

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Accelerator Neutrinos at the Intensity Frontier PACC Workshop, Dec 6-8 2012, Pittsburgh

Mary Bishai Brookhaven National Laboratory

December 6, 2012

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron

production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Outline

1 Introduction

2 Beams

3 Constraining Fluxes

- P-beam measurements
- Target hadron production
- Simulations

4 In-situ flux measurements

- $\blacksquare \ \mu \ {\rm flux}$
- ν flux
- Off-axis

5 Conclusions

Accelerator Neutrinos

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

<u>1962</u>: Leon Lederman, Melvin Schwartz and Jack Steinberger use BNL's Alternating Gradient Synchrotron (AGS) to produce a beam of neutrinos using the decay $\pi \rightarrow \mu \nu_x$

Making ν 's

<u>Result:</u> 40 neutrino interactions recorded in the detector, 6 of the resultant particles where identified as background and 34 identified as $\mu \Rightarrow \nu_x = \nu_\mu$

Discovery of neutrino flavour

BROOKHAVEN Neutrino Mixing: 3 flavours

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constrainin, Fluxes P-beam

Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Fractional Flavor Content

Parameter	Value (neutrino PMNS matrix)	Value (quark CKM matrix)
θ_{12}	$34 \pm 1^{\circ}$	$13.04 \pm 0.05^{\circ}$
θ_{23}	$38 \pm 1^{\circ}$	$2.38\pm0.06^\circ$
θ_{13}	$8.9\pm0.5^{\circ}$	$0.201 \pm 0.011^{\circ}$
δm^2	$+(7.54\pm0.22) imes10^{-5}~{ m eV}^2$	
Δ m ²	$(2.43^{+0.10}_{-0.06}) imes 10^{-3} \ { m eV}^2$	$m_3 >> m_2$
δ_{CP}	$-170 \pm 54^{\circ}$	$67 \pm 5^{\circ}$

Intensity Frontier: Precision neutrino physics and beyond PMNS

Neutrino Oscillation Scales

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production

In-situ flux

 μ flux ν flux

Conclusions

The mass-squared differences Δm_{21}^2 (solar), Δm_{32}^2 (atmospheric) and $\Delta m_{sterile}^2 = 1eV^2$ (LSND?) drive very different scales:

$$\begin{array}{lll} \mathsf{L}/\mathsf{E}^{\nu}_{\mathsf{n}} \ (\mathrm{km/GeV}) &=& (2\mathsf{n}-1) \frac{\pi}{2} \frac{1}{(1.267 \times \Delta \mathsf{m}^2 \ (\mathrm{eV}^2))} \\ &\approx& (2\mathsf{n}-1) \times 1 \ \mathrm{km/GeV} \ \mathrm{for} \ \Delta \mathsf{m}^2_{\mathrm{sterile}} \ (\mathrm{LSND}) \\ &\approx& (2\mathsf{n}-1) \times 500 \ \mathrm{km/GeV} \ \mathrm{for} \ \Delta \mathsf{m}^2_{\mathrm{32}} \ (\mathrm{atmos.}) \\ &\approx& (2\mathsf{n}-1) \times 15,000 \ \mathrm{km/GeV} \ \mathrm{for} \ \Delta \mathsf{m}^2_{\mathrm{21}} \ (\mathrm{solar}) \end{array}$$

where E_n^{ν} is the neutrino energy at the maximum of oscillation node n.

Oscillations of GeV scale accelerator neutrinos over different baselines probe 3x3 PMNS and beyond

Accelerator Neutrinos and PMNS

Accelerator Neutrinos and PMNS

Conclusions

Long baseline accelerator neutrinos probe all 3x3 PMNS matrix elements

Accelerator Neutrinos and PMNS

Beyond PMNS

Beyond PMNS

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production

ln-situ flux measurement

 μ flux ν flux Off-axis

Conclusions

Sterile neutrinos at 735km

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production

Simulations

In-situ flux measurement

Large extra dimensions at 735km:

MINOS, L = 735 km (without matter effect)

Beyond PMNS

Neutrino beams at the Intensity Frontier (Superbeams)

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

High power conventional neutrino beams (NuMI):

BROOKHAVEN Neutrino Factories/Muon Storage Rings

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

BRODKHAVEN Neutrino Factories/Muon Storage Rings

Superbeams vs Neutrino Factories

Aco	elerator
Neu	trinos at
the	Intensity
F	rontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

From A. Blondel et. al. NIM A 451 (2000) 102-122

	Conventional	Neutrino factory
Parents	π^+ , K ⁺ or π^- , K ⁻	μ^- or μ^+
v_{μ} beam	v_{μ}	v_{μ} : $\bar{v}_{e} = 1$:1
Background	~ 2% of \bar{v}_{μ} , ~ 1% of v_{e}	none
\bar{v}_{μ} beam	$\bar{\nu}_{\mu}$	$\bar{\nu}_{\mu}$: $\nu_{e} = 1$:1
Background	~ 6% of v_{μ} , ~ 0.5% of \bar{v}_{e}	none
$\Delta E/E$ of neutrino energy	± 10%	< 1%
$\Delta R/R$ of neutrino radius	± 10%	< 1%
Neutrino flux uncertainty	$\pm 10\%$	< 1%
v_{μ}/cm^2	3×10^{7}	3×10^{9}
per year at 732 km	for 4.5×10^{19} 400 GeV/c p.o.t.	for 10^{21} injected 50 GeV/c μ

Neutrino factories technologically challenging.

Muon storage rings only viable for short baseline.

EVEN Superbeam Baselines in the U.S.

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadror

Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

CC event rates per 100kt.MW.yrs (1 MW.yr= 1×10^{21} p.o.t) for

$\sin^2 2\theta_{13} = 0.1, \delta_{cp} = 0, \text{ NH}:$

Expt	$ u_{\mu}$ CC	$ u_{\mu}$ CC osc	$ u_{\mu}$ NC	$ u_{\rm e}$ beam	$ u_{\mu} \rightarrow \nu_{e} $	$\nu_{\mu} ightarrow u_{ au}$
Soudan 735km	73K	49K	15K	820	1500	166
Ash River 810km	18K	7.3K	3.6K	330	710	38
Hmstk 1300km	29K	11K	5.0K	280	1300	130
CA 2500km	11K	2.9K	1.6K	85	760	290

Can conventional beam fluxes be constrained to 1% level?

BROOKHAVEN Long Baseline Superbeam Signals/Backgrounds

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Beam fluxes outside the signal region produce backgrounds.

For on-axis long baseline fluxes from 1-100GeV have to be modeled

Measuring the Beam Current and Position

Accelerator Neutrinos at the Intensity Frontier

P-beam

In-situ measurements of proton intensity with high accuracy Characteristics of NuMI Beam P sition Monitors:

- Software algorithm to searce 400 μ sec to find the beam
- NuMI bunches come in 6 batches from booster. Position is measured batch by batch.
- Linear over 15-20 mm, 50 μ m accuracy in pretarget.
- 11 vertical and 13 horizontal measurements over 360m.

Tor101 Gate and Beam - 6B

Feedback from BPMs used to auto-steer the beam to target center /46

Measuring the Beam Profile: NuMI

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes

P-beam measurements

Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Beam profile at target needs to be measured

Conventional Neutrino Beam Components

Conventional Neutrino Beam Components

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes

measurements Target hadron production

Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Short baseline beams - sub-GeV: Booster Neutrino Beam 8 GeV proton, Be target I=71cm, 174 kA pulsed horn.

RECOKENTION Hadron Production Experiments

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam

Target hadron production

Simulations

In-situ flux measurements

 ν flux Off-axis

Conclusions

Dedicated large acceptance hadron spectrometers are used to measure hadrons produced in p-p and p-A collisions on thin/thick targets. For example the NA49 experiment at CERN:

NuMI Beam Simulation and 158 GeV p-C NA49 Data

MC target hadron production must be constrained by external data.

MiniBooNE p-Be Hadronic Interaction Models

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes

measuremen

Target hadron production Simulations

In-situ flux measurements

 ν flux Off-axis

Conclusions

<u>Data</u>: Use HARP 8.89 GeV/c p-Be and BNL E910 6.4 GeV/c p-Be interactions with best fit to parameteric model.

Interactions with other beamline materials

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introductior

Beams

Constraining Fluxes P-beam measurements

Target hadron production

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Hadron interactions in ALL beamline materials must be considered

Transporting Hadrons: BNB Simulation

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introductior

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Phys. Rev. D. 79, 072002 (2009)

- GEANT4 simulation of beamline geometry. Generation of the primary protons according to expected beam optics.
- Simulation of primary p-Be interactions using custom tables for production of p,n, π^{\pm} , K^{\pm} and K^0 based on external hadro-production data.
- GEANT4 propagates particles generated in p-Be, including secondary interactions in the beamline materials.

ROOKHAVEN BNB Simulation Uncertainties

How do we obtain data to constrain this?

Uncertainties on MiniBooNE u_{μ} Flux Determination

ccelerator					
eutrinos at le Intensity Frontier	Source of Uncertainty	ν_{μ}	$\overline{ u}_{\mu}$	ν_e	$\overline{\nu}_e$
	Proton delivery	2.0%	2.0%	2.0%	2.0%
National aboratory	Proton optics	1.0%	1.0%	1.0%	1.0%
	π^+ production	14.7%	1.0%	9.3%	0.9%
	π^- production	0.0%	16.5%	0.0%	3.5%
	K^+ production	0.9%	0.2%	11.5%	0.3%
	K^0 production	0.0%	0.2%	2.1%	17.6%
	Horn field	2.2%	3.3%	0.6%	0.8%
rget hadron oduction nulations	Nucleon cross sections	2.8%	5.7%	3.3%	5.6%
	Pion cross sections	1.2%	1.2%	0.8%	0.7%

Hadron production uncertainties dominate: 15-18%

Measurement of the u_{μ} Interaction Rate in MiniBooNE

Simulation of the NuMI Beamline

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production

Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

- GEANT4 is used to define the detailed NuMI beamline geometry
- GEANT4 geometry interfaces to FLUKA08. FLUKA08 is used to generate proton beam and model all primary and secondary particle interaction.

Simulation of the NuMI Decay Pipe Helium

Uncertainties in NuMI Flux Simulation (2010)

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements flux

 ν flux Off-axis

Conclusions

Uncertainties in NuMI Simulation (2010)

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron

production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

ND rate uncertainties (ν -mode) from the NuMI simulation:

Source of Uncertainty	ν_{μ}	$ar{ u}_{\mu}$	$ u_{\rm e} $
Proton delivery	2%	2%	2%
Focusing	7.5%	small	TBD
Target z position	1%	small	1%
Target hadro-production	1.5%	2.5%	5%
Target degradation	4%	4%	4%
Horn material budget	3%	small	2%
Decay pipe He	small	small	small
$\pi ightarrow \mu$ propagation	-	-	20%

Uncertainties on flux from target hadro-production is smaller after

fit to ND rate The overall uncertainty on ν_e is LARGE

BROOKHAVEN Muon Flux Monitors in NuMI

From Laura Loiacono

Tuning MC Using μ Flux Measurements

From Laura Loiacono

ROOKHAVEN NuMI Flux from Muon Monitors

Mary Bishai Brookhaven National Laboratory

Outline

Introductior

Beams

Constraining Fluxes P-beam measurements

Target hadron production Simulations

ln-situ flux measurements

 μ flux u flux Off-axis

Accurate ν flux measurements from μ monitors DIFFICULT

From Laura Loiacono

ROOKHAVEN Next Generation Muon Flux Measurements - LBNE

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introductior

Beams

Constraining Fluxes P-beam measurements Target hadron production

ln-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

New detector technologies=lower backgrounds/systematics

BUT: flux constraint limited to $E_{\nu} > 2 \text{ GeV}$

Long Baseline: Near and Far u Detectors

Why a Near Detector?

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introductior

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

μ flux ν flux Off-axis

Conclusions

Flux uncertainties partially cancel with near/far

Flux Stability with High Precision Neutrino Measurements

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements

Target hadror production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

90 Near Detector Run II Data Events per 1e16 POT ٠ 80 Run III Data 70 60 50 <6 GeV MINOS Preliminary 40 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cumulative POT (e20)

Observe a reduction in the ν event rate < 6 GeV in NuMI target 2:

MARS simulation of target damage

41 / 46

BROOKHAVEN Challenges of near/far extrapolation

MiniBooNE ν Interactions from NuMI Beamline - 2010

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

utline

Introduct

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

Conclusions

The NuMI simulation tuned to match the MINOS ND event rate was used to predict the ν rate in the MiniBooNE detector:

On-axis ν measurements can constrain off-axis and pi/K

MiniBooNE ν Interactions from NuMI Beamline - 2010

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introductio

Beams

Constraining Fluxes P-beam measurements Target hadron production Simulations

In-situ flux measurements

 μ mux ν flux Off-axis

Conclusions

The NuMI simulation tuned to match the MINOS ND event rate was used to predict the ν rate in the MiniBooNE detector:

On-axis ν measurements can constrain off-axis and pi/K

Summary

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes

measurements Target hadron production Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

Intensity frontier = precision frontier in neutrino physics. Measurements of KNOWN parameters with accuracies $\sim 1\%$

New physics could be ANYWHERE $L/E_{\nu} = 1 - 1000 \text{km/GeV}$

A full scale assault on flux measurements is needed from many different directions:

- High precision control of proton beams
- External target hadron production data
- Benchtop measurements of skin depth effect, horn magentic field?
- Simulate every gram of material in the beamline
- Measurements of muon flux to better than 5%
- REDUCING DETECTOR/CROSS-SECTION SYSTEMATICS in near neutrino measurements.
- Using far detector data to further constrain systematics (a la MiniBooNE)

Accelerator Neutrinos at the Intensity Frontier

Mary Bishai Brookhaven National Laboratory

Outline

Introduction

Beams

Constraining Fluxes P-beam measurements Target hadron production

Simulations

In-situ flux measurements

 μ flux ν flux Off-axis

Conclusions

