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Abstract 
Database-like query processing over a network of sensors 
has become an attractive paradigm for building sensor 
applications. A sensor query is characterized by data 
streams among participating sensor nodes with possible 
in-node data filtering or aggregation, and can be 
described as a tree-like data delivery pattern. The data 
delivery pattern can also be considered as a query 
execution plan, or query routing tree. In this work, we 
propose an algebraic optimization of the query routing 
tree construction and reconfiguration. In particular, we 
aim at generating query trees that maximize collision-free 
concurrent data transmissions hence reducing energy and 
time wastes due to retransmissions. Towards this, we 
introduce a Data Transmission Algebra (DTA) and apply 
it for efficient generation of such query trees. 

1. Introduction

Database-like query processing over a network of sensors 
has become an attractive paradigm for both network and 
database communities [IG99, BS00, BGS01, YG02]. We 
adopt a broad definition of a sensor network to be a 
wireless network composed of a large number of sensor 
nodes most of which are power-constrained [YHE02]. 
Such sensor nodes are small in size and capable of 
collecting various measurements such as light, motion, 
acceleration, and temperature. These sensor nodes can be 
attached to PDAs or other mobile devices such as mobile 
robots. In this way, for example, teams of humans and/or 
mobile robots in conjunction with stationary sensor nodes 
can be deployed to perform surveillance and tracking, 
environmental monitoring for highly sensitive areas, or 
execute search and rescue operations. 
    Sensors are deployed densely around the phenomenon 
to be sensed and the data combined from all sensors may 
aggregate to very high data rates. A sensor query is 
characterized by large data streams among participating 
nodes with possible in-node data filtering/aggregation, 
and can be described as a tree-like data delivery pattern 
(query routing tree). Minimizing sensor query response 
time becomes crucial in mission-critical sensor networks. 
At the same time, minimizing energy consumption per 

query is of special concern for these battery-powered 
devices. 
    One common source of energy consumption and delay 
in wireless sensor networks is packet collisions. This is 
also one of the major sources of energy and time waste. In 
general, wireless sensor nodes that share the same wireless 
medium are said to be in the same collision domain (CD).
Once any two or more nodes in the same CD transmit 
packets at the same time, a collision occurs, and packets 
are corrupted and discarded. Packet collisions can be 
avoided by minimizing the number of intersecting CDs 
and by synchronizing data transmissions among nodes 
within the same CD.    
     In this paper, we propose to reduce the number of 
intersecting CDs by using a query-driven approach for 
proper movement and positioning of sensor nodes. We 
view the problem of proper sensor positioning as 
equivalent to the problem of construction and 
reconfiguration of an efficient query routing tree that 
improves query performance in terms of both response 
time and energy. Towards this, we introduce a novel query 
routing tree optimization technique that maximizes
collision-free concurrent data transmissions. Our approach 
is based on algebraic analysis of alternative query routing 
trees in which regions of movement are defined in terms 
of CDs. 
     Recent work that has focused on the construction of 
energy-efficient routing trees (e.g., for in-network query 
processing [MFHH02, BSLC03, SBLC03, CJBM01]) 
does not consider the negative effects of CDs in these 
trees and assumes that the underlying network layer 
handles packet collisions. The exception is some work in 
scheduling of transmissions between levels in a routing 
query tree with goal of increasing the sleep time (e.g., 
[CFS03]) of the sensor nodes. 
      In the next section, we discuss our system model. In 
Section 3, we propose a Data Transmission Algebra
(DTA) that can uniformly capture the structure of data 
transmissions, their constraints and their requirements. In 
Section 4, we show how the DTA can be used in a cost 
based optimization to select the best query routing tree. 
We present an evaluation of our approach in Section 5 and 
our conclusions in Section 6. 
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2. Background and System Model 

In this paper, we assume that queries originate at a base 
station which then forwards the queries to the nearest 
sensor node.  This sensor node becomes in charge of 
disseminating the query down to all the sensor nodes in 
the network and to gather the results back from all the 
sensor nodes. Query processing could take place either at 
the base station and/or within the network, depending on 
the type of query as well as the sensor nodes’ capabilities.   
    We also assume that a query optimizer executes at the 
base station. A query optimizer generates alternative 
query routing trees and mobile sensor deployment plans 
taking into consideration the current topology of 
stationary sensor nodes and the applications’ coverage 
requirements. It selects the query routing tree that allows 
the maximum number of concurrent transmissions without 
the risk of collisions and disseminates it along with the 
query. 
    Mobile sensors are moved into target positions 
according to the routing query tree to provide coverage 
while minimizing the intersection of their collision domain 
(CD).  Mobile sensor nodes can freely move for better 
data sampling but their data transmissions should not 
violate their CDs defined by their target positions. One 
way to achieve this is by adjusting their transmission 
power.     
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Figure 1: Collision domain of two communicating nodes. 

     Figure 1 elaborates on the concept of collision domain 
in a typical wireless network such as IEEE 802.11 and 
illustrates how collisions are handled in such a network 
(effectively solving the hidden node problem). In order 
for a sensor node n1 to communicate with sensor node n2,
n1 needs to send first a request for transmission packet 
(Rtx) to n2, so that all other nodes in its transmission 
range (n5 and n6 in Figure 1) become aware of the 
communication and remain silent until n1 ends the 
transmission. Sensor n2 replies to n1 with a confirmation 
packet (Ctx), so that the nodes in its transmission range 
(n3 and n4 in Figure 1) also become aware of the 
communication and avoid any transmission until the end 
of the current transmission. In this case, nodes n3, n4, n5,
and n6 belong to the same CD. In general, any two 
communicating nodes ni and nj specify a collision domain 

CD(ni,nj) defined as the union of the transmission ranges 
of  ni and nj.
   In the rest of the paper, for simplicity we assume that 
coverage is expressed in terms of regions in which at least 
one sensor node must be positioned in its center. 

3. Data Transmission Algebra  

A query routing tree can be considered as a query 
evaluation plan. This observation motivated us to develop 
a Data Transmission Algebra (DTA) that allows a query 
optimizer to generate query routing trees to maximize 
collision-free concurrent data transmissions.  
     The DTA consists of a set of operations that take 
transmissions between wireless sensor nodes as input and 
produce a schedule of transmissions as their result. We 
call an elementary transmission (denoted ni~nj) a one-hop 
transmission from sensor node ni to node nj.  We also use 
a special symbol, null, that denotes a completed (empty) 
transmission. Each transmission ni~nj, which is not empty 
is associated with a collision domain CD(ni, nj) as defined 
above. A transmission schedule is either an elementary 
transmission, or a composition of elementary trans-
missions using one of the operations of the DTA. The 
DTA includes three basic operations that can combine two 
transmission schedules A and B: 

1. order(A,B) o(A,B)
This is a strict order operation, that is, A must be 
executed before B. 

2. any(A,B) a(A,B)
This is an overlap operation, that is, A and B can 
be executed concurrently. 

3. choice(A,B) c(A,B)
This is a non-strict order operation, that is, either 
A executes before B, or vice versa.  
Thus, c(A,B)  (o(A,B) or o(B,A)). 

      For an example of the DTA operations consider the 
query tree in Figure 2 which was generated for some 
query Q. It shows an initial DTA specification that 
reflects basic constraints of the query tree. The initial 
specification consists of a set of strict order and overlap 
operations. For instance, operation O1 specifies that 
transmission n2~n1 occurs after n4~n2 is completed. This 
constraint reflects the query tree topology. Operation A1 
specifies that n4~n2 can be executed concurrently with 
n6~n3, since neither n3 nor n6 belongs to CD(n4,n2), and 
neither n4 nor n2 are in CD(n6,n3).
      We say that two elementary transmissions et1 and et2
are potentially concurrent in a query tree T if they do not 
share the same destination, and the initial specification of 
T does not include o(et1,et2), i.e., there is no strict order 
between et1 and et2.
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Initial DTA spec ific ation: 

O1: o(n4~n2, n2~n1) 

O2: o(n5~n2, n2~n1) 

O3: o(n6~n3, n3~n1) 

O4: o(n7~n3, n3~n1) 

A1: a(n4~n2, n6~n3) 

A2: a(n4~n2, n7~n3) 

A3: a(n4~n2, n3~n1) 

A4: a(n5~n2, n6~n3) 

A5: a(n5~n2, n7~n3) 

A6: a(n5~n2, n3~n1) 

A7: a(n6~n3, n2~n1) 

A8: a(n7~n3, n2~n1) 

Figure 2: Example of a query tree and of a corresponding DTA specification 
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Initial DTA spec ific ation: 

O1: o(n4~n2, n2~n1) 

O2: o(n5~n2, n2~n1) 

O3: o(n6~n3, n3~n1) 

O4: o(n7~n3, n3~n1) 

A2: a(n4~n2, n7~n3) 

A3: a(n4~n2, n3~n1) 

A8: a(n7~n3, n2~n1) 

Figure 3: Example of query tree with lower degree of concurrency 

  Each operation of the initial specifications defines a 
simple transmission schedule that consists of two 
elementary transmissions. The DTA introduces a set of 
transformation rules that can be used to generate more 
complex schedules from the initial specification. Figure 4 
shows an example of the DTA transformation rules R1-
R10, and illustrates how these rules apply to generate 
more complex schedules A9, A10 and A11 from the initial 

specification in Figure 2. A9 schedules three elementary 
transmissions, while each of A10 and A11 schedules four 
elementary transmissions. None of the simple or complex 
transmission schedules considered so far includes all 
elementary transmissions of the query tree, so we call 
them partial schedules.   Our goal is to generate DTA 
expressions for complete schedules. A complete schedule 
includes all elementary transmissions of the query tree.   

Figure 4: Example of DTA transformation rules and DTA transformations 

Example DTA  transformation rules: 

R1:   o(A,B) o(B,A) 
R2:   a(A,B) = a(B,A) 
R3:   c(A,B) = c(B,A) 
R4:   a(A,B) & a(A,C) = a(A, c (B,C)) 
R5:   c(A, c(B,C)) & o(A,B) = c( o(A,B), C) 
R6:   c(c(B,C), A) & o(B,A) & o(C,A) = o(c(B,C), A) 
R7:   o(A,C) & o(B,C) = o( c(A,B),C) 
R9:  o((A,B), A ) = o(A,B) 
R10: c(o(A,B), B ) = o(A,B) 

Example of DTA transformations (Figure 2):

A1,A2,R4 imply:  
           A9: a( n4-n2,  c(n6~n3, n7~n3) ); 
A3, A9, R4 imply: 
           A10: a( n4-n2,  c(c(n6~n3, n7~n3), n3~n1));
A10,O3,O4,R6 imply: 
           A11: a( n4-n2,  o(c(n6~n3, n7~n3), n3~n1));

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



   In general, a query tree can be characterized by its 
degree of collision-free concurrency (cfc). Query trees 
are associated with different degrees of cfc. We say that 
query tree Q1 has higher cfc than an equivalent query 
tree Q2, if Q1 allows for more concurrent transmissions 
without risk of collisions than does Q2. A query tree has 
cfc=1, if it allows for all potential concurrent 
transmission pairs to occur. Recall that potential 
concurrent transmission pairs do not share the same 
destination node and the initial DTA specification does 
not include a strict ordering. 
    For example, the query tree in Figure 2 is associated 
with cfc=1, since its initial DTA specification includes 
all eight of the potentially concurrent transmission pairs 
(A1-A8).  On the other hand, Figure 3 illustrates a query 
tree with lower degree of cfc. Its corresponding initial 
DTA specification includes only three out of the eight 
potentially concurrent transmission pairs (A2, A3, and 
A8). Thus, its cfc is equal to 3/8 = 0.375. 
   Given a query, the coverage requirements, and the 
position of both stationary and mobile sensors, the cfc
metric will allow us to shift through all the possible 
query trees (and mobile sensor positions) in order to 
generate the candidate trees with relatively high 
possibility for concurrent data transmissions, while 
adhering to the stated coverage requirements. Currently, 
we are developing an efficient way to generate such 
high-cfc trees. 
   While the cfc is a good indicator of the opportunities 
for concurrency in data transmissions, it does not specify 
which transmission schedule can materialize the best 
time and energy savings, given such a high-cfc query 
tree. In order to identify which out of the many 
transmission schedules would be the best one, we 
propose using a cost-based tree generation framework, 
which we describe in the next section. 

4. Cost-based Query Tree Generation  

In order to generate the best schedule in terms of energy 
and time efficiency we need to maximize the number of 
collision-free concurrent data transmissions, while also 
considering the cost of each of these transmissions. 
Towards this, we propose using cost-based scheduling 
techniques to generate the best query tree. In order to 
achieve this goal, the query optimizer applies the DTA 
transformation rules in order to estimate the quality of a 
candidate tree. 
   In general, the optimizer generates many equivalent 
trees and selects the one with the minimum estimated 
cost. Here, the cost corresponds to query execution time 
associated with a particular schedule. Figure 5 shows 
simple cost estimation expressions for each of the four 
basic DTA expressions.  

schedule cost 
ni~nj Tp(ni)+Ttx(ni~nj)+Tp(nj)

o(A,B) cost(A)+cost(B) 
a(A,B) max(cost(A),cost(B)) 
c(A,B) cost(A)+cost(B) – Tf 

Figure 5: Estimating costs of schedules

   For example, the execution time of elementary 
transmission ni~nj consists of local processing times Tp 
at nodes ni and nj plus the time Ttx requires to transmit 
the data from ni to nj. Local processing time Tp includes 
any in-node query processing (as in the case of in-
network filtering/aggregation).  
   Execution time for strict order of schedules A and B, 
o(A,B), is the sum of execution times for A and for B. 
The execution time for the overlap of A and B, a(A,B), 
is the maximum of the execution times of the schedules 
A and B. Finally, the execution time for choice of A and 
B, c(a,B), is the same as the execution time of a strict 
order minus a predefined time factor Tf.  Tf indicates 
that the optimizer generally prefers a choice operation 
over a strict order, since the latter restricts flexibility of 
the optimizer in query scheduling.  

5. Experiments and Analysis 

In order to evaluate our approach, we have implemented 
a DTA optimizer using Arity Prolog 32 version 1.1.  We 
have evaluated our approach in terms of both its costs
and benefits. We define benefit as the part of the time 
cost that the DTA optimizer is able to “hide” by 
scheduling transmissions concurrently. The benefit is 
defined recursively for each of the DTA operations.  For 
example, the benefit of a(X,Y) is equal to the minimum 
of costs cost(X) and cost(Y). For the rest of the DTA 
operations the benefit is equal to zero. 
     Here we report our findings using a simple, yet 
illustrative experiment. We do not consider mobility of 
the sensor nodes explicitly in these preliminary results. 
We have applied our DTA optimizer to generate 
transmission schedules of two semantically equivalent 
binary query trees T1 and T2. Both T1 and T2 have four 
levels and involve 16 sensors. While being equivalent 
with respect to coverage, the sensor trees T1 and T2 
have cfc=1 and cfc=0.7, respectively, i.e., T1 allows for 
more concurrency than T2.  
    For each tree, alternative transmission schedules were 
generated layer by layer starting from initial schedules 
with two elementary transmissions (layer 1). Layers 2, 3 
and 4 represent schedules with 3, 4 and 5 scheduled 
transmissions. Layer 5 includes complete schedules 
covering all elementary transmissions of the query tree. 
Processing and transmission costs were generated 
randomly using Gaussian distributions. 
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Figure 6: Comparison of Time Cost per scheduling 
layer for cfc=1 and cfc=0.7

   Figure 6 shows the average query execution time in 
simulation time units (ticks) for the 5 scheduling layers. 
We compare scheduling for query trees T1 (cfc=1) and 
T2 (cfc=0.7). For each scheduling layer we report the 
average execution time of all its schedules. We observe 
that at each scheduling layer, T1 outperforms T2. 

   Figure 7(a) shows the time costs whereas Figure 7(b) 
shows the relative benefits of the best complete query 
schedule for each of the query trees T1 and T2, 
compared to the initial trees. In these figures, T1 again 
outperforms T2, which is an expected behavior: our 
cost-based optimizer was able to utilize the possibilites 
for concurrent transmission that exist in T1 whose cfc=1.
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Figure 7: Comparison of Time Cost and Benefit for 
complete schedules for cfc=1 and cfc=0.7

We can conclude from the above graphs that, in general, 
query trees with higher cfc allow the DTA optimizer to 
generate more time-efficient schedules. However, in 
some of our experiments, with a fixed execution time to 
select a tree, we have observed that the relative time cost 
increases for trees with higher cfc, especially in the 
cases of high complexity (density) trees. The reason is 
that the additional scheduling flexibility introduced by 
higher cfc may also result in higher variability in time 
costs among the alternative schedules. As a result, this 
may increase the risk for the DTA optimizer to choose 

more expensive query schedules while missing more 
efficient ones. The DTA optimizer could avoid such a 
risk by exhaustively enumerating all schedules. Given 
that exhaustive enumeration is not practical for large 
trees, we are currently investigating DTA scheduling 
techniques that would minimize the risk of generating 
costly schedules for the trees with high cfc.

6. Conclusions

Recognizing that packet collisions are a major common 
source of energy and time waste in mobile sensor 
networks, we proposed a new framework for producing 
query routing trees with the highest number of collision-
free concurrent transmissions. The crux of our approach 
is the utilization of cost-based query optimization 
techniques to globally schedule data transmissions in the 
network. Our first experimental results have shown that 
our Data Transmission Algebra optimizer is capable of 
generating low-energy and time-efficient query trees. 
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