Systematic uncertainties in long baseline neutrino oscillations for large θ_{13}

Pilar Coloma Center for Neutrino Physics at Virginia Tech

Based on

P. Coloma, P. Huber, J. Kopp and W. Winter, 1209.5973 [hep-ph]

Flux Measurement and Determination in the Intensity Frontier Era Neutrino Beams Pittsburgh PACC, Dec 8, 2012

Outline

- Introduction to precision in θ_{13} and δ
- Introduction to the problem of systematics for large θ_{13}
 - Possible ways to reduce their impact
- Simulation details
- Results
 - Comparison, key systematics, effect of luminosity

neutrino/antineutrino

Precision in
$$\theta_{13}$$

 $(\Delta \theta_{13})_{\pm} \propto \left[\frac{(1 \mp \hat{A})^2}{\sin^2((1 \mp \hat{A})\Delta)} \right] \frac{1}{\theta_{13}} \Delta N_{\pm}$

Statistical limit:

$$\Delta N_{\pm} \propto \sqrt{N_{\pm}} \quad \propto \theta_{13} \quad \longrightarrow (\Delta \theta_{13})_{\pm} \propto const$$

Systematics on the signal:

$$\Delta N_{\pm} \propto N_{\pm} \propto \theta_{13}^2 \longrightarrow (\Delta \theta_{13})_{\pm} \propto \theta_{13}$$

Background error:

$$\Delta N_{\pm} \propto const \qquad \longrightarrow \qquad (\Delta \theta_{13})_{\pm} \propto 1/\theta_{13}$$

Precision in θ_{13}

Statistical limit:

$$\frac{\Delta\theta_{13}}{\theta_{13}} \propto \frac{1}{\theta_{13}}$$

Systematics on the signal:

$$\frac{\Delta \theta_{13}}{\theta_{13}} \propto const$$

Background error:

$$\frac{\Delta\theta_{13}}{\theta_{13}}\propto\frac{1}{\theta_{13}^2}$$

P. Coloma, A. Donini, E. Fernández-Martínez and P. Hernández, 1203.5651 [hep-ph]

Precision in δ

CPV discovery potential vs precision:

Precision in δ VACUUM $(\Delta \delta)_{\pm} \propto f [\Delta] \frac{1}{\sin(\Delta \mp \delta)}$

Precision in δ

- 1) Mild θ_{13} dependence
- 2) Strong δ dependence for BB350 due to no disappearance data
- 3) CPV discovery potential related to precision around
 0,π: more favorable for setups in vacuum and with similar number of nu/nubar events

Coloma, Donini, Fernández-Martínez, Hernández, 1203.5651 [hep-ph]

0907.1896 [hep-ph]

Hernández, 1203.5651 [hep-ph]

Coloma, Fernández-Martínez, 1110.4583 [hep-ph]

Coloma, Fernández-Martínez, 1110.4583 [hep-ph]

1110.4583 [hep-ph]

0711.2950 [hep-ph]

Possible ways to reduce the effect of systematics:

measure final flavor cross sections at a near detector.
 If this cannot be done, put constraints on ratios
 between cross sections for different flavors

Day, McFarland, 1206.6745 [hep-ph] (see also Debbie's talk)

2) measure intrinsic background at near detector3) use data from disappearance channels at the far detector

$$\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$$
FD: $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$

 $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ FD: $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$ | Mu- V_{far} Matter Xsec

 $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ FD: $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$ | Mu- V_{far} Matter Xsec ND: $\nu_{\mu} \rightarrow \nu_{\mu}$

μ	$l^- \rightarrow$	$e^-\bar{\nu}_e\nu_\mu$				
	FD:	$\bar{\nu}_e \rightarrow \bar{\nu}_\mu$	Mu-	V_{far}	Matter	Xsec
	ND:	$ u_{\mu} ightarrow u_{\mu}$	Mu-	Vnear	vac	X.sec

101-010 T		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)				1000000					
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated			correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated			correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^*$	3.5%	11%	-	3.5%	11%	_	-	-	—
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	-	2.7%	5.4%		-		-
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	-	2.5%	5.1%	—	-		-
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)	1000000		0.003	011000					
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated			correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated			correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	(15%)	20%	10%	(15%)	20%	10%	(15%)	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^*$	3.5%	11%	-	3.5%	11%	_	-	-	-
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	-	2.7%	5.4%	<u> </u>	-	_	
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	-	2.5%	5.1%	_	-	-	—
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)	1000000		0.000	0.000		100 Contraction			
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated			correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated			correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	(15%)	20%	10%	(15%)	20%	10%	(15%)	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^*$	3.5%	11%	-	3.5%	11%	-	-	-	-)
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	—	2.7%	5.4%	-	-	-	_
Effec. ratio ν_e/ν_μ DIS*	2.5%	5.1%		2.5%	5.1%	-	-		-)
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

— theoretical constraint

		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)	10000000		0.000	011000		100 Contraction			
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated			correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated			correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	(15%)	20%	10%	(15%)	20%	10%	(15%)	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio ν_e/ν_μ QE*	3.5%	11%	-	3.5%	11%	-	-	-	-)
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	—	2.7%	5.4%	-	-	-	_
Effec. ratio ν_e/ν_μ DIS*	2.5%	5.1%		2.5%	5.1%	10 11	-		-
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

— theoretical constraint

$$\begin{aligned} & \sum_{r,i} Simulation details \\ \chi^2 &= \sum_{r,i} 2\left(T_{r,i}(\vec{\Theta},\vec{\xi}) - O_{r,i} + O_{r,i} \ln \frac{O_{r,i}}{T_{r,i}(\vec{\Theta},\vec{\xi})}\right) \\ &+ \sum_k \left(\frac{\xi_k}{\sigma_k}\right)^2 \end{aligned}$$

GLoBES software used

hep-ph/0407333, hep-ph/0701187

- A near detector has been explicitly simulated for all experiments
- Correlations are fully taken into account between different channels (unless otherwise stated)
- Systematic uncertainties introduced as nuisance parameters
- Marginalization performed over all parameters
- No degeneracies considered. Normal hierarchy assumed.
- $\sin^2 2\theta_{13} = 0.1$

More simulation details

 No energy dependent effects included (nuclear effects, for instance) see Zeller's and Morfin's talks

All errors included as norm errors.

- However, different independent errors considered for the different cross section regimes: "effective" shape error
- Near detector is assumed to be sufficiently far away so that the spectrum is identical to the far detector (1-2 km)
- Near and far detector are assumed to be identical (except for the treatment of NC backgrounds)
- No tau backgrounds are included (very little impact for CPV, though)
 Donini, Gomez Cadenas, Meloni, 1005.2275 [hep-ph]

The setups

.

	Setup	$E_{ u}^{ m peak}$	L	OA	Detector	kt	MW	Decays/yr	$(t_ u,t_{ar u})$
k	BB350	1.2	650	-	WC	500		$1.1(2.8) \times 10^{18}$	(5,5)
mar	NF10	5.0	2000	-	MIND	100	<u>.</u>	7×10^{20}	(10,10)
encl	WBB	4.5	2 300	0 1	LAr	100	0.8	1 	(5,5)
В	T2HK	0.6	295	2.5°	WC	560	1.66	-	(1.5, 3.5)
	BB100	03	130	—	WC	500	—	$1.1(2.8) \times 10^{18}$	(5,5)
tive	+ SPL	0.0	100	. 15			4		(2,8)
erna	NF5	2.5	1 290		MIND	100		7×10^{20}	(10,10)
Alt	LBNE _{mini}	4.0	1 290	29 <u>1-</u> 25	LAr	10	0.7		(5,5)
	$NO\nu A^+$	2.0	810	0.8°	LAr	30	0.7	—	(5,5)
20	T2K	0.6	295	2.5°	WC	22.5	0.75		(5,5)
20	ΝΟνΑ	2.0	810	0.8°	TASD	15	0.7	—	(4,4)

General comparison

How far do we want to get?

Coloma, Huber, Kopp, Winter, 1209.5973 [hep-ph]

Sys and near detectors

Sys and near detectors

Exposure vs systematics

Variation between optimistic and conservative assumptions:

Coloma, Huber, Kopp, Winter, 1209.5973 [hep-ph]

Exposure vs systematics

Variation between optimistic and conservative assumptions:

Coloma, Huber, Kopp, Winter, 1209.5973 [hep-ph]

Conclusions

- The precision on θ_{13} obtained at Daya Bay will most likely not be exceeded by any beam experiment. For δ the situation is more complicated, though:
 - ideally, an experiment in vacuum would have the best reach for CPV; however, this is not optimal for precision...
 - maybe a combination of the two?
- Low energy setups are generally more affected by systematics
 - theoretical assumptions on cross section ratios are critical (Exception! BB+SPL)

Conclusions

- The impact of a ND does not seem so relevant if data from disappearance at the FD is used (under certain assumptions!)
 - migration due to nuclear effects is not included
 - if NP is present, a ND is crucial
 - we assume only norm errors (an "effective" shape error is done for the xsecs only)
 - effectiveness of this method depends on the statistics
- In some cases, it may a be better path to increase statistics than reduce systematics...
- LENF is the only facility able to achieve similar precision to quark sector

Systematics become a problem for large q13 since the leading term in the probability grows quadratically

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2 2\theta_{13} + Z$$
$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta_{31}L}{2}\right)$$

Variation between optimistic and conservative assumptions:

Coloma, Huber, Kopp, Winter, 1209.5973 [hep-ph]

Variation between optimistic and conservative assumptions:

Coloma, Huber, Kopp, Winter, 1209.5973 [hep-ph]

Mass hierarchy

Mass hierarchy may be obtained through:

- T2K+NOvA+INO 1203.3388 [hep-ph]
- Atmospheric data at future exps 1109.3262 [hep-ex]
- PINGU 1205.7071 [hep-ph]
- Daya Bay II hep-ph/0112074
- combination of precise reactor+LBL data hep-ph/0503283

٩

... or a combination of all of them!

Present oscillation facilities

Discovery potential at the 90% CL

Huber, Lindner, Schwetz, Winter, 0907.1896 [hep-ph]

Present oscillation facilities

Blennow, Schwetz, 1203.3388 [hep-ph]

Previous hints on θ_{13}

Previous hints from global fits pointed to nonzero θ_{13} ...

González-García, Maltoni, Salvado, 1001.4524 [hep-ph]