎ𝐿2 

 

Given that 𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

𝑆𝑚𝑖𝑛
, we have 

 𝜎𝑚𝑎𝑥 = 1200
𝑙𝑏

𝑖𝑛2
=  

(. 43403
𝑙𝑏

𝑖𝑛2) ℎ𝐿2

𝑆𝑚𝑖𝑛
  

 

(1) 

 

 

We obtain 𝑆𝑚𝑖𝑛 by examining the plank’s cross section: 

 

 

 

 

 
 

 

 

For this rectangular cross section, 

𝑆𝑚𝑖𝑛 =
𝐼

𝑐
=  

1
12

(ℎ)(𝑡)3

1
2 𝑡

 

𝑆𝑚𝑖𝑛 =
1

6
ℎ𝑡2 

 

We insert this result into equation (1) to obtain: 

 

𝜎𝑚𝑎𝑥 = 1200
𝑙𝑏
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(
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1
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𝜎𝑚𝑎𝑥 = 1200
𝑙𝑏

𝑖𝑛2
=  

(2.6042
𝑙𝑏

𝑖𝑛2) 𝐿2

𝑡2
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Figure 4 



We wish to solve for 𝑡.  Namely, this value will be the minimum thickness required for the 

planks, 𝑡𝑚𝑖𝑛
𝑝𝑙𝑎𝑛𝑘

: 

(1200
𝑙𝑏

𝑖𝑛2
) 𝑡2 =  (2.6042

𝑙𝑏

𝑖𝑛2
) 𝐿2 

 

𝑡𝑚𝑖𝑛
2 = 0.0021702𝐿2 

 

 
𝑡𝑚𝑖𝑛

𝑝𝑙𝑎𝑛𝑘 =  0.046585𝐿 

 
(2) 

 

This result yields the minimum required thickness for the planks as a function of the length of 

the planks.  We can now begin to analyze the piles.  We consider the piles to act as cantilevered 

beams subjected to a trapezoidal distribution of load.  Consider the given side view of the 

retaining wall and it’s respective 90° rotation: 

 

 

 

 

 

 

 

 

 

  

Indeed, the pile acts as a cantilevered beam.  We can divide the trapezoidal distribution of load 

into a rectangular distributed load and a triangular distributed load.  Let 𝑦1 be the centroid of the 

rectangular distributed load and 𝐴1 be the area of the rectangular distributed load.  Let 𝑦2 be the 

centroid of the triangular distributed load and 𝐴2 be the area of the triangular distributed load.  

Figure 5 



We have the following formulas for the centroid 𝑦𝐶 and area 𝐴 of rectangular and triangular 

areas, where 𝑏 is the base of the area and ℎ is the height of the area: 

𝑦𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 =
𝑏

2
 𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 = 𝑏ℎ 

𝑦𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
𝑏

3
 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =

1

2
𝑏ℎ 

 

We use these formulas to find the values of 𝑦1, 𝐴1, 𝑦2, and 𝐴2, given the values for 𝑏 and ℎ from 

Figure 5.  We disregard units for now to find: 

𝑦1 =
5

2
= 2.5  𝐴1 = (5)(100) = 500 

𝑦2 =
5

3
= 1.6667  𝐴2 =

1

2
(5)(400) = 1000 

 

We let 𝑦𝐶 be the centroid of the trapezoidal distributed load consisting of the rectangular and 

triangular distributed load.  The formula for the centroid of the area is: 

𝑦𝐶 =
1

𝐴
∑ 𝑦𝐶𝑖𝐴𝑖 =  

𝑦1𝐴1 +  𝑦2𝐴2

𝐴1 +  𝐴2

𝑛

𝑖=1

 

𝑦𝐶 =  
(2.5)(500) + (1.6667)(1000)

500 + 1000
= 1.9444 

 

For this argument, a distance 𝑦 is the distance above the ground.  Thus, our units are in 𝑓𝑡, and 

𝑦𝐶 = 1.9444 𝑓𝑡 

Since the distributed load for the piles is also in terms of pressure, we consider the argument that 

each pile will take on a depth of 𝐿 for the distributed load (piles are placed a distance 𝐿 apart).  

We replace the trapezoidal distributed load with its statically equivalent concentrated load of 

(1500
𝑙𝑏

𝑓𝑡
) 𝐿 acting at the centroid of the area, 1.9444 𝑓𝑡, to obtain the following free-body 

diagram for the piles: 



 

 

 

 

 

 

 

 

 

 

 

 

 

Summing forces and moments, we obtain: 

∑ 𝐹𝑦 =  𝑅𝐴 − (1500
𝑙𝑏

𝑓𝑡
) 𝐿 = 0 

𝑅𝐴 = (1500
𝑙𝑏

𝑓𝑡
) 𝐿   

∑ 𝑀𝐴 =  𝑀𝐴 − (1.9444 𝑓𝑡) (1500
𝑙𝑏

𝑓𝑡
) 𝐿 = 0 

𝑀𝐴 = (2916.6 𝑙𝑏)𝐿  

 

At this point we could construct shear force and bending moment diagrams for the piles, but we 

notice that at 𝑦 = 0 (point A), the shear force and bending moment is a maximum since we only 

have one reaction force acting at A and only one distributed load acting on the pile.  We have 
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Figure 6 



Given that 𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

𝑆𝑚𝑖𝑛
, we have 

 

𝜎𝑚𝑎𝑥 = 1200
𝑙𝑏

𝑖𝑛2
=  

(2916.6 𝑙𝑏)𝐿

𝑆𝑚𝑖𝑛
 

 

 

 
𝑆𝑚𝑖𝑛

𝑝𝑖𝑙𝑒 = (2.4305 𝑖𝑛2)𝐿 

 
(3) 

 

This result yields the minimum required section modulus for the piles as a function of length.  

We now have out two desired results; the minimum required thickness for the planks as a 

function of length, and the minimum section modulus required for the piles as a function of 

length.  We can now finally start to analyze the costs for various sized retaining walls.  We have 

the length of each plank as a function of the number of piles, 

𝐿 =  
80

𝑛 − 1
 

where 80 is the total length of the wall, in feet, and the quantity 𝑛 being the number of piles.  

Given that the structural timbers are available only in 8, 10, and 12 foot lengths, we calculate our 

minimum number of piles to be 8.  The maximum number of piles we are allotted is 41.  Since 

the piles are to be square in cross section, we can pull the following minimum section moduli 

from Table A-15 of “Mechanics of Materials, 6th edition” by Riley: 

 

Nominal Size 𝑆𝑎𝑙𝑙(in
3) 

4 × 4 7.94 

6 × 6 27.7 

8 × 8 70.3 

10 × 10 143 

12 × 12 253 

 

 

  

Table 1 



Given that 𝑆𝑚𝑖𝑛
𝑝𝑖𝑙𝑒

=  (2.4305 𝑖𝑛2)𝐿, we see the minimum section modulus for the piles varies 

linearly with the length of each plank.  We can then test these values against the 𝑆𝑎𝑙𝑙 values 

found in Table 1.  Any timber piles with 𝑆𝑚𝑖𝑛
𝑝𝑖𝑙𝑒 <  𝑆𝑎𝑙𝑙 will be denoted with a green stylized cell.  

These represent the possible cross-section sizes we could use for the piles.   

 

 

 

 

 

Table 2 



We can now calculate the cost associated with various combinations of piles and planks. We start 

with the piles, since their cost is somewhat more intuitive than the planks.  There is a cost for 

concrete footing needed to support each pile given by: 

𝑐 = 40𝑛 

where 𝑛 is the number of piles.  Standard structural timbers cost $14 per cubic foot (dressed 

size).  We will consider only 10 ft. long piles, as the piles must extend an even 5 ft. below grade 

and 5 ft. above grade.  Total pile cost (𝐶𝑝𝑖𝑙𝑒) can be calculated using the following variables and 

constants: 𝑐, the cost of the concrete footings, 𝑛, the number of piles, ℎ𝑑, the dressed height of 

the piles,  𝑡𝑑, the dressed thickness of the piles, and 10, the length of each pile, in feet.  We have: 

𝐶 = 𝑐 + 14𝑛 (
ℎ𝑑

12
∗

𝑡𝑑

12
∗ 10) = 𝑐 + (

35ℎ𝑑𝑡𝑑𝑛

36
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3 



We now analyze the cost for the planks.  We will only use planks of nominal height size 8 in., 

since this is the only size that will divide evenly into 5 ft. (see Table 4 below).  This reduces 

waste and simplifies our process.   

Nominal height, ℎ 

(in) 

Dressed Height, ℎ𝑑 

(in) 

Number of planks 

to reach 5 ft. 

4 3.625 16.55 

6 5.625 10.67 

8 7.5 8 

10 9.5 6.32 

12 11.5 5.22 

14 13.5 4.44 

 

 

Since standard structural timbers are available in only 8, 10, and 12 ft. lengths, there will 

obviously some amount of scrap leftover for most of the plank sizes.  To minimize this waste, we 

use a simple excel algorithm that will calculate the minimum number of planks we must buy, 

given the spacing between piles and the lengths of the beams bought from the store. 

We utilize the ROUNDDOWN and ROUNDUP function in excel for this algorithm.  Consider 

first the number of planks we can obtain from the actual length of the beams.  We formulated the 

following algorithm: 

𝑁𝑖 = 𝑅𝑂𝑈𝑁𝐷𝑂𝑊𝑁 (
𝑏𝑒𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ

𝑝𝑙𝑎𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ
) 

where 𝑁𝑖 is the number of planks that can be obtained from the given beam length, 

𝑏𝑒𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ is the actual length of the beam bought from the store, and 𝑝𝑙𝑎𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ is the 

length of our planks (also the spacing between piles).  Then we have the following algorithm to 

calculate the minimum number of beams we must buy from the store to meet our quota: 

𝑁 = 𝑅𝑂𝑈𝑁𝐷𝑈𝑃 (
80

𝑁𝑖 ∗ 𝑝𝑙𝑎𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ
) 

Table 4 



This gives us the minimum number of beams, 𝑁, that we must purchase from the store.  Taking 

into account that the timber costs $14 per cubic foot, we can now calculate the total plank cost, 

𝐶𝑝𝑙𝑎𝑛𝑘: 

𝐶𝑝𝑙𝑎𝑛𝑘 = (
7.5

12
) (

𝑡𝑑

12
) (𝐿)(8)(14𝑁) 

Note this equation takes into account the volume of the plank (ℎ ∗ 𝑡 ∗ 𝐿), the number of planks 

needed to reach the height of the wall, 8, the total planks needed to reach the length requirement 

of the wall, 𝑁, and the cost per cubic foot of timber, 14.  Now since there is no trivial solution to 

what beam combinations will provide the optimum cost, we must analyze all three of the 8 ft., 10 

ft., and 12 ft. lengths (see Table 5 below). 

 

 

 

Table 5 



We obtain the minimum overall cost by adding together the minimum cost of the piles and the 

minimum cost of planks for any given value of 𝑛: 

 

 

 

 

 

 

 

 

Table 6 



Results 

From Table 6 we see that our minimum overall cost occurs when we have 35 piles.  We have the 

following relationship between the number of piles vs. overall cost: 

 

We obtain the following bill of materials for the optimum retaining wall: 

Bill of Materials: 

Item Size Units Total Cost 

Pile 8”x8”x10’ 35 $1914.06 

Concrete Footing N/A 35 $1400.00 

Plank 2”x8”x12’ 56 $796.25 

 

The overall cost for this project will be: 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = $4110.31  



Although there is no trivial relationship between the number of piles and the overall cost, we do 

notice that when our minimum plank thickness decreases, our cost will decrease considerably 

(observe the change between 13 to 14 piles and 28 to 29 piles).  This is because as thickness 

decreases, so too does the length of the planks (see equation 2).  As length of the planks 

decreases, our minimum section modulus required for the piles also decreases (see equation 3), 

and we are able to use smaller sizes of timber.  We note that it is no coincidence that our 

minimum overall cost occurs when we use 35 piles.  Looking at Table 2, we see that the 

allowable section modulus changes from 143 in3 to 70.3 in3 at 35 piles.  This allows us to use the 

8 x 8 square cross section for piles, which decreases volume and in turn, overall cost for the 

piles.  It happens that at 35 piles, we reach the optimum relationship between the number and 

piles and overall cost of the retaining wall. 


