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Objective: 

 

The objective of this experiment was to measure mechanical strain in a cantilever beam using 

strain gages and to compare the results with theoretical strain values calculated from an equation 

derived from solid mechanics. 

 

 

Theory: 

 

Strain gages are made of thin metal wires whose resistance changes whenever it is strained.  As 

the wire is strained, its length L and its cross-sectional area A changes, which leads to a change in 

resistance R given by the formula  

 

 𝑅 =  
𝜌𝐿

𝐴
 (1) 

 

We can see that if the wire is stretched, L will increase, A will decrease, and resistance R will 

increase.  Note that the wires resistivity, ρ, will also change when the wire is strained, but we 

will not take that into account here.  As we will see below, if we can measure the change in 

resistance, say ΔR, then we can infer the strain and ultimately the stress.  If we take the derivative 

of equation 1 with respect to each variable, we have that (derivation omitted) 

 

 
𝑑𝑅

𝑅
=

𝑑𝐿

𝐿
+

𝑑𝜌

𝜌
−

𝑑𝐴

𝐴
 (2) 

 

From equation 2, we can define gage factor, GF, as 

 

 𝐺𝐹 =  
𝑑𝑅/𝑅

𝜀
 (3) 

 

Where  ɛ is strain in the specified direction.  Finally, we find that the relationship between strain 

and the change in resistance of the wire is given by  

 

 𝜀 =  
∆𝑅/𝑅

𝐺𝐹
 (4) 

 

Consider the beam shown by Figure 1 on page 4.  This a simple cantilevered beam subject to a 

force F at the end of the beam.  In this case, the top of the beam will experience tension and the 

bottom of the beam will experience compression.  In this way, the wires in the strain gage on top 

of the beam will be stretched, inducing a positive strain and thus positive ΔR.  The wires in the 

strain gage on the bottom of the beam will be compressed, inducing a negative strain and thus 

negative ΔR.  We will use this process to determine the strain in this cantilever beam. 
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Let us first determine the theoretical equation for strain in the beam using our knowledge of 

beams in bending.  For a cantilever beam with a single force F concentrated at the end of the 

beam (see Figure 1), the deflection at the end of the beam is given by  

 𝛿 =
𝐹𝐿2

3

3𝐸𝐼
 (5) 

 

(from Riley, Mechanics of Materials, 6th ed.).  Then we can calculate the theoretical force F as  

 𝐹 =
3𝐸𝐼𝛿

𝐿2
3  (6) 

 

Consider the bending stress experienced at the location of the strain gages.  This is given by  

 𝜎 =
𝑀𝑦

𝐼
=

𝐹𝐿1𝑦

𝐼
 (7) 

 

Where L1 is the distance from the end of the beam to the strain gages.  Now, with (6), we have 

 𝜎 =  
3𝐸𝛿𝐿1𝑦

𝐿2
3  (8) 

 

The gages are mounted at the top/bottom of the beam, i.e., y = t/2.  Thus, 

 𝜎 =  
3𝐸𝛿𝐿1𝑡

2𝐿2
3  (9) 

 

Consider the stress-strain relationship given by  

 𝜖 =
𝜎

𝐸
 (10) 

 

Then, with (9), we have 

 𝜖 =  
3𝛿𝐿1𝑡

2𝐿2
3  (11) 

 

Thus, we have produced an equation for the theoretical strain on the surface of the beam at the 

location of the gages.  These values for various deflections are given in Tables 1, 2, and 3.  
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Consider the beam arrangement shown in Figure 1 below: 

 

Figure 1: Schematic of the Cantilever Beam used throughout the Experiment 

 

When mounting the strain gages on the beam, we can use either a Full Bridge, Half Bridge, or 

Quarter Bride configuration.  Let us first examine the Full Bridge configuration shown in Figure 

2 below. 

 

 
 

Figure 2: Wiring Configuration for Full Bridge 

 

In this configuration, there are two strain gages mounted on top of the beam, labeled as a resistor 

T, and two strain gages mounted on the bottom of the beam, labeled as a resistor C.  These are 

wired to a strain indicator which will measure the strain of each gage, given by equation 4.  As 

the wire is stretched/compressed, we will be able to read off the values from the strain indicator 

and determine the strain of the cantilever beam.  Now consider the Half Bridge configuration 

given by Figure 3 on the following page. 
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Figure 3: Wiring Configuration for Half Bridge 

 

In this configuration, there is one strain gage mounted on the top of the beam and one strain gage 

mounted on the bottom of the beam.  Finally, consider the quarter bridge configuration shown in 

Figure 4 below. 

 
Figure 4: Wiring Configuration for Quarter Bridge 

 

In this configuration, there is only one strain gage which we mounted to the top of the beam; this 

strain gage will be in tension.  As we increase the number of strain gages, we should receive 

more accurate results.  This is since we will receive temperature compensation (theory of 

temperature compensation omitted from this report), and more accurate measurements with more 

gage measurements. 

 

 

  



6 
 

Procedure: 

 

In this experiment, a micrometer was used to apply a deflection to the end of a beam shown in 

the arrangement given by Figure 1.  Before starting the experiment, the dimensions of our 

cantilever beam were measured using a ruler and a micrometer.  The exact dimensions of the 

beam are given in Table A below. 

 
Table A – Beam Measurements 

Quantity Value Units 

𝐿1 9 11/16 in. 

𝐿2 10 in. 

𝑤 1 in. 

𝑡 ¼ in. 

 

We next verified the nominal resistance of our strain gages using a digital multimeter.  The 

measured values of these resistors are given in Table B below, where R1 is the upper left (T) 

resistance, R2 is the bottom right (T) resistance, R3 is the top right (C) resistance, and R4 is the 

bottom left (C) resistance, according to Figure 1. 

 
Table B – Resistance Measurements 

Quantity Value Units 

R1 348  

R2 349  

R3 350  

R4 350  

 

Note: for the full bridge assembly, all four resistors (gages) were used; for the half bridge 

assembly, R1 and R3 were used; and for the quarter bridge assembly, only R1 was used.   

 

The cantilever beam was then installed in the clamp, making sure that the micrometer head was 

not yet touching the beam.  We then wired the strain gages to the strain indicator according to the 

diagrams given by Figures 2, 3, and 4 for the desired bridge.   

 

For this process, we first set the gage factor for each of the strain gages in use.  In each case, the 

gage factor (GF) was found to be GF = 2.11.  We next balanced the bridge by adjusting the 

knobs on the strain indicator until it displayed a value of zero.  In doing so, we assured that there 

was still no contact between the micrometer and the beam.   

 

Finally, we adjusted the micrometer until the strain indicator display read approximately 10 to 20 

micro strain.  This indicates that contact has been established between the tip of the micrometer 

and the top surface of the cantilever beam; this measurement was recorded in each case.  This 

location was defined as the zero deflection of the beam and the starting point for recording the 

data.  These values have been omitted from the report.  We continued to record strain 

measurements at increments of beam deflection as given in Tables 1, 2, and 3.   
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Results: 

 

Using the micrometer, the beam was deflected in 0.050” increments up to a total deformation of 

0.5” and the respective strains were recorded from the strain indicator.  This data was compared 

to the theoretical strain given by equation 11 and percent error was calculated for each data 

point.  A plot containing the experimental and theoretical strains versus beam displacement was 

plotted for each bridge configuration.  The next several pages are reserved for these results. 

 

Table 1: Recorded Data – Average Strain vs. Theoretical Strain for Full Bridge Configuration 

 

Part A - Full Bridge Configuration 

Deformation 

(in.) 

Strain (μɛ) - 

Trial 1 

Strain (μɛ) - 

Trial 2 

Average Strain 

(μɛ) 

Theoretical Strain 

(μɛ) 
Percent Error 

0 1 -4 -1.5 0 -100.00 

0.05 158 155 157 182 16.06 

0.1 317 319 318 363 14.24 

0.15 478 483 481 545 13.41 

0.2 632 646 639 727 13.70 

0.25 779 811 795 908 14.24 

0.3 925 976 951 1090 14.66 

0.35 1074 1142 1108 1271 14.75 

0.4 1225 1309 1267 1453 14.69 

0.45 1376 1475 1426 1635 14.68 

0.5 1526 1643 1585 1816 14.64 

 

 
 

Figure 5: Strain vs. Deformation – Full Bridge Configuration 
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Table 2: Recorded Data – Average Strain vs. Theoretical Strain for Half Bridge Configuration 

 

Part B - Half Bridge Configuration 

Deformation 

(in.) 

Strain (μɛ) - 

Trial 1 

Strain (μɛ) - 

Trial 2 

Average Strain 

(μɛ) 

Theoretical Strain 

(μɛ) 
Percent Error 

0 -0.1 -0.1 -0.1 0 -100.00 

0.05 153 154 153.5 182 18.33 

0.1 310 311 310.5 363 17.00 

0.15 467 469 468 545 16.44 

0.2 626 628 627 727 15.88 

0.25 786 787 786.5 908 15.47 

0.3 946 947 946.5 1090 15.14 

0.35 1105 1108 1106.5 1271 14.91 

0.4 1267 1267 1267 1453 14.69 

0.45 1429 1429 1429 1635 14.40 

0.5 1590 1592 1591 1816 14.17 

 

 

 

 
Figure 6: Strain vs. Deformation – Half Bridge Configuration 
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Table 3: Recorded Data – Average Strain vs. Theoretical Strain for Quarter Bridge Configuration 

 

Part C - Quarter Bridge Configuration 

Deformation 

(in.) 

Strain (μɛ) - 

Trial 1 

Strain (μɛ) - 

Trial 2 

Average Strain 

(μɛ) 

Theoretical Strain 

(μɛ) 
Percent Error 

0 2 1 1.5 0 -100.00 

0.05 157 154 155.5 182 16.81 

0.1 314 311 312.5 363 16.25 

0.15 471 469 470 545 15.94 

0.2 630 628 629 727 15.51 

0.25 790 787 788.5 908 15.18 

0.3 950 948 949 1090 14.84 

0.35 1111 1109 1110 1271 14.55 

0.4 1272 1271 1271.5 1453 14.28 

0.45 1434 1430 1432 1635 14.16 

0.5 1594 1596 1595 1816 13.88 

 

 

 

 
 

Figure 7: Strain vs. Deformation – Quarter Bridge Configuration 
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Discussion: 

 

We see that there is a linear relationship between deformation and strain.  I.e., as we continue to 

deform the beam, the wires in the strain gage continue to stretch.  As the length of the wires in 

the strain gage changes, so too will the total resistance of the strain gage (see equations 1, 4).  

This change in resistance allows us to measure the strain using the strain indicator.  

 

Looking at our data, we see that there is a maximum of 18.33% error between the experimental 

strain values and the theoretical strain values, where the percent error for this experiment is given 

by the equation below. 

 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  
𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 − 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
 (12) 

 

Note, we are taking the experimental value to be nominal for this experiment.  The error is not 

discouraging considering that there will be a vast amount of error in measuring the strain using 

the strain gages.  This error could be induced from a variety of sources, including, but not limited 

to, miscalibration of the strain indicator to the strain gages, miscalibration of the micrometer, 

inaccurate measurements from the strain indicator in measuring the change in resistance of the 

wires, etc.   

 

We notice two immediate trends in the data.  One, that total error tends to increase as we 

decrease the number of strain gages in our system, and two, that total error tends to decrease as 

we increase deformation.  The former is explained in the theory section of this lab report.  I.e., 

with more strain gages, we will receive temperature compensation (theory of temperature 

compensation omitted from this report), and more accurate measurements with more gage 

measurements.  The latter can be explained by the fact that initially, the strain gages are 

relatively “unstretched”.  As we apply an initial deformation, the wires will see excitation in the 

form of stretching that may cause error in the measurements.  Furthermore, there may be some 

initial calibration error present in the strain indicator, but as we apply more and more 

deformation, this miscalibration error diminishes.  Both concepts can explain the fact that we 

receive more accurate measurements as we increase the deformation.    

 

Note that for this discussion we are excluding the case where deformation is equal to 0, since 

theoretically we should have zero strain, but in the experiments, there is already some strain 

present due to calibration of the strain indicator.  This will always lead us to have 100% error in 

the zero-deformation case, given our definition of percent error. 

 

Conclusion: 

 

Overall, we are satisfied with the results and say that these strain gages yield accurate 

measurements that are fairly close to the theoretical strain values.  The maximum percent error 

between the experimental strain measurements and the theoretical strain measurements was 

18.33%, with a range of approximately 14% - 18%.  Depending on the application, these strain 

gages can be very valuable in obtaining strain measurements, thus being able to determine stress 

and estimating at which point the structure will experience permanent yielding. 
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