
Algebraic Optimization of Data Delivery Patterns in Mobile Sensor Networks

Vladimir Zadorozhny Panos K. Chrysanthis Alexandros Labrinidis
Dept. of Info Science and Telecom Dept. of Computer Science Dept. of Computer Science

University of Pittsburgh University of Pittsburgh University of Pittsburgh
Pittsburgh, PA 15260 Pittsburgh, PA 15260 Pittsburgh, PA 15260
vladimir@sis.pitt.edu panos@cs.pitt.edu labrinid@cs.pitt.edu

Abstract
Database-like query processing over a network of sensors
has become an attractive paradigm for building sensor
applications. A sensor query is characterized by data
streams among participating sensor nodes with possible
in-node data filtering or aggregation, and can be
described as a tree-like data delivery pattern. The data
delivery pattern can also be considered as a query
execution plan, or query routing tree. In this work, we
propose an algebraic optimization of the query routing
tree construction and reconfiguration. In particular, we
aim at generating query trees that maximize collision-free
concurrent data transmissions hence reducing energy and
time wastes due to retransmissions. Towards this, we
introduce a Data Transmission Algebra (DTA) and apply
it for efficient generation of such query trees.

1. Introduction

Database-like query processing over a network of sensors
has become an attractive paradigm for both network and
database communities [IG99, BS00, BGS01, YG02]. We
adopt a broad definition of a sensor network to be a
wireless network composed of a large number of sensor
nodes most of which are power-constrained [YHE02].
Such sensor nodes are small in size and capable of
collecting various measurements such as light, motion,
acceleration, and temperature. These sensor nodes can be
attached to PDAs or other mobile devices such as mobile
robots. In this way, for example, teams of humans and/or
mobile robots in conjunction with stationary sensor nodes
can be deployed to perform surveillance and tracking,
environmental monitoring for highly sensitive areas, or
execute search and rescue operations.
 Sensors are deployed densely around the phenomenon
to be sensed and the data combined from all sensors may
aggregate to very high data rates. A sensor query is
characterized by large data streams among participating
nodes with possible in-node data filtering/aggregation,
and can be described as a tree-like data delivery pattern
(query routing tree). Minimizing sensor query response
time becomes crucial in mission-critical sensor networks.
At the same time, minimizing energy consumption per

query is of special concern for these battery-powered
devices.
 One common source of energy consumption and delay
in wireless sensor networks is packet collisions. This is
also one of the major sources of energy and time waste. In
general, wireless sensor nodes that share the same wireless
medium are said to be in the same collision domain (CD).
Once any two or more nodes in the same CD transmit
packets at the same time, a collision occurs, and packets
are corrupted and discarded. Packet collisions can be
avoided by minimizing the number of intersecting CDs
and by synchronizing data transmissions among nodes
within the same CD.
 In this paper, we propose to reduce the number of
intersecting CDs by using a query-driven approach for
proper movement and positioning of sensor nodes. We
view the problem of proper sensor positioning as
equivalent to the problem of construction and
reconfiguration of an efficient query routing tree that
improves query performance in terms of both response
time and energy. Towards this, we introduce a novel query
routing tree optimization technique that maximizes
collision-free concurrent data transmissions. Our approach
is based on algebraic analysis of alternative query routing
trees in which regions of movement are defined in terms
of CDs.
 Recent work that has focused on the construction of
energy-efficient routing trees (e.g., for in-network query
processing [MFHH02, BSLC03, SBLC03, CJBM01])
does not consider the negative effects of CDs in these
trees and assumes that the underlying network layer
handles packet collisions. The exception is some work in
scheduling of transmissions between levels in a routing
query tree with goal of increasing the sleep time (e.g.,
[CFS03]) of the sensor nodes.
 In the next section, we discuss our system model. In
Section 3, we propose a Data Transmission Algebra
(DTA) that can uniformly capture the structure of data
transmissions, their constraints and their requirements. In
Section 4, we show how the DTA can be used in a cost
based optimization to select the best query routing tree.
We present an evaluation of our approach in Section 5 and
our conclusions in Section 6.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

2. Background and System Model

In this paper, we assume that queries originate at a base
station which then forwards the queries to the nearest
sensor node. This sensor node becomes in charge of
disseminating the query down to all the sensor nodes in
the network and to gather the results back from all the
sensor nodes. Query processing could take place either at
the base station and/or within the network, depending on
the type of query as well as the sensor nodes’ capabilities.
 We also assume that a query optimizer executes at the
base station. A query optimizer generates alternative
query routing trees and mobile sensor deployment plans
taking into consideration the current topology of
stationary sensor nodes and the applications’ coverage
requirements. It selects the query routing tree that allows
the maximum number of concurrent transmissions without
the risk of collisions and disseminates it along with the
query.
 Mobile sensors are moved into target positions
according to the routing query tree to provide coverage
while minimizing the intersection of their collision domain
(CD). Mobile sensor nodes can freely move for better
data sampling but their data transmissions should not
violate their CDs defined by their target positions. One
way to achieve this is by adjusting their transmission
power.

n2n1
Rtx

Ctx

n3

n4

n5

n6

Figure 1: Collision domain of two communicating nodes.

 Figure 1 elaborates on the concept of collision domain
in a typical wireless network such as IEEE 802.11 and
illustrates how collisions are handled in such a network
(effectively solving the hidden node problem). In order
for a sensor node n1 to communicate with sensor node n2,
n1 needs to send first a request for transmission packet
(Rtx) to n2, so that all other nodes in its transmission
range (n5 and n6 in Figure 1) become aware of the
communication and remain silent until n1 ends the
transmission. Sensor n2 replies to n1 with a confirmation
packet (Ctx), so that the nodes in its transmission range
(n3 and n4 in Figure 1) also become aware of the
communication and avoid any transmission until the end
of the current transmission. In this case, nodes n3, n4, n5,
and n6 belong to the same CD. In general, any two
communicating nodes ni and nj specify a collision domain

CD(ni,nj) defined as the union of the transmission ranges
of ni and nj.
 In the rest of the paper, for simplicity we assume that
coverage is expressed in terms of regions in which at least
one sensor node must be positioned in its center.

3. Data Transmission Algebra

A query routing tree can be considered as a query
evaluation plan. This observation motivated us to develop
a Data Transmission Algebra (DTA) that allows a query
optimizer to generate query routing trees to maximize
collision-free concurrent data transmissions.
 The DTA consists of a set of operations that take
transmissions between wireless sensor nodes as input and
produce a schedule of transmissions as their result. We
call an elementary transmission (denoted ni~nj) a one-hop
transmission from sensor node ni to node nj. We also use
a special symbol, null, that denotes a completed (empty)
transmission. Each transmission ni~nj, which is not empty
is associated with a collision domain CD(ni, nj) as defined
above. A transmission schedule is either an elementary
transmission, or a composition of elementary trans-
missions using one of the operations of the DTA. The
DTA includes three basic operations that can combine two
transmission schedules A and B:

1. order(A,B) o(A,B)
This is a strict order operation, that is, A must be
executed before B.

2. any(A,B) a(A,B)
This is an overlap operation, that is, A and B can
be executed concurrently.

3. choice(A,B) c(A,B)
This is a non-strict order operation, that is, either
A executes before B, or vice versa.
Thus, c(A,B) (o(A,B) or o(B,A)).

 For an example of the DTA operations consider the
query tree in Figure 2 which was generated for some
query Q. It shows an initial DTA specification that
reflects basic constraints of the query tree. The initial
specification consists of a set of strict order and overlap
operations. For instance, operation O1 specifies that
transmission n2~n1 occurs after n4~n2 is completed. This
constraint reflects the query tree topology. Operation A1
specifies that n4~n2 can be executed concurrently with
n6~n3, since neither n3 nor n6 belongs to CD(n4,n2), and
neither n4 nor n2 are in CD(n6,n3).
 We say that two elementary transmissions et1 and et2
are potentially concurrent in a query tree T if they do not
share the same destination, and the initial specification of
T does not include o(et1,et2), i.e., there is no strict order
between et1 and et2.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

n3

n1

n2

n7

n4

n5 n6

Initial DTA spec ific ation:

O1: o(n4~n2, n2~n1)

O2: o(n5~n2, n2~n1)

O3: o(n6~n3, n3~n1)

O4: o(n7~n3, n3~n1)

A1: a(n4~n2, n6~n3)

A2: a(n4~n2, n7~n3)

A3: a(n4~n2, n3~n1)

A4: a(n5~n2, n6~n3)

A5: a(n5~n2, n7~n3)

A6: a(n5~n2, n3~n1)

A7: a(n6~n3, n2~n1)

A8: a(n7~n3, n2~n1)

Figure 2: Example of a query tree and of a corresponding DTA specification

n3

n1

n2

n7

n4

n5 n6

Initial DTA spec ific ation:

O1: o(n4~n2, n2~n1)

O2: o(n5~n2, n2~n1)

O3: o(n6~n3, n3~n1)

O4: o(n7~n3, n3~n1)

A2: a(n4~n2, n7~n3)

A3: a(n4~n2, n3~n1)

A8: a(n7~n3, n2~n1)

Figure 3: Example of query tree with lower degree of concurrency

 Each operation of the initial specifications defines a
simple transmission schedule that consists of two
elementary transmissions. The DTA introduces a set of
transformation rules that can be used to generate more
complex schedules from the initial specification. Figure 4
shows an example of the DTA transformation rules R1-
R10, and illustrates how these rules apply to generate
more complex schedules A9, A10 and A11 from the initial

specification in Figure 2. A9 schedules three elementary
transmissions, while each of A10 and A11 schedules four
elementary transmissions. None of the simple or complex
transmission schedules considered so far includes all
elementary transmissions of the query tree, so we call
them partial schedules. Our goal is to generate DTA
expressions for complete schedules. A complete schedule
includes all elementary transmissions of the query tree.

Figure 4: Example of DTA transformation rules and DTA transformations

Example DTA transformation rules:

R1: o(A,B) o(B,A)
R2: a(A,B) = a(B,A)
R3: c(A,B) = c(B,A)
R4: a(A,B) & a(A,C) = a(A, c (B,C))
R5: c(A, c(B,C)) & o(A,B) = c(o(A,B), C)
R6: c(c(B,C), A) & o(B,A) & o(C,A) = o(c(B,C), A)
R7: o(A,C) & o(B,C) = o(c(A,B),C)
R9: o((A,B), A) = o(A,B)
R10: c(o(A,B), B) = o(A,B)

Example of DTA transformations (Figure 2):

A1,A2,R4 imply:
 A9: a(n4-n2, c(n6~n3, n7~n3));
A3, A9, R4 imply:
 A10: a(n4-n2, c(c(n6~n3, n7~n3), n3~n1));
A10,O3,O4,R6 imply:
 A11: a(n4-n2, o(c(n6~n3, n7~n3), n3~n1));

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

 In general, a query tree can be characterized by its
degree of collision-free concurrency (cfc). Query trees
are associated with different degrees of cfc. We say that
query tree Q1 has higher cfc than an equivalent query
tree Q2, if Q1 allows for more concurrent transmissions
without risk of collisions than does Q2. A query tree has
cfc=1, if it allows for all potential concurrent
transmission pairs to occur. Recall that potential
concurrent transmission pairs do not share the same
destination node and the initial DTA specification does
not include a strict ordering.
 For example, the query tree in Figure 2 is associated
with cfc=1, since its initial DTA specification includes
all eight of the potentially concurrent transmission pairs
(A1-A8). On the other hand, Figure 3 illustrates a query
tree with lower degree of cfc. Its corresponding initial
DTA specification includes only three out of the eight
potentially concurrent transmission pairs (A2, A3, and
A8). Thus, its cfc is equal to 3/8 = 0.375.
 Given a query, the coverage requirements, and the
position of both stationary and mobile sensors, the cfc
metric will allow us to shift through all the possible
query trees (and mobile sensor positions) in order to
generate the candidate trees with relatively high
possibility for concurrent data transmissions, while
adhering to the stated coverage requirements. Currently,
we are developing an efficient way to generate such
high-cfc trees.
 While the cfc is a good indicator of the opportunities
for concurrency in data transmissions, it does not specify
which transmission schedule can materialize the best
time and energy savings, given such a high-cfc query
tree. In order to identify which out of the many
transmission schedules would be the best one, we
propose using a cost-based tree generation framework,
which we describe in the next section.

4. Cost-based Query Tree Generation

In order to generate the best schedule in terms of energy
and time efficiency we need to maximize the number of
collision-free concurrent data transmissions, while also
considering the cost of each of these transmissions.
Towards this, we propose using cost-based scheduling
techniques to generate the best query tree. In order to
achieve this goal, the query optimizer applies the DTA
transformation rules in order to estimate the quality of a
candidate tree.
 In general, the optimizer generates many equivalent
trees and selects the one with the minimum estimated
cost. Here, the cost corresponds to query execution time
associated with a particular schedule. Figure 5 shows
simple cost estimation expressions for each of the four
basic DTA expressions.

schedule cost
ni~nj Tp(ni)+Ttx(ni~nj)+Tp(nj)

o(A,B) cost(A)+cost(B)
a(A,B) max(cost(A),cost(B))
c(A,B) cost(A)+cost(B) – Tf

Figure 5: Estimating costs of schedules

 For example, the execution time of elementary
transmission ni~nj consists of local processing times Tp
at nodes ni and nj plus the time Ttx requires to transmit
the data from ni to nj. Local processing time Tp includes
any in-node query processing (as in the case of in-
network filtering/aggregation).
 Execution time for strict order of schedules A and B,
o(A,B), is the sum of execution times for A and for B.
The execution time for the overlap of A and B, a(A,B),
is the maximum of the execution times of the schedules
A and B. Finally, the execution time for choice of A and
B, c(a,B), is the same as the execution time of a strict
order minus a predefined time factor Tf. Tf indicates
that the optimizer generally prefers a choice operation
over a strict order, since the latter restricts flexibility of
the optimizer in query scheduling.

5. Experiments and Analysis

In order to evaluate our approach, we have implemented
a DTA optimizer using Arity Prolog 32 version 1.1. We
have evaluated our approach in terms of both its costs
and benefits. We define benefit as the part of the time
cost that the DTA optimizer is able to “hide” by
scheduling transmissions concurrently. The benefit is
defined recursively for each of the DTA operations. For
example, the benefit of a(X,Y) is equal to the minimum
of costs cost(X) and cost(Y). For the rest of the DTA
operations the benefit is equal to zero.
 Here we report our findings using a simple, yet
illustrative experiment. We do not consider mobility of
the sensor nodes explicitly in these preliminary results.
We have applied our DTA optimizer to generate
transmission schedules of two semantically equivalent
binary query trees T1 and T2. Both T1 and T2 have four
levels and involve 16 sensors. While being equivalent
with respect to coverage, the sensor trees T1 and T2
have cfc=1 and cfc=0.7, respectively, i.e., T1 allows for
more concurrency than T2.
 For each tree, alternative transmission schedules were
generated layer by layer starting from initial schedules
with two elementary transmissions (layer 1). Layers 2, 3
and 4 represent schedules with 3, 4 and 5 scheduled
transmissions. Layer 5 includes complete schedules
covering all elementary transmissions of the query tree.
Processing and transmission costs were generated
randomly using Gaussian distributions.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

0

200

400

600

800

1000

1200

1400

1600

layer 1 layer 2 layer 3 layer 4 layer 5

T
im

e
 C

o
st

 (
ti
ck

s)

cfc=1
cfc=0.7

Figure 6: Comparison of Time Cost per scheduling
layer for cfc=1 and cfc=0.7

 Figure 6 shows the average query execution time in
simulation time units (ticks) for the 5 scheduling layers.
We compare scheduling for query trees T1 (cfc=1) and
T2 (cfc=0.7). For each scheduling layer we report the
average execution time of all its schedules. We observe
that at each scheduling layer, T1 outperforms T2.

 Figure 7(a) shows the time costs whereas Figure 7(b)
shows the relative benefits of the best complete query
schedule for each of the query trees T1 and T2,
compared to the initial trees. In these figures, T1 again
outperforms T2, which is an expected behavior: our
cost-based optimizer was able to utilize the possibilites
for concurrent transmission that exist in T1 whose cfc=1.

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

cfc=1 cfc=0.7

T
im

e
C
o
st

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

cfc=1 cfc=0.7

R
el

at
iv

e
B
en

ef
it

Figure 7: Comparison of Time Cost and Benefit for
complete schedules for cfc=1 and cfc=0.7

We can conclude from the above graphs that, in general,
query trees with higher cfc allow the DTA optimizer to
generate more time-efficient schedules. However, in
some of our experiments, with a fixed execution time to
select a tree, we have observed that the relative time cost
increases for trees with higher cfc, especially in the
cases of high complexity (density) trees. The reason is
that the additional scheduling flexibility introduced by
higher cfc may also result in higher variability in time
costs among the alternative schedules. As a result, this
may increase the risk for the DTA optimizer to choose

more expensive query schedules while missing more
efficient ones. The DTA optimizer could avoid such a
risk by exhaustively enumerating all schedules. Given
that exhaustive enumeration is not practical for large
trees, we are currently investigating DTA scheduling
techniques that would minimize the risk of generating
costly schedules for the trees with high cfc.

6. Conclusions

Recognizing that packet collisions are a major common
source of energy and time waste in mobile sensor
networks, we proposed a new framework for producing
query routing trees with the highest number of collision-
free concurrent transmissions. The crux of our approach
is the utilization of cost-based query optimization
techniques to globally schedule data transmissions in the
network. Our first experimental results have shown that
our Data Transmission Algebra optimizer is capable of
generating low-energy and time-efficient query trees.

References
[BGS01] P. Bonnet, J. Gehrke, and P. Seshadri. Towards
Sensor Database Systems. Proc. of MDM Conference, 2001.

[BS00] P. Bonnet and P. Seshadri. Device Database Systems.
Proc. of ICDE Conference, 2000.

[BSLC03] J. Beaver, M. A. Sharaf, A. Labrinidis, and P. K.
Chrysanthis. Location-Aware Routing for Data Aggregation in
Sensor Networks. Proc. of the 2nd Hellenic Data Management
Symposium, 2003.

[CFS03] U. Cetintemel, A. Flinders, and Y. Sun. Power-
Efficient Data Dissemination in Wireless Sensor Networks.
Proc. of ACM MobiDE Workshop, 2003.

[CJBM01] B. Chen, K. Jamieson, H. Balakrishnan, and R.
Morris. SPAN: An Energy-Efficient Coordination Algorithm
for Topology Maintenance in Ad Hoc Wireless Networks.
Proc. of Mobile Computing and Networking Conference, 2001

[IG99] T. Imielinski and S. Goel. DataSpace - Querying and
Monitoring Deeply Networked Collections in Physical Space.
Proc. of ACM MobiDE Workshop, 1999.

[MFHH02] S. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad hoc sensor
networks. Proc. of OSDI, 2002.

[SBLC03] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K.
Chrysanthis. TiNA: A Scheme for Temporal Coherency-
Aware in-Network Aggregation. Proc. of ACM MobiDE
Workshop, 2003.

[YG02] Y.Yao and J.E. Gehrke. The Cougar Approach to In-
network Query Processing in Sensor Networks. SIGMOD
Record, 31(3), 2002.

[YHE02] W. Ye, J. Heidemann, and D. Estrin, “SMAC: An
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. Proc. of IEEE INFOCOM Conference, 2002.

[ZBVRU02] V. Zadorozhny, L. Bright, M.E. Vidal, L.
Raschid, and T. Urhan. Efficient Evaluation of Queries in a
Mediator for WebSources. Proc. of ACM SIGMOD 2002.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

	footer1:

