Neutrino Electron Scattering

1

Jaewon Park University of Rochester

Flux Measurement and Determination in the Intensity Frontier Era Neutrino Beams Dec 6-8, 2012 Pittsburgh, PA

Overview

- Motivation
 - Flux constraining using $v_{\mu} + e$ scattering
- Signal/Background separation
- MINERvA detector
- Single EM shower reconstruction
- e/γ Separation using dE/dx
- Small sample MC/ Comparison
- Estimated statistics in ME
- Summary

NuMI Beamline

- Movable target to configure beam energy (only low energy target)
 - ME target doesn't move
- Horn current to select sign of neutrino
 - Forward horn current: neutrino dominant beam
 - Reverse horn current: anti-neutrino dominant beam

MINOS Near

Detector

- My study is based on
 - Low energy beam, forward horn current
 - Contamination of v_{μ} , \overline{v}_{e} , and \overline{v}_{e}

- v + e scattering is pure leptonic process and theoretically well understood (~1% precision)
- v scattering on light electron means small center of mass energy, consequently it has tiny cross section (~1/2000 compare to vN scattering)
- Scattering on light electron also means very small Q², which produces very forward electron final state
- In principle, if we measure event rate of this process, we can determine flux ($R = \Phi \sigma$)
- But it's not that simple because cross section(σ) and flux(Φ) are function of neutrino energy
- And we only measure electron energy
 - Because electron angle is really all forward within detector resolution $(E\theta^2 < 2m_e)$, we don't have sensitivity to calculate neutrino energy using 2 body kinematics

Flux \rightarrow Event Rate

- Total cross section is proportional to beam energy
- High energy tail contribution gets bigger

Event Rate \rightarrow Electron Spectrum

0.02

• Note also anti muon neutrino and electron neutrino contribution

Background Suppression and Signal Isolation

- Require <u>EM shower energy > 0.8 GeV</u>
 - NC background is very high at lower energy
 - Particle ID is more difficult at lower energy
- After basic background suppression, the signal is isolated using $\underline{E\theta^2 \text{ cut}}$

E: Energy of electron candidate θ : Theta of electron candidates w.r.t. beam direction

MINERvA Detector

• MINERvA detector is made of a stack of "MODULES" (See next slide)

Detector Module

• X, U, V coordinates are combined to make 3D tracking

10

$v+e \rightarrow v+e$ Candidate Event

X-view

run/subrun/gate/timeslice=2017/2/219/10

$v+e \rightarrow v+e$ Candidate Event

X-view

run/subrun/gate/timeslice=2157/12/1270/2

→ Z

Single EM Shower Reconstruction

- Once vertex and direction is known, shower cone can be applied
- When (thin) track finder fails on fuzzy shower, isolated blob finder is used and then track fitter can handle fuzzy shower

MC Reconstruction Efficiency

- Single electron MC is used to calculate efficiency
 - Energy: $0.2 \sim 5$ GeV, Theta: $0 \sim 45$ deg
- **Reconstruction efficiency is 0.96 for small angle** (angle <10 degree, energy>400MeV)

MC Angular and Energy Resolution

- X-angle resolution ~ 0.4 degree
- Precise angular reconstruction is critical to separate $v_{\mu} e$ elastic scattering from v_e CCQE
- Energy resolution: 6~ 7%

15

Calibration Checking using Michel electron

- Michel electron is produced by a muon decay and electron spectrum is predicted by well-understood theory
 - What's really seen is theory spectrum with detector energy resolution and calibration
- Michel electron is nice tool to check calibration
 - Michel energy MC/data comparison
 - EM energy scale is stable over time

16

Michel electron dE/dx and Rock muon dE/dx Comparison

- Rock muon (muons that is produced from neutrino interaction in upstream rock) is also good source of calibration
 - Minimum ionizing particle (MIP) dE/dx is constant
- dE/dx in each plane reflects plane response

17

- Module to module variation is consistent between Michel electron dE/dx and muon dE/dx

dE/dx for Electron and Gamma Discrimination

- Neutral current π^0 is decayed into energetic gamma + tiny energy gamma
- dE/dx at the beginning of shower is different for electron and gamma
 - Electron loses energy like MIP (Minimum Ionization Particle)
 - Gamma loses energy like twice MIP

Small Sample Data/MC comparison

- Neutrino beam, MC (left): 3.9E20 POT, data (right): 2.06E19 POT
- Small data (~ 5% to full data) is used for comparison
- Peak in low $E\theta^2$ is found in data

Electron spectrum of $v+e^-$ Elastic Scattering

- $E\theta^2 < 0.0032$ cut is applied to get $v_{\mu} + e^-$ rich sample
- Purity: 0.82, efficiency: 0.6
- Expected signal ($v_{\mu}+e^{-}, v_{e}+e^{-}$) is 112 events with 24 background events for expected full data set
- It gives ~10% statistical error on absolute flux constraint

What do we expect in ME?

- Medium energy beam expect roughly 10 times statistics compared to low energy beam
 - Assuming:

- If we assume we have similar signal/background ratio as LE:
 - Signal/Background =173/47 (LE)
 - Signal/Background = 1730/470 (ME, scaled from LE)
 - Statistical error = $\sim 2.7\%$

Flux Shape?

- In principle, deconvolution (electron spectrum → flux shape) is possible but it's not easy
- It's easier to compare in electron spectrum space
- Two different flux model predictions can be tested with data and we can tell which one is more consistent

Summary

- Absolute flux constraining based on v_{μ} +e⁻ scattering is shown useful in LE along with other methods of flux measurement
- It'll be more powerful method in higher statistics ME