

Outline

- Simple Toy model of why Cross Sections Matter (2004)
- 2 Case Studies: T2K and NOvA (2012)
- What about the next generations?
- Not covered: nuclear effects (see Jorge's talk tomorrow)
- Conclusion: we need better ways to measure fluxes if
 - We are ever going to measure cross sections
 - We are ever going to measure CP violation!

v_e Appearance analysis, circa 2004

beam

+ signal

 ν_e

NC

V,, CC

Event Samples are different Near to far, so **Uncertainties** In cross sections Won't cancel

If signal is small, worry about background prediction (v_e flux and nc xsection) If signal is big, worry about signal cross sections and $\nu_{\mathfrak{u}}$ flux

Far Detector

v_e Backgrounds by process

Neutral Currents

- Should scale like total neutrino flux (v_{μ} flux)
- Dominant background processes at 2GeV:
 - NC coherent
 - resonant pi0 production

ν_μ Charged Currents

- Are present in near detector, but NOT in far
- Dominant processes that give background at 2GeV
 - · Deep inelastic scattering

• Intrinsic beam v_e events

- Present in near detector, mostly in far also
- Average "baseline" ratio different than ν_{μ}
- Dominant processes: Quasi-elastic and Resonance events

Event samples near and far

- Study is for a totally active scintillator detector in off axis beam centered on 2GeV neutrino beam
- Any similarities between this and NOVA are purely coincidental...
- Statistics shown are for 5 year run in neutrino mode only
- Although this study was from a long time ago, you can see that the processes for each background are very different

Process	Events	QE	RES	СОН	DIS
δσ/σ		20%	40%	100%	20%
Signal v_e $\sin^2 2\theta_{13} = 0.1$	175	55%	35%	n/i	10%
NC	15.4	0	50%	20%	30%
v_{μ} CC	3.6	0	65%	n/i	35%
Beam v_e	19.1	50%	40%	n/i	10%

How much do cross section errors cancel near to far? (circa 2004)

- Toy analysis: start with old NOvA detector simulation, which had same ν_e/NC ratio, mostly QE & RES signal events accepted, more ν_μCC/NC accepted
- Near detector backgrounds have ~3 times higher ν_{μ} cc!
- Assume if identical ND, can only measure 1 background number: hard to distinguish between different sources

Assume that now, σ 's known at: $\Delta QE = 20\%$, $\Delta RES = 40\%$ (CC, NC) $\Delta DIS = 20\%$, $\Delta COH_{E_0} = 100\%$ arXiv:hep-ex/0410005v1

Assume in the next few years, σ 's known at: $\Delta QE = 5\%$, $\Delta RES = 5$, 10% (CC, NC) $\Delta DIS = 5\%$, $\Delta COH_{Fe} = 20\%$

Caveat Emptor


```
Assume in the next few years, \sigma's known at:

\Delta QE = 5\%, \Delta RES = 5, 10\% (CC, NC)

\Delta DIS = 5\%, \Delta COH_{Fe} = 20\%
```

- This assumption about how well cross sections can be known implies something about how well FLUXes will be known!
- Above statement assumes <5% absolute flux uncertainty (at MINERvA, for example)
- Don't trust people who say things like this
- Trust but verify...

Fast Forward 8 years...

T2K Experiment

- 700MeV v_{μ} off axis beam, 295km
- Far detector: Water Cerenkov
- Near Detector Suite at 280m
 - Off Axis Detector
 - Scintillator with water targets
 - POD for EM final states
 - TPC's for good particle ID
 - All in Magnetic Field
 - On Axis Detector
 - Steel and tracker in a grid to see neutrino beam center

Mahn, NuFact2012

NOvA Experiment

- 2GeV ν_μ off axis beam, 810km
- Far detector: Totally Active Segmented Liquid Scintillator
- Near Detector at ~800m
 - 2m by 3m wide
 - Steel muon range stack at the end
 - Same segmentation as Far Detector

Vahle, 2010 FNAL PAC

8

NIM A 624, 591 (2010)

What do you learn from a Near Detector

- Both T2K and NOvA plan to constrain individual contributions to Far Detector background from near Detector measurements
- T2K has the advantage of some data...and a first $v_{\rm e}$ oscillation result
- NOvA techniques are (currently) based on experience with MINOS ν_e oscillation search
- If you do separate different backgrounds in a near detector, then FD uncertainties may depend more on flux differences between the two, and how well you know them
- Following slides provide examples from T2K and NOvA
 - T2K: slides from Kendall Mahn, NuFact 2012
 - NOvA: slides from Mayly Sanchez, NuFact 2012

T2K: Near/Far Detector Event Samples

- Fraction of events vs process in different event samples
- At the far detector, the fraction of QE events is very different if it's v_e signal or background

Interaction Mode	Trkr. ν_{μ} CCQE	Trkr. ν_{μ} CCnQ	E SK ν_e Sig.	SK ν_e Bgnd
CCQE	76.6%	14.6%	85.8%	45.0%
$CC1\pi$	15.6%	29.3%	13.7%	13.9%
CC coh.	1.9%	4.2%	0.3%	0.7%
CC other	4.1%	37.0%	0.2%	0.7%
NC	1.5%	5.3%	-	39.7%

T2K: Near Detector Constraints on signal and background processes

CCQE/CCnQE:

- Acceptance is different between ND and SK (forward muons in ND mostly)
- need external data to get higher angles (MiniBooNE)
- What ND calls CCQE and CCnQE may be different from what SK calls CCQE (acceptance for pions and extra protons very different)
- CC1π
 - Look for NC π^0 's in POD
- Target: ND selection is C, SK is O
 - C-O model dependent uncertainties included

Separate sample into two subsamples, CCQE enhanced and CCnQE enhanced

T2K intrinsic v_e Constraints

Two detectors, two techniques:
 TPC events, and POD events

 $N(v_e)/N(v_\mu) = R(e:\mu) = 1.0\% \pm 0.7\%$ (statistics) $\pm 0.3\%$ (systematics) $R(e:\mu, data)/R(e:\mu, MC) = 0.6 \pm 0.4$ (statistics) ± 0.2 (systematics)

data-bkrd(MC)/sig(MC)=R

Signal region energies, high backgrounds

 $R = 1.19 \pm 0.15$ (statistics) ± 0.26 (systematics)

Lower backgrounds but above signal energy

T2K: Near Detector Fit Technique

 Put all the near detector and external data into a fitter, and allow following parameters to vary: (See A. Marino's talk!)

MAQE (GeV)	Axial mass (QE)
MARES (GeV)	Axial mass (1π)
QE1 0 <e<sub>v<1.5 GeV</e<sub>	Normalization
QE2 1.5 <e<sub>v<3.5 GeV</e<sub>	Normalization
QE3 E _v >3.5 GeV	Normalization
CCRES1 E _v < 2.5 GeV	Normalization
CCRES2 E _v > 2.5 GeV	Normalization
NC1π ⁰	Normalization
pF (MeV/c)	Fermi momentum
Spectral Function	Model comparison
CC other	Normalization

T2K: Fit results and Uncertainties

Fit allows many things to vary, not just cross sections

Signal (v _µ to v _e osc)	# events
@sin ² 2 θ_{13} =0.1, δ cp=0	7.81

Background	# events
beam $v_e + \overline{v_e}$	1.73
v_{μ} + \overline{v}_{μ} (mainly NC) background	1.31
osc through $\boldsymbol{\theta}_{12}$	0.18
total:	3.22±0.43(sys)

Uncertainties	ν _e bkrd	v _e sig+bkrd
v flux+xsec (constrained by ND280)	±8.7%	±5.7%
v xsec (unconstrained by ND280)	±5.9%	±7.5%
Far detector	±7.7%	±3.9%
Total	±13.4%	±10.3%
No ND measurement	26%	22%

NOvA: Event Samples

-NC

"data" has

M_A changed

by 30%

15

 NOvA has developed particle ID algorithm based on libraries (similar to MINOS

technique)

 Plots below are after a PID cut

Accepted Events in NOvA

- Low y v_e signal events are accepted in far detector
- High y NC and ν_{μ} CC events are accepted
- Single pion and multi-pion events are important NC backgrounds

Differences in acceptance

- In the NOvA Near Detector 82-87% of neutrino events are contained. Also Up to 10% of the NC lose a π^0 .
- We do not expect these effects to be present in the Far Detector.

Energy	v _e CC	ν _μ CC	NC	NC w/lost π ⁰	
1-2 GeV	85 ± 1%	59 ± 1%	87 ± 2%	10 ± 2%	
2-3 GeV	85 ± 1%	48 ± 1%	82 ± 3%	8 ± 2%	

$NC/CC v_{\mu}$ Background Constraint

- Expect to use technique a la MINOS to study hadronic showers in ND
- Tuned hadronic model to external data and to CC events with muon track removed

MINOS Systematic Errors

- To study systematics in MINOS, changed various parameters MC one at a time
- Used changed Near/Far extrapolation on original MC set to see how prediction changed

Note: in MINOS, Near and Far samples dominated by NC

Systematic error study in NOvA

20

- The neutrino interaction systematic errors are modified in this study:
 - Cross-section: M_A(QE) and M_A(RES) varied by ± 20%.
 - Hadronization model changes:
 - The π⁰ selection probability in the hadronization model changed by ± 33%.
 - Change in average Pt resulting in broader showers.
 - Re-weighting Pt and Xf distributions of hadron distribution.
 - Intranuclear formation zone changed by ± 50%.
- These systematics should mostly cancel, however they can be affected by Far/Near detector differences.
 - We expect the most significant of them to be: energy spectra, light levels and event energy containment.

0.1

0.05

NOvA Preliminary estimate

- We evaluated a set of neutrino interaction systematic uncertainties on the background for electron neutrino appearance in NOvA.
 - The largest systematic error arises from the Pt and Xf changes at 5%. (hadronic shower model)
 - All other errors are within 3% for background, currently limited by the statistics of the study.
- For the signal the largest uncertainties correspond to the cross section systematics.
 - These are expected to be corrected using the extrapolation of the ν_{μ} CC spectrum from the Near Detector to less than 1%.
- All others systematics on the signal are also within the statistics of the study.

Comparison

Experiment	T2K (data through 6/2012)	NOvA (3 years of v running)	Toy MC
Background Composition (intrinsic ν_e to ν_μ /NC&CC)	1.73/1.31	8/24	19/19
Signal v_e events (predicted, $\sin^2\theta_{13}$ =0.1)	7.81	68	175
Near Detector Strategy	Multi-purpose, forward acceptance, High resolution	"Functionally identical" but much smaller, steel muon range stack in back	Assume identical
Systematic error on Background	7.7%	5% hadron shower model, 3% others	8% "now"/ 1.5% "later"
Systematic error estimated on signal	3.9%	Expect <1% using ν_{μ} CC	12% "now" / 2.5% "later"

Sensitivities versus v_e/v_μ cross section ratio

- Should not assume that once you know v_{μ} CC cross sections that the v_e CC cross sections are known to the same level of precision, especially <1GeV!
- See M. Day's talk at NuFact 2012
 (or M. Day & K.S. McFarland, Phys.Rev. D86 (2012))
- Long list of effects need to be incorporated

- Kinematic Limits
- Axial Form Factor Contributions
- Pseudoscalar Form Factor Contributions
 - Pole mass uncertainty
 - Goldberger-Treiman Violation
- Second Class Current Contributions
 - Vector and Axial Form Factors
- Radiative Corrections

Trying to understand next steps

 Want to understand what cross sections will be important for next generations

Asymmetry at 1300km (Total), NH

- Flux?
- Cross sections?
- Large ⊕₁₃
 means
 looking for
 small
 differences
- Plot at left

shows LARGEST asymmetry vs δ_{CP} and ν Energy for LBNE (from M. Bishai, plot is w/o matter effects, matter effects will make this harder in one mode, easier in another)

Cross sections that matter in the next generation

- T2HK: Water Cerenkov, expect similar backgrounds as T2K: (NC, ν_{μ} CC, beam ν_{e})
- LBNE/LBNO: Liquid Argon
 - Historically, predict that the backgrounds are dominated by beam $\nu_{\rm e}$'s, because of excellent e/ γ discrimination

What cross sections matter if all backgrounds are v_e 's?

- Signal Cross sections matter (QE, Resonance)
 - Will also need acceptance over broad range of angles, not just small muon and electron angles
 - Which means that flux predictions for the cross section experiments matter a lot
- Flux predictions of the oscillation experiment beamline matter that much more
 - v_{μ} flux matters for denominator in probability
 - v_e flux matters for background subtraction
 - Would be nice in particular to measure ν_e cross sections in ND with a near detector...
 - Other idea around for dedicated $v_{\rm e}$ cross section measurement: NUSTORM

Sneak Preview: many new ideas for next step

- Signal / background is very different depending on what future facility you have in mind
- See P. Coloma, P.
 Huber, J. Kopp, W.
 Winter, "Systematic uncertainties in longbaseline neutrino oscillations for large θ₁₃", arXiv: 1209.5973 [hep-ph]

	Setups	ν app	$\bar{\nu}$ app	ν dis	$\bar{\nu}$ dis
¥	NF10	44880/35	8701/61	159532/19	209577/21
marl	BB350	2447/378	2262/330	93775/-	$106750/\!-$
Benchmark	T2HK	4754/2106	2006/2290	33788/544	168685/5502
Be	WBB	1830/248	147/148	5526/763	1884/515
	NF5	11022/4	2916/11	18337/2	32891/2
tive	BB100	1203/96	1048/81	$65926/\!-$	44776/-
Alternative	SPL	10455/1546	4453/1695	214524/9	93039/4
Alt	$LBNE_{mini}$	389/162	63/102	3330/533	941/1419
	$NO\nuA^+$	752/590	155/386	7335/1255	3179/2397

See P. Coloma's talk tomorrow!

$$\theta_{12} = 32^{\circ}, \ \theta_{23} = 45^{\circ}, \ \theta_{13} = 9^{\circ}, \ \delta = 0,$$

 $\Delta m_{21}^2 = 7 \times 10^{-5} \text{ eV}^2$ and $\Delta m_{31}^2 = 3 \times 10^{-3}$ (normal hierarchy)

Cross Section Uncertainties: trust but verify...

- Note: cross section x efficiency at 10% implies flux known much better for cross section experiments
- No shape uncertainties on Flux or Cross Sections...

		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	c	orrelate	ed	C	orrelate	ed
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	c	orrelate	ed	C	orrelate	ed
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio ν_e/ν_μ QE*	3.5%	11%	_	3.5%	11%	_	_	_	_
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	_	2.7%	5.4%	_	_	_	_
Effec. ratio ν_e/ν_μ DIS*	2.5%	5.1%	_	2.5%	5.1%	_	_	_	_
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

Future

- Wouldn't it be great to do this study for new detector capabilities?
- Next steps: get the right energy dependence on uncertainties in flux and cross sections...figure out which energy dependences matter the most
- Get the right detector acceptance in
- LBNE working on this now...
- Plot at right shows what happens if you vary varying pion absorption in the FSI model (made by D. Cherdak and R. Gran, thanks to G. Zeller)

Summary and Conclusions

- Any time you are saying that cross section matters for oscillation experiments, you are ultimately saying that flux matters:
 - Not just for the oscillation experiments
 - But for the cross sections to get to oscillation measurements...
- No such thing as an "Identical Near Detector"
- Precious few standard candles
- Need to take advantage of what we have: both for cross section and oscillation experiments
- Need new/complementary ways to get at the fluxes