MINOS Flux Determination

Žarko Pavlović

Outline

- Introduction
- MINOS experiment and NuMI beam
- Calculating flux and systematic errors
- Fitting the ND data (Beam tuning)
- Conclusion

Past neutrino experiments

- Determining flux not easy
 - Use MC simulation
 - Measure in the detector using process with known x-section
- In past, experiments often applied corrections
- Large 10-30% uncertainty

Two detector experiments

- Measure flux at Near Detector to infer flux at Far
- Need to calculate corrections (on top of R-2)
 - For MINOS 20-30%

MINOS Experiment

- Two neutrino detectors
- Fermilab's NuMI beamline
- Verify υ_μ—χυ_τ mixing hypothesis
- Measure precisely Δm²₂₃
- Test if $\sin^2 2\theta_{23}$ maximal

NuMI Neutrino Beamline

• 120 GeV protons hit graphite target

NuMI Neutrino Beamline

- Two magnetic horns focus positive $\pi \& K$
- Parabolic Horn focal length: $f \approx \frac{2\pi}{\mu_0 Ia} p$

Neutrino Beamline

- Mesons decay in flight in decay pipe
- Beam composition (LE10/185kA):
 - 92.9% υ_μ
 - 5.8% $\overline{\upsilon}_{\mu}$
 - 1.3% v_e / v_e

MINOS Detectors

Near Detector:

- 1 km from target
- 1 kton
- 282 steel and 153 scintillator planes
- − Magnetized B~1.3T

• Far Detector:

- 735 km from target
- 5.4 kton
- 484 steel/scintillator planes
- − Magnetized B~1.3T

Variable energy beam

 $tan(\theta) \approx \langle p_T \rangle / p_z = r_{Horn} / tgt_L$ $E_v \sim p_Z \sim tgt_L$

Variable energy beam

 $tan(\theta) \approx \langle p_T \rangle / p_z = r_{Horn} / tgt_L$ $E_v \sim p_Z \sim tgt_L$

Near and Far Spectra

- Flux at Near and Far detector not the same
- Neutrino energy depends on angle w.r.t parent momentum

$$E_{v} = \frac{0.43E_{\pi}}{1 + \gamma^2 \theta^2}$$

Far/Near ratio

- 20-30% correction on top of R⁻² for ND at 1km
- For ND at 7km corrections at 2% level

Study of Beam systematics

- Non-hadron production
 - 1. Proton beam
 - 2. Secondary focusing modelling
 - 3. MC geometry
- Hadron Production

NB: Much of the inputs backed up with beamline instrumentation

1. Proton Beam

- Beam position and width can change the neutrino flux:
 - protons
 missing the target
 - reinteractions in target
- Use profile monitor measurements to correct MC

Modelling of Focusing

 Also studied: Horn current miscalibration, skin depth, horn transverse misalignment, horn angle

Focusing uncertainties

- Misalignments & miscalibrations
- Input from beamline instrumentation
- Affects falling edge of the peak

Hadron production

Proton beam momentum

Target material

Thick target

Thick-Target Effects

- Hadron production data largely from 'thin' targets.
- Particles are created from reinteractions in NuMI target.
- Approx 30% of yield at NuMI p_0 =120 GeV/c

Cascade models

- Variation in calculated flux depending on the cascade model
- Indicates ~8% uncertainty in peak and ~15% in high energy tail

Underlying Hadron Production

- Different beams access regions of π 's (x_F, p_T) off the target.
- Models disagree on these distributions
- Use variable beam configurations to map this out.

Hadron Production

MC tuning

- Adjust the yields of π[±] and K[±]
- Include focusing uncertainties
- Allow that some discrepancy is due to detector effects or neutrino cross sections

Hadron production parameterization

- Adjust yields as a function of pt-pz
- Parameterize fluka yields using 16 parameters

$$\frac{d^2N}{dx_F dp_T} = \{A(x_F) + [B(x_F)p_T]\}e^{-C(x_F)p_T^{3/2}}$$

$$A(x_F) = a_1 * (1. - x_F)^{a_2} * (1. + a_3 * x_F) * x_F^{-a_4}$$

$$B(x_F) = b_1 * (1. - x_F)^{b_2} * (1. + b_3 * x_F) * x_F^{-b_4}$$

$$C(x_F) = c_1/x_F^{c_2} + c_3$$

Tuning MC

- Fit ND data from all beam configurations
- Simultaneously fit $\nu_{\!_{\mu}}$ and $\bar{\nu}_{\!_{\mu}}$ spectra

Pion weights

- Re-weight MC based on p_T-x_F
- Include in fit:
 Horn focusing,
 beam
 misalignments,
 neutrino energy
 scale, cross
 section, NC
 background

π+/π- ratio

- Best fit to v_u and \bar{v}_u changes the π^+/π^- ratio
- Good agreement with NA49 data and MIPP

Far/Near Ratio

- Fits to ND data constrain the F/N ratio
- Errors are at<2% level

MINOS Systematic Errors

- Systematic errors from 2011 analysis (7.25e20 POT)
- Beam uncertainty small

Source of	$\delta(\Delta \mathrm{m}^2)$	$\delta(\sin^2(2\theta))$
systematic uncertainty	(10^{-3}eV^2)	
(a) Hadronic energy	0.051	< 0.001
(b) μ energy (range 2%, curv. 3%)	0.047	0.001
(c) Relative normalization (1.6%)	0.042	< 0.001
(d) NC contamination (20%)	0.005	0.009
(e) Relative hadronic energy (2.2%)	0.006	0.004
(f) $\sigma_{\nu}(E_{\nu} < 10 \text{ GeV})$	0.020	0.007
(g) Beam flux	0.011	0.001
(h) Neutrino-antineutrino separation	0.002	0.002
(i) Partially reconstructed events	0.004	0.003
Total systematic uncertainty	0.085	0.013
Expected statistical uncertainty	0.124	0.060

TABLE I: Sources of systematic uncertainties, their one standard deviation variation level, and their impact on fitting oscillation parameters.

Offaxis neutrino beam

Two views of the same decays

- Decays of hadrons produce neutrinos that strike both MINOS and MiniBooNE
- Parent hadrons 'sculpted' by the two detectors' acceptances.
- Plotted are p_T and $p_{||}$ of hadrons which contribute neutrinos to MINOS (contours) or MiniBooNE (color scale)

NumiBooNE

Good agreement between data and MC

NuMI µ monitors

Pion parents

Fit to muon monitors

Consistent with ND fits

L. Loiacono, thesis (2010)

Conclusion

 MINOS tunes hadron production to simultaneously fit all ND data

Technique independent of particle production experiments

Beam systematics well constrained

Backup

F/N focusing uncertainties

F/N ratioaffected at2% level

Predicting far spectrum

- Construct beam matrix using MC
- Use Near Detector data to predict the "unoscillated" spectrum at the Far detector