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• General realistic density matrix evolution model shown for one qubit.
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• Measurement modeled by strong, fast Lindblad pulses.
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a b s t r a c t

A model master equation suitable for quantum computing dy-
namics is presented. In an ideal quantum computer (QC), a sys-
tem of qubits evolves in time unitarily and, by virtue of their
entanglement, interfere quantummechanically to solve otherwise
intractable problems. In the real situation, a QC is subject to deco-
herence and attenuation effects due to interactionwith an environ-
ment and with possible short-term random disturbances and gate
deficiencies. The stability of a QC under such attacks is a key issue
for the development of realistic devices. We assume that the influ-
ence of the environment can be incorporated by a master equation
that includes unitary evolution with gates, supplemented by a
Lindblad term. Lindblad operators of various types are explored;
namely, steady, pulsed, gate friction, and measurement operators.
In the master equation, we use the Lindblad term to describe short
time intrusions by random Lindblad pulses. The phenomenological
master equation is then extended to include a nonlinear Beretta
term that describes the evolution of a closed system with increas-
ing entropy. An external Bath environment is stipulated by a fixed
temperature in two different ways. Here we explore the case of a
simple one-qubit system in preparation for generalization tomulti-
qubit, qutrit and hybrid qubit–qutrit systems. This model master
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equation canbeused to test the stability ofmemory and the efficacy
of quantum gates. The properties of such hybrid master equations
are explored, with emphasis on the role of thermal equilibrium
and entropy constraints. Several significant properties of time-
dependent qubit evolution are revealed by this simple study.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A quantum computer (QC) is a physical device that uses quantum interference to enhance the
probability of getting an answer to an otherwise intractable problem [1,2]. A quantum system’s ability
to interfere depends on its entanglement and on maintenance of its coherent phase relations. In a
real system, there are always environmental effects and also random disturbances that can cause the
quantumsystem to lose its ability to display quantum interference. That process is called decoherence,
as is discussed in an extensive literature [3] onhowaquantumsystembecomes classical, often rapidly,
due to its interactionwith an external environment. That processmight also be viewed as ameasuring
device [4,5]. A major concern in the development of a realistic quantum computer is to understand,
control, and/or correct for detrimental environmental effects.

A general theory of how such ‘‘open systems’’ evolve in time is provided by the operator sum
representation (OSR), which replaces the unitary evolution of a closed system by a more general
form that accounts for the fact that the system under study (the quantum computer) is affected by an
environment. That general form involves Kraus [6] operators and is often described as a mapping.

To gain insight,models for the environment and its interactionwith theQChave beendiscussed [7].
These studies use the Dyson series for the time evolution and reduce the dynamics to the QC
subsystem using a variety of approximations. One approximation, truncating the Dyson series (a Born
approximation) is used since an exact solution is generally not available. An oft-used approximation
is that in the system–environment interaction the environment restores itself rapidly to its initial
condition, and therefore only the present situation of the environment is relevant. That is, one invokes
a Markov approximation, which has the environment affecting the system, but the system’s effect
on the environment vanishes rapidly. It is assumed that the system and environment are initially
uncorrelated and are described as a product state.

The Markov approximation is not always applicable; that depends on the dynamics of the en-
vironment and its interaction with the system. It is physically possible that the system affects an
environment that is able to partially preserve that influence and feed part of it back to the system.
Indeed, there are important papers that indicate that the Markov approximation is in doubt [8].
Nevertheless, our initial approach is to adopt the Markov approximation, with plans to test its
applicability.

A vast literature exists on deducing a general master equation for the time evolution of a sub-
system’s density matrix. One method is to examine the above Dyson series methods, as described
in [7]. Another approach is to replace unitary evolution,1 by a Kraus subsystem form of evolution.2
Then a ‘‘generalized infinitesimal’’ expansion of the Kraus operators is used to deduce a differential
equation for the density matrix, yielding a linear in density matrix master equation. The ‘‘generalized
infinitesimal’’ is related to Ito calculus, which involves how to define variations for stochastic, or
rapidly fluctuating functions. Several papers [9,10] discuss this procedure and ways to deduce a
master equation for the subsystem’s density matrix, which prove to be of the form deduced earlier
by Gorini, Kossakowski, Sudarshan and Lindblad [11–14], who used other general considerations. The
Lindblad form can be deduced in general from requiring preservation of density matrix Hermiticity,
unit trace, and positive-definite properties, without the restriction to time independent Lindblad
operators or to particular initial states. The Lindblad form can be used to describe all environmental

1 ρ(t) = U(t)ρ(0)U†(t).
2 ρ(t) =

∑
αKα(t) ρ(0) K

†
α (t) with

∑
αKα(t)K

†
α = 1 and ρ†(t) = ρ; Trρ(t) = 1.
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effects. However, we introduce special terms to isolate and to gain insight into specific effects, such as
the Bath–systemdynamics. Lindblad’s equation for the time evolution of a subsystem’s densitymatrix
has many appealing features, as discussed later.

Profound papers by Beretta [15–17] provide a general master equation based on novel concepts of
non-equilibrium statistical mechanics as applied to quantum systems. The Beretta master equation
for describing an open system has not been used much for QC perhaps because it is nonlinear and
it alters entropy addition rules. An excellent rendition of the basic nature of the Beretta (and other
nonlinear master equations) is provided in papers by Korsch et al. [18,19].

The Beretta description includes definitions of entropy, work, and heat for non-equilibrium
systems. The resultant master equation has many important features, as illustrated in our study.
Indeed, we incorporate the Beretta master equation for QC and extend it using a phenomenological
viewpoint.

In Section 2, we discuss the basic idea of a density matrix from two traditional points of view.
One view is to form a classical ensemble average over an ensemble of quantum systems. The second
viewpoint is that a single quantum system is prepared in a state averaged over its production
possibilities. After discussing general properties of the density matrix, we stress that the dynamics
of the density matrix can be best visualized in terms of the time development of its spin polarization
and spin correlation observables.

In Section 3, we describe how the density matrix evolves by unitary evolution driven by a time-
dependent Hamiltonian that includes level splitting and ideal gate pulses. During a gate pulse, a
bias pulse is used to impose temporary degeneracy to halt precession and avoid awkward phase
accumulation. Then a model master equation is introduced in Section 4 along with an analysis of
its several terms. These terms are: (1) Lindblad form used to include random noise and gate friction
effects, (2) a Beretta term to describe a closed-system with increasing entropy, and (3) a Bath term
for contact with an environment of specific temperature. We make a heuristic assumption that the
Lindblad and Beretta forms are both useful, and we adopt a phenomenological or hybrid viewpoint.
That viewpoint, which is not derived but postulated, is to use Lindblad terms to describe random,
short-time intrusions on the QC, which could be caused by for example a passing particle. And we
use the nonlinear Beretta term to describe the overall trend for a closed system to steadily increase
in entropy. A Beretta description of Bath–system (open) dynamics is also included. The system is
simultaneously driven towards equilibrium with an environment or bath of a specified temperature.
On top of thesemajor effects, we describe the time-evolution of quantumgates byHamiltonian pulses.
If the Lindblad and Bath terms are both set to zero, which is equivalent to removing the environment,
and the closed-system Beretta term is omitted, then the master equation reduces necessarily to
ordinary unitary evolution.

In Section 4.3, we introduce the Lindbladmaster equation and discuss several aspects of its general
features, and limitations. We then proceed to a similar analysis of the Beretta and Bath terms 4.4.
Finally, in Section 5 properties of the full master equation are examined and conclusions and future
plans are stated in Section 6.

The above assumptions provide a practical dynamic framework for examining not only the
influence of an environment on the efficacy of a QC, but also the loss of reliability in the action of gates
or the general loss of coherence. The master equation we design incorporates the main features of a
density matrix; namely, Hermiticity, unit trace and positive definite character, while also including
the evolution of a closed system and the effects of gates, noise and of an external bath.

2. Density operator

The density operator, also called a density matrix, is an operator in Hilbert space that represents
an ensemble of quantum systems. As introduced by von Neumann and Landau [20–22], the density
operator, ρ, can be understood as a classical ensemble average over a collection of subsystems (the
ensemble)which occur in a general state |α⟩, with a probabilityPα . By a general state,wemean a state
of the subsystem that is a general superposition of a complete orthonormal basis (such as eigenstates
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of a Hamiltonian). For the simple case of an ensemble of spin 1/2 particles, such a state called a qubit
is specified by the spinor

|α⟩ = |n̂α⟩ = cos(θα/2)e−iφα/2|0⟩ + sin(θα/2)e+iφα/2|1⟩ =

(
cos(θα/2)e−iφα/2

sin(θα/2)e+iφα/2

)
, (1)

where the computational bases |0⟩ and |1⟩ denote spin-up and spin-down states, respectively, and
α labels the Euler angles θα, φα , that specify a general direction n̂α in which the qubit is pointing.
Indeed, the above state is an eigenstate of the operator σ⃗ · n̂α , where the components of σ⃗ are the
Pauli operators (see below). This description is readily generalized to multiparticle qubit states and
also to systems that are doublets without being associated with the idea of physical spin.

The above general state is normalized but not necessarily orthogonal, ⟨α′
|α⟩ ̸= δα′,α . The quantum

rule for the expectation value of a general operator Ω , is ⟨α|Ω|α⟩ and for an ensemble of separate
quantum subsystems one can form the classical ensemble average ⟨Ω⟩ for the Hermitian observable
Ω by taking

⟨Ω⟩ =

∑
α⟨α|Ω|α⟩Pα∑

α Pα

. (2)

The ensemble average is then a simple classical average where Pα is the probability that a particular
state α appears in the ensemble. Summing over all possible states of course yields

∑
αPα = 1. The

above expression is a combination of a classical ensemble average with the quantum mechanical
expectation value. It contains the idea that each member of the ensemble interferes only with itself
quantummechanically and that the ensemble involves a simple classical average over the probability
distribution of the ensemble.

We now define the density operator by

ρ ≡

∑
α

|α⟩⟨α|Pα. (3)

Using closure,3 the ensemble average can now be expressed as a ratio of traces

⟨Ω⟩ =
Tr(ρΩ)
Tr(ρ)

≡ Tr(ρΩ), (4)

which entails the properties

Tr(ρ) =

∑
m

⟨m|ρ|m⟩ =

∑
α

Pα

∑
m

⟨α|m⟩⟨m|α⟩

=

∑
α

Pα⟨α|α⟩ =

∑
α

Pα = 1, (5)

where |m⟩ denotes a complete orthonormal basis (such as the computational basis), and

Tr(ρΩ) =

∑
mm′

⟨m|ρ|m′
⟩⟨m′

|Ω|m⟩

=

∑
α

∑
mm′

Pα⟨α|m′
⟩⟨m′

|Ω|m⟩⟨m|α⟩

=

∑
α

Pα⟨α|Ω|α⟩, (6)

which returns the original ensemble average expression.

3 The closure property, which is a statement that |n⟩ is a complete orthonormal basis, is
∑

n|n⟩ ⟨n| = 1.
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2.1. Properties of the density matrix

The definition ρ =
∑

α |α⟩⟨α|Pα is a general one, if we interpret α as the label for the possible
characteristics of a state. Several important general properties of a density operator follow from this
definition. The density operator is:

• Hermitian ρ†
≡ ρ, hence its eigenvalues are real;

• has unit trace, Tr(ρ) ≡ 1, hence the sum of its eigenvalues equals 1;
• is positive definite, which means that all of its eigenvalues are greater or equal to zero. This,

together with the fact that the density matrix has unit trace, ensures that each eigenvalue is
between zero and one, and yet sum to 1;

• for a pure state, every member of the ensemble has the same quantum state and only one α0
appears and the density operator becomes ρ = |α0⟩⟨α0|. The state |α0⟩ is normalized to one
and hence for a pure state ρ2

= ρ. Thus for a pure state one of the density matrix eigenvalues
is 1, with all others zero;

• for a general ensembleρ2
≤ ρwhichhas amixture of possibilities as reflected in the probability

distribution Pα with the equal sign holding for pure states.

2.1.1. Composite systems and partial trace
For a composite system, such as an ensemble of quantum systems each of which is prepared with

a probability distribution, the definition of a density matrix can be generalized to a product Hilbert
space form involving systems of types A and B

ρAB ≡

∑
α,β

Pα,β |αβ⟩⟨αβ|, (7)

where Pα,β is the joint probability for finding the two systems with the attributes labeled by α and
β . For example, α could designate the possible directions n̂α of one spin-1/2 system, while β labels
the possible spin directions of another spin 1/2 system, n̂β . One can always ask about the state of just
system A or B by summing over or tracing out the other system. For example, the density matrix of
system A is picked out of the general definition above by the following partial trace steps

ρA = TrB(ρAB)

=

∑
α,β

Pα,β |α⟩⟨α|TrB
[
|β⟩⟨β|

]
=

∑
α

(∑
β

Pα,β

)
|α⟩⟨α|

=

∑
α

Pα|α⟩⟨α|. (8)

Here we use the product space |αβ⟩ ↦→ |α⟩|β⟩ and we define the probability for finding system A in
situation α by

Pα =

∑
β

Pα,β . (9)

This is a standard way to get an individual probability from a joint probability.
It is easy to show that all of the other properties of a density matrix still hold true for a composite

system case. It has unit trace, it is Hermitian with real eigenvalues and is positive definite.

2.2. Comments about the density matrix

2.2.1. Alternate views of the density matrix
In the prior discussion, the view was taken that the density matrix implements a classical average

over an ensemble ofmany quantum systems, eachmember ofwhich interferes quantummechanically



38 F. Tabakin / Annals of Physics 383 (2017) 33–78

only with itself. An alternate equally valid viewpoint is that a single quantum system is prepared, but
the preparation of this single system is not pinned down. Instead all we know is that it is prepared in
any one of the states labeled again by a generic state label αwith a probability Pα . Despite the change
in interpretation, or rather an application to a different situation, all of the properties and expressions
presented for the ensemble average hold true; only the meaning of the probability is altered.

An important point concerning the density matrix is that the ensemble average (or the average
expected result for a single system prepared as described in the previous paragraph) can be used to
obtain these averages for all observables Ω . Hence in a sense the density matrix describes a system
and the system’s accessible observable quantities. It represents then an honest statement of what we
can really know about a system. On the other hand, in Quantum Mechanics it is the wave function
that tells all about a system. Clearly, since a density matrix is constructed as a weighted average over
bilinear products of wave functions, the density matrix has less detailed information about a system
than is contained in its wave function. Explicit examples of these general remarks will be given later.

To some authors the fact that the density matrix has less content than the system’s wave function,
causes them to avoid use of the density matrix. Others find the density matrix description of
accessible information as appealing. Indeed, S. Weinberg in recent papers [23,24] has advocated an
interpretation of quantum mechanics based on using the density matrix rather than the state vector
as a description of reality. The attribution of such deep physical meaning to the density operator was
advocated earlier by Hatsopoulos and Gyftopoulos [25], who inspired by a deep analysis by Park [26]
on the nature of quantum states, adopted it as the key physical ansatz of their early theory of quantum
thermodynamics, which in turn prompted Beretta to design the nonlinear master equation that we
adopt below as part of our model master equation.

We now turn to discussing the basic features of the density matrix in preparation for describing
its dynamic evolution by means of a model master equation.

2.2.2. Classical correlations and entanglement
The density matrix for composite systems can take many forms depending on how the systems

are prepared. For example, if distinct systems A & B are independently produced and observed
independently, then the densitymatrix is of product form ρAB ↦→ ρA⊗ρB, and the observables are also
of product formΩAB ↦→ ΩA ⊗ΩB. For such an uncorrelated situation, the ensemble average factors

⟨ΩAB⟩ =
Tr(ρABΩAB)
Tr(ρAB)

=
Tr(ρAΩA)
Tr(ρA)

Tr(ρBΩB)
Tr(ρB)

= ⟨ΩA⟩⟨ΩB⟩, (10)

as is expected for two separate uncorrelated experiments. This can also be expressed as having the
joint probability factor Pα,β ↦→ PαPβ the usual probability rule for uncorrelated systems.

Another possibility for the two systems is that they are prepared in a coordinated manner, with
each possible situation assigned a probability based on the correlated preparation technique. For
example, consider two colliding beams, A & B, made up of particles with the same spin. Assume
the particles are produced in matched pairs with common spin direction n̂. Also assume that the
preparation of that pair in that shared direction is produced by design with a classical probability
distribution Pn̂. Each pair has a density matrix ρn̂ ⊗ ρn̂ since they are produced separately, but their
spin directions are correlated classically. The density matrix for this situation is then

ρAB =

∑
n̂

Pn̂ ρn̂ ⊗ ρn̂. (11)

This is a ‘‘mixed state’’ which represents classically correlated preparation and hence any density
matrix that can take on the above form can be reproduced by a setup using classically correlated
preparations and does not represent the essence of QuantumMechanics, e.g. an entangled state.

An entangled quantum state is described by a densitymatrix (or by its corresponding state vectors)
that is not and cannot be transformed into the two classical forms above; namely, cast into a product
or a mixed form. For example, the two-qubit Bell state 1

√
2
(|01⟩ + |10⟩) has a density matrix

ρ =
1
2
(|01⟩⟨01| + |01⟩⟨10| + |10⟩⟨01| + |10⟩⟨10|) (12)

that is not of simple product or mixed form. It is the prime example of an entangled state.
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The basic idea of decoherence can be described by considering the above Bell state case with time
dependent coefficients

ρ =
1
2
(a1(t)|01⟩⟨01| + a2(t)|01⟩⟨10| + a∗

2(t)|10⟩⟨01| + (1 − a1(t))|10⟩⟨10|). (13)

If the off-diagonal terms a2(t) vanish, by attenuation and/or via time averaging, then the above density
matrix does reduce to the mixed or classical form,

ρ =
1
2
(a1(t)|01⟩⟨01| + (1 − a1(t))|10⟩⟨10|), (14)

which is an illustration of how decoherence leads to a classical state.

2.3. Observables and the density matrix

Visualization of the density matrix and understanding its significance is greatly enhanced by
defining associated real spin observables. In the simplest one-qubit case, the density matrix is a 2 × 2
Hermitian positive definite matrix of unit trace. Thus it is fully stipulated by three real parameters,
which are identified as the polarization vector P⃗(t), also called the Bloch vector. One can deduce that
only three parameters are needed for the one-qubit case from the following steps: (1) a general 2 × 2
matrix with complex entries involves 2(2×2) = 8 real numbers; (2) the Hermitian condition reduces
the diagonal terms to 2 and the off-diagonal terms to 2, a net of 4 remaining real numbers; (3) the unit
trace reduces the count by 1, so we have 4− 3 = 3 parameters. These steps generalize to multi-qubit
and to qutrit cases.

Operators or gates acting on a single qubit state are represented by 2 × 2 matrices. The dimension
of the single qubit state vectors (|0⟩ and |1⟩ ) is N = 2nq = 2,with nq = 1. The Pauli matrices provide
an operator basis of all such matrices. The Pauli-spin matrices are:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (15)

These are all Hermitian traceless matrices σi = σ
†
i . We use the labels (1, 2, 3) to denote the

directions (x, y, z). The fourth Pauli matrix σ0 is simply the unit matrix. Any 2 × 2 matrix can be
constructed from these four Pauli matrices, which therefore are an operator basis, also called the
computational basis operators. That construction applies to the density matrix ρ(t) at any time t and
to the Hamiltonian H(t), and Lindblad operators L(t).

2.3.1. Polarization
The general form of a one-qubit densitymatrix, using the 4Hermitian Paulimatrices as an operator

basis is:

ρ(t) =
1
2

[
σ0 + P1(t) σ1 + P2(t) σ2 + P3(t) σ3

]
=

1
2

[
σ0 + P⃗(t) · σ⃗

]
=

1
2

(
1 + P3(t) P1(t) − iP2(t)
P1(t) + iP2(t) 1 − P3(t)

)
, (16)

where the spin operators are σ⃗ = {σ⃗1, σ⃗2, σ⃗3}, and the real polarization vector is P⃗(t) = {P1(t), P2(t),
P3(t)} . The polarization, P⃗(t) is a real vector, which follows from the Hermiticity of the densitymatrix
ρ†(t) ≡ ρ(t) and from the ensemble average relation

P⃗(t) = Tr(σ⃗ · ρ(t)) ≡ ⟨σ⃗ ⟩.

Thus specifying the polarization vector (also called the Bloch vector) determines the density matrix
and it is convenient to view the polarization as a function of time to gain insight into qubit dynamics.
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The above expression clearly satisfies the densitymatrix conditions that Tr(ρ(t)) = 1, ρ†(t) = ρ(t).
The positive definite condition follows from determining that the two eigenvalues are λ1(t) =
1+P(t)

2 , λ2 =
1−P(t)

2 , where P(t) =

√
P1(t)2 + P2(t)2 + P3(t)2 ≤ 1. The unit trace condition becomes

simply that the eigenvalues of ρ sum to one

Tr(ρ(t)) = 1 = Tr(Uρ(t) · ρD(t) · U†
ρ (t))

= Tr((U†
ρ (t) · Uρ(t)) · ρD(t))

= Tr(ρD(t))
= λ1(t) + λ2(t), (17)

where Uρ(t) is the unitary matrix that diagonalizes the density matrix at time t . The diagonal density
matrix ρD(t) has real eigenvalues along the diagonal. The positive definite condition now asserts that
each of these eigenvalues is greater or equal to zero and less than or equal to one: 0 ≤ λi(t) ≤ 1,
while summing to 1. For the one qubit case the above conditions mean that λ1(t) + λ2(t) = 1, and
since 0 ≤ λi(t) ≤ 1, the polarization vector must have a length between zero and one.

Note that the density matrix, polarization vector and its eigenvalues in general depend on time.
Indeed, the dynamics of a one-qubit system is best visualized by how the polarization or eigenvalues
change in time.

The polarization operator is simplyΩ = σ⃗ and we have the following relations for the value and
time derivative of the polarization vector:

P⃗(t) = Tr(σ⃗ · ρ(t)) = ⟨σ⃗ ⟩ (18)
dP⃗(t)
dt

= Tr
(
σ⃗ ·

dρ(t)
dt

)
.

Much of what is presented here applies to multi-qubit and qutrit cases. The main difference for
more qubits/qutrits is an increase in the number of polarization and spin correlation observables.

Several other quantities are used tomonitor the changing state of a quantum system. Later energy,
power, heat transfer and temperature concepts will be discussed. Next purity, fidelity, and entropy
attributes will be examined.

2.3.2. Purity
The purity P(t) is defined as P(t) = ⟨ρ(t)⟩ = Tr(ρ(t) ρ(t)). It is called purity since for a pure state

density matrix ρ = |ψ⟩⟨ψ |, ρ2
= ρ and Tr(ρ2) = Tr(ρ) = 1, but in general Tr(ρ2) ≤ 1. For a pure

state, we see that ρ2
= ρ, implies that each eigenvalue satisfies λi(λi − 1) = 0, so λi = 0 or 1. Since

the eigenvalues sum to 1, a pure state has one eigenvalue equal to one, all others are zero. A mixed or
impure state has

∑
i=1,2nq λ

2
i < 1, which indicates that the nonzero eigenvalues are less than 1.

For a one-qubit system, the purity is simply related to the polarization vector

P(t) = Tr(ρ2(t)) =
1 + P2(t)

2
, (19)

dP(t)
dt

= 2 Tr
(
ρ(t)

dρ(t)
dt

)
= P⃗(t) ·

d
dt

P⃗(t),

where P(t) is the length of the polarization vector P⃗(t). Thus a pure state has a polarization vector that
is on the unit Bloch sphere, whereas an impure state’s polarization vector is inside the Bloch sphere.
The purity ranges from a minimum of 0.5 to a maximum of 1. Later we will see how dissipation and
entropy changes can bring the polarization inside the Bloch sphere and hence generate impurity.

2.3.3. Fidelity
Fidelity measures the closeness of two states. In its simplest form, this quantity can be defined as

F 2
= Tr[ρA ρB]. For the special case that ρA = |ψA⟩⟨ψA| & ρB = |ψB⟩⟨ψB|, this yields F ≡ |⟨ψA|ψB⟩|,

which is clearly the magnitude of the overlap probability amplitude.
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To align the quantum definition of fidelity with classical probability theory, a more general
definition is invoked; namely,

F (ρA, ρB) ≡ Tr
[√

√
ρA ρB

√
ρA

]
. (20)

When ρA and ρB commute, they can both be diagonalized by the same unitary matrix, but with
different eigenvalues. In that limit, we have ρA =

∑
iλ

A
i |i⟩⟨i| & ρB =

∑
jλ

B
j |j⟩⟨j| and

F (ρA, ρB) ≡ Tr
[
√
ρA ρB

]
≡

∑
i,j

√
λAi λ

B
j , (21)

which is the classical limit result.
We will use fidelity to monitor the efficacy or stability of any QC process, where ρA(t) is taken as

the exact result and ρB(t) is the result including decoherence, gate friction, and dissipation effects.

2.3.4. Entropy
The Von Neumann [20] entropy at time t is defined by

S(t) = −Tr(ρ(t) log2 ρ(t)). (22)

The Hermitian density matrix can be diagonalized by a unitary matrix Uρ(t) at time t ,

ρ(t) = Uρ(t) ρD(t) U†
ρ (t),

where ρD(t) is diagonal matrix ρD(t)i,j = δi,jλi of the eigenvalues. Then

S(t) = −(λ1 log2 λ1 + λ2 log2 λ2). (23)

With a base 2 logarithm, the maximum entropy for one qubit is Smax ≡ 1 which occurs when the two
eigenvalues are all equal to 1/2. That is themost chaotic, or least information situation. Theminimum
entropy of zero obtains when one eigenvalue is one, all others being zero; that is the most organized,
maximum information situation. For one qubit, zero entropy places the polarization vector on the
Bloch sphere,where the length of the polarization vector is one. If the polarization vectormoves inside
the Bloch sphere, entropy increases. For nq qubits entropy ranges between zero and nq.

For later use, consider the time derivative of the entropy
dS
dt

= −

∑
i=1,2

(dλi
dt

log2(λi) +
dλi
dt

)
= −Tr

(dρ
dt

log2(ρ(t))
)
. (24)

Since Tr(ρ) =
∑

i=1,2λi ≡ 1, the second RHS term above vanishes. Note that the above result is
derived assuming that for all eigenvalues λi/λi → 1, which is ambiguous for zero eigenvalues. This
is no doubt related to divergences that could arise when say λ1 = 0, and dλ1

dt is nonzero. We will
confront this issue later.

Note that the eigenvalues, purity, fidelity and entropy all depend on the length of the polarization
vector P(t).

3. First steps towards a master equation model—unitary evolution, gates and pulses

Themaster equation for the time evolution of the system’s densitymatrix is nowpresented.We are
interested in developing a simplemodel that incorporates themain features of the qubit dynamics for
a quantum computer. These main features include seeing how the dynamics evolve under the action
of gates and the role of both closed system dynamics and of open system decoherence, dissipation
and the system’s approach to equilibrium. From the density matrix we can determine a variety of
observables, such as the polarization vector, the power and heat rates, the purity, fidelity, and entropy
all as a function of time.
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Fig. 1. Color versions of all the figures are in the web version of this article. The qubit levels with splitting ϵ = h̄ωL . With our
conventions the operator σ− ≡

σx−iσy
√
2

raises the qubit to the polarization-down state |1⟩, while σ+ ≡
σx+iσy

√
2

lowers the qubit
to the polarization-up ground state |0⟩.

3.1. Unitary evolution

Westartwith the observation that the densitymatrix for a closed system is driven by aHamiltonian
H(t), that can be explicitly time dependent, as ρ(t) = U(t)ρ(0)U†(t), where the unitary operator is
U(t) = e−

i
h̄H(t) t . For infinitesimal time increments this yields the unitary evolution or commutator

term:
dρ
dt

= −
i
h̄

[
H(t), ρ(t)

]
. (25)

This term specifies the reversible motion of a closed system. To include dissipation, an additional
operator L will be added ρ̇ = −

i
h̄

[
H(t), ρ(t)

]
+ L which describes an irreversible open system.

3.2. Hamiltonian

Our HamiltonianH(t) = H0+V (t) is an Hermitian operator in spin space; for one qubit it is a 2× 2
matrix. It consists of a time independent H0, plus a time dependent part V (t). For nq = 1, a typical
Hamiltonian is

H0 ≡ −
1
2
h̄ωL σ⃗ · ẑ = −

1
2
h̄ωL σz, (26)

which describes a 2 level system with eigenvalues −
1
2 h̄ωL for state |0⟩, and +

1
2 h̄ωL for state |1⟩, see

Fig. 1.
The polarization vector for this case precesses about the ẑ direction with the Larmor angular

frequency ωL. This follows from the unitary evolution term

dP⃗(t)
dt

= Tr
(
σ⃗

dρ(t)
dt

)
= −i

ωL

2
Tr
[
σ⃗ · [σ⃗ · ẑ, ρ(t)]

]
= −ω⃗L × P⃗(t), (27)

where ω⃗L = ωL ẑ, which is a Larmor precession of the polarization vector about the direction ẑ. The
polarization vector then has a fixed value of Pz and the x and y components vary as

Px(t) = Px(0) cos(ωLt) + Py(0) sin(ωLt) (28)
Py(t) = Py(0) cos(ωLt) − Px(0) sin(ωLt).

The above is equivalent to Ṗi =
∑

j=1,3Mi,jPj, with

M =

( 0 ωL 0
−ωL 0 0
0 0 0

)
. (29)

This form will be extended to dissipative cases later.
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Fig. 2. Polarization vector precession (no gates and no dissipation): (a) fixed Pz and oscillating Px, Py components versus time,
(b) the two (fixed) eigenvalues λ of ρ(t), (c) the fixed entropy, and (d) the fixed energy (power and heat rate are zero). The Bloch
sphere (e) with solid vector indicating the initial location of the polarization (which originates from the center of the Bloch
sphere) while the subsequent motion follows the thick path as also shown by the dashed polarization vectors at subsequent
times. The dots indicate equal time interval locations of the polarization vector. The precession is also projected to the x–y
plane. The initial density matrix and level parameters are in Table 1.

Thus the level splitting h̄ωL produces a precessing polarization with a fixed z-axis value and
circular motion in the x–y plane (see Fig. 2). The basic Hamiltonian H0 is selected to be time
independent. The initial density matrix and level splitting parameters used in our examples4 are
listed in Table 1. Energy is in µeV, frequency in GHz and time is in nanoseconds (ns).

Next we add a time dependence in the form of Hamiltonian pulses that produce quantum gates.

3.2.1. One-qubit ideal gates
For our QC application, the Hamiltonian H(t) = H0 + V (t) is used to incorporate two effects. The

first is the level splitting, Eq. (26). Here ωL denotes the Larmor angular frequency associated with the
level splitting h̄ωL, which sets the Larmor time scale TL = 2π/ωL for the system. The V (t) term is used

4 All of the numerical examples in this paper were generated by Mathematica codes based on the QDENSITY/QCWAVE
packages [27].
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Table 1
Initial density matrix & level parameters.

Name Value

P1 0.5
P2 0.0
P3 0.8
P 0.943
Initial Purity 0.945
Initial Entropy 0.186
Initial Temperature 0.93 mK
Larmor frequency ωL 0.2675 GHz
Larmor Period TL 23.5 ns
Level split h̄ωL 0.1761 µeV

to include quantum gates Ω , which are 2 × 2 Hermitian matrices. For example, a single qubit NOT
gate isΩ = σ1. The NOT acts as: σx|0⟩ = |1⟩ & σx|1⟩ = |0⟩. This basic gate is simply a spinor rotation
about the x̂ axis by π radians. Clearly, two NOTs return to the original state. NOT .NOT = σ 2

1 = I2.
A gate operatorΩ is introduced as a Hamiltonian generator VG(t)

VG(t) ≡ h̄ θG(t)Ω, (30)

where θG(t) is a gate pulse that is centered at time t0 with a width τ . The pulse θG(t) has inverse time
units. Thus the pulse essentially starts at t1 = t0 − τ/2 and ends at t2 = t0 + τ/2; we typically take
this pulse to be of Gaussian form, θG → θg

θg (t) =

√
π

2τ
e−( t−t0

τ )2 . (31)

We callVG(t) the gate generator5 since it generates the effect of a specific gate. The pulse function θG(t)
is designed to generate a suitable rotation over an interval t1 to t2. Since we want to have a smooth
pulse, we take these pulses to be of either Gaussian θg (t) or soft square θs(t) shape. The soft square
shape is defined by

θs(t) = Nf
1
2

[
Erf
( t − t1

τ

)
− Erf

( t − t2
τ

)]
,

where Nf is fixed by the
∫

∞

−∞
θG(t) dt =

π
2 condition.

The NOT gate pulse represents a series of infinitesimal rotations about the x-axis and in order to
give the correct NOT gate effect, we need to normalize the pulse by

∫
∞

−∞
θG(t) dt =

π
2 . The same form

can be applied to a one qubit Hadamard

Ω = H =
1

√
2

(
1 1
1 −1

)
=
σ1 + σ3

√
2

, (32)

which is a spinor rotation about the (x̂ + ẑ)/
√
2 axis by π radians.

3.2.2. Bias gates
Application of such a gate pulse does not carry out our objective of achieving a NOT gate, unless we

do something to remove the level splitting at least during the action of the pulse. This corresponds to
a temporary stoppage of precession. We therefore, introduce a bias pulse which is designed to make
the levels degenerate during the gate pulse. The strength of the bias is adjusted by some type of non-
intrusive monitoring, or by fore-knowledge of the fixed level splitting, to temporarily establish level
degeneracy. During the action of the gate, the levels have to be completely degenerate, otherwise
disruptive phases accumulate. Therefore, we use a soft square bias pulse that straddles the time
interval of the gate pulse. The soft square bias pulse shape is defined by: θB(t) ≡ θs(t)/θs(t0),which is

5 The unitary operator associated with this gate generator is: UG(t, t1) = e−
i
h̄
∫ t
t1

VG(t ′)dt ′ .
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preferred over a square pulse since it has finite derivatives and thus yields smooth variations of power
as shown later. The width of the above bias pulse is t̃2 − t̃1, and τ is the thickness of the edges. To be
sure that no precession occurs during a gate the time values used in the bias pulses t̃2 and t̃1 are taken
to be slightly larger and slightly smaller than the gate pulse values t2 and t1.

The bias pulse θB(t) is added to the Hamiltonian to create a temporary degeneracy as

VB(t) =
h̄ωL

2
θB(t) σ3, (33)

where the bias normalization is
∫

∞

−∞
θB(t) dt = 1. Note θB is unitless, whereas θG has 1/time units.

Combining these terms we have for a single pulse, with gate and bias

H1(t) = −
h̄ωL

2
(1 − θB(t)) σ3 + h̄ θG(t)Ω.

Here we see that the bias turns off precession and the gate term generates the action of a gate Ω.
Without a bias pulse to produce level degeneracy, awkward phases accumulate that are detrimental
to clean-acting gates. Aside from intervalswhen the gate and the bias pulse act, the polarization vector
precesses at the Larmor frequency, which is zero for degenerate levels. The bias pulse is simply an
action to stop the precession, then the gate pulse rotates the qubit, and subsequently precession is
restored once the bias is removed. That process is equivalent to stopping a spinning top, rotate it, and
then get it spinning again, which requires some work. As discussed later the power supplied to the
system during a gate pulse is determined by

d
dt

W (t) = Tr(ρ(t) Ḣ(t)) = +
h̄ωL

2
θ̇B(t) Pz(t) + h̄ θ̇G(t)⟨Ω⟩.

The derivative of the Hamiltonian divides into a gate plus a bias term.

3.2.3. Gate and bias cases
In Figs. 3–4, the one-qubit polarization vector motion for a NOT and a Hadamard gate is shown

with no dissipation (L → 0) and with a bias pulse acting during the gate pulse. The detailed case
shows that during the NOT pulse one gets the expected change of Px → Px; Py → −Py; Pz → −Pz .
The power supplied to the system during the NOT gate is also displayed separately for the gate power
and the bias power. These are explained by the bias power = (h̄ωL/2) θ̇B(t)Pz(t) and the gate power
= h̄ θ̇G Px(t), where the x-polarization is fixed during the NOT gate, but the z-polarization flips. The
values of the polarization from the time t1 when the gate pulse starts to its end at t2 explain the shapes
seen in Fig. 3.

During the Hadamard pulse one gets the expected change of Px → Pz; Py → −Py; Pz → Px.
The power supplied to the system during the Hadamard gate is also displayed separately for the gate
power and the bias power. These are explained by the bias power = Pz(t) (h̄ωL/2) θ̇B(t) and the gate
power = h̄ (Px(t)+ Pz(t)) θ̇G /

√
2,where the y-polarization flips during the Hadamard gate, and the z

and the x polarization interchange. The values of the polarization during the pulse explain the shapes
seen in Fig. 4.

The gate pulses canproducenetworkdoneon the system.Noheat transfer occurs bywayof the gate
or bias, that exchange arises later from dissipation. After the gate pulses are complete, the precession
continues about the ẑ axis.

Another case of aHadamard gate is shown in Fig. 5. In this case, theHamiltonian is smoothly rotated
from ẑ to x̂ during the Hadamard gate pulse. This Hamiltonian rotation, which is equivalent to rotating
a level splitting magnetic field from the z to the x direction, is accomplished by setting:

H1(t) → −
h̄ωL

2
(1 − θB(t))(η(t0 − t) σ3 + η(t − t0) σ1) + h̄ θG(t) H, (34)

η(t) ≡
1 + Erf(t/a)

2
.

Here η is a smooth step function of width a. As a result the precession which started around the ẑ
continues about the x̂ axis after the Hadamard gate pulse as shown in Fig. 5.
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Fig. 3. Polarization vector trajectory for unitary Not Gate with level splitting and bias. Dissipation is off L → 0. (a) Changes in
polarization with time, Px → Px, Py → −Py, Pz → −Pz during Not Gate pulse; (b) the two (fixed) eigenvalues λ of ρ(t); (c) the
fixed entropy; (d) the energy versus time; (e) Power by gate (G) and bias (B) (heat rate is zero). Here Py is negative during the
gate; and (f) precession about positive ẑ is moved to −ẑ axis by NOT gate. The dots indicate equal time interval locations of the
polarization vector.

3.2.4. Gate pulses and instantaneous gates
To fully replicate the results obtained when a set of instantaneous gates act, as in a QC algorithm,

it is necessary to invoke additional steps. One possible step is to apply a bias pulse over the full set of
gate pulses, thereby making the qubits degenerate during a QC action, including final measurements.
Another way, which we prefer, is to let the precession continue between gate pulses, which means
that each gate acts with an associated bias pulse, as illustrated earlier. Then one needs to design
the gate pulses and associated measurements to act at appropriate times to replicate the standard
description of instantaneous gates. For example, we define a delay time TD as an integer nD multiple
of the Larmor period TL. The first gate starts at a time t (1)1 ≡ TD = nDTL. The first pulse ends at a time
t (1)2 ≡ t (1)1 + τ . The next gate starts at a time t (2)1 ≡ t (1)1 + TD and ends at a time t (2)2 ≡ t (2)1 + τ . This
setup repeats for NG gates and yields the final time that we use to define the completion of the QC
process as Tf ≡ NG TD + τ = NG TD + t2 − t1. At the time Tf the action of the gates is complete and
the corresponding density matrix ρ(Tf ) is the same as the instantaneous, static gate result UGρ(0)U

†
G ,
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Fig. 4. Polarization vector trajectory for a unitary Hadamard gate with level splitting and bias. Dissipation is off L → 0.
(a) Polarization versus time; (b) Polarization evolution Px → Pz , Py → −Py, Pz → Px during Hadamard gate pulse(G) when
gate starts t1 = 32.9 ns, (Px, Py, Pz) = (−0.402,−0.301, 0.798); (c) the two (fixed) eigenvalues λ1, λ2 of ρ(t); (d) the energy
versus time; (e) Power by gate (G) and bias (B) (heat rate is zero); and (f) Polarization vector trajectory, precession about positive
ẑ continues after polarization is moved as shown by Hadamard gate.

where UG is a product of the NG gate operators. The general result for the final time is

Tf = NG TD + τ + nT TL.

For example, consider a three gate case for one qubit UG ≡ H · σx · H ≡ σz , which is a three gate
NG = 3 Hadamard-Not-Hadamard sequence. This case is illustrated in Fig. 6. At the first stage before
the gate acts, the polarization vector precesses about the z-axis, then the Hadamard acts at time t (1)1
and the polarization path moves rapidly to the second lower precession circle at time t (1)2 . After a
few precessions, the Not gate brings the path to the negative z region at time t (2)2 . Finally, the final
Hadamard lifts the path back up to the original precession cone, but with a phase change. The final
result at time Tf = 3 TD + t2 − t1 is obtained by the transformation Px → −Px, Py → −Py, Pz → Pz,
which is, as it should be, equivalent to the action of a single σz gate. The projected version also shown
in Fig. 7 displays this process and the finite time dynamic gate actions.

This process can be implemented for any set of gate pulses and can be generalized to multi-
qubit/qutrit cases. Thus the pulsed gate approach can replicate the standard instantaneous static
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Fig. 5. Polarization vector trajectory for unitary Hadamard Gate plus bias and with L off. The precession axis is changed from
the ẑ to the x̂ axis during the gate pulse. (a) Changes in polarization Px → Px, Py → −Py, Pz → −Pz during Hadamard gate
pulse; (b) the two (fixed) eigenvalues λ1, λ2 of ρ(t); (c) the fixed entropy; (d) the energy versus time changes due to gate, bias
and Hamiltonian axis rotation; (e) Power by gate, bias and Hamiltonian rotation (heat rate is zero); (f) precession starts about
ẑ axis and continues about x̂ axis after polarization is moved as shown by Hadamard gate. The dots indicate equal time interval
locations of the polarization vector.

gate description by carefully designing the timing of the gates on the Larmor precession time grid.
This requires examining or measuring the gates at the selected time Tf . If the Larmor period TL varies
in time, this procedure can be generalized.

For a sequence of NG gates

H(t) =

NG∑
i=1

H1(t − t0i )

=

NG∑
i=1

−h̄
ωL

2
(1 − θB(t − t0i ))σ3 + θ (t − t0i )Ωi (35)

whereΩi is the ith gate acting at the time centered at t0 + t0i . This can generate a chain of gates.
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Fig. 6. Polarization for Hadamard–Not–Hadamard pulse gates. (a) Polarization vectors, (b) Eigenvalues, (c) Entropy, (d) Energy
of first pulse, (e) Energy of second pulse, all versus time. Then in (f) Trajectories and initial and final polarization vectors, along
with the three rapid gate pulses. The initial polarization vector (solid green arrow ) (Px, Py, Pz ) = (0.5, 0.1, 0.8) and final
polarization vector (dashed purple arrow ) (−0.5,−0.1, 0.8) are seen to give the expected σz gate result.

We conclude that one can replicate the action of instantaneous static gates, which is central to the
usual description of QC algorithms, by including a bias pulse during the gate action, and by applying
the gates on the Larmor period time-grid.

3.3. Schrödinger, Heisenberg, Dirac (interaction) and rotating frame pictures

In our treatment, we use the Schrödinger picture for the density matrix, so that all aspects of
the dynamics are described by the density matrix through its polarization and spin correlation
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Fig. 7. Polarization trajectories for Hadamard–Not–Hadamard pulse gates projected onto the y–z plane. The first Hadamard
downward pulse is seen with the next Not downward pulse, and then the final upward Hadamard pulse. In this example, the
initial polarization vector (solid green arrow ) (Px, Py, Pz ) = (0.5, 0.1, 0.8) and final polarization vector (dashed purple arrow )
(−0.5,−0.1, 0.8) are seen projected onto the y–z plane.

observables. Other choices are to either use the Heisenberg picture, where the time development
is incorporated into the Hermitian operators, or use the Dirac or Interaction picture, wherein the
operators evolve in time with the ‘‘free’’ Hamiltonian H0(t). Then the Dirac picture density matrix
ρ̃(t) = e+iH0(t) t/h̄ ρ(t) e−iH0(t) t/h̄ evolves as:

dρ̃(t)
dt

= −
i
h̄

[
Ṽ (t), ρ̃(t)

]
+ L̃ , (36)

where the tilde denotes interaction picture operators. For the choice of H0(t) = −h̄ωL σ3/2, going
to the Dirac picture is simply going to a frame rotating about the z-axis in which frame the Larmor
precession vanishes. That is called the rotating frame. Since we include gates into V (t) and hence Ṽ (t),
the gate bias pulse that we introduce in the Schrödinger picture, corresponds to a rotating frame that
stops rotating during the action of a gate.

There are advantages offered by each of these choices. We stick with the Schrödinger description
because itmost clearly reveals the full dynamics by viewing the time evolution of the spin observables.

4. The master equation model

The master equation for the time evolution of the system’s density matrix is now presented. We
seek a simple model that incorporates the main features of qubit dynamics for a quantum computer.
These main features include seeing how the dynamics evolve under the action of gates and the role of
both closed system dynamics and of open system decoherence, dissipation and the system’s approach
to equilibrium. From the density matrix we can determine a variety of observables, such as the
polarization vector, the power and heat rates, the purity, fidelity, and entropy all as a function of
time.
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4.1. Definition of the model master equation

To the unitary evolution, we now add a term L (t) which is required to be Hermitian and traceless
so that the density matrix ρ(t) maintains its Hermiticity and trace one properties. In addition, L (t)
has to keep ρ(t) positive definite. To identify explicit physical effects, we separate L (t) into three
terms:

dρ
dt

= −
i
h̄

[
H(t), ρ(t)

]
+ L (37)

L = L1 + L2 + L3

L1 = Γ

{
L(t) ρ(t) L†(t) −

L†(t)L(t) ρ(t) + ρ(t) L†(t)L(t)
2

}
, Lindblad

L2 = γ2 ρ(t) (S̃ − ⟨S̃⟩) − γ2 β2(t)
{ρ(t)H(t) + H(t)ρ(t)

2
− ρ(t)⟨H(t)⟩

}
Beretta

L3 = γ3 ρ(t) (S̃ − ⟨S̃⟩) − γ3 β3(t)
{ρ(t)H(t) + H(t)ρ(t)

2
− ρ(t)⟨H(t)⟩

}
, Bath

the operator S̃ ≡ − loge ρ(t), involves a base e logarithm to assure that a Gibbs density matrix is
obtained in equilibrium (see later). The QC entropy is defined with a base 2 operator Ŝ = − log2 ρ(t)
with entropy equal to ⟨S⟩ = ⟨Ŝ⟩ = −Tr[ρ(t) log2 ρ(t)]. The conversion factor is S̃ ≡ loge(2) Ŝ and
⟨S̃⟩ ≡ loge(2) ⟨Ŝ⟩, with loge(2) = 0.693147. The level splitting, gates and bias pulses are included in
H(t). The state dependent, and hence time dependent, functions β2(t),β3(t) will be defined later.

When we discuss equilibrium, a form that combines the Beretta and Bath terms L2 3(t) is used:

L2 3(t) = γ23 ρ(t) (S̃ − ⟨S̃⟩) − γ23 β23(t)
{ρ(t)H(t) + H(t)ρ(t)

2
− ρ(t)⟨H(t)⟩

}
, (38)

with γ23 ≡ γ2 + γ3, and β23(t) ≡
γ2β2(t)+γ3β3(t)

γ23
.

The L1 is of Lindblad [12] form, where the L(t) are time-dependent Lindblad spin-space operators,
which we will represent later as pulses. The most important properties of the L1 · · · L3 operators
are that they are Hermitian and traceless, which means that as the density matrix evolves in time, it
remains Hermitian and of unit trace. They also have the property of maintaining the positive definite
property of the density matrix. Note Γ sets the rate of the Lindblad contribution L1, in inverse time
units. In our heuristic master equation, we use the Lindblad form to describe the impact of external
noise on the system, where we represent the noise as random pulses. In addition, we also use the
Lindblad form to describe dissipative/friction effects on the quantum gates, by having the Lindblad
pulses coincide with the action time of the gate pulses. We also show later that a strong Lindblad
pulse can represent a quantum measurement.

The L2, term is the Beretta [15–17] contribution, which describes a closed system. The closed
system involves no heat transfer, with motion along a path of increasing entropy, as occurs for
example with a non-ideal gas in an insulated container. This is accomplished by a state dependent
β2(t) that is presented later. Note γ2, sets the strength of the Beretta contribution L2, in inverse time
units as a fraction of the Larmor angular frequency.

In one simple version of the Bath contribution [18,19] L3, the Bath temperature T in Kelvin
stipulates a fixed value of β3(t) → β3 ≡ 1/(kB T ), where kB is the Boltzmann constant (86.17 µeV/K).
A more general L3 Bath contribution, based on a general theory [15,16,25] of thermodynamics,6
defines a state dependent β3(t) by using a fixed temperature TQ to specify a fixed Q̇ (t)/Ṡ(t) ratio (see
later). Note γ3 sets the strength of the Bath contribution L3, in inverse time units as a fraction of the
Larmor angular frequency.

In Table 2, typical values of ωL,Γ , γ2, γ3, β3 used in our test cases are shown; these parameters
are selected to focus on the role of each term. Realistic values can be invoked for various experimental
conditions.

6 The author gratefully thanks one Reviewer for pointing out this very significant improvement.
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Table 2
Test master equation parameters.

Name Value Units

ωL 0.2675 GHz
Γ 0.00213 GHz
γ2 0.0426 GHz
γ3 0.0852 GHz
β3 0.000425 1/µeV

4.2. Some general properties of the master equation

4.2.1. Power and heat rate evolution
The various terms in the master equation play different roles in the dynamics. To examine those

differing roles consider the energy of the system and its rate of change. With our Hamiltonian H(t)
and a density matrix ρ(t), we form the ensemble average

E(t) = ⟨H(t)⟩ ≡ Tr[H(t) ρ(t)].

Taking the time derivative, we obtain
dE(t)
dt

= Tr
[
ρ(t)

d
dt

H(t)
]

+ Tr
[
H(t)

d
dt
ρ(t)

]
(39)

=
d
dt

W (t) +
d
dt

Q (t)

d
dt

W (t) = Tr[ρ(t) Ḣ(t)]

d
dt

Q (t) = Tr[H(t) ρ̇(t)].

We identify the term dQ (t)
dt as the energy transfer rate and dW (t)

dt as the work per time or power, with
the convention that Q (t) > 0 indicates heat transferred into the system, and W (t) > indicates work
done on the system. The time dependence of the density matrix is given by the unitary evolution plus
the L terms of Eq. (37).

Now consider just the power term. Since dH(t)
dt is nonzero when gate pulses are active, power is

invoked in the system only via the time derivatives of the gate and bias pulses (and by any temporal
changes in the level splitting).

The energy transfer rate dQ (t)
dt can now be examined using the dynamic evolution

Tr
[
H(t)

dρ(t)
dt

]
= Tr

[
H(t)

{
−

i
h̄
[ρ(t),H(t)] + L

}]
= Tr[H(t)L]. (40)

Using the permutation invariance of the trace, the unitary evolution part does not contribute to energy
transfer. Heat arises from the Lindblad and Bath terms. We will now see: (1) how the closed system
(Beretta term) does not generate energy transfer; it does increase entropy; and (2) the Bath term
involves heat and associated entropy transfer.

The Lindblad term generates energy transfer (heat) according to7:

dQ
dt

= Γ Tr
[
H(t)

{
L(t) ρ(t) L†(t) −

L†(t)L(t) ρ(t) + ρ(t) L†(t)L(t)
2

}]
The Beretta term heat transfer equation is:

dQ
dt

= γ2 Tr
[
H(t)

[
ρ(t) (S̃ − ⟨S̃⟩) − β2(t)

{ρ(t)H(t) + H(t)ρ(t)
2

− ρ(t)⟨H(t)⟩
}]]

7 Note that if L(t) commutes with H(t), the heat transfer vanishes.
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= γ2

{
(⟨H(t)S̃⟩ − ⟨H(t)⟩⟨S̃⟩) − β2(t)(⟨H2(t)⟩ − ⟨H(t)⟩2)

}
= γ2

{
⟨∆E ∆S̃⟩ − β2(t)⟨∆E∆E⟩

}
, (41)

where we have defined

⟨∆E∆E⟩ ≡ ⟨H2(t)⟩ − ⟨H(t)⟩2 = ⟨(H − ⟨H⟩)2⟩ (42)
⟨H2(t)⟩ ≡ Tr[ρ(t)H(t)H(t)] ⟨H(t)⟩ ≡ Tr[ρ(t)H(t)]

⟨∆E∆S̃⟩ ≡ ⟨H(t)S̃⟩ − ⟨H(t)⟩⟨S̃⟩
= ⟨(H − ⟨H⟩)(S̃ − ⟨S̃⟩)⟩

⟨H(t)S̃⟩ ≡ Tr[ρ(t)H(t)S̃] ⟨S̃⟩ ≡ Tr[ρ(t) S̃]
S̃ ≡ − loge ρ(t).

The major feature of Beretta’s L2 contribution is a state and hence time-dependent β2(t)

β2(t) ≡
⟨∆E∆S̃⟩
⟨∆E∆E⟩

=
⟨H(t)S̃⟩ − ⟨H(t)⟩⟨S̃⟩

⟨H2(t)⟩ − ⟨H(t)⟩⟨H(t)⟩

=
⟨(H − ⟨H⟩)(S̃ − ⟨S̃⟩)⟩

⟨(H − ⟨H⟩)2⟩
, (43)

defined so that the system is closed and energy is not transferred to or from the system, dQ
dt = 0.

This choice also makes the closed system follow a path of increasing entropy (see later). That increase
of entropy for a closed system signifies that the closed system is dynamically constrained to reorder
itself to maximize its entropy. Here β2(t) has a highly nonlinear dependence on the density matrix.
For a one qubit system, β2(t) is of rather simple form

β2(t) = 2
1 − P(t)2

1 − Pz(t)2
Pz(t)
P(t)

arctanh(P(t))
h̄ωL

, (44)

for an equilibrium Gibbs density matrix with fixed z and zero x and y polarization, this reduces to
β2(t) = 2 arctanh(Pz)/(h̄ωL) =

loge(1+Pz )
loge(1−Pz )

/(h̄ωL).
The Bath term L3 does generate heat:

dQ
dt

= γ3 Tr
[
(H(t)) ρ(t)

{
(S̃ − ⟨S̃⟩) − β3(t)(H(t) − ⟨H(t)⟩)

}]
= γ3

{
(⟨H(t)S̃⟩ − ⟨H(t)⟩⟨S̃⟩) − β3(t)(⟨H

2(t)⟩ − ⟨H(t)⟩⟨H(t)⟩)
}

= γ3

{
⟨∆E∆S̃⟩ − β3(t)(⟨∆E∆E⟩)

}
(45)

where the Korsch [18,19] option sets β3(t) → β3 = 1/(kB T ) to a constant, where T is a specified
bath temperature. Entropy is changed by the bath term. A better choice for β3(t) involves the entropy
evolution, which is discussed next.

4.2.2. Entropy evolution
Let us now consider the time evolution of the base 2 entropy Eq. (22). Eq. (24) gives the time

derivative of the entropy as dS
dt = −Tr[log2(ρ(t))

dρ(t)
dt ]. Inserting the time derivative from Eq. (37),

we again get no change from the unitary term, just from the dissipative L terms:
dS
dt

= −Tr
[
log2(ρ(t))

dρ(t)
dt

]
= −Tr[log2(ρ(t))L ]. (46)

This is a general result for nq qubits.
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Note that the Lindblad term generates a change in entropy according to:

dS
dt

= −Γ Tr
[
log2(ρ(t))

{
L(t) ρ(t) L†(t) −

L†(t)L(t) ρ(t) + ρ(t) L†(t)L(t)
2

}]
= −Γ Tr

[
log2(ρ(t)) {L(t) ρ(t) L

†(t) − ρ(t)L†(t)L(t) }

]
= −Γ Tr

[
log2(ρ(t)) [L(t), ρ(t)L

†(t)]
]
. (47)

For the Beretta (closed system) L2 and the Bath L3 terms, entropy changes according to:
dS
dt

= −γ2 Tr
[
log2(ρ(t)) ρ(t)

{
(S̃ − ⟨S̃⟩) − β2(t)(H(t) − ⟨H(t)⟩)

}]
(48)

dS
dt

= −γ3 Tr
[
log2(ρ(t)) ρ(t)

{
(S̃ − ⟨S̃⟩) − β3(t)(H(t) − ⟨H(t)⟩)

}]
.

For the Beretta closed system case, with ⟨∆S̃∆S̃⟩ ≡ ⟨S̃2⟩ − ⟨S̃⟩2 = ⟨(S̃ − ⟨S̃⟩)2⟩:
dS
dt

= +
γ2

loge(2)

[
(⟨S̃2⟩ − ⟨S̃⟩2) − β2(t)(⟨H(t)S̃⟩ − ⟨H(t)⟩⟨S̃⟩)

]
= +

γ2

loge(2)

[
⟨∆S̃∆S̃⟩ − β2(t)⟨∆E∆S̃⟩

]
= +

γ2

loge(2)

[
⟨∆S̃∆S̃⟩⟨∆E∆E⟩ − ⟨∆E∆S̃⟩2

]
/⟨∆E∆E⟩. (49)

Note that entropy increases for the Beretta term dS
dt ≥ 0, since ⟨∆S̃∆S̃⟩ ⟨∆E∆E⟩ ≥ ⟨∆E∆S̃⟩2.

For the Bath term, when we switch to a base ‘‘e’’ entropy S̃,

dS̃
dt

= +γ3

[
⟨∆S̃∆S̃⟩ − β3(t)⟨∆E∆S̃⟩

]
. (50)

Forming the energy rate to entropy rate ratio and setting it equal to a fixed quantity kBTQ , we obtain
the condition kBTQ = dQ/dS̃ = Q̇/ ˙̃S

Q̇
˙̃S

=
⟨∆E∆S̃⟩ − β3(t)⟨∆E∆E⟩

⟨∆S̃∆S̃⟩ − β3(t)⟨∆E∆S̃⟩
= kB TQ , (51)

which yields an expression for the state dependence of β3(t) :

β3(t) =
⟨∆E∆S̃⟩ − kBTQ ⟨∆S̃∆S̃⟩

⟨∆E∆E⟩ − kBTQ ⟨∆E∆S̃⟩
. (52)

For the equilibrium (Gibbs densitymatrix) limit, which occurs at final time tf , β3(tf ) → β3 =
1

kB T ,

where T is the specified Bath (Gibbs) temperature. In equilibrium, the polarization vector is in the z-
direction since H[tf ] = H0 ≡ −

1
2 h̄ωL σz . The difference between the two Bath versions for one qubit

evolution will be explored later.

4.2.3. Purity evolution
For a one qubit system, both the entropy and the purity are functions of the length of the

polarization vector, with the entropy being zero and the purity being one on the Bloch sphere. For
polarization vectors inside the Bloch sphere, the entropy is increased and the purity decreased. Note
that 1 − P(t) plays a role parallel to entropy. Consider the change in Purity (denoted by the symbol
P), where

P(t) ≡ Tr[ρ(t) ρ(t)],

and the rate of change of this purity is given by
dP(t)
dt

= 2 Tr
[
ρ(t)

dρ(t)
dt

]
.
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Using Eq. (25), we find that the purity is unchanged by the unitary term, but is altered, mainly
diminished, by the Lindblad term:

dP(t)
dt

= 2 Tr
[
ρ(t)L1

]
= 2 Γ Tr

[
ρ(t)

{
L(t) ρ(t) L†(t) −

L†(t)L(t) ρ(t) + ρ(t) L†(t)L(t)
2

}]
= 2 Γ Tr

[
ρ(t)

{
L(t) ρ(t) L†(t) − L†(t)L(t) ρ(t)

}]
= 2 Γ Tr

[
ρ(t) [L(t), ρ(t) L†(t)]

]
. (53)

The trace property Tr[AB] = Tr[BA] was again invoked to deduce that Tr
[
ρ(t) [H(t), ρ(t)]

]
≡ 0.

4.2.4. Temperature
Temperature is a basic quantity in equilibrium thermodynamics. It is not clear if any such concept

can be applied to non-equilibrium systems. Nevertheless, it is tempting to invoke a ‘‘temperature’’
quantity for dynamic systems, albeit with caution. In that spirit, we note that the inverse temperature
β does apply to the equilibrium Gibbs state. Two possible definitions of temperature for non-
equilibrium cases are based on (1) the level occupation probability ratios or (2) the ratio of the energy
change and the entropy change kBT = dQ/dS̃ = Q̇/ ˙̃S.

The simplest case (1) occurs for a diagonal Hamiltonian (for us that occurs away from gate pulses),
the ensemble average energy is:

⟨H(t)⟩ = Tr[H(t) ρ(t)] = −
h̄ωL

4
Tr[σ3 Pzσ3] = −

h̄ωL

2
Pz = ϵ1 ρ11 + ϵ2 ρ22, (54)

where ϵ1 = −h̄ωL/2, ϵ2 = h̄ωL/2, ρ11 = (1+Pz)/2 and ρ22 = (1−Pz)/2.Herewe see the connection
between temperature and the z-polarization, and that the level occupation probabilities are n1 = ρ11
and n2 = ρ22.

When the gates are acting, we need to include off-diagonal terms in H(t). So we introduce the
unitary operator Ũ(t) that diagonalizes H(t) = Ũ†(t)Hd(t) Ũ(t)

⟨H(t)⟩ = Tr[H(t) ρ(t)] = Tr[Hd(t) ρ̃(t)] = ϵ̃1 ρ̃11 + ϵ̃2 ρ̃22, (55)

where ϵ̃1, ϵ̃2 are the eigenvalues of H(t) and ρ̃ ≡ Ũ(t)ρ(t)Ũ†(t). In this way we can define level
occupation probabilities including gate pulses: ñ1 = ρ̃11 and ñ2 = ρ̃22.

Note that for a system described by a Gibbs density matrix, that density matrix commutes with
the Hamiltonian. As a consequence, the unitary evolution vanishes. Thus for a Gibbs equilibrium state
the Hamiltonian and the density matrix are diagonalized by the same unitary matrix. In addition, for
a Hamiltonian of the form H ∝ σz, the polarization in the x and y directions vanishes for a Gibbs
density matrix, and Pz = tanh( h̄ωL

2kBT
), which relates the z-polarization to the absolute temperature T

in a rather complicated way. A simpler form follows.
We use the Gibbs density matrix

ρG ≡
e−

H(t)
kBT

Z
; Z ≡ Tr(e−

H(t)
kBT )

to define absolute temperature

T =
1
kB

ϵ̃2 − ϵ̃1

loge(
ñ1
ñ2
)
. (56)

In the region away from the gate pulses where the Hamiltonian is diagonal, this reduces to

T =
h̄ωL

kB

1
loge(

n1
n2
)

(57)

the above definition is equivalent to Pz = tanh( h̄ωL
2kBT

).
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Note the above temperature definition yields a positive absolute temperature for n1 ≥ n2, for
larger ground state occupation, but negative absolute temperature for n2 > n1. This is thewell known,
negative absolute temperature that appears for a small number of levels that are excited to produce
a ‘‘level occupation/temperature inversion’’ [28,29]. For us that appears when the z-polarization flips
sign.

Case (2) kBT = dQ/dS̃ = Q̇/ ˙̃S can be evaluated from the ratio of the time derivatives of the heat
and of the entropy. The result is

T =
h̄ωL

kB

Ṗz
Ṗ

1
loge(

1+P
1−P )

H⇒
Px=Py→0

h̄ωL

kB

1

loge(
1+Pz
1−Pz

)
,

which reduces to the above case (1) definition when Px and Py vanish. Here P is the length of the
polarization vector.

These two thermodynamic definitions can simply be extended to the gate and to non-equilibrium
regions by fiat. Non-equilibrium situations occur when Px and Py are non-zero. The above two
quantities have the units of temperature in all regions, but a clear meaning of temperature applies
only for equilibrium.Nevertheless, it is of interest to use T as defined above in non-equilibrium regions
where they serve as useful indicia of dynamical changes.

4.3. Lindblad

4.3.1. Comments on positive definite property of Lindblad
An explicit demonstration for one-qubit that the Lindblad term keeps ρ(t) positive definite is

obtained by setting ρ(t) = Uρ(t)ρD(t)U†
ρ (t), where ρD(t) is the diagonal matrix

(
λ1 0
0 λ2

)
. It then

follows that the commutator term does not alter the eigenvalues and that the Lindblad term keeps
the eigenvalues positive and between zero and 1. One finds8: λ̇i(t) = [U†

ρ (t)L1 Uρ(t)]i i

dλ1(t)
dt

= Γ |V1,2|
2 (1 − α λ1(t)),

where α = (|V2,1|
2
+|V1,2|

2)/|V1,2|
2 > 1 and V ≡ U†

ρ (t) L Uρ(t). This form shows that the eigenvalues
stay within the zero to 1 region.

For a system of nq > 1 qubits, the above generalizes to:

dλi(t)
dt

= Γ

[[∑
s

|Vis|
2λs
]
− (V †V )iiλi

]
= Γ

∑
s̸=i

(|Vis|
2λs − |Vsi|

2λi), (58)

where i = 1 · · · 2nq and the eigenvalues are ordered from the largest to smallest. From this equation,
it follows that the largest and smallest eigenvalues stay within the zero to one range if they start in
that range and therefore all eigenvalues are within that range. For example, as the largest eigenvalue
λ1 → 1, the other eigenvalues approach zero and hence dλ1(t)

dt = −Γ
∑

s̸=1|Vs1|
2

≤ 0. This negative
derivative bounces the eigenvalue back into the zero to one range, if it approaches one. When the
smallest eigenvalue approaches zero the other eigenvalues are all positive and less than 1, and hence
dλnq (t)

dt = +Γ
∑

s̸=nq |Vnq s|
2λs ≥ 0. This positive derivative bounces the eigenvalue back into the zero

to one range, if it approaches zero. This is a very simple proof that the Lindblad form preserves the
positive definite nature of a density matrix.

The same steps using the diagonal density matrix basis apply to the derivative of the entropy:
dS
dt

= −Γ
∑
si

log2 λi (|Vis|
2λs − |Vsi|

2λi), (59)

8 Note d
dt (Uρ ρD U†

ρ ) = Uρ ρ̇D U†
ρ + U̇ρ ρD U†

ρ + Uρ ρD U̇†
ρ and U†

ρ
dρ
dt Uρ = ρ̇D + U†

ρ U̇ρ ρD + ρD U̇†
ρ Uρ . For the ith diagonal

component the last two terms vanish since d
dt (U

†
ρ Uρ ) = 0. Thus we arrive at λ̇i(t) = [U†

ρ (t)LU(t)ρ ]i i.
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and to the purity

dP(t)
dt

= +2 Γ
∑
si

λi (|Vis|
2λs − |Vsi|

2λi). (60)

The entropy expression can be recast as

dS
dt

= +Γ
∑
si

|Vsi|
2λi(log2 λi − log2 λs)

≥ +Γ
∑
si

|Vsi|
2(λi − λs)

≥ +Γ
∑
si

λi(|Vsi|
2
− |Vis|

2). (61)

We have used x log(x) ≥ x − 1 to obtain the inequality above, with the result that

dS
dt

≥ Γ Tr
[
ρ(t) [L†(t), L(t)]

]
.

Thus imposing the condition [L(t), L†(t)] = 0 yields dS
dt ≥ 0, which is the known condition for

obtaining increasing entropy from the Lindblad form.
Applying essentially the same steps to the purity

dP(t)
dt

= −2 Γ
∑
si

|Vsi|
2λi(λi − λs)

≤ −2 Γ
∑
si

|Vsi|
2(λi − λs)

≤ −2 Γ
∑
si

λi(|Vsi|
2
− |Vis|

2) (62)

dP(t)
dt

≤ −2 Γ Tr
[
ρ(t) [L†(t), L(t)]

]
.

For [L(t), L†(t)] = 0, we obtain decreasing purity dP(t)
dt ≤ 0 from the Lindblad form.

Above simple proofs show that for nq qubits the Lindblad yields increased entropy and decreased
purity with Lindblad operators that satisfy [L(t), L†(t)] = 0. The same procedure applies to Renyi,
Tsallis, and other definitions of entropy.

Beretta [17] objects to the Lindblad form on the grounds that the entropy derivative divergeswhen
the combination λ̇i log2 λj with λ̇i ̸= 0 and λj → 0 occurs. Based on this, even though it occurs for
just a short time, he rejects the Lindblad form. Note this divergence is already contained in Eq. (24), as
mentioned earlier. We nevertheless adopt a Lindblad form and simply avoid the occurrence of λ̇i ̸= 0
and λj → 0 by using the Lindblad to incorporate noise pulses that occur after the Beretta and Bath
terms have already acted to increase the system’s entropy, away from a pure one qubit state. That
circumvents the problem for one qubit; the multi-qubit case remains an issue.

4.3.2. Steady Lindblad operator
To gain insight into the properties of the Lindblad form, we first consider steady, i.e. time-

independent, Lindblad operators. Results for a master equation consisting of the unitary plus the
Lindblad term only are shown in Figs. 8–12 for several simple steady Lindblad operators L(t).

The first case is L(t) = σx, for which the polarization vector time dependence is given by:
Ṗi =

∑
j=1,3M

(1)
i j Pj, with

M (1)
=

( 0 ωL 0
−ωL −2Γ 0
0 0 − 2Γ

)
. (63)
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Fig. 8. Steady Lindblad. σx .

The polarization vector then varies as

Px(t) = e−Γ t
{
Px(0) cos (ωt)+

(
Px(0)

Γ

ω
+ Py(0)

ωL

ω

)
sin (ωt)

}
(64)

Py(t) = e−Γ t
{
Py(0) cos (ωt)−

(
Py(0)

Γ

ω
+ Px(0)

ωL

ω

)
sin (ωt)

}
Pz(t) = e−2Γ t Pz(0),

with ω =

√
ω2

L − Γ 2.

The second case is L(t) = σy, for which the polarization vector time dependence is given by:
Ṗi =

∑
j=1,3M

(2)
i j Pj, with

M (2)
=

(
− 2Γ ωL 0

−ωL 0 0
0 0 − 2Γ

)
. (65)
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Fig. 9. Steady Lindblad. σy .

The polarization vector then varies as

Px(t) = e−Γ t
{
Px(0) cos (ωt)+

(
−Px(0)

Γ

ω
+ Py(0)

ωL

ω

)
sin (ωt)

}
(66)

Py(t) = e−Γ t
{
Py(0) cos (ωt)+

(
Py(0)

Γ

ω
− Px(0)

ωL

ω

)
sin (ωt)

}
Pz(t) = e−2Γ t Pz(0),

with ω =

√
ω2

L − Γ 2.

Next case is L(t) = σz , for which the polarization vector’s time dependence is very simple:
Ṗi =

∑
j=1,3M

(3)
i j Pj, with

M (3)
=

(
− 2Γ ωL 0

−ωL −2Γ 0
0 0 0

)
. (67)

The polarization vector then varies as

Px(t) = e−2Γ t
{
Px(0) cos (ωLt)+ Py(0) sin (ωLt)

}
(68)
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Fig. 10. Steady Lindblad. σz .

Py(t) = e−2Γ t
{
Py(0) cos (ωLt)− Px(0) sin (ωLt)

}
Pz(t) = Pz(0).

All three of the above cases satisfy the condition [L, L†] = 0, and hence have increasing entropy
and decreasing purity as displayed in Figs. 8–10.

Next case is L(t) = σ+ =
σ1+iσ2√

2
for which the polarization vector’s time dependence is Ṗi =

δi3Γ +
∑

j=1,3M
(4)
i j Pj, with

M (4)
=

⎛⎜⎜⎜⎝
−

1
2
Γ ωL 0

−ωL −
1
2
Γ 0

0 0 − Γ

⎞⎟⎟⎟⎠ . (69)

The polarization vector then varies as

Px(t) = e−
1
2Γ t

{
Px(0) cos (ωLt)+ Py(0) sin (ωLt)

}
(70)
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Py(t) = e−
1
2Γ t

{
Py(0) cos (ωLt)− Px(0) sin (ωLt)

}
Pz(t) = 1 + e−Γ t (−1 + Pz(0)).

Here we see that the z-component changes faster than the other components and increases with time
from its initial value to one. The σ+ is a lowering operator and drives the system towards a pure |0⟩
state and thus decreases entropy. This decrease is also seen from [L, L†] = +2σz and thus Ṡ ≥ −2Γ Pz .

Last case is L(t) = σ− =
σ1−iσ2√

2
for which the polarization vector’s time dependence is Ṗi =

−δi3Γ +
∑

j=1,3M
(5)
i j Pj, with

M (5)
=

⎛⎜⎜⎜⎝
−

1
2
Γ ωL 0

−ωL −
1
2
Γ 0

0 0 − Γ

⎞⎟⎟⎟⎠ . (71)

The polarization vector then varies as

Px(t) = e−
1
2Γ t

{
Px(0) cos (ωLt)+ Py(0) sin (ωLt)

}
(72)

Py(t) = e−
1
2Γ t

{
Py(0) cos (ωLt)− Px(0) sin (ωLt)

}
Pz(t) = −1 + e−Γ t (1 + Pz(0)).

Herewe see that the z-component changes faster than the other components and decreaseswith time
from its initial value to minus one. The σ− is a raising operator Fig. 1 and drives the system towards a
pure |1⟩ state. We now have [L, L†] = −2σz and thus Ṡ ≥ +2Γ Pz , which is positive initially (Pz > 0)
and turns negative after Pz flips to negative values.

These last two cases displayed in Figs. 11–12 do not satisfy the condition [L, L†] = 0, and their
entropy and purity evolutions do not satisfy the dS

dt ≥ 0 and dP(t)
dt ≤ 0 rules.

These various choices for Lindblad operators provide different behavior. For example, the L = σz
gives attenuation of the x and y polarization vectors and leaves the z component fixed. As we see later
that case describes a system that has an increasing entropy at a fixed temperature. To model a system
that evolves with fixed temperature, increasing entropy and no heat flow, we later turn to the Beretta
form.

4.3.3. Lindblad projective measurement
The Lindblad operator represents a disturbance of the system due to outside effects. The act of

measurement is an important outside effect in that a device is used to act on the system and to record
its impact. As an example of how a Lindblad operator can represent the measurement process, we
consider a one qubit system and its associated observable polarization vector. The Lindblad operator
is assumed to be of the form

L = (σ⃗ · a⃗) θM (t) (73)

θM (t) =
1
2

{
Erf
( t − t1

r

)
− Erf

( t − t2
r

)}
,

where θM (t) is a pulse that equals one in the interval t1 to t2 with soft edges with a small r = τm/100.
This Lindblad pulse acts on the system during a short interval τm = t2− t1. The center of the pulse is at
t0 ≡

t1+t2
2 , and themeasurement is over at time tm = t2. The real unit vector a⃗ ≡ axn̂x +ayn̂y +az n̂z ≡

m̂ is used to implement a measurement in the m̂ direction. Note:
∫

∞

−∞
θM (t) dt = t2 − t1.

In order to minimize any precession effect during the measurement, we need to have a very fast
pulse with a strong Lindblad strength Γ ≫ ωL.9 We could simply stop the precessionωL → 0, during
the short measurement period τm. That stoppage could be implemented by a Hamiltonian bias pulse
to generate temporary level degeneracy.

9 The Beretta and Bath terms do not affect the measurement provided γ2 ≪ Γ and γ3 ≪ Γ .
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Fig. 11. Steady Lindblad: σ+ . This operator drives the system towards a pure |0⟩ state.

Let us focus on how the polarization evolves during this measurement. The change in polarization
vector is now (see the Appendix) for large Γ

d
dt

P⃗(t) = −ω⃗L × P⃗(t) + 2 Γ
−→
δP (t) → +2 Γ

−→
δP (t) (74)

−→
δP (t) = θ2M (t) (−P⃗(t) + (m⃗ · P⃗(t)) m⃗).

We have set the Lindblad parameters as real αi = ai for i = 1 . . . 3, and â.â = 1. The condition
[L†, L] = 0 holds and thus the system’s entropy increases during the measurement. A measurement
along axis m̂ becomes:

d
dt

P⃗(t) = −2 Γ
{
P⃗(t) − (m̂ · P⃗(t)) m̂

}
θ2M (t), (75)

which displays the measurement property that the polarization in the measurement direction is
unchanged in time,whereas the components in the other directions are reduced to zero rapidly. Inside
the pulse time region the rule for one qubit is simply:

d
dt

(m̂ · P⃗(t)) = 0 (76)
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Fig. 12. Steady Lindblad: σ− This operator drives the system towards a pure |1⟩ state. Note here entropy first increases and
then decreases.

d
dt

(m̂⊥ · P⃗(t)) = −2Γ (m̂⊥ · P⃗(t)),

where m̂ denotes the measurement direction and m̂⊥ directions perpendicular to the measurement
direction. In the pulse time region, clearly m̂ · P⃗(tm) = m̂ · P⃗(t1) & m̂⊥ · P⃗(t) = e−2Γ (t−t1) m̂⊥ · P⃗(t1),
where t1 is themeasurement starting time. HereΓ ismuch larger than the Larmor frequency to assure
rapid collapse of the density matrix under measurement. Thus the perpendicular component goes to
zero rapidly at the end of the measurement tm; to assure that limit the value of τm = t2 − t1 is set
equal to π/Γ . Then e−2Γ (t2−t1) = e−2π

≈ 0.0019. To obtain a better zero a smaller τm can be used,
but then the numerical evaluation requires increased precision.

The removal of perpendicular polarization components by measurement, shifts the one-qubit
eigenvalues towards 1/2, with a corresponding increase in entropy and decrease in purity. The
measurement is completed at time tm when no further change occurs and the collapsed components
have been removed. Therefore the final polarization is

P⃗F = (m̂ · P⃗I ) m̂. (77)
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Measurement operator
The above Lindblad dynamical picture of measurement is equivalent to the Copenhagen version of

density matrix collapse. The one-qubit operator for a projective measurement is in general

Mα = |α⟩⟨α| =
1
2

{
(σ0 + σ⃗ · m̂α)

}
, (78)

where m̂α denotes a measurement direction. For a projective measurement the states |α⟩ are or-
thonormal. Two sequential identicalmeasurementsMαMα = Mα , are equivalent to onemeasurement.
For two distinct measurements β ̸= α MβMα = |β⟩⟨β|α⟩⟨α| = 0. Thus for a basis of distinct
measurements MβMα = δβ αMα. A complete set of measurements yields

∑
αMα = 1. A simple

example of these general remarks is taking α = m̂ and β = −m̂. Compounding both of these
measurements for polarization in the positive and negative m̂ directions is used to construct a final
state density matrix after such measurements.

In line with these remarks, the usual quantum rule for the final density matrix after projective
measurement is

ρF =

∑
α MαρIMα

Tr(MαρIMα)

=

∑
α(|α⟩⟨α|) ⟨α|ρI |α⟩∑

α⟨α|ρI |α⟩
, (79)

where the state sum is over the ±m̂ directions. Note that the probability for a specific measurement
is ⟨α|ρI |α⟩ = Tr(MαρI ) =

1
2 (1 + P⃗I · m̂α) and then the probability summed over both directions is∑

α⟨α|ρI |α⟩ = 1. Evaluation of the numerator, then gives the final density matrix

ρF = |m̂⟩⟨m̂|
1
2
(1 + P⃗I · m̂) + |−m̂⟩⟨−m̂|

1
2
(1 − P⃗I · m̂)

=
1
2
(σ0 + P⃗I · m̂(|m̂⟩⟨m̂| − |−m̂⟩⟨−m̂|))

=
1
2
(σ0 + P⃗I · m̂ σ⃗ · m̂)

P⃗F = (m̂ · P⃗I )m̂. (80)

The final result shows that the usual measurement operator collapse is equivalent to a time-
dependent Lindblad equation approach to measurement. If the Lindblad equation can be mapped to
a stochastic Schrödinger equation, that would be an additional step towards a dynamic view of state
collapse during measurement.10

A numerical example of a one-qubit Lindbladmeasurement is shown in Fig. 13. In this example the
measurement is accomplished by a strong, fast Lindblad operator pulse (Γ = 100ωL = 26.752 GHz)
in direction m̂ = (x̂ + ẑ)/

√
2. The pulse starts at t1 = 2 TL = 46.973 ns and ends at time

t2 = t1 + τm = 47.091 ns. The Larmor precession period (TL = 23.487 ns) is much less than the
pulse width (τm = π/(2Γ ) = 0.117 ns), which is set so negligible precession occurs during the
measurement pulse. The initial polarization at t = 0 equals (Px(t1), Py(t1), Pz(t1)) = (0.2, 0.4, 0.8).
The measurement is completed at time t2 with a Lindblad operator θM (t) (σx + σz)/

√
2. As expected,

the polarization vector after this measurement collapses to P⃗z = P⃗x = .5 and P⃗y = 0.
In Fig. 14, we take a closer look at the above measurement example. The left plot shows the initial

precession, the rapid measurement starting at t1 = 2 TL == 46.97 ns and the post-measurement
precession. The measurement collapses the z and x components to equal values of 0.5; whereas, in
the un-measured perpendicular ŷ direction the polarization collapses to zero. Thereafter, normal

10 S. Weinberg [23,24] has recently used the Lindblad equation to describe measurement from a more sophisticated view
point which he suggests provides a conceptually improved starting point for formulating quantummechanics. Also see [25,26]
for earlier work based on a formulation of nonequilibrium quantum thermodynamics.
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Fig. 13. Measurement as a strong Lindblad operator pulse. (a) Polarization vector evolution. Note after measurement
polarization vector collapses to P⃗ = (P⃗I · m̂) m̂ = (0.50, 0.0, 0.50), with Py → 0. (b) Change in eigenvalues as expected from
reduced magnitude of polarization vector; (c) Entropy increase due to measurement; (d) Energy change due to heat transfer;
(e) Original precession cone followed by collapse to final (solid green) vector and continued precession. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. The initial precession followed by the rapid measurement and then continued precession: (a) shows the evolution
during the 0 to 100 ns time; (b) shows the detailed evolution during the t1 to t2 pulse (marked as vertical dotted lines).
In both plots the initial polarization (Px(t1), Py(t1), Pz (t1)) → (Px(t2), Py(t2), Pz (t2)) with Py(t2) = 0 and Px(t2) = Pz (t2) =

(Px(t2) + Pz (t2))/2 as expected.

precession continues starting from the measured Px = Pz = .5, Py = 0 values after collapse. The
right plot shows the details during the pulse with the vertical dotted lines indicating the start and end
of the Lindblad pulse.

This procedure is readily generalized to multi-qubit, qutrit and hybrid cases, by extension to a
wider range of polarization observables.



66 F. Tabakin / Annals of Physics 383 (2017) 33–78

Fig. 15. Lindblad pulse L(t) = σ1 θL(t), acts from t1 = 46.97 to t2 = 47.44 ns. Strength Γ = 2ωL = 0.535 GHz was used to
enhance the Lindblad pulse role. The initial polarization vector is {0.2, 0.4, 0.8}.

4.3.4. Noise Lindblad operator
We do not use steady Lindblad operators! Instead the Lindblad form is used only to incorporate

noise pulses. If a noise pulse coincides in timewith a gate pulse, we denote those cases as gate friction.
It is possible to design time-dependent Lindblad operators that could drive the system to a specific
equilibrium state or could describe a closed system that evolves with no heat transfer, but increasing
entropy. These would be rather complicated Lindblad operators. It is much simpler to separate those
effects into the Bath and Beretta terms, as we advocate. Thus in this treatment, the Lindblad form is
only used to include random noise, gate friction and as described earlier, measurements.

Some simple examples of Lindblad pulses are now provided. The first Fig. 15 is a Lindblad pulse
L(t) = σ1 θL(t), acting at a time t0 withwidth τL. A simple soft square shape is used to introduce noise:

θL(t) =
1
2

[
Erf
( t − t1

τ

)
− Erf

( t − t2
τ

)]
,

where
∫

∞

−∞
θM (t) dt = t2 − t1, and θM (t0) = 1, along with Γ set the strength of the pulse. Fig. 16

provides a closer look at the action of this Lindblad operator during its pulse. During the pulse, the z
and y polarizations are reduced and the x component is unchanged, which is reflected in the increase
of entropy and the eigenvalue motion towards equality seen in Fig. 15.

The second example Fig. 17 consists of four σ1 noise pulses of fixed strength L(t) = σ1
∑

i,1,4θL(t −

∆i), acting at a times t0 +∆i with fixed width τL.
Finally, we present a case Fig. 18 with eight random Lindblad pulses each of general form α⃗ · σ⃗ .

In that complex case periods of entropy decrease as well as increase occur. In general, the Lindblad
pulse set is designed to simulate the extant noise impacting the system.

In the above cases there are no gates, just Lindblad noise.
These are preliminary tests of the stability of quantum memory under the intrusion of noise. The

stability of quantummemory is illustrated in Fig. 19where the dependence of Fidelity on the Lindblad
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Fig. 16. View of Lindblad pulse L(t) = σ1 θL(t) (a) over the 0 to 200 ns time span (b) during the pulse period. Vertical dashed
lines indicate pulse start t1 = 46.97 ns and finish at t2 = 47.44 ns. Change of polarization due to this Lindblad pulse is given
by δP⃗ = −2Γ {0, Py, Pz}, see the Appendix. Again Γ = 2ωL enhances the Lindblad pulse role. The initial polarization vector is
{0.2, 0.4, 0.8}.

Fig. 17. Four equi-spaced Lindblad pulses L(t) = σ1 θL(t), acting from t1 = 46.97 ns to tf = 104.7 ns, of width 0.47 ns. A large
Γ = 2ωL was used to enhance the Lindblad pulse role. The initial polarization vector is {0.2, 0.4, 0.8}.

strength is displayed. The two density matrices used in the fidelity are ρ(t) at t1 = 2TL and at a final
Larmor grid time after the noise abates, tf = Mod[tend, TL] × TL, i.e. on the Larmor time grid. This
procedure can set limits on allowed noise to maintain a stable density matrix. Later memory stability
will also be tested including the Beretta and Bath terms.

In all cases, we use a positive strength Γ ≥ 0 for the Lindblad noise model. However, it has been
noted in the literature [30] that a negative Γ ≤ 0 can simulate non-Markov effects. This would
represent an environment that is affected by the system and after a delay feeds back some of the
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Fig. 18. Eight random Lindblad pulses of width 0.47 ns acting at equally spaced time intervals during t1 = 46.97 ns to
tf = 355.9 ns. Each pulse is of form L(t) = α⃗ · σ⃗ θL(t), with complex random α⃗. Note that the entropy decreases in intervals
when [L†, L] ̸= 0. Vertical dotted lines indicate the start of the first and end of the last pulse. A large Γ = 2ωL was used here
to enhance the Lindblad pulse role. The initial polarization vector is {0.2, 0.4, 0.8}.

information to the system, thereby ameliorating the detrimental effects of noise. This kind of feed-
back is well known in the optical model of nuclear reactions as formulated by projection operator
methods. Design of such an environment could be the key to achieving stable memory and operations
in a QC. This will be explored in a future study.

4.3.5. Gates plus Lindblad operators
In addition to evolution of a non-degenerate system subjected to Lindblad noise, we can include

quantum gates. The cases of a NOT gate and then of a Hadamard gate along with three subsequent
random noise pulses are shown in Fig. 19. As a figure of merit, the fidelity, evaluated on the Larmor
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Fig. 19. Top(Not), Bottom(Hadamard) gates followed by three random Lindblad pulses at equally spaced time intervals. Gate
pulse is from t1 = 46.97 ns to t2 = 47.443 ns, of width 0.47 ns. Lindblad pulses are L(t) = α⃗ · σ⃗ θL(t), with complex random α⃗.
Vertical dotted lines mark start/end of the Lindblad noise. Different Γ ′s show effect of noise on the gate fidelity. Symbols are
on the Larmor period grid.

period TL grid is displayed in Fig. 19 for various Lindblad strengths Γ , which illustrates how noise can
affect efficacy and how to ascertain the allowed noise level to accomplish a simple process.

4.4. Equilibrium-closed system

Now let us consider the case of unitary evolution, absent noise but subject to the Beretta term L2.
For a simple initial state as stipulated in Table 1, we see in Fig. 20 that for a closed system as described
by L2, the entropy increases uniformly and no heat is transferred. This is accomplished by a steady
reduction of the polarization vector components in directions perpendicular to the axis associated
with the level splitting, in this case the ẑ axis. Since both Px & Py decrease, while Pz remains fixed, it
follows that the entropy increases and the purity decreases since they both depend on the length of the
polarization vector, which gets reduced. The temperature of the system is dictated by the unchanging
Pz component, so the closed system has a fixed temperature determined by the initial condition. That
is consistent with the no heat transfer property of the Beretta term.

Fig. 21 shows the same situation when a Not gate is included.
These statements generalize to multi-qubit and qutrit system, which involve more spin observ-

ables.
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Fig. 20. Density matrix evolution with unitary plus Beretta closed-system term. The polarization in the z-direction stays fixed,
while the perpendicular components decay. No energy flows into or out of the system and the temperature is fixed by the initial
value. The entropy increases steadily.

4.5. Equilibrium-thermal bath

In Fig. 22, the case of unitary evolution absent gates, but with a Korsch (K) type bath L3 is shown.
The temperature of the bath is stipulated by setting T = 0.273 K and thus β =

1
kBT

= 0.0425 (µeV)−1.
Since T is higher than the temperature obtained from the initial density matrix T0 = 0.00093 K, heat
flows into the system, polarization moves closer to zero, entropy goes closer to 1. (When the bath
temperature is lower than the initial temperature T0, heat flows out and the final z-polarization is
larger than the initial value.) The final equilibrium density matrix is of Gibbs form, as expected.

In Fig. 23, a special comparison of Korsch(K) and Beretta(B) cases are compared for the same
situation, TQ was selected11 to give similar results for the polarization, entropy, and energy evolutions.
Recall that for a (B) bath the ratio Q̇/Ṡ is held fixed by TQ , while the parameter β3(t) is state and hence
time-dependent; while, for a (K) bath β3(t) is kept fixed, but the Q̇/Ṡ ratio varies with time as seen
in Fig. 23. The Q̇ ′, Ṡ and Q̇/Ṡ display interesting differences. A rescaling Q̇ ′

= 8.2Q̇ is used for a
closer look at the detailed evolution, where for (B) the energy and entropy rates are instantaneously
correlated. This seems a correct property for an ideal bath, in contrast to a time lag between an entropy
rate peak followed by a later energy transfer peak as seen for the Korsch case. The (K) shows a smooth
and substantially increasing Q̇/Ṡ, but an expected steady value for the (B) bath. The net change in

11 The value of TQ was set by the overall ratio (Q (tf ) − Q (0))/(S(tf ) − S(0)), where the final values are determined by β3 .
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Fig. 21. Density matrix evolution with unitary evolution including a Not gate, plus the Beretta closed-system term. The
polarization in the z-direction flips, while the perpendicular components decay. Energy of the system changes because of the
Not gate. The entropy increases steadily. Temperature experiences an inversion. Vertical dashed lines indicate the start and end
times of the Not gate.

energy and in energy are the same for both cases bydesign.Note that equilibrium is reached somewhat
earlier for the (B) bath.

4.6. Equilibrium—thermal bath plus Lindblad

To gain additional insight concerning the Beretta (B) bath density matrix evolution, consider a
simple case with no gates, and steady Lindblad operators of either σ− or σ+ form; these are compared
in Fig. 24. The Q̇/Ṡ ratio now consists of the fraction12

Q̇
Ṡ

=
Q̇1 + Q̇2 + Q̇3

Ṡ1 + Ṡ2 + Ṡ3
=

Q̇1 + Q̇3

Ṡ1 + Ṡ2 + Ṡ3
→

Q̇1 + Q̇3

Ṡ1 + Ṡ3
, (81)

where the closed system term is now omitted (when on, it has: Q̇2 = 0, and Ṡ2 > 0).
For a σ− Lindblad term Fig. 12, Q̇1 is positive and decreasing and Ṡ1 starts positive, decrease to zero

at t ≈ 40 ns, then goes to a small negative value. For a σ+ Lindblad term Fig. 11, both Q̇3 and Ṡ3 are
both negative decreasing. Meanwhile, the (B) bath contributions have positive Q̇3, Ṡ3.

For σ+, starts positive and becomes negative as the upper level getsmore occupied and the entropy
heads for zero. Recall that a σ− Lindblad first increases the entropy and then drives it towards zero,

12 The subscript labels are 1: Lindblad, 2: closed system, 3: Bath.
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Fig. 22. Evolution with unitary plus Korsch bath terms. Bath temperature is T = 0.273 Kelvin and initial state temperature
is T0 = 0.00093 Kelvin. Equilibrium eigenvalues are both close to 1/2, corresponding to a maximum entropy of almost 1. The
final polarization vector is P⃗ = {0, 0, 0.0037}, which is determined by the bath T = 0.273 Kelvin.

while also flipping the z-polarization. In contrast the σ+ Lindblad depopulates the upper level and
drives the entropy down from its original value, with a corresponding increase in the z-polarization.

As a result of these properties, the denominator changes sign when the Lindblad entropy slope
becomes strong enough to exceed the positive bath entropy rate of increase.

As a result, the Q̇
Ṡ
changes sign and deviates from its steady value where such cancellations occur.

The up–down–up spike for σ−, near 62 ns and the down–up–down spike for σ+, near 70 ns follow
from the differing Q̇1, Q̇3 and Ṡ1, Ṡ3 signs and trajectories near the entropy nodal regions. It would be
interesting to see if such flips appear with realistic noise.

5. One qubit system and the full model master equation

The full model master equation includes unitary evolution with gate pulses, the Lindblad L1 with
noise pulses, the Beretta L2 to describe a closed system, and a bath L3 term to include contact with
a bath of fixed temperature. This provides a flexible model that can be used to gain insight into QC
dynamics and gauge the requisite condition for a successful QC process. We give a simple example
here, with additional cases and tools to be posted.

5.1. Full master equation not gate

In Fig. 25, a full model master equation case is displayed with a single Not gate. The initial
polarization P⃗ = {0.2, 0.4, 0.8} precesses about the z-axis with a Larmor angular frequency of
ωL = 0.2675 GHz. Eight random equi-spaced Lindblad pulses act during the t = 46.9 to 531 ns
interlude; the overall Lindblad strength is set as Γ = 0.4ωL. At 46.9 ns a Not gate acts. The Beretta
(closed system) strength is set as γ2 = .01ωL, The bath term strength γ3 = .005ωL, and the bath
temperature is 27.3 K. The evolution of the polarization shows a Pz gate flip followed by attenuation
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Fig. 23. Comparison of the Korsch (K) and Beretta (B) baths. Here there are no gate, Lindblad or closed system terms. The Beretta
clearly displays a steady value for Q̇/Ṡ of kBT =. The Korsch bath has a constant value β3 =, but the Q̇/Ṡ is very different. Energy
unit is µeV and time in nsec. Note: Beretta bath equilibrates first.

and noise alterations, as expected. The Lindblad noise shows up as jagged entropy evolution, where
the randomnature of the Lindblad pulses allows for entropy decreases aswell as increases. The energy
plot shows the Not and bias pulse work and the energy flip to increased energy occupation.

In Fig. 26, the fidelity, entropy and purity evolutions are presented with values on the Larmor grid
(integer multiples of TL) indicated by red dots (fidelity), blue diamonds (entropy) and orange squares
(1-purity). There is a clear reduction in fidelity due to noise and gradual fall off from the Beretta and
bath effects. Both entropy and purity reveal the affect of Lindblad noise.

In Fig. 27, the case of two sequential Not gates is shown. Studies of other gate sequences and
alternate noise scenarios reveal similar properties. Cases of no gates, but noise, Beretta and bath terms
can be used to identify quantum memory losses.

6. Conclusions and future steps

6.1. Conclusions

Themain result from this study is the design of a dynamical densitymatrixmodel that incorporates
the essential features of a quantum computer. Although much of the input is well-known, it is
shown here how to implement unitary gate pulses, plus an associated bias pulse, to replicate the
usual quantum gates. The bias pulse is introduced to obviate the accumulation of detrimental phase
accumulations due to qubit non-degeneracy. To replicate the QC static gate network for a sequence
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Fig. 24. Sample result for a Beretta (B) bath with steady σ− and σ+ Lindblad operators. Here gate and closed system terms are

omitted. The Beretta displays a steady value for Q̇/Ṡ except in ¯̇S1 +
¯̇S3 → 0 regions induced by σ± Lindblad operators.

of gates, it is shown that the various gates also need to be applied on the Larmor time grid. The
model also includes dissipative, decoherence and thermodynamic effects. The Lindblad addition to
unitary dynamics has the essential feature of maintaining the unit trace, Hermiticity and positive
definite nature of the evolving density matrix. A general Lindblad form, after examining various static
Lindblad operators, is used to incorporate random noise and gate friction effects; these are input as
non-static pulses. In addition, strong rapid Lindblad operators are implemented as measurements,
and the associated restriction to be valid measurements examined. Although many other effects can
also be cast into Lindblad form, it is much simpler to design separate forms for closed systems and
for system–Bath interactions. The closed system form is one developed by Beretta based on a general
study of non-equilibrium thermodynamics. Two types of system–Bath interactions are examined, one
that has been studied before, and another one also originated by Beretta that is illustrated herein to
have physical advantages. Another result of this study is provided by several examples of how to apply
the fullmodel including randomnoise, gate friction, closed system entropy increase, and system–Bath
interactions to a set of unitary gates. Fidelity is used to gauge the stability of such a QC setup. This
illustrates how the model can be used as a tool to examine and design valid experiments to achieve
stable quantum computation.

6.2. Future steps

Clearly, there is much more to explore. Extension to two or more qubit systems is planned along
the lines delineated in this work, as well as generalization to qutrit and hybrid qubit/qutrit systems.
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Fig. 25. A Full master equation case with a Not gate, Lindblad noise and Beretta and Bath terms.

Application to small Carnot and Otto cycle qubit engines would aid in clarification of non-equilibrium
dynamics and of non-ideal QC [31,32]. Such studies will be greatly influenced by the preferred choice
of a Beretta type bath model.
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Fig. 26. Fidelitywith a Not gate, noise and Beretta and Bath terms. Between the vertical dashed lines eight Lindblad noise pulses
occur. Fidelity, entropy and purity are shown on the Larmor period grid. The full master equation density matrix is compared
to the expected ρe = σ1 ·ρ(0) ·σ1, by examining the Fidelity(ρ(t), ρe). The fidelity jumps to one after the gate, then drifts down
due to noise, Beretta and Bath terms.

Fig. 27. Fidelity for two sequential not gates, Beretta and bath terms as in Fig. 26. Noise occurs between the vertical dashed
lines, but differs from prior plot. After the second not gate, the fidelity does not equal 1, due to the noise, Beretta and bath
effects.

Lindblad pulses as measurement operators warrant further exploration. One possibility is to
generate a stochastic Schrödinger equation that approximates this densitymatrixmodel, as ameans of
exploring quantumwave function collapse. Of course, themain application should be toQC algorithms
using realistic parameter settings based on extant experiments to explore the requisite conditions for
good fidelity results. Error correction methods can also be evaluated for their efficacy.

It might also be possible to invent pulses or chirps to simulate non-Markovian dynamics as a
potential mechanism for enhancing QC memory and algorithm efficiency.

It is hoped that the methods explored here will help in these directions.
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Appendix. One-Qubit Lindblad in simplified form

To gain insight into the effect of the Lindblad operators on the evolution of the density matrix
as stipulated by the motion of the polarization vector, let us generate the equation for the time
dependence of P⃗(t). The general form of the Lindblad term is

L1 = Γ
−→
δP (t) · σ⃗ (A.1)

where
−→
δP (t) is a real vector in (x, y, z) spin space. That form arises from the fact that L1 is a traceless

and Hermitian scalar. Our task is to express
−→
δP (t) in terms of the Lindblad parameters αi.

The first step in extracting that result is to take the ensemble average
d
dt

Tr
[
σ⃗ ρ(t)

]
= Tr

[
σ⃗

d
dt
ρ(t)

]
=

d
dt

P⃗(t) (A.2)

d
dt

P⃗(t) = −
i
h̄
Tr
[
σ⃗

[
H(t), ρ(t)

]]
+ Tr

[
σ⃗L1

]
.

For a Hamiltonian H ≡ −
h̄
2 ωL σ⃗ · ĥ, the first term in Eq. (A.2) becomes

−
i
h̄
Tr
[
σ⃗

[
H(t), ρ(t)

]]
= −ωL ĥ × P⃗(t),

which yields a Larmor precession of the polarization vector about the direction ĥ. We then have
d
dt

P⃗(t) = −ωL ĥ × P⃗(t) + 2 Γ
−→
δP (t). (A.3)

For the second term in Eq. (A.2) , after inserting the expansions of both the density matrix and the
Lindblad and taking the traces, one arrives at the following result:

−→
δP (t) = −a2 [P⃗(t) − (â · P⃗(t)) â] − b2 [P⃗(t) − (b̂ · P⃗(t)) b̂]

+ P⃗(t) × (a0 b⃗ − b0 a⃗) + 2(a⃗ × b⃗).

We have expressed the eight complex Lindblad parameters α0, α⃗ in terms of eight real quantities by
the definition αj = aj + i bj for j = 0 . . . 3. Recall that L = α0 σ0 + α⃗ · σ⃗ .

The three components of the vector
−→
δP (t) give the change in the associated component of the

polarization vector induced by the Lindblad term and allows one to identify how the Lindblad
coefficients (and the corresponding Pauli operators) affect themotion of the polarization vectorwithin
the Bloch sphere. For example for b0 → 0, and b⃗ → 0 the result simplifies to

−→
δP (t) → −a2 [P⃗(t) − (â · P⃗(t)) â], (A.5)

which yields a reduction in the polarization components in the direction perpendicular to â. For â in
the x–y plane, this would take a polarization vector precessing about say the z-axis13 andmove it into
the Bloch sphere in a spiral motion towards a limit of zero polarization or maximum entropy. This is
clearly a dissipative or friction situation.

Eq. (A.3) also gives the time derivative of P⃗(t) · P⃗(t), as
d
dt

P⃗(t) · P⃗(t) = 2 P⃗(t) ·
d
dt

P⃗(t)

= 4 Γ P⃗(t) ·
−→
δP (t)

= 4 Γ {−a2 P2
[1 − (â · n̂)2] − b2 P2

[1 − (b̂ · n̂)2] + 2 a b (â × b̂) · P⃗ }. (A.6)

13 In this case, we have assumed that the Hamiltonian is of the simple form H = −
h̄
2 ωL σ⃗3 .
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Since (â · n̂)2 and (b̂ · n̂)2 are both less than 1, the first two terms reduce P. The third term contributes
only when (â × b̂) ̸= 0, and it can be positive or negative. Since [L, L†] = 4 a b (â × b̂) · σ⃗ , we see
that the polarization vector decreases when [L, L†] = 0, but can increase when [L, L†] ̸= 0. since the
purity, entropy and eigenvalues depend only on P, this shows that purity decreases, entropy increases
and eigenvalues move towards 1/2, when [L, L†] = 0, and purity can increase, entropy can decrease
and eigenvalues can move towards 1 and 0, when [L, L†] ̸= 0. For example, when a⃗ = nx /

√
2, and

b⃗ = ± ny /
√
2, the third term becomes ±2 a b Pz , which increases P when ±Pz > 0 and decreases P

when ±Pz < 0. This explains the numerical results for the role of Lindblad operators.
The role of each Lindblad operator, as stipulated by the aj, bj parameters, can thus be understood

based on Eq. (A.3). Eq. (A.5) plays an important role when Lindblad is a measurement operator.
The eight real parameters aj, bj, j = 0 . . . 3 are used as time-dependent pulses to simulate external

dissipative and decoherence effects.
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