References

1. Judson HF. The Eighth Day of Creation. Expanded Edition. Cold Spring Harbor: Cold

Spring Harbor Lab., 1996.

2. Pardee AB. Regulation, restriction and reminiscences. J Biol Chem 2002; 277:26709-16.

3. Davis BD. Introduction. Cold Spring Harbor Symp. Quant Biol 1961; 26:1-10.

4. Roberts RB, Cowie DB, Abelson PH, Bolton ET, Britten RJ. Studies on biosynthesis in

Escherichia coli. Vol 607. Washinton, DC:Carnegie Inst. of Washington Publ., 1955.

5. Pardee AB. Molecular basis of biological regulation: Origins from feedback inhibition and

allostery. BioEssays 1985; 2:37-40.

6. Novick A, Szilard L. In: Boell EJ, ed. Dynamics of Growth Processes. Princeton:Princeton

Univ. Press, 1954:21-31.

7. Yates RA, Pardee AB. Studies on pyrimidine synthesis in E. coli. Science 1954; 120:903.

8. Umbarger HE. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine.

Science 1956; 123:848.

9. Yates RA, Pardee AB. Control of pyrimidine biosynthesis in E. coli by a feed-back mechanism.

J Biol Chem 1956; 221:757-70.

10. Pardee AB. In: Colowick SP, Kaplan NO, eds. The Enzymes. 2nd Ed. New York:Academic

Press, 1959:681-716.

11. Atkinson DE. Regulation of enzyme function. Annu Rev Microbiol 1969; 23:47-68.

12. Stadtman ER. Allosteric regulation of enzyme activity. Adv Enzymol 1966; 28:41-154.

13. Thelander L, Reichard P. Reduction of ribonucleotides. Ann Rev Biochem 1979; 48:133-58.

14. Umbarger HE. Feedback control by endproduct inhibition. Cold Spring Harbor Symp

Quant Biol 1961; 26:301-12.

AUTHOR PLEASE PROVIDE RUNNING TITLE

15. Gerhart JC, Pardee AB. The effect of the feedback inhibitor, CTP, on subunit interactions

in aspartate transcarbamylase. Cold Spring Harbor Symp Quant Biol 1963; 28:491-6.

16. Gerhart JC, Pardee AB. The enzymology of control by feedback inhibition. J Biol Chem

1962; 237:891-6.

17. Koshland DE, Jr. Enzyme flexibility and enzyme action. J Cell Comp Physiol 1959;

54:245-58.

18. Gerhart JC, Pardee AB. Separation of feedback inhibition from activity of aspartate transcarbamylase.

Fed Proc 1961; 20:249.

19. Schachman HK. Anatomy and physiology of a regulatory enzyme-aspartate transcarabamylase.

Harvey Lecture 1974; 68:67-113.

20. Kosman RP, Gouaux JE, Lipscomb WN. Crystal structure of CTP-ligated T state aspartate

transcarbamylase at 2.5A resolution: implications for ATCase mutants and the mechanism

of negative cooperativity. Proteins 1993; 15:147-76.

21. Changeux JP. The feedback control mechanisms of biosynthetic L-threonine deaminase by

L-isoleucine. Cold Spring Harbor Symp Quant Biol 1961; 26:313-8.

22. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC,

Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R. A

signalling pathway controlling c-Myc degradation that impacts oncogenic transformation

of human cells. Nat Cell Biol 2004; 6:308-18.

23. Reddy GPV, Pardee AB. Multienzyme complex for metabolic channeling in mammalian

DNA replication Proc Natl Acad Sci USA 1980; 77:3312-6.

24. Krebs EG, Fischer EH. Phosphorylase and related enzymes of glycogen metabolism. Vitam

Horm 1964; 22:399-410.

25. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. Science 2002; 298:1912-34.

26. Cohen M, Monod J. The induced biosynthesis of enzymes. Adv Enzymol 1952; 8:67-119.

27. Pardee AB, Jacob F, Monod J. The genetic control and cytoplasmic expression of

�Inducibility� in the synthesis of -galactosidase by E. coli. J Mol Biol 1959; 1:165-78.

28. Riley M, Pardee AB, Jacob F, Monod J. On the expression of a structural gene. J Mol Biol

1960; 2:216-25.

29. Goodman AB, Pardee AB. Meeting report: Molecular Neurobiological Mechanisms in

Schizophrenia: Seeking a Synthesis. Biol Psychiatry 2000; 48:173-83.

30. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol

1963; 3:318-56.

31. Volkin E, Astrachan L, Countryman X. Metabolism of RNA phosphorus in Escherichia coli

infected with bacteriophage T7. Virology 1958; 6:545-55.

32. Pardee AB. Nucleic acid precursors and protein synthesis. Proc Natl Acad Sci USA 1954;

40:263-70.

33. Pardee AB. Experiments on the transfer of information from DNA to enzymes. Exp Cell

Res, Suppl. 1958; 6:142-51.

34. Pardee AB, Prestidge LS. The initial kinetics of enzyme induction. Biochim Biophys Acta

1961; 49:77-88.

35. Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes

to ribosomes for protein synthesis. Nature 1961; 190:76.

36. Creager ANH, Gaudilliere P-P. Meanings in search of experiments and vice-versa: the

invention of allosteric regulation in Paris and Berkeley, 1958-1968.Historical Studies in the

Physical and Biological Sciences 1996; 27:1-89.

37. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions.

Physiol Rev 2005; 85:1159-1204.

38. Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model.

J Mol Biol 1965; 12:88-118.

39. Koshland DE Jr, Hamadani K. Proteomics and models for enzyme cooperativity. J Biol

Chem 2002; 277:46841-4.

39a. Burack WR, Cheng AM, Shaw AS. Scaffolds, adaptors and linkers for TCR signaling:

Theory and practice. Curr Opin Immuol 2002; 14:312-6.

39b. Reddy GPV, Pardee AB. Inhibitor evidence for allosteric interaction in the replitase multienzyme

complex. Nature 1983; 303:86-8.

39c. Braasted CD, et al. Architectural organization of the regulatory machinery for transcription,

replication, and repair: dynamic temporal -spatial parameters of cell cycle control. In:

Stein GS, Pardee AB, eds. Cell Cycle and Growth Control: Biomolecular Regulation and

Cancer. Hoboken:John Wiley & Sons, Inc., 2004:15-92.

40. Lipton BH. Biology of Belief, Mountain of Love. Santa Rosa:Elite Books, 2005.

41. Cohen GN, Monod J. Bacterial permeases. Bacteriol Rev 1957; 21:169-94.

42. Pardee AB. Membrane transport proteins. Science 1968; 162:632-7.

43. Baker MD, Wolanin PM, Stock JB. Signal transduction in bacterial chemotaxis. Bioessays

2006; 28:9-22.

44. Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF

receptor. Cell 2002; 110:669-72.

45. Grace Goll M, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Re Biochem

2005; 74:481-514.

46. Riddihough G. In the forest of RNA dark matter. Science 2005; 309:1507-90.

47. Sharp PA. The discovery of split genes and RNA splicing. Trends Biochem Sci 2005; 279-81.

48. Pouchkina-Stantcheva NN, Tunnacliffe A. Spliced leader RNA-mediated trans-splicing in

phylum Rotifera. Mol Biol Evol 2005; 22:1482-9.

49. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates

that thousands of human genes are microRNA targets. Cell 2005; 120:15-20.

50. Southheimer EJ, Carew RW. Silence from within: endogenous siRNAs and miRNAs. Cell

2005; 122:9-11.

51. Breaker RR. Natural and engineered nucleic acids as tools to explore biology. Nature 2004;

432:838-45.

51a. Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators for eukaryotic gene

expression. Nature Biotechnol 2005; 23:337-43.

52. Baserga R. The Biology of Cell Reproduction. Cambridge:Harvard University Press, 1985.

53. Stein GS, Pardee AB, eds. Cell Cycle and Growth Control: Biomolecular Regulation and

Cancer. Hoboken:John Wiley & Sons, Inc., 2004.

54. Howard A, Pelc SR. Synthesis of nucleoprotein in bean root cells. Nature 1951; 167:599-600.

55. Cooper S, Helmstetter CE. Chromosome replication and the division cycle of Escherichia

coli B/r. J Mol Biol 1968; 31:519-40.

56. Masters M, Pardee AB. Sequence of enzyme synthesis and gene replication during the cell

cycle of Bacillus subtilis. Proc Natl Acad Sci USA 1965; 54:64-70.

57. Williamson JR, Cooper RH. Regulation of the citric acid cycle in mammalian systems.

FEBS Lett 1980; 25:117 Suppl:K73-85.

58. Minshull J, Pines J, Golsteyn R, Standart N, Mackie S, Colman A, Blow J, Ruderman JV,

Wu M, Hunt T. The role of cyclin synthesis, modification and destruction in the control of

cell division. J Cell Sci 19889; Suppl 12:77-97.

59. Nurse P. The central role of a CDK in controlling the fission yeast cell cycle. Harvey Lecture

1996-1997; 92:55-64.

60. Wang AJ, Li CJ, Reddy PV, Pardee AB. Cancer chemotherapy by deoxynucleotide depletion

and E2F-1 elevation. Cancer Res 2005; 65:7809-14.

61. Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl

Acad Sci USA 1974; 71:1286-90.

62. Hartwell L, Culotti J, Pringle J, Reed BJ. Genetic control of the cell division cycle in yeast.

Science 1974; 183:46-51.

63. Rossow PW, Riddle VGF, Pardee AB. Synthesis of labile, serum-dependent protein in early

Gl controls animal cell growth. Proc Natl Acad Sci USA 1979; 76:4446-50.

64. Richardson CJ, Schalm SS, Blenis J. PI3-kinase and TOR: PIKTORing cell growth. Sem

Cell Dev Biol 2004; 15:147-59.

65. Croy RG, Pardee AB. Enhanced synthesis and stabilization of a Mr 68,000 protein in transformed

Balb/c-3T3 cells: candidate for restriction point control of cell growth. Proc Natl

Acad Sci USA 1983; 80:4699-703.

66. Schimke RT, Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem

1970; 39:929-76.

67. Hershko A. The ubiquitin system for protein degradation and some of its roles in the control

of the cell division cycle. Cell Death Differ 2005; 12:1191-7.

68. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins.

Nature 2003; 426:895-9.

69. Ghosh S, Karin M. Missing pieces in the NF-B puzzle. Cell 2002; Suppl. 109:S81-96.

70. Sager R. Genetic suppression of tumor formation. Adv Cancer Res 1985; 44:43-68.

71. Burger MM, Goldberg AR. Identification of a tumor-specific determinant on neoplastic

cell surfaces. Proc Natl Acad Sci USA 1966; 57:359-66.

72. Cunningham DD. Changes in phospholipid turnover following growth of 3T3 mouse cells

to confluency. J Biol Chem 1972; 247:2464-70.

73. Pardee AB. Cell division and a hypothesis of cancer. Natl Cancer Inst Monograph 1964;

14:7-20.

74. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Cancer 2004;

4:891-9.

75. Akli S, Keyomarsi K. Low-molecular-weight cyclin E: the missing link between biology and

clinical outcome. Breast Cancer Res 2004; 6:188-91.

76. David-Pfeuty T. The flexible anchorage-dependent Pardee�s restriction point of mammalian

cells. How its deregulation may lead to cancer. Biochim Biophys Acta 2006; 1765:38-66.

77. Pardee AB. G1 events and regulation of cell proliferation. Science 1989; 246:603-8.

78. Li Y, Sun X, LaMont JT, Pardee AB, Li CJ. Selective killing of cancer cells by -lapachone:

Direct checkpoint activation as a strategy against cancer. Proc Natl Acad Sci USA 2003;

100:2674-8.

79. Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA.

NAD(P)H:Quinone oxidoreductase activity is the principal determinant of -lapachone

cytotoxicity. J Biol Chem 2000; 275:5416-24.

79a. Bornholdt S. Less is more in modeling large genetic networks. Science 2005; 310:449-51.

80. Jasny BR, Ray LB. Life and art of networks. Science 2003; 301:1863-77.

AUTHOR PLEASE PROVIDE RUNNING TITLE

e7 Cell Cycle 2006; Vol. 5 Issue 8