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Overview

• Motivation
– Flux constraining using νµ + e scattering

• Signal/Background separation
• MINERvA detector
• Single EM shower reconstruction
• e/γ Separation using dE/dx
• Small sample        / comparison
• Estimated statistics in ME
• Summary
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NuMI Beamline

• Movable target to configure beam energy 
(only low energy target)

– ME target doesn’t move
• Horn current to select sign of neutrino

– Forward horn current: neutrino dominant 
beam

– Reverse horn current: anti-neutrino dominant 
beam

• My study is based on
– Low energy beam, forward horn current
– Contamination of νµ, νe, and νe
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Constraining flux using νµ + e scattering

• ν + e scattering is pure leptonic process and theoretically well understood ( ~1% 
precision)

• ν scattering on light electron means small center of mass energy, consequently it has 
tiny cross section (~1/2000 compare to νN scattering)

• Scattering on light electron also means very small Q2, which produces very forward 
electron final state

• In principle, if we measure event rate of this process, we can determine flux (R = Фσ)
• But it’s not that simple because cross section(σ) and flux(Ф) are function of neutrino 

energy
• And we only measure electron energy

– Because electron angle is really all forward within detector resolution (Eθ2<2me), we don’t 
have sensitivity to calculate neutrino energy using 2 body kinematics
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Flux � Event Rate
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• Total cross section is proportional to beam energy
• High energy tail contribution gets bigger

Eν weighted

Here is arbitrary fluxHere is arbitrary flux
just forjust for

illustration purposeillustration purpose
in this and next slides
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Event Rate � Electron Spectrum

• High energy electron from high energy neutrino
• Low energy electron from both low and high energy neutrino
• Note also anti muon neutrino and electron neutrino 

contribution
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7 νµ+e-→ νµ+e- and Background 
Events

All can look like
single electron

final state
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ee +→+ µµ νν
ee +→+ µµ νν

0
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Very forward

Vertex activity

One of gamma is low energy

Small opening angle between two gammas

z

γ

γ
NC-coherent π0

NC-resonant π0

All             events are shown
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Background Suppression and Signal Isolation

• Require EM shower energy > 0.8 GeV
– NC background is very high at lower energy 
– Particle ID is more difficult at lower energy

• After basic background suppression, the signal is isolated usingEθ2 cut

pene
−→ν

nepe
+→ν

Gamma’s dE/dx at the beginningof shower is 
different from electron

Require no or small vertex activity

0

0

πνν

πνν

µµ

µµ

NN

AA

→

→

νe CCQE

NC π0

E>0.8 GeV

E: Energy of electron candidate
θ: Theta of electron candidates                
w.r.t. beam direction
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MINERvA Detector
• MINERvA detector is made of a stack of “MODULES” (See next slide)

ECALECAL: Scintillator +
Lead sampling calorimeter

HCALHCAL: Scintillator + steel sampling calorimeter
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Detector Module

• X, U, V coordinates are combined to make 3D tracking

Particle

Wavelength shifting
(WLS) fiber

Extruded
scintillator strip

strip

(X/U/V-plane )X-plane

127 strips

Detector frame 1/6
(Side Hcal)

16.7 mm
Scintillator planes

Scintillator plane consists of
extruded scintillator strips

and wavelength shifting fibers

17 mm
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ν+e → ν+e  Candidate Event

Reco E = 3.3 GeV

run/subrun/gate/timeslice=2017/2/219/10

Module

Strip

z

X-view
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ν+e → ν+e  Candidate Event

Reco E = 5.7 GeV

run/subrun/gate/timeslice=2157/12/1270/2

Module

Strip

z

X-view
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Single EM Shower Reconstruction

• Once vertex and direction is known, shower cone can be applied
• When (thin) track finder fails on fuzzy shower, isolated blob 

finder is used and then track fitter can handle fuzzy shower

Track-like shower
(4.5 GeV electron)

Fuzzy shower
(2.9 GeV electron)

Thin track finder

Isolated blob
(topologically
connected hits)

Shower cone

Isolated blob finder

Track fit

Shower cone

Crosstalk

z

x

z
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• Single electron MC is used to calculate efficiency
– Energy: 0.2 ~ 5 GeV,  Theta: 0~45 deg

• Reconstruction efficiency is 0.96 for small angle (angle 
<10 degree, energy>400MeV)

MC Reconstruction Efficiency

Big theta angle electron tends to exit to sides,
which leaves less hits in tracking volume 

Low energy electron
sometimes produces

gappy shower

401MeV electron401MeV electron
z

x
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8

MeV

Low energy electron
sometimes produces

gappy shower
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MC Angular and Energy Resolution

• X-angle resolution ~ 0.4 degree 
• Precise angular reconstruction is critical to separate νµ e elastic 

scattering from νe CCQE 
• Energy resolution: 6~ 7%

energy>800 MeV
theta<10deg

theta < 10 degree
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Calibration Checking using Michel electron

• Michel electron is produced by a muon decay and electron spectrum is 
predicted by well-understood theory
– What’s really seen is theory spectrum with detector energy resolution and 

calibration
• Michel electron is nice tool to check calibration

– Michel energy MC/data comparison
– EM energy scale is stable over time

Energy scale stability
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Michel electron dE/dx and Rock muon dE/dx Comparison

• Rock muon (muons that is produced from neutrino interaction in upstream rock) is also 
good source of calibration

– Minimum ionizing particle (MIP) dE/dx is constant
• dE/dx in each plane reflects plane response
• Module to module variation is consistent  between Michel electron dE/dx and  muon 

dE/dx

vs
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dE/dx for Electron and Gamma Discrimination

• Neutral current π0 is decayed into energetic gamma + tiny energy gamma
• dE/dx at the beginning of shower is different for electron and gamma 

– Electron loses energy like MIP (Minimum Ionization Particle)
– Gamma loses energy like twice MIP

γ

Beginning of gamma track (pair production)

0.4-5GeV

dE/dx (MeV/1.7cm)

e-

e+

Gamma Gamma dE/dxdE/dx of of ππ00

from antifrom anti--νν interaction interaction 

Michel electron Michel electron dE/dxdE/dx
from (antifrom (anti--) ) νν interactioninteraction

Area normalizedArea normalized

overflowed
events
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Small Sample Data/MC comparison

• Neutrino beam,  MC (left): 3.9E20 POT, data (right): 2.06E19 POT
• Small data (~ 5% to full data) is used for comparison
• Peak in low Eθ2 is found in data

Eθ2<0.0032

MC prediction for recorded data ~5% of recorded data

vs
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Electron spectrum of ν+e- Elastic Scattering

• Eθ2<0.0032 cut is applied to get νµ+e- rich sample
• Purity: 0.82, efficiency: 0.6
• Expected signal (ννµµ++ee--, , ννee+e+e--) is 112 events with 24 

background events for expected full data set
• It gives ~10% statistical error on absolute flux constraint

Overflowed events
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What do we expect in ME?

• Medium energy beam expect roughly 10 times statistics compared to 
low energy beam
– Assuming:

• low energy: 4E20 POT                 medium energy: 12E20 POT

• If we assume we have similar signal/background ratio as LE:
– Signal/Background =173/47 (LE)
– Signal/Background = 1730/470 (ME, scaled from LE)
– Statistical error = ~2.7%

LE fluxLE flux ME fluxME flux
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Flux Shape?

• In principle, deconvolution
(electron spectrum � flux 
shape) is possible but it’s not 
easy

• It’s easier to compare in 
electron spectrum space

• Two different flux model 
predictions can be tested with 
data and we can tell which one 
is more consistent   

(using arbitrary flux)
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Summary

• Absolute flux constraining based on νµ+e-

scattering is shown useful in LE along with 
other methods of flux measurement

• It’ll be more powerful method in higher 
statistics ME


