
QDENSITY/QCWAVE: A MATHEMATICA
QUANTUM COMPUTER SIMULATION

EXTENSION AND UPGRADE.

Frank Tabakina

a Department of Physics and Astronomy
University of Pittsburgh, Pittsburgh, PA, 15260

tabakin@pitt.edu

Abstract

The Mathematica quantum computer simulation packages QDENSITY and
QCWAVE are extensively extended and upgraded. The density matrix is fea-
tured in QDENSITY while in QCWAVE a quantum state vector approach is
stressed. The present versions are provided in several associated packages;
namely, QDensity, QCWave, BTSystem and Circuits . Tutorials are presented,
some of which update earlier ones, plus several new ones that illustrate the
capabilities of the packages.

This version includes improved treatment of tensor products of states and
density matrices, based on new features that are included in Mathematica 9
- 10.3. A major extension to include qutrit (triplet), as well as qubit(binary)
and hybrid qubit/qutrit systems is described in tutorials and in the associated
BTSystem package. Many other new features are also illustrated in tutorial
notebooks. Updated sample quantum computation algorithms and entangle-
ment studies are presented, including Schmidt decomposition, entropy, mutual
information, partial transposition, and calculation of the quantum discord. Ex-
amples of Bell’s theorem are also included. These extensions and upgrades will
hopefully be instructive and also aid in studies of QC dynamics, stability, and
efficacy of error correction methods.

Program Summary
Title of programs: QDensity, QCWave, BTSystem, Circuits

Catalogue identifier:
Program summary URL: http://cpc.cs.qub.ac.uk/summaries
Program available from: CPC Program Library, Queen’s University of Belfast,
N. Ireland.
Operating systems: Any operating system that supports Mathematica.
Programming language used: Mathematica 9.0-10.3.0.
Number of bytes in distributed program, including test code and documentation:
55MB
Distribution format: zip

Preprint submitted to Elsevier December 2, 2015

Nature of Problem: Simulation of quantum algorithms, Qubit and Qutrit hybrid
systems, entanglement criteria, (including Schmidt decomposition, entropy, mu-
tual information, partial transposition, quantum discord) and Bell’s theorem.
Method of Solution: A Mathematica package containing commands to create
and analyze quantum circuits is upgraded and extended. Mathematica tutori-
als and notebooks illustrate the capabilities of the packages and demonstrate
quantum computation applications.

2

Contents

1 INTRODUCTION 5

2 Qubit and Qutrit States 5
2.1 Single Qubit and Qutrit states 6
2.2 Multi-Qubit and Qutrit states . 6

2.2.1 Two-Qubit states . 8
2.2.2 Two-Qutrit states . 8
2.2.3 Hybrid Qubit - Qutrit (BT) states 11

3 Qubit and Qutrit Gates 13
3.1 Single-Qubit Basis . 13
3.2 Multi-Qubit Operator Basis . 15
3.3 Single-Qutrit Basis and Gates 16
3.4 Multi-Qutrit Basis and Gates . 20
3.5 Qubit-Qutrit Operators . 25
3.6 General Operators . 26

3.6.1 General Qubit Operators 26
3.6.2 General Qutrit Operators 26
3.6.3 General BT Hybrid Operators 26

4 Entanglement 30
4.1 Schmidt decomposition . 30
4.2 Entropy, mutual information, Quantum Discord 32

4.2.1 Partial Trace . 34
4.2.2 Discord . 34

4.3 Partial Transposition . 35
4.4 Bell’s theorem . 35

5 Other new aspects 36
5.1 QC algorithms & Simulations 36

6 Future Plans: Parallel & Cuda versions 36

A Tutorials 39

3

List of Figures

1 Single qubit states. DForm and DFormA display qubit kets and
bras. 7

2 Single qutrit states. DFormT and DFormTA display qutrit kets
and bras. 7

3 Two qubit states. DForm and DFormA display two-qubit kets
and bras. 10

4 Two qutrit states. DFormT and DFormTA display two-qutrit
kets and bras. 10

5 Multi-qubit states using the KetV command. 11
6 A hybrid qubit-qutrit state. DFormBT (DFormBTA) display hy-

brid BT kets (bras). Subscripts indicate if the entry is a qubit or
qutrit. 11

7 A hybrid QA= {B,B,T,B,T} state 12
8 A hybrid or Mixed Radix QA= {B,T,T,B,B,T,T} state. . . . 12
9 Qubit: Pauli and projection operators. 14
10 Qubit: Hadamard operator. 15
11 Qubit: CNOT and Toffoli gates. 16
12 Qutrit Basis—Spin-one case . 17
13 Qutrit Basis—Gell-Mann case . 18
14 Qutrit Basis—Generalized Pauli 19
15 Qutrit Basis—NOT gate . 19
16 Qutrit Basis—the qutrit Hadamard HT 20
17 Multi-qutrit basis and the SPT command 21
18 Two qutrit Hadamards on two qutrits 22
19 Qubit swap gates . 24
20 Qutrit swap gates based on CNOT1 & CNOT2 failure. 24
21 Qutrit swap gates based on CNOTH success 25
22 General qubit operators, Hadamard example. 27
23 General qutrit operator examples 28
24 General hybrid BT operator examples 29
25 Additional hybrid BT operator examples 29
26 Schmidt decomposition for a random 2 qubit state m. 31
27 Mutual Information example for a random BT density matrix Ω. 32
28 Discord example. Here Ω is a random 2-qubit density matrix, I

is the mutual information, CA the classical and QA the discord.
Surfaces for classical search are also shown. 33

29 The module Discord[ρ, Ic, np] = I[ρ]−C[ρ], where C is the classi-
cal evaluation of the conditional entropy < J >C . Note Ic selects
the discord case JA or JB and np stipulates the space used in
the requisite minimization and in the plot. Discord provides the
output array (SA, SB, SAB, I, C,D, plot). 33

4

1. INTRODUCTION

This paper is part of a series that provides a flexible simulation of a quan-
tum computer. Here the Mathematica(MM) packages QDensity [1], QCWave
[2] are greatly improved and extended. A Fortran-90 quantum computer (QC)
simulation package called QCMPI has been published [3], which uses parallel
processing and message passing interface(MPI) capabilities. Some features of
that work have been included in our present MM renditions. 1

In our earlier papers, we described qubit state vectors and associated am-
plitudes for one, two and multi-qubit states and methods for handling one, two
and three-qubit operators or gates acting on state vectors. The basic idea of
a density matrix and its formation have also been described earlier. For guid-
ance with these ideas and a description of our notation and usage, we refer the
reader to our earlier works. We have attempted to maintain consistent and clear
notation to aid the user.

In the present paper, we first describe qubit, qutrit and hybrid (mixed qubit
& qutrit) states in section 2. In section 3, the qubit gates are reviewed and
extended to qutrit and hybrid networks. The methods used to evaluate entropy,
mutual information, partial trace, quantum discord, partial transpose, and Bell’s
theorem are presented in section 4. Tutorials on the Bell inequalities and on the
Schmidt decomposition for two qubit, two qutrit and qubit-qutrit states are also
provided.

In section 5, additional upgrades, such as updated QC algorithms, a sample
extension of teleportation to qutrits, examples for random states and for Werner
and X-states are briefly mentioned.

Plans for future applications and enhancements are presented in section 6.
A list of associated tutorial notebooks and worksheets is in the appendix.

2. Qubit and Qutrit States

In this section, we discuss qubit and qutrit states. A qubit is a doublet
(2-level) system, for which we use a binary (B) designation; whereas, a qutrit
is a triplet (3-level) system, for which we use a ternary or triplet label (T). A
mixed system consisting of qubits and qutrits is called a BT system.2

After discussing the B, T, and BT states, we turn to one-body and two-body
operators or gates, section 3. Sample Mathematica(MM) cases are provided in

1The full QCMPI methodology can be implemented for Mathematica once MPI, is in-
corporated into Mathematica, as accomplished in the commercial product Pouch (see:
http://daugerresearch.com/pooch/mathematica.shtml).

2The BT system is also called a Mixed Radix(MR) system, which is for example a mixed
binary and ternary counting scheme. Such MR counting schemes are quite common; one ex-
ample, is days (24 hours), weeks(7 days), year(52 weeks). We provide Mixed Radix commands
DtoMR and MRtoD. The command MixedRadix is now included in MM10.2.

5

figures showing how various concepts are implemented in the packages, and as
an introduction to the extensive package tutorials.

2.1. Single Qubit and Qutrit states

The basic idea of a quantum state, its representation in Hilbert space and the
concepts of quantum computing have been discussed in many texts [4, 5, 6, 7]. A
brief review was given in our earlier papers in this series [1, 2, 3]. Here we review
aspects of one, two and multi-qubit states in preparation for the extension to
qutrit cases.

Recall that a general one qubit state is a superposition of the two states
associated with the 0 and 1 bits:

| Ψ1〉 = C
(1)
0 | 0〉+ C

(1)
1 | 1〉, (1)

where the basic kets |0〉 |1〉 and the adjoint bra states 〈0 | 〈1| are an orthonor-
mal(ON) basis, Their unit normalization 〈0 | 0〉 = 1, 〈1 | 1〉 = 1 is simply an
assertion for example that a state known to be in the | 0〉 state has unit proba-
bility of being in that state. Orthogonality 〈0|1〉 = 〈1|0〉 = 0 simply asserts that
the | 0〉 & | 1〉 states are distinct.

Using the above ON properties, we observe that C
(1)
0 ≡ 〈0 | Ψ1〉 and C

(1)
1 ≡

〈1 | Ψ1〉 are complex probability amplitudes for finding the general qubit Ψ1 in
the state | 0〉 or | 1〉, respectively. The normalization of the state 〈Ψ1 | Ψ1〉 = 1,

yields | C(1)
0 |2 + | C(1)

1 |2= 1. Note that the spatial aspects of the wave function
are being suppressed; which corresponds to the particle being in a fixed region.
The kets | 0〉 and | 1〉 can be represented as | 0〉 → (1

0) and | 1〉 → (0
1) . Hence

a 2× 1 matrix representation of this one-qubit state is:

| Ψ1〉 →
(

C
(1)
0

C
(1)
1

)
. (2)

This description applies to any two-level quantum system that can be associated
with | 0〉 and | 1〉.

2.2. Multi-Qubit and Qutrit states

For a quantum systems with three states (qutrits), the prior discussion can
be generalized for single qutrit states:

| ΨT1〉 = C
(T1)
0 | 0〉+ C

(T1)
1 | 1〉+ C

(T1)
2 | 2〉, (3)

where the ON qutrit basis states are three kets | 0〉, | 1〉, and | 2〉, which can be

represented as | 0〉 →
(

1
0
0

)
| 1〉 →

(
0
1
0

)
. and | 2〉 →

(
0
0
1

)
. Hence a 3× 1 matrix

representation of this one-qutrit state is:

| ΨT1〉 →

(
C

(T1)
0

C
(T1)
1

C
(T1)
2

)
. (4)

6

The qutrit normalization is | C(T1)
0 |2 + | C(T1)

1 |2 + | C(T1)
2 |2= 1. The three

states are simply alternate labels for the angular moment eigenstates for a spin
one system | SMS〉, with the connection being | 0〉 →| 1, 1〉, | 1〉 →| 1, 0〉, and
| 2〉 →| 1,−1〉.

This description applies to any three-level quantum system that can be as-
sociated with | 0〉, | 1〉, and | 2〉.

The MM display of single qubit and qutrit states are illustrated in Figs. 1
& 2. The MM commands are in bold and the results are presented below the
asterisks line.

�����[���[�]]

�����[���[�]]

�����[�� ���[�] + �� ���[�]]

������[�� ���[�] + �� ���[�]]

(* ****************************** *)

+ (�) |� >

+ (�) |� >

+ (��) |� > + (��) |� >

+ (��) < � | + (��) < � |

Figure 1: Single qubit states. DForm and DFormA display qubit kets and bras.

������[����[�]]

������[����[�]]

������[����[�]]

������[�� ����[�] + �� ����[�] + �� ����[�]]

�������[�� ����[�] + �� ����[�] + �� ����[�]]

(* ************************************* *)

+ (�) |� >

+ (�) |� >

+ (�) |� >

+ (��) |� > + (��) |� > + (��) |� >

+ (��) < � | + (��) < � | + (��) < � |

Figure 2: Single qutrit states. DFormT and DFormTA display qutrit kets and bras.

7

2.2.1. Two-Qubit states

For two qubits, we have a product state | q1 q2〉 =| q1〉 | q2〉, where q1, q2 take
on the values 0 and 1. This product is called a tensor product and is symbolized
as

| q1 q2〉 =| q1〉⊗ | q2〉. (5)

In QDENSITY , the kets | 0〉, | 1〉 are invoked by the commands Ket[0] and
Ket[1], and the two-qubit product state by | 00〉 = AF [Ket[0]⊗Ket[0]] , where
“AF” denotes array flatten 3.

The four kets | 00〉, | 01〉, | 10〉, and | 11〉 can be represented as 4×1 matrices

| 00〉 →

 1
0
0
0

 ; | 01〉 →

 0
1
0
0

 ; | 10〉 →

 0
0
1
0

 ; | 11〉 →

 0
0
0
1

 . (6)

Hence, a 4× 1 matrix representation of the two-qubit state

| Ψ2〉 = C
(2)
0 | 00〉+ C

(2)
1 | 01〉+ C

(2)
2 | 10〉+ C

(2)
3 | 11〉, (7)

is:

| Ψ2〉 →

C

(2)
0

C
(2)
1

C
(2)
2

C
(2)
3

 . (8)

Again C
(2)
0 ≡ 〈00 | Ψ2〉, C(2)

1 ≡ 〈01 | Ψ2〉, C(2)
2 ≡ 〈10 | Ψ2〉, and C

(2)
3 ≡ 〈11 | Ψ2〉,

are complex probability amplitudes for finding the two-qubit system in the states
| q1 q2〉. The normalization of the state 〈Ψ2 | Ψ2〉 = 1, yields

| C(2)
0 |2 + | C(2)

1 |2 + | C(2)
2 |2 + | C(2)

3 |2= 1. (9)

Note that we label the amplitudes using the decimal equivalent of the bit product

q1 q2, so that for example a binary label on the amplitude C
(2)
10 is equivalent to

the decimal label C
(2)
2 .

2.2.2. Two-Qutrit states

For two qutrits, we have a product state | q1 q2〉 =| q1〉 | q2〉,where q1, q2
take on the values 0, 1, and 2. This product is called a tensor product and is
also symbolized as | q1 q2〉 =| q1〉⊗ | q2〉. In QDENSITY , the kets | 0〉, | 1〉, | 2〉
are invoked by the commands KetT[0],KetT[1], and KetT[2], and the product
state by | 02〉 = AF [KetT[0]⊗KetT[2]] , where “AF” denotes array flatten. The

3The command ⊗ is now included in MM as a tensor product; however, it needs to be
corrected by the command AF to be in proper matrix form. Warning:There are two types
of ⊗ in MM 9-10; we now use ⊗ defined as [TensorProduct]; not as [CircleT imes]. Best
practice is to invoke the QDENSpalette14.

8

nine kets | 00〉, | 01〉, | 02〉, | 10〉, | 11〉, | 12〉, | 20〉, | 21〉, | 22〉 can be represented
as 9× 1 matrices

| 00〉 →

1
0
0
0
0
0
0
0
0

; | 01〉 →

0
1
0
0
0
0
0
0
0

· · · · · · | 22〉 →

0
0
0
0
0
0
0
0
1

. (10)

Hence, a Dirac ket representation of the general two-qutrit state is,

| ΨT2〉 = C
(T2)
0 | 00〉+ C

(T2)
1 | 01〉+ C

(T2)
2 | 02〉+ C

(T2)
3 | 10〉+ C

(T2)
4 | 11〉

+C
(T2)
5 | 12〉+ C

(T2)
6 | 20〉+ C

(T2)
7 | 21〉+ C

(T2)
8 | 22〉,

(11)
or as:

| ΨT2〉 →

C
(T2)
0

C
(T2)
1

C
(T2)
2

C
(T2)
3

C
(T2)
4

C
(T2)
5

C
(T2)
6

C
(T2)
7

C
(T2)
8

, (12)

where the nine complex coefficients C
(T2)
0 · · ·C(T2)

8 are subject to the normal-

ization of the state 〈ΨT2 | ΨT2〉 = 1, which yields
∑8

i=0 | C
(T2)
i |2= 1. The nine

complex coefficients: C
(T2)
0 ≡ 〈00 | ΨT2〉, C(T2)

1 ≡ 〈01 | ΨT2〉 · · · · · ·C(T2)
8 ≡

〈22 | ΨT2〉, are complex probability amplitudes for finding the two-qutrit sys-
tem in the states | q1 q2〉. Note that we label the amplitudes using the ternary
(base 3) equivalent of the qutrit product q1 q2, so that for example a ternary

label on the amplitude C
(T2)
21 is equivalent to the decimal label C

(T2)
7 . See note-

book TernaryTutorial.nb.
Two-qubit and two-qutrit states are illustrated in Figs. 3 and 4 4. A more

complicated multi-qubit state is illustrated in Fig. 5

4Note in MM qutrits appear as italic blue numerals.

9

��[���[�]⊗���[�]]

�����[%]

�����[�� ��[���[�]⊗���[�]] +

�� ��[���[�]⊗���[�]] + �� ��[���[�]⊗���[�]] +

�� ��[���[�]⊗���[�]]]

������[�� ��[���[�]⊗���[�]] +

�� ��[���[�]⊗���[�]] + �� ��[���[�]⊗���[�]] +

�� ��[���[�]⊗���[�]]]

(* ************************************* *)

�
�
�
�

+ (�) |�� >

+ (��) |�� > + (��) |��

> + (��) |�� > + (��) |�� >

+ (��) < �� | + (��) < ��

| + (��) < �� | + (��) < �� |

Figure 3: Two qubit states. DForm and DFormA display two-qubit kets and bras.

������[��[����[�]⊗����[�]]]

�������[��[����[�]⊗����[�]]]

������[�� ��[����[�]⊗����[�]] +

�� ��[����[�]⊗����[�]] +

�� ��[����[�]⊗����[�]] + �� ��[����[�]⊗����[�]] +

�� ��[����[�]⊗����[�]] + �� ��[����[�]⊗����[�]] +

�� ��[����[�]⊗����[�]] +

�� ��[����[�]⊗����[�]] + �� ��[����[�]⊗����[�]]]

(* ************************************* *)

+ (�) |�� >

+ (�) < �� |

+ (��) |�� > + (��) |�� > + (��) |�� >

+ (��) |�� > + (��) |�� > + (��) |�� >

+ (��) |�� > + (��) |�� > + (��) |�� >

Figure 4: Two qutrit states. DFormT and DFormTA display two-qutrit kets and bras.

10

����[{�� �� �}] ⩵ ��[���[�]⊗���[�]⊗���[�]]

�����[����[{�� �� �� �� �}]]

�����[� ����[{�� �� �� �� �}] +

� ����[{�� �� �� �� �}]]

(* ************************************* *)

����

+ (�) |����� >

+ (�) |����� > + (�) |����� >

Figure 5: Multi-qubit states using the KetV command.

2.2.3. Hybrid Qubit - Qutrit (BT) states

Hybrid qubit-qutrit states, which we denote as BT systems, consist of both
qubits and qutrits 5. That mixture is stipulated by an array QA, such as
QA= {B,T,T,B}, which denotes a binary ⊗ triplet ⊗ triplet⊗ binary state.
A numeric array QD corresponding to that QA array is QD= {2,3,3,2} . The
dimension of the hybrid state vector is then 2nq×3nt where nq is the number of
qubits and nt the number of qutrits (triplets) in QA. In Fig. 6, a qubit-qutrit
QA= {B,T} state is displayed. A QA= {B,B,T,B,T} state is displayed
in Fig. 7. In Fig. 8, a more complicated three-qubit,four qutrit hybrid state is
shown along with the KetBT and DFormBT commands.

�� = {�� �}�

�������[��� ��[���[�]⊗����[�]]]

(* ************************************* *)

+ (�) |���� >

�� ��[���[�]⊗����[�]] + �� ��[���[�]⊗����[�]]

+�� ��[���[�]⊗����[�]] +

�� ��[���[�]⊗����[�]] + �� ��[���[�]⊗����[�]]

+�� ��[���[�]⊗����[�]]�

�������[��� %]

(* ************************************* *)

+ (��) |���� > + (��) |���� > + (��) |���� > +

(��) |���� > + (��) |���� > + (��) |���� >

Figure 6: A hybrid qubit-qutrit state. DFormBT (DFormBTA) display hybrid BT kets (bras).
Subscripts indicate if the entry is a qubit or qutrit.

5Examples of how to produce BT systems are discussed in the article [10]

11

�� = {�� �� �� �� �}�

��[���[�]⊗���[�]⊗����[�]⊗���[�]⊗����[�]]�

�������[��� %]

(* ************************************* *)

+ (�) |���������� >

Figure 7: A hybrid QA= {B,B,T,B,T} state .

�� = {�� �� �� �� �� �� �}� ���[��]

�� = �� /� {� → �� � → �}� ���[��]

�� = �����[��� �]

�� = �����[��� �]

��� = ���� × ����

(* ************************************* *)

�������

�������

�

�

���

� �����-�����- ���� ������ ������ �����

������[�� + ��� ��� {�� �� �� �� �� �� �}]�

�������[��� %]

(* ************************************* *)

+ (�) |�������������� >

Figure 8: A hybrid or Mixed Radix QA= {B,T,T,B,B,T,T} state.

12

3. Qubit and Qutrit Gates

In the previous section, general qubit and qutrit states were expressed as
superpositions of associated basis states. These basis states, such as |0 > & |1 >
for qubits, and |0 >, |1 > & |2 > for qutrits, are used to construct multi-qubit,
multi-qutrit, and hybrid states, which form a basis for the construction of general
states for such systems. Now we turn to operators that act on such states and
their associated operator basis. These operators are represented by N × N
matrices where N is the dimension of the state vector. The general operator
can be expressed as combinations of the N ×N operator basis, as discussed in
the following sections.

First, qubit (B) basis operators and gates are reviewed and then generalized
to the qutrit(T) and hybrid (BT) cases.

3.1. Single-Qubit Basis

Operators or gates acting on a single qubit are represented by 2 × 2 matri-
ces. The dimension of the state vector is N = 2nq = 2, here nq = 1. The
Pauli matrices provide an operator basis of all such matrices. The Pauli-

spin matrices are: σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

These are all Hermitian matrices σi = σ†i . We use the labels (1, 2, 3) to de-
note the directions (x, y, z). A fourth Pauli matrix is simply the unit matrix:

σ0 =

(
1 0
0 1

)
. Any 2×2 matrix can be constructed from these four Pauli ma-

trix. , which therefore are an operator basis. Consider the general combination

a0σ0 + a1σ1 + a2σ2 + a3σ3 = a0σ0 + ~a · ~σ =

(
a0 + a3 a1 − ia2
a1 + ia2 a0 − a3

)
.

The Pauli operators are equivalent to the following Ket ⊗ Bra tensor prod-
ucts:

σ0 =| 0〉 ⊗ 〈0 | + | 1〉 ⊗ 〈1 |
σ3 =| 0〉 ⊗ 〈0 | − | 1〉 ⊗ 〈1 |

&
σ1 = +1 | 0〉 ⊗ 〈1 | +1 | 1〉 ⊗ 〈0 |
σ2 = −i | 0〉 ⊗ 〈1 | +i | 1〉 ⊗ 〈0 |

. (13)

Note Ket ⊗ Bra tensor products can also be used to construct projection
operators:

P0 =| 0〉 ⊗ 〈0 |= σ0 + σ3
2

=

(
1 0
0 0

)
P1 =| 1〉 ⊗ 〈1 |= σ0 − σ3

2
=

(
0 0
0 1

)
.

(14)

These projection operators project out the associated Ket part by virtue of the
properties P0 | 0〉 =| 0〉,P0 | 1〉 = 0 and P1 | 0〉 = 0,P1 | 1〉 =| 1〉.

Two important single qubit operators (or gates) can now be identified. One
is the NOT gate, which is simply NOT = σ1. It has the property (see Eq. 13)

13

σ�

σ�

σ�

σ�

�

�

� ⩵ (σ� + σ�) / � �� � ⩵ (σ� - σ�) / �

�����[�] == ���[�] �� �����[�] == ���[�]

�������[�����[�]] ⩵ �����[�] �� �������[�����[�]] ⩵ �����[�]

(* ************************************* *)

� �
� �

� �
� �

� -ⅈ

ⅈ �

� �
� -�

� �
� �

� �
� �

����

����

����

Figure 9: Qubit: Pauli and projection operators.

14

NOT | 0〉 =| 1〉 and NOT | 1〉 =| 0〉. The second single qubit operator is the
Hadamard

H =
σ1 + σ3√

2
=

1√
2

(
1 1
1 −1

)
, (15)

which has the property H | 0〉 = |0〉+|1〉√
2
,H | 1〉 = |0〉−|1〉√

2
.

The above steps for qubits, illustrated in Figs. 9-10, will be generalized to
qutrits later.

ℋ

�����[ℋ ����[�]]

�����[ℋ ����[�]]

ℋ ⩵ (σ� + σ�)/����[�]

(* ************************************* *)

�
�

�
�

�
�

- �
�

+ (
�

�
) |� > + (

�

�
) |� >

+ (
�

�
) |� > + (-

�

�
) |� >

����

Figure 10: Qubit: Hadamard operator.

3.2. Multi-Qubit Operator Basis

Consider a multi-qubit operator for nq=2. The most important one is the
CNOT gate, which is defined by

CNOT = P0 ⊗ I + P1 ⊗ σ1 =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (16)

where I = σ0 is the 2×2 identity matrix. The matrix above is for the case that
qubit 1 is the control and the NOT gate acts on qubit 2 only when the control
qubit 1 has the value 1. This CNOT gate produces the changes: | 00 >→| 00 >
, | 01 >→| 01 >, | 10 >→| 11 > & | 11 >→| 10 > .

15

����[�� �� �]

����[�� �� �] == ��[�⊗σ�] +��[�⊗σ�]

�������[�� �� �� �]

�������[�� �� �� �] ==

��[(�⊗� + �⊗� + �⊗�)⊗σ�] + ��[�⊗�⊗σ�]

(* ************************************* *)

� � � �
� � � �
� � � �
� � � �

����

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

����

Figure 11: Qubit: CNOT and Toffoli gates.

For nq=3 the most important gate is the Toffoli gate, which is defined by

Toffoli = (P0⊗P0+P0⊗P1+P1⊗P0)⊗I+P1⊗P1⊗σ1 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

(17)
This is for the case that qubits 1 & 2 are the control qubits and the NOT

gate acts on qubit 3 only when the control qubits both have the value 1.
This qubit gate is generated as shown in Fig. 11; it will be generalized to

qutrits later.

3.3. Single-Qutrit Basis and Gates

The operator basis for qutrits consists of nine matrices; there are several
possible choices for the 9 operators. One choice uses the unit matrix plus the
three spin-one spin matrices, along with a rank 2 Cartesian tensor. Another

16

is the Gell-mann basis. The third is the generalized Pauli basis. They are
displayed in Figs. 12- 14. The spin-one and Gell-Mann sets are hermitian ;
whereas , the generalized Pauli matrices are not hermitian 6 Spin observables
are defined using either the spin or Gell-mann basis.

���[�����[����������[�[�]]� {�� �� �}]� � �]

(* ******************************** *)

�����-��� ����� ��� ��������

� � �
� � �
� � �

� �
�

�

�
�

� �
�

� �
�

�

� -
ⅈ �
�

�

ⅈ �
�

� -
ⅈ �
�

� ⅈ �
�

�

�
�

� �

� � �

� � -
�
�

� � -ⅈ
�
�

� � �

ⅈ
�
�

� �

� �
�

�

�
�

� -
�
�

� -
�
�

�

� -
ⅈ �
�

�

ⅈ �
�

� ⅈ �
�

� -
ⅈ �
�

�

-
�
�

� �
�

� � �

�
�

� -
�
�

-
�
�

� -
�
�

� � �

-
�
�

� -
�
�

Figure 12: Qutrit Basis—Spin-one case

6see BTtutorial2014 for an exploration of the properties of the three qutrit bases.

17

���[�����[����������[��[�]]� {�� �� �}]� � �]

(* ******************************** *)

�����-���� ����� ��� ��������

�
�

� �

� �
�

�

� � �
�

� � �
� � �
� � �

� -ⅈ �
ⅈ � �
� � �

� � �
� -� �
� � �

� � �
� � �
� � �

� � -ⅈ

� � �
ⅈ � �

� � �
� � �
� � �

� � �
� � -ⅈ

� ⅈ �

�

�
� �

� �

�
�

� � -
�

�

Figure 13: Qutrit Basis—Gell-Mann case

18

���[�����[����������[��[�]]� {�� �� �}]� � �]

(* ******************************** *)

������ ����� ��� ��������

� � �
� � �
� � �

� � �
� � �
� � �

� � �

ⅇ
�ⅈπ

� � �

� ⅇ-
�ⅈπ

� �

� � �

� ⅇ
�ⅈπ

� �

� � ⅇ-
�ⅈπ

�

� � �
� � �
� � �

� � �

� � ⅇ
�ⅈπ

�

ⅇ-
�ⅈπ

� � �

� � �

� ⅇ-
�ⅈπ

� �

� � ⅇ
�ⅈπ

�

� � �

ⅇ-
�ⅈπ

� � �

� ⅇ
�ⅈπ

� �

� � �

� � ⅇ-
�ⅈπ

�

ⅇ
�ⅈπ

� � �

Figure 14: Qutrit Basis—Generalized Pauli

Qutrit gates are often defined using the Pauli basis. For example, one defines
a qutrit NOT gate as the generalized X operator, which is given in Fig. 15, where
we see that X | i〉 =| Mod[i+ 1, 3]〉. A qutrit Hadamard acts on a single qutrit
as shown in Fig. 16. The qutrit Hadamard generates three orthonormal linear
combinations of three basic qutrit kets, incorporating a phase factor ξ(k) =

exp−
2πik

3 .

�� ���� ��� ��������
� = ��[�]� �

� � �
� � �
� � �

(* ******� ���� ������ �� ������ ����**************** *)

�������[{�}� ������[�]]

�������[{�}� ������[�]]

�������[{�}� ������[�]]

+ (�) |�� >

+ (�) |�� >

+ (�) |�� >

Figure 15: Qutrit Basis—NOT gate

19

��������� ���� ��� ��������

ℋ�

(* ********************** *)

�

�

�

�

�

�

�

�

ⅇ-
�ⅈπ

�

�

ⅇ
�ⅈπ

�

�

�

�

ⅇ
�ⅈπ

�

�

ⅇ-
�ⅈπ

�

�

��������� ���� ������ �� ������ �����

(* ********************** *)

�������[{�}� ℋ������[�]]

�������[{�}� ℋ������[�]]

�������[{�}� ℋ������[�]]

+ (
�

�
) |�� > + (

�

�
) |�� > + (

�

�
) |�� >

+ (
�

�
) |�� > + (

ⅇ- � ⅈ π

�

�
) |�� > + (

ⅇ
� ⅈ π

�

�
) |�� >

+ (
�

�
) |�� > + (

ⅇ
� ⅈ π

�

�
) |�� > + (

ⅇ- � ⅈ π

�

�
) |�� >

Figure 16: Qutrit Basis—the qutrit Hadamard HT .

3.4. Multi-Qutrit Basis and Gates

In the previous section, the single qutrit states and gates were presented.
Now we extend that discussion to two or more qutrits. Later, we will discuss
hybrid cases wherein a mixture of qubits and qutrits are stipulated. The tutorial
GatesQudits2015 explores these topics in great detail.

To generate an operator basis for two qutrits, we form a tensor product
w(i)⊗ w(i), as shown in Fig. 17. An example of a two-qutrit operator is two
Hadamards acting on both qutrits HT ⊗HT , as shown in Fig. 18.

20

������-������ ����������

���[�� {�� �}] ⩵ ��[�[�]⊗ �[�]]

���[�� {�� �� �� �}] ⩵ ��[�[�]⊗�[�]⊗�[�]⊗ �[�]]

����

����

��[�[�]⊗ �[�]]

� � � ⅈ �

�
� � ⅈ

�
� � �

� � � � -
ⅈ �

�
� � � �

� � � � ⅈ

�
� ⅈ �

�
� � �

-
ⅈ �

�
� -

� ⅈ

�
� � � -

ⅈ �

�
� -

� ⅈ

�

� ⅈ �

�
� � � � � ⅈ �

�
�

-
� ⅈ

�
� -

ⅈ �

�
� � � -

� ⅈ

�
� -

ⅈ �

�

� � � ⅈ �

�
� � ⅈ

�
� � �

� � � � -
ⅈ �

�
� � � �

� � � � ⅈ

�
� ⅈ �

�
� � �

Figure 17: Multi-qutrit basis and the SPT command

21

��������� ����� �� ��� ��������

ℋ�

ℋ�� = ��[ℋ� ⊗ℋ�]�

ℋ�����[����[�]⊗����[�]]�

�������[{�� �}� %]

ℋ�����[����[�]⊗����[�]]�

�������[{�� �}� %]

�

�

�

�

�

�

�

�

ⅇ
-
�ⅈπ

�

�

ⅇ

�ⅈπ

�

�

�

�

ⅇ

�ⅈπ

�

�

ⅇ
-
�ⅈπ

�

�

+ (
�

�
) |���� > + (

�

�
) |���� > + (

�

�
) |���� > + (

�

�
) |���� > + (

�

�
)

|���� > + (
�

�
) |���� > + (

�

�
) |���� > + (

�

�
) |���� > + (

�

�
) |���� >

+ (
�

�
) |���� > + (

�

�
ⅇ
�ⅈπ

�) |���� > + (
�

�
ⅇ
-
�ⅈπ

�) |���� > + (
�

�
) |���� > + (

�

�
ⅇ
�ⅈπ

�) |����

> + (
�

�
ⅇ
-
�ⅈπ

�) |���� > + (
�

�
) |���� > + (

�

�
ⅇ
�ⅈπ

�) |���� > + (
�

�
ⅇ
-
�ⅈπ

�) |���� >

Figure 18: Two qutrit Hadamards on two qutrits

Another two-qutrit operator can be defined using the same procedure dis-
cussed earlier for the CNOT two-qubit gate. First we need the qutrit projection
operators:

PT
0 =| 0〉 ⊗ 〈0 |=

(
1 0 0
0 0 0
0 0 0

)

PT
1 =| 1〉 ⊗ 〈1 |=

(
0 0 0
0 1 0
0 0 0

)

PT
2 =| 2〉 ⊗ 〈2 |=

(
0 0 0
0 0 0
0 0 1

)
.

(18)

These projection operators project out the associated qutrit kets. The sum of
these three projection operators equals a 3× 3 unit matrix I3.

Now, we can define a controlled-not gate for qutrits in a variety of ways.
The first uses qutrit 1 as the control, with the qutrit Pauli NOT gate X=wP[1]
acting on qutrit 2 as follows:

CNOT1 = PT
0 ⊗ I3 + PT

1 ⊗X + PT
2 ⊗X ·X. (19)

Since X is not Hermitian CNOT1† 6= CNOT1, in contrast to the qubit case
where σ1 is Hermitian.

The second uses qutrit 2 as the control, with the qutrit NOT gate X acting
on qutrit 1.

CNOT2 = I3 ⊗ PT
0 + X⊗ PT

1 + X ·X⊗ PT
2 . (20)

22

The explicit form for CNOT1 is

CNOT1 =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0

,

and for CNOT2

CNOT2 =

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0

.

Control-Z, and Control-Y Gates can also be constructed using the qutrit
Pauli Y=wP[2] and & Z=wP[3] gates

CZT1 = PT
0 ⊗ I3 + PT

1 ⊗ Z + PT
2 ⊗ Z · Z

CZT2 = I3 ⊗ PT
0 + Z⊗ PT

1 + Z · Z⊗ PT
2

CY T1 = PT
0 ⊗ I3 + PT

1 ⊗Y + PT
2 ⊗Y ·Y

CY T2 = I3 ⊗ PT
0 + Y ⊗ PT

1 + Y · Y ⊗ PT
2 .

(21)

The above CNOT1 & CNOT2 gates do not provide a swap gate following
the qubit pattern. To produce a qutrit swap gate another pair of CNOT gates
are introduced. [8, 9], as shown in Fig. 19- 21. This modified swap also works
when two qutrit operators are used within a multi-qutrit system, see later.

CNOTH1 = (I3 ⊗HT †) · CZT1 · (I3 ⊗HT †)
CNOTH2 = (HT † ⊗ I3) · CZT2 · (HT † ⊗ I3).

(22)

Here HT is the qutrit Hadamard.

23

Two Qubit swap

����� = �������
�� � ��
� �� �

 � {}

ψ = ���[��[�] ���[�]� {�� �� �}]�

ϕ = ���[��[�] ���[�]� {�� �� �}]�

���� = ��[ψ⊗ϕ]�

�������[��[����[�� �� �]�����] - ��[ϕ⊗ψ]] == �����[�]

����[�� �� �] == ����[�� �� �]�����[�� �� �]�����[�� �� �]

|��〉

|��〉

⊕ ⊕

⊕

|��〉

|��〉

����

����

Figure 19: Qubit swap gates

ψ = ���[��[�] ����[�]� {�� �� �}]�

ϕ = ���[��[�] ����[�]� {�� �� �}]�

���� = ��[ψ⊗ϕ]�

��[����������������������] - ��[ϕ⊗ψ] ⩵ �����[�]

��[����������������������] - ��[ϕ⊗ψ] ⩵ �����[�]

(* ���� ����� �� ����� ��� ����� ����� *)

�����

�����

Figure 20: Qutrit swap gates based on CNOT1 & CNOT2 failure.

24

ψ = ���[��[�] ����[�]� {�� �� �}]�

������[ψ]

ϕ = ���[��[�] ����[�]� {�� �� �}]�

������[ϕ]

���� = ��[ψ⊗ϕ]�

���� = ��[ϕ⊗ψ]�

��[�������������������������] ⩵ ����

��[�������������������������] ⩵ ����

(* ************************************* *)

+ (��[�]) |� > + (��[�]) |� > + (��[�]) |� >

+ (��[�]) |� > + (��[�]) |� > + (��[�]) |� >

����

����

Figure 21: Qutrit swap gates based on CNOTH success

3.5. Qubit-Qutrit Operators

For a hybrid system consisting of one qubit and one qutrit, the single qubit
and single qutrit operators are as defined earlier. The two-body BT or TB
control operators can be defined in various ways. For example, CNOTBT1 with
qubit 1 as control can be stipulated as 7

CNOTBT1 = P0 ⊗ I3 + P1 ⊗X,

whereas, for CNOTTB1 with qutrit 1 as control and qubit 2 acted on by σ1 can
be defined in several ways. One way is

CNOTTB1 = PT
0 ⊗ I2 + PT

1 ⊗ σ1 + PT
2 ⊗ I2,

Another way is

CNOTTB1 = PT
0 ⊗ I2 + PT

1 ⊗ σ1 + PT
2 ⊗ σ1.

Based on these examples, the user can explore other such qubit-qutrit operators.

7I3 denotes a unit 3× 3 matrix and I2 denotes a unit 2× 2 matrix.

25

3.6. General Operators

3.6.1. General Qubit Operators

In the pure multi-qubit case, the general form of multi-qubit operators are
provided by several QDensity commands. For example, had[n, i] is an oper-
ator for n qubits with a single Hadamard acting on qubit “i;” Had[n,Q] is an
n-qubit operator with Hadamards acting on all members of the set Q={q1,q2,...
} of length n, where if qi is set to 1 that qubit is acted on by a Hadamard, whereas
a value of 0 specifies no action on that qubit. For example,Had[3,{1,0,1}]
has Hadamards acting on qubits 1 and 3 for a three qubit system. To get a
Hadamard acting on all qubits, include all qubits in Q, e.g., use Q=1,1,1,.....
HALL[n]=Had[n,1,1,1....] is also provided where the array Q of 1’s has
length n to include all the qubits. See Fig. 22.

A similar setup is included in QDensity for projection operators; proj[n,i,a]
is an n-qubit operator, which yields a projection operator P0 for a=0 or P1

for a=1 acting on qubit “i.” Also, an n-qubit projection operator PJ[n,Q,A]
is defined which acts on set q1,q2,... of the n qubits along with an array A
={a1....} which stipulates if the projection on the qubit is either zero or one;
if ai is not equal to zero or one then the unit operator I=s[0] is taken for the ith
qubit . Thus, one can build an operator of the type: I⊗P0⊗P1⊗I⊗P0⊗P1⊗I,
which asks if the qubits 2,3,5,6 have the values 0101 .

3.6.2. General Qutrit Operators

Similar commands are now available for pure qutrit systems Fig. 23. . The
command SPT[n,Q] for n qutrits produces a spin basis tensor product with
components stipulated by the array Q; for example, SPT[3,{2,1,2}] yields the
spin-basis tensor product w[2]⊗ w[1] ⊗ w[2]. To extend this procedure to qutrit
Hadamards and projection operators, we set the w[i > 8] matrices as follows:
w[10] =HT , w[11] =X , w[12+i] =PT i, w[16] =X.X , w[33] =Z , w[34] =Z.Z
. Here X and Z are the Pauli qutrit operators. Using these settings we see in
Fig. 23 that SPT[n,Q] for n=3, Q={10,11,12} yields HT ⊗X⊗PT 0. A more
general command SPBTA[n,QA,Q] will be discussed next.

3.6.3. General BT Hybrid Operators

For hybrid (mixed radix, BT) systems we have a mixture of qubits and
qutrits as stipulated by the array QA. Examples of general operators for such
BT systems are presented in Figs. 23- 24. For example, we see that a system
with QA={ B,T,B,T } (i.e. a qubit×qutrit×qubit×qutrit system) with a NOT
operator on the qubits 1 and 3, a Hadamard on the qutrit 3 and a projection
operator on the qutrit 4 is generated by the command SPBTA[4,QA,Q] , with
Q={ 1,10,,11,12}. Here s[11] is equal to s[1]=NOT. Special cases of pure B or
pure T systems can be invoked and seen to be equivalent to earlier SP and SPT
forms.

As a further generalization of earlier commands for general operators, see the
examples in Fig. 25. There we display commands HadBT, hadBT, OneOpBT

26

and TwoOpBT. These are used in the BTSystems tutorial, along with Three-
OpBT, to construct generalized BT operators such as control-not, swap, control-
z, TofolliBT, etc gates.

Another method to generate general operators for BT systems, is to apply
the one and two body operators OpBT1, OpBT2 or OpBT3 to the full set of
basis vectors, as is included in the commands BTOp1 and BTOp2 (see the
tutorials).

With these tools any general BT operation can be constructed and used to
study such systems. Cases of random B,T and BT states and density matrices
are also incorporated into the package as illustrated in the associated tutorials.

�����[���[�� {�� �}]���[���[�]⊗���[�]]]

(* ** *)

+ (
�
�
) |�� > + (

�
�
) |�� > + (

�
�
) |�� > + (

�
�
) |�� >

�����[���[�� {�� �� �}]���[���[�]⊗���[�]⊗���[�]]]

���[�� {�� �� �}] == ��[ℋ ⊗ℋ ⊗ℋ] ��

���[�� {�� �� �� �}] == ��[ℋ ⊗ℋ ⊗ℋ ⊗ℋ]

(* *** *)

+ (
�

� �
) |��� > + (

�

� �
) |��� > + (

�

� �
) |��� > + (

�

� �
) |��� > +

(
�

� �
) |��� > + (

�

� �
) |��� > + (

�

� �
) |��� > + (

�

� �
) |��� >

����

Figure 22: General qubit operators, Hadamard example.

27

ℋ�

�

�

�

�

�

�

�

�

ⅇ
-
�ⅈπ

�

�

ⅇ

�ⅈπ

�

�

�

�

ⅇ

�ⅈπ

�

�

ⅇ
-
�ⅈπ

�

�

���[�� {�� �� �}] == ��[�[�]⊗�[�]⊗�[�]] ��

���[�� {��� ��� ��}] == ��[ℋ�⊗⊗��] ==

�����[�� {�� �� �}� {��� ��� ��}]

����

�[��] ⩵ ℋ� �� �[��] ⩵ �� �[��] == �� �� �[��] == �� �� �[��] == ��
��[�] ⩵ �� ��[�] ⩵ ℤ �� �[��] ⩵ � �� �[��] ⩵ ℤ �� �[��] ⩵ ℤ�ℤ

����

����

�����[�� {�� �� �}� {��� ��� ��}] == ��[ℋ�⊗⊗��] ==

���[�� {��� ��� ��}]

�����[�� �������������[�� �]� �������������[��� �]] ==

��[ℋ�⊗ℋ�⊗ℋ�⊗ℋ�⊗ℋ�]

�����[�� �������������[�� �]� �������������[��� �]] ==

��[�� ⊗�� ⊗�� ⊗�� ⊗��]

����

����

����

Figure 23: General qutrit operator examples

28

�����[�� {�� �}� {�� ��}] == ��[�[�]⊗ ℋ] ��

�����[�� {�� �}� {��� ��}] == ��[ℋ⊗ ℋ] ��

�����[�� {�� �}� {��� ��}] == ��[ℋ� ⊗ℋ]

����

�����[�� {�� �� �}� {�� �� �}] == ��[�[�]⊗�[�]⊗�[�]] ��

�����[�� {�� �� �}� {��� ��� ��}] == ��[ℋ�⊗⊗�] ��

�����[�� {�� �}� {�� ��}] == ��[�[�]⊗ ℋ] ��

�����[�� {�� �}� {��� ��}] == ��[ℋ⊗ ℋ] ��

�����[�� {�� �� �� �}� {�� ��� ��� ��}] == ��[�[�]⊗ℋ�⊗�[�]⊗��]

����

��[��] ⩵ ℋ ⩵ �[��] �� ��[��] == � ⩵ �[��] �� ��[��] == �[��] ⩵ �[�]

����

�����[�� { �� �� �� �� �}� �������������[��� �]] ==

��ℋ ⊗ℋ ⊗ℋ�⊗ℋ�⊗ℋ ��

�����[�� { �� �� �� �� �}� �������������[��� �]] == ��[� ⊗� ⊗�� ⊗�� ⊗�]

����

Figure 24: General hybrid BT operator examples

�����[�� {�� �}� {��� ��}] ⩵ ��[ℋ ⊗ℋ] ��

�����[�� {�� �� �}� {��� �� ��}] ⩵ ��[ℋ ⊗�[�]⊗ℋ] == �����[�� {�� �� �}� {��� �� ��}] ��

�����[�� {�� �� �}� {��� �� ��}] ⩵ ��[ℋ ⊗�[�]⊗ℋ�] == �����[�� {�� �� �}� {��� �� ��}]

� = �� �� = {�� �� �}� � = ������[��]�

�����[�� ��� �] == ��[�[�] ⊗ℋ�⊗�[�]]

����

����

�������[�� {�� �� �� �}� �� �] ⩵ ��[�[�]⊗ �[�]⊗ �[�]⊗ �[�]] ��

�������[�� {�� �� �}� �� �] == ��[�[�]⊗ �[�]⊗ �[�]] ��

�������[�� {�� �� �}� �� �] == ��[�[�]⊗ �[�]⊗ �[�]] ��

�������[�� {�� �� �� �}� �� �] ⩵ ��[�[�]⊗ �[�]⊗ �[�]⊗ �[�]] ��

�������[�� {�� �� �� �}� �� ��] ⩵ ��[�[�]⊗ �[�]⊗ ��[��]⊗ �[�]] ==

��[�[�]⊗ �[�]⊗ ℋ�⊗ �[�]] ��

�������[�� {�� �� �� �}� �� ��] ⩵ ��[�[�]⊗ �[�]⊗ �[�]⊗ �[��]] ⩵

��[�[�]⊗ �[�]⊗ �[�]⊗ ℋ]

����

�������[�� {�� �}� �� �� �� �] == ��[�[�]⊗ �[�]] ��

�������[�� {�� �}� �� �� �� �] == ��[�[�]⊗ �[�]] ��

�������[�� {�� �}� �� �� �� �] == ��[�[�]⊗ �[�]] ��

�������[�� {�� �� �}� �� �� �� �] == ��[�[�]⊗ �[�]⊗ �[�]] ��

�������[�� {�� �� �� �}� �� �� �� �] == ��[�[�]⊗ �[�]⊗ �[�]⊗ �[�]] ��

�������[�� {�� �}� �� �� ��� �] == ��[�[��]⊗ �[�]]

����

Figure 25: Additional hybrid BT operator examples

29

4. Entanglement

4.1. Schmidt decomposition

The Schmidt decomposition tutorials (SchmidtTutorial2014 and SchmidtTutorial-
Qutrits2015) show how to decompose a B,T, or BT bipartite state into Schmidt
form. See Fig. 26 for a sample run for a random two qubit case. The com-
mand Schmidt is based on the MM SingularValueDecomposition(SVD) com-
mand. The Schmidt number is defined as the number of nonzero entries in the
diagonal matrix ws generated by the SVD. From the Schmidt decomposition,
a bipartite state is entangled if and only if ws has Schmidt number greater
than 1. Several special states, such as Werner and X states are examined in
tutorials. Generalization to bipartite, random BT cases are demonstrated in
SchmidtTutorial-Qutrits2015 . It is also shown how to maintain a right handed
coordinate system under a SVD.

30

� = ����������[�]�

�����[%]

�������[�]�

�����[�ϕ��=�� ϕ��]

�����[�ϕ��=�� ϕ��]

�����[�ϕ��=�� ϕ��]

�����[�ϕ��=�� ϕ��]

�����[���=�� ����������[��]]

�����[�����=�� ����]

+ (�������� + ��������� ⅈ) |�� > + (-��������� - �������� ⅈ) |�� >

+ (-�������� + �������� ⅈ) |�� > + (�������� + �������� ⅈ) |�� >

ϕ��= + (-��������) |� > + (�������� - �������� ⅈ) |� >

ϕ��= + (-��������) |� > + (-�������� + �������� ⅈ) |� >

ϕ��= + (-�������� - �������� ⅈ) |� > + (��������� + �������� ⅈ) |� >

ϕ��= + (-�������� - ��������� ⅈ) |� > + (-��������� - �������� ⅈ) |� >

��=
�������� ��

�� ��������

����=�

���

��

�

��

�������

������� == �����[�]

�������� ��

�� ��������

-�������� + �� ⅈ -�������� + �� ⅈ

�������� - �������� ⅈ -�������� + �������� ⅈ

-�������� - �������� ⅈ ��������� + �������� ⅈ

-�������� - ��������� ⅈ -��������� - �������� ⅈ

�������� + ��������� ⅈ -��������� - �������� ⅈ

-�������� + �������� ⅈ �������� + �������� ⅈ

����

Figure 26: Schmidt decomposition for a random 2 qubit state m.

31

4.2. Entropy, mutual information, Quantum Discord

�� = {�� �� �� �}�

Ω = ��������[��]�

��� = ������[Ω]�

�� = ����[�����������[Ω]]�

��������[��� ������� → ����� ������ → ������ ���������� → {�� �}� ��������� → {���� ���������[�����]}]

����[��[Ω�Ω]]

��[��] == ���[��[[�]]� {�� �� ���}] == ��[Ω] ⩵ ��

����� == ���[��[[�]]��� {�� �� ���}] ⩵ ������[Ω] == ����[��[Ω�Ω]]

��� = �������[Ω]

0 5 10 15 20 25 30 35

0.02

0.04

0.06

0.08

0.10

���������

����

����

�������

Ω� = �����[��� {�� �}� Ω]�

����[��[%]] ⩵ ��

Ω� = �����[��� {�� �}� Ω]�

����[��[%]] ⩵ ��

�� = �������[Ω�]�

�� = �������[Ω�]�

������ = �� + �� - ���

������[Ω�] ������[Ω�] == ������[Ω]

����

����

��������

����

Figure 27: Mutual Information example for a random BT density matrix Ω.

32

Ω = �������������
{ ��� ��� ���� ℐ� ��� ��� ����} = �������[Ω� �� ��]�
{ ��� ��� ���� ℐ� ��� ��� ����} = �������[Ω� �� ��]�
�����[���=�� ��� � ��=�� ��� � ���=�� ���� � ℐ=�� ℐ]

�����[���=�� ��� � ��=�� ��]
�����[���=�� ��� � �� ���=�� ��]

��=�������� ��=�������� ���=������� ℐ=��������

��=�������� ��=��������

��=�������� ��=��������

��� = ������[����[�� �]� {�� �� ��}� {�� �� � ��}]� ��� = ������[����[�� �]� {�� �� ��}� {�� �� � ��}]�

�����������[{���� ���}]

Figure 28: Discord example. Here Ω is a random 2-qubit density matrix, I is the mutual
information, CA the classical and QA the discord. Surfaces for classical search are also
shown.

�������[Ω_ /� �������[Ω]� �����_� �������_] �=

������[{������ ����� ����� ���� ��� ��� ℐ� �� ��� ��� �� ��� ρ� ����

����� ����� � � ���� ��� }�

��� = ��������

����� = Ω� ���� = ���[{�}� �����]� ���� = ���[{�}� �����]�

��� = �������[�����]� �� = �������[����]� �� = �������[����]�

ℐ = ����[�� + �� - ���]�

�[�_] �= ������������[�����[�� {���[θ] ���[ϕ]� ���[θ] ���[ϕ]� ���[θ]}]�

{ϕ� θ} ∈ �����]�

�� = ��[����� == �� ��[���������[σ� �]⊗�[�]]� ��[�[�]⊗���������[σ� �]]]�

�� = ��[����� == �� �� �]�

�[�_] �= ��������[��[�����������]� {ϕ� θ} ∈ �����]�

��[�_� ����_� ���_] �= ����[�[�] /� {θ -> ����� ϕ -> ���}]�

ρ[�_] �= ��������[���[{��}� �����������]� {ϕ� θ} ∈ �����]�

���[�_� ����_� ���_] �= ����[ρ[�] / �[�] /� {θ -> ����� ϕ -> ���}]�

�����[���]�

���[����_� ���_] �= ���[��[�� ����� ���] * �������[���[�� ����� ���]]�

{�� �� �}]�

��[�_� �_] �= ���[� * ��/ (���)� � * � ��/ ���]�

���� = ���������[��� {�����[�� ���]� �����[�� ���]}]�

���� = ���[����]�

 = ��[����� == �� ����[��] - ����� ����[��] - ����]�

 = ℐ - �

{ ��� ��� ���� ℐ� � � ���}]

Figure 29: The module Discord[ρ, Ic, np] = I[ρ] − C[ρ], where C is the classical evaluation
of the conditional entropy < J >C . Note Ic selects the discord case JA or JB and np
stipulates the space used in the requisite minimization and in the plot. Discord provides the
output array (SA, SB, SAB, I, C,D, plot).

33

The entropy command EnTropy 8 is used to evaluate the von Neumann
entropy from the real, positive eigenvalues of a density matrix ρ, EnTropy[ρ] =
−Tr[ρ ln ρ]. The density matrix can be generated from a random density matrix
command, (RandomQubit1, RandomQubit2, RandomQubitN, RandomQutrit,
or RandomBT), or from a state Ψ just by the command ρ[Ψ]. Density matrix
construction for BT systems is explored in the notebook DensityMatrixTutorial.

4.2.1. Partial Trace

Once the entropy is determined from a given density matrix, the Partial-
Trace and PartialTraceBT commands can be used to determine the sub-system
density matrices and their associated entropy, and thus the mutual informa-
tion is specified. For example, using PartialTraceBT for a RandomBT den-
sity matrix, the mutual information I ≡ SA + SB − SAB is determined in
Fig. 27. Here SAB = EnTropy[ρ], SA = EnTropy[ρA], SB = EnTropy[ρB],
where SAB is the full system entropy, and SA, SB are the subsystem en-
tropies. The subsystem density matrices are: ρA = TrB [ρ] = PTr[{2}, ρ] and
ρB = TrA[ρ] = PTr[{1}, ρ]

4.2.2. Discord

The quantum discord involves using two forms for the mutual information
that are equal for a classical system, but differ for a quantum system. The
idea of quantum discord was introduced in references [11, 12], where Ollivier
and Zurek[11] describes it as “ Two classically identical expressions for the
mutual information generally differ when the systems involved are quantum.
This difference defines the quantum discord. It can be used as a measure of the
quantumness of correlations.” The discord indicates that quantum effects, but
not necessarily quantum entanglement, exist in the system,.

The two quantum relations for the mutual information are

I = S[ρA] + S[ρB]− S[ρ] (23)

and

JA = S[ρB]− S[B|A],

or

JB = S[ρA]− S[A|B],

where S[ρA] and S[ρB] are the von Neumann entropies for the A and B sub-
systems, respectively. That is : S[ρA] = EnTropy[ρA], S[ρB] = EnTropy[ρB],
where ρA = TrB [ρ], ρB = TrA[ρ], and S[A,B] = EnTropy[ρ]. Here S[A,B] is
the joint entropy. The quantities S[A|B] = S[ρA|ρA], S[B|A] = S[ρB |ρA] de-
note quantum conditional entropies. Note that for the case that A and B are
separate and unconnected systems, the density matrix is a product ρ = ρA⊗ρB
and then the mutual information I = 0.

8We use the command EnTropy to obtain the von Neumann entropy, The MM command
Entropy is not the same quantity.

34

For a classical system, classical renditions of the two expressions for the
mutual information I,JA yield identical results,; however, for the quantum
case I 6= JA. The difference between the two results are used to define the
discord

DA(ρ) = I − JA (24)

and

DB(ρ) = I − JB.

In general, DA(ρ) 6= DB(ρ). The problem now is how to evaluate JA and JA.
The quantities JA and JA represent ”the part of the correlations that can
be attributed to classical correlations and varies in dependence on the chosen
eigenbasis; therefore, in order for the quantum discord to reflect the purely
nonclassical correlations independently of basis, it is necessary that J first be
maximized over the set of all possible projective measurements onto the eigen-
basis.” [13] That process, which entails an evaluation of the conditional entropy
using a classical limit method, is incorporated into Qdensity as shown in Fig.
29.

Sample cases are shown in the three discord notebooks.

4.3. Partial Transposition

Examples of partial transposition are shown in the tutorial ” PartialTrans-
pose Tutorial.” In this package, the partial transpose is obtained by expanding
the density matrix in the computational (Pauli tensor product) basis. Then for
the stipulated subsystem, the subsystem Pauli matrices are transposed, and then
the transposed density matrix is reconstructed. The only subsystem operators
that are affected are those involving the y-component Pauli operators. This pro-
cedure is encoded in the module PartialTranspose[BL,ρ] , where BL stipulates
the subsystem and ,ρ is the original density matrix. This procedure is gener-
alized to hybrid (BT) systems by the module PartialTransposeBT[QA,BL,ρ],
BL again stipulates the subsystem and now the array QA gives the BT mix-
ture. Examples and tests are provided in the PartialTransposeTutorial and also
used to demonstrate the Peres−Horodecki [14] criterion for separable density
matrices in tutorials ”.

Calculation and display of Entropy, mutual information and quantum dis-
cord are also provided in “ PartialTranspose Tutorial.”

4.4. Bell’s theorem

In the Bell theorem and Bell Correlations2015 notebooks, sample cases of
Bell’s theorem are examined using this package. For discussion, see : [6, 7, 15,
16, 17]

35

5. Other new aspects

5.1. QC algorithms & Simulations

Updates of various QC algorithms [18, 19, 20] are provided in Teleporta-
tion2014, Grover2014, Shor2014, QFT2014 and Cluster2014. A sample of tele-
portation of a qubit is contained in TeleportationBT, Studies of random states,
random density matrices, Werner [21] states, GHZ [22] states and X [23] states
are presented in various notebooks included with this package in many cases
with qutrit or hybrid system examples (see the appendix). A preliminary study
of concurrence is present in the notebooks ConcurrenceTutorial and Concur-
renceTutorialBT [24, 25]

6. Future Plans: Parallel & Cuda versions

This update and extension provides many basic tools for studying the ef-
ficacy of quantum computers. Some of the cases that are not included here
include: (1) quantum error correctionr [26], (2) dynamical evolution of gates,
(3) density matrix dynamics including entropy constraints,(4) solutions of dif-
ferential equations, (5) single and multiple photon qubit states (6) Quantum
Tomography. Preliminary versions of these case are available, but not included
in the present release. The applications will hopefully improve, increase, and
broaden with time, perhaps by interested users.

The hope is to improve and extend this package, by future application of
MPI parallel methods to enable faster and larger system studies. Use of the
GPU processor for parallel computation is also a future goal, once the high
latency problem for large system tensor product formation is solved. A web
page presentation of this package is available and questions, suggestions for
future developments, and comments, are welcome, so that these packages can
be further improved. Do not hesitate to contact the author for help.

Acknowledgments

The author is very appreciative of the help provided by his collaborator
Dr. Bruno Juliá-Dı́az, who was one of the original developers of this project.
Questions and comments provided by Dr. Kapil K. Sharma are also very much
appreciated; he stimulated the extensions to hybrid systems, partial transposi-
tion, and to quantum discord. My interest in quantum tomography was greatly
enhanced by communications with Dr. Victor Volkov. Earlier versions of this
project were supported by the National Science Foundation.

36

References

[1] Bruno Juliá-Dı́az, Joseph M. Burdis and Frank Tabakin, “QDENSITY - A
Mathematica Quantum Computer simulation,” Comp. Phys. Comm., 174
(2006) 914-934. Also see: Comp. Phys. Comm.,180, (2009) 474.

[2] Frank Tabakin and Bruno Juliá-Dı́az, “QCWAVE A Mathematica quan-
tum computer simulation update,” Comp. Phys. Comm., 182, (2011)1693.

[3] Frank Tabakin and Bruno Juliá-Dı́az, “QCMPI: A parallel environment for
quantum computing”, Comp. Phys. Comm., 180 (2009) 948-964.

[4] P. A. M. Dirac, “The Principles of Quantum Mechanics”, Oxford University
Press, USA 4th ed. ISBN: 0198520115.

[5] Albert Messiah, “Quantum Mechanics” , Dover Publications , ISBN :
0486409244.

[6] Michael A. Nielsen and Isaac I. Chuang, “Quantum Computation and
Quantum Information”, Cambridge University Press (2000).

[7] John Preskill, “Lecture Notes on quantum information and computation”,
http://www.theory.caltech.edu/people/preskill/ph229/.

[8] C. M. Wilmott and P. R. Wild, Int. J. Quantum Inform. 10, 1250034 (2012).

[9] Juan Carlos Garcia-Escartin, Pedro Chamorro-Posada,”A SWAP gate for
qudits,” Quantum Information Processing,Vol .12,(2013).

[10] Peter B R Nisbet-Jones, Jerome Dilley, Annemarie Holleczek, Oliver Barter
and Axel Kuhn, “Photonic qubits, qutrits and ququads accurately prepared
and delivered on demand,” New Journal of Physics 15 (2013) 053007.

[11] H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quan-
tumness of correlations, Phys. Rev. Lett. 88, 017901 (2002).

[12] L. Henderson and V. Vedral: Classical, quantum and total correlations,
Journal of Physics A 34, 6899 (2001).

[13] https://en.wikipedia.org/wiki/

[14] Asher Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett.
77, 14131415 (1996) and Michal Horodecki, Pawel Horodecki, Ryszard
Horodecki, Separability of Mixed States: Necessary and Sufficient Con-
ditions, Physics Letters A 223, 1-8 (1996).

[15] Bell, John (1964). ”On the Einstein Podolsky Rosen Paradox”. Physics 1
(3): 195200.

[16] JS Bell (2004), Speakable and Unspeakable in Quantum Mechanics: Cam-
bridge University Press. 2nd Edition(2004) ISBN: 9780521523387.

37

[17] http://www.lecture-notes.co.uk/susskind/quantum-
entanglements/lecture-5/violation-of-bells-theorem/ .

[18] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters, Phys. Rev. Lett. 70, 1895-1899 (1993).

[19] Peter W. Shor, SIAM J. Comput. 26 (5): 1484 (1997).

[20] L. K. Grover, Phys. Rev. Lett. 79, 325-328 (1997).

[21] Reinhard F. Werner ,Physical Review A 40 (8) 42774281.

[22] Daniel M. Greenberger, Michael A. Horne, Anton Zeilinger:, ”Bell’s the-
orem, Quantum Theory, and Conceptions of the Universe,” pp. 73-76,
Kluwer Academics, Dordrecht, The Netherlands (1989).

[23] Sai Vinjanampathy and A. R. P. Rau, Phys. Rev. A 82, 032336 (2010).

[24] W. K. Wootters, ”Entanglement of Formation and Concurrence,” Quantum
Information and Computation 1, 27 (2001) and W. K. Wootters,Phys.Rev.
Letters 80,2245 (1998).

[25] E. Gerjuoy Phys. Rev. A 67, 052308 (2003).

[26] D. Gottesman, “A Theory of Fault-Tolerant Quantum Computation,”
Phys. Rev. A 57, 127-137 (1998).

38

A. Tutorials

The following tutorials, workbooks and algorithms are part of the package
and should aid the user in generating their own examples. Guidance for instal-
lation is provided in the notebook INSTALL. Email tabakin@pitt.edu for the
packages and for these and additional tutorials.

1. BTGates
2. BTtutorial2014
3. Bell Correlations2015
4. Belltheorem
5. CircuitTutorial2014
6. CircuitTutorialBT2015
7. Cluster2014
8. ConcurrenceTutorial
9. ConcurrenceTutorial2

10. ConcurrenceTutorial3
11. ConcurrenceTutorialBT
12. DensityMatrixTutorial
13. Discord-Tests 2015
14. DiscordTutorial2015
15. Entanglement2014
16. EntropyTutorial2015
17. FunctionsTour2014
18. GatesQudits2015
19. Grover2014
20. HybridGates
21. INSTALL
22. Measurement
23. PartialTransposeTutorial
24. QCwaveTutorial2014
25. QFT2014
26. Quantum EntropyTutorial2014
27. Qutrit operators
28. RandomObs
29. SchmidtTutorial-Qutrits2015
30. SchmidtTutorial2014
31. Shor2014
32. Teleportation2014
33. TeleportationQutrit
34. TernaryTutorial
35. Tutorial2014
36. TutorialTP
37. WernerStates2014
38. WorkBookPartnerBT
39. XState Tutorial 2015
40. XState Tutorial

39

