
1

Distributed Transaction Management

Vladimir Zadorozhny, DINS, University of Pittsburgh

Advanced Topics in Database Management (INFSCI 2711)

Some materials are from Database Management Systems,

Ramakrishnan and Gehrke

and

Database System Concepts,

Siberschatz, Korth and Sudarshan

and

Data Management in the Cloud,

Aggrawal, Das, Abbadi

Distributed Database System

A distributed database system consists of loosely coupled sites that share

no physical component

Database systems that run on each site are independent of each other

Transactions may access data at one or more sites

1

2

2

Distributed Data Storage

Assume relational data model

Replication

System maintains multiple copies of data, stored in different sites,

for faster retrieval and fault tolerance.

Fragmentation

Relation is partitioned into several fragments stored in distinct sites

Replication and fragmentation can be combined

Relation is partitioned into several fragments: system maintains

several identical replicas of each such fragment.

Transactions

A user’s program may carry out many operations on the data retrieved from the

database, but the DBMS is only concerned about what data is read/written from/to

the database.

A transaction is the DBMS’s abstract view of a user program: a sequence of reads

and writes.

T1: R(A); A=A+100; W(A); R(B); B=B-100; W(B); Commit

3

4

3

The ACID properties

n A tomicity: All actions in the Xact happen, or none happen.

n C onsistency: If each Xact is consistent, and the DB starts consistent, it ends

up consistent.

n I solation: Execution of one Xact is isolated from that of other Xacts.

n D urability: If a Xact commits, its effects persist.

Concurrency in a DBMS

Users submit transactions, and can think of each transaction as executing by itself.

Concurrency is achieved by the DBMS, which interleaves actions (reads/writes of

DB objects) of various transactions.

Each transaction must leave the database in a consistent state if the DB is

consistent when the transaction begins.

5

6

4

Example

Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

❖ This is OK. But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

❖ The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Scheduling Transactions

Serial schedule: Schedule that does not interleave the actions of different

transactions.

Equivalent schedules: For any database state, the effect (on the set of objects in

the database) of executing the first schedule is identical to the effect of executing

the second schedule.

Serializable schedule: A schedule that is equivalent to some serial execution of the

transactions.

(Note: If each transaction preserves consistency, every serializable schedule preserves

consistency.)

7

8

5

Lock-Based Concurrency Control

Each Xact must obtain a S (shared) lock on object before reading, and an X
(exclusive) lock on object before writing.

If an Xact holds an X lock on an object, no other Xact can get a lock (S or X)
on that object.

T1: S(A), R(A), unlock(A)
T2: X(A), R(A), W(A), unlock(A)

Two-Phase Locking (2PL)

Each Xact must obtain a S (shared) lock on object before reading,

and an X (exclusive) lock on object before writing.

A transaction can not request additional locks once it releases any

locks.

If an Xact holds an X lock on an object, no other Xact can get a

lock (S or X) on that object.

9

10

6

Strict 2PL

Each Xact must obtain a S (shared) lock on object before reading,

and an X (exclusive) lock on object before writing.

All locks held by a transaction are released when the transaction

completes

If an Xact holds an X lock on an object, no other Xact can get a

lock (S or X) on that object.

Strict 2PL allows only serializable schedules

Deadlocks and Deadlock Detection

Deadlock: Cycle of transactions waiting for locks to be released by

each other.

Create a waits-for graph:

Nodes are transactions

There is an edge from Ti to Tj if Ti is waiting for Tj to release a

lock

Periodically check for cycles in the waits-for graph

11

12

7

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C) X(A)

T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

Distributed Transactions

Transaction may access data at several sites.

Each site has a local transaction manager responsible for:

Maintaining a log for recovery purposes

Participating in coordinating the concurrent execution of the

transactions executing at that site.

Each site has a transaction coordinator, which is responsible for:

Starting the execution of transactions that originate at the site.

Distributing subtransactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all

sites or aborted at all sites.

13

14

8

Transaction System Architecture

System Failure Modes

Failures unique to distributed systems:

Failure of a site.

Loss of massages

 Handled by network transmission control protocols such as

TCP-IP

Failure of a communication link

 Handled by network protocols, by routing messages via

alternative links

Network partition

 A network is said to be partitioned when it has been split into

two or more subsystems that lack any connection between

them

– Note: a subsystem may consist of a single node

Network partitioning and site failures are generally indistinguishable.

15

16

9

Commit Protocols

Commit protocols are used to ensure atomicity across sites

a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.

not acceptable to have a transaction committed at one site and

aborted at another

The two-phase commit (2PC) protocol is widely used

The three-phase commit (3PC) protocol is more complicated and

more expensive, but avoids some drawbacks of two-phase commit

protocol. This protocol is not used in practice.

Two Phase Commit Protocol (2PC)

Assumes fail-stop model – failed sites simply stop working, and do

not cause any other harm, such as sending incorrect messages to

other sites.

Execution of the protocol is initiated by the coordinator after the last

step of the transaction has been reached.

The protocol involves all the local sites at which the transaction

executed

Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

17

18

10

Phase 1: Obtaining a Decision

Coordinator asks all participants to prepare to commit transaction Ti.

Ci adds the records <prepare T> to the log and forces log to

stable storage

sends prepare T messages to all sites at which T executed

Upon receiving message, transaction manager at site determines if it

can commit the transaction

if not, add a record <no T> to the log and send abort T message

to Ci

if the transaction can be committed, then:

add the record <ready T> to the log

force all records for T to stable storage

send ready T message to Ci

Phase 2: Recording the Decision

T can be committed of Ci received a ready T message from all the

participating sites: otherwise T must be aborted.

Coordinator adds a decision record, <commit T> or <abort T>, to the

log and forces record onto stable storage. Once the record stable

storage it is irrevocable (even if failures occur)

Coordinator sends a message to each participant informing it of the

decision (commit or abort)

Participants take appropriate action locally.

19

20

11

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

Log contain <commit T> record: site executes redo (T)

Log contains <abort T> record: site executes undo (T)

Log contains <ready T> record: site must consult Ci to determine the

fate of T.

If T committed, redo (T)

If T aborted, undo (T)

The log contains no control records concerning T replies that Sk failed

before responding to the prepare T message from Ci

since the failure of Sk precludes the sending of such a

response C1 must abort T

Sk must execute undo (T)

Handling of Failures- Coordinator Failure

If coordinator fails while the commit protocol for T is executing then

participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must

be committed.

2. If an active site contains an <abort T> record in its log, then T must

be aborted.

3. If some active participating site does not contain a <ready T> record

in its log, then the failed coordinator Ci cannot have decided to

commit T. Can therefore abort T.

4. If none of the above cases holds, then all active sites must have a

<ready T> record in their logs, but no additional control records (such

as <abort T> of <commit T>). In this case active sites must wait for

Ci to recover, to find decision.

Blocking problem : active sites may have to wait for failed coordinator to

recover.

21

22

12

Handling of Failures - Network Partition

If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.

If the coordinator and its participants belong to several partitions:

Sites that are not in the partition containing the coordinator think

the coordinator has failed, and execute the protocol to deal with

failure of the coordinator.

 No harm results, but sites may still have to wait for decision

from coordinator.

The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and

follow the usual commit protocol.

 Again, no harm results

Alternative Models of Transaction

Processing
n Notion of a single transaction spanning multiple sites is inappropriate

for many applications

l E.g. transaction crossing an organizational boundary

l No organization would like to permit an externally initiated
transaction to block local transactions for an indeterminate period

n Alternative models carry out transactions by sending messages

l Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates

 Isolation cannot be guaranteed, in that intermediate stages are
visible, but code must ensure no inconsistent states result due
to concurrency

l Persistent messaging systems are systems that provide
transactional properties to messages

 Messages are guaranteed to be delivered exactly once

23

24

13

Persistent Messaging and Workflows

Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain

steps

E.g. when a bank receives a loan application, it may need to

 Contact external credit-checking agencies

 Get approvals of one or more managers

and then respond to the loan application

Persistent messaging forms the underlying infrastructure for

workflows in a distributed environment

Concurrency Control

Modify concurrency control schemes for use in distributed environment.

We assume that each site participates in the execution of a commit

protocol to ensure global transaction automicity.

We assume all replicas of any item are updated

Will see how to relax this in case of site failures later

25

26

14

Single-Lock-Manager Approach

System maintains a single lock manager that resides in a single

chosen site, say Si

When a transaction needs to lock a data item, it sends a lock request

to Si and lock manager determines whether the lock can be granted

immediately

If yes, lock manager sends a message to the site which initiated

the request

If no, request is delayed until it can be granted, at which time a

message is sent to the initiating site

Single-Lock-Manager Approach (Cont.)

The transaction can read the data item from any one of the sites at

which a replica of the data item resides.

Writes must be performed on all replicas of a data item

Advantages of scheme:

Simple implementation

Simple deadlock handling

Disadvantages of scheme are:

Bottleneck: lock manager site becomes a bottleneck

Vulnerability: system is vulnerable to lock manager site failure.

27

28

15

Distributed Lock Manager

In this approach, functionality of locking is implemented by lock

managers at each site

Lock managers control access to local data items

 But special protocols may be used for replicas

Advantage: work is distributed and can be made robust to failures

Disadvantage: deadlock detection is more complicated

Lock managers cooperate for deadlock detection

 More on this later

Several variants of this approach

Primary copy

Majority protocol

Biased protocol

Quorum consensus

Primary Copy

Choose one replica of data item to be the primary copy.

Site containing the replica is called the primary site for that data

item

Different data items can have different primary sites

When a transaction needs to lock a data item Q, it requests a lock at

the primary site of Q.

Implicitly gets lock on all replicas of the data item

Benefit

Concurrency control for replicated data handled similarly to

unreplicated data - simple implementation.

Drawback

If the primary site of Q fails, Q is inaccessible even though other

sites containing a replica may be accessible.

29

30

16

Majority Protocol

Local lock manager at each site administers lock and unlock requests

for data items stored at that site.

When a transaction wishes to lock an unreplicated data item Q

residing at site Si, a message is sent to Si ‘s lock manager.

If Q is locked in an incompatible mode, then the request is delayed

until it can be granted.

When the lock request can be granted, the lock manager sends a

message back to the initiator indicating that the lock request has

been granted.

Majority Protocol (Cont.)

In case of replicated data

If Q is replicated at n sites, then a lock request message must be
sent to more than half of the n sites in which Q is stored.

The transaction does not operate on Q until it has obtained a lock
on a majority of the replicas of Q.

When writing the data item, transaction performs writes on all
replicas.

Benefit

Can be used even when some sites are unavailable

 details on how handle writes in the presence of site failure later

Drawback

Requires 2(n/2 + 1) messages for handling lock requests, and (n/2
+ 1) messages for handling unlock requests.

Potential for deadlock even with single item - e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data.

31

32

17

Biased Protocol

Local lock manager at each site as in majority protocol, however,

requests for shared locks are handled differently than requests for

exclusive locks.

Shared locks. When a transaction needs to lock data item Q, it simply

requests a lock on Q from the lock manager at one site containing a

replica of Q.

Exclusive locks. When transaction needs to lock data item Q, it

requests a lock on Q from the lock manager at all sites containing a

replica of Q.

Advantage - imposes less overhead on read operations.

Disadvantage - additional overhead on writes

Quorum Consensus Protocol

A generalization of both majority and biased protocols

Each site is assigned a weight.

Let S be the total of all site weights

Choose two values read quorum Qr and write quorum Qw

Such that Qr + Qw > S and 2 * Qw > S

Quorums can be chosen (and S computed) separately for each

item

Each read must lock enough replicas that the sum of the site weights

is >= Qr

Each write must lock enough replicas that the sum of the site weights

is >= Qw

For now we assume all replicas are written

Extensions to allow some sites to be unavailable described later

33

34

18

Timestamp-Based Protocols

Each transaction is issued a timestamp when it enters the system. If an old

transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-

stamp TS(Tj) such that TS(Ti) <TS(Tj).

The protocol manages concurrent execution such that the time-stamps

determine the serializability order.

In order to assure such behavior, the protocol maintains for each data Q two

timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.

R-timestamp(Q) is the largest time-stamp of any transaction that

executed read(Q) successfully.

Timestamp-Based Protocols (Cont.)

The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order.

Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten. Hence, the read operation is

rejected, and Ti is rolled back.

2. If TS(Ti) W-timestamp(Q), then the read operation is

executed, and R-timestamp(Q) is set to the maximum of R-

timestamp(Q) and TS(Ti).

35

36

19

Timestamp-Based Protocols (Cont.)

Suppose that transaction Ti issues write(Q).

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing

was needed previously, and the system assumed that that value

would never be produced. Hence, the write operation is rejected, and

Ti is rolled back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete

value of Q. Hence, this write operation is rejected, and Ti is rolled

back.

Otherwise, the write operation is executed, and W-timestamp(Q) is

set to TS(Ti).

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

T1 T2 T3 T4 T5

read(Y)
read(X)

read(Y)
write(Y)
write(Z)

read(Z)
write(X)
abort

read(X)
write(Z)
abort

write(Y)

write(Z)

37

38

20

Timestamping

Timestamp based concurrency-control protocols can be used in

distributed systems

Each transaction must be given a unique timestamp

Main problem: how to generate a timestamp in a distributed fashion

Each site generates a unique local timestamp using either a logical

counter or the local clock.

Global unique timestamp is obtained by concatenating the unique

local timestamp with the unique identifier.

Timestamping (Cont.)

A site with a slow clock will assign smaller timestamps

Still logically correct: serializability not affected

But: “disadvantages” transactions

To fix this problem

Define within each site Si a logical clock (LCi), which generates

the unique local timestamp

Require that Si advance its logical clock whenever a request is

received from a transaction Ti with timestamp < x,y> and x is

greater that the current value of LCi.

In this case, site Si advances its logical clock to the value x + 1.

39

40

21

Deadlock Handling

Consider the following two transactions and history, with item X and

transaction T1 at site 1, and item Y and transaction T2 at site 2:

T1: write (X)

write (Y)

T2: write (Y)

write (X)

X-lock on X

write (X) X-lock on Y

write (Y)

wait for X-lock on X

Wait for X-lock on Y

Result: deadlock which cannot be detected locally at either site

Centralized Approach

A global wait-for graph is constructed and maintained in a single site;

the deadlock-detection coordinator

Real graph: Real, but unknown, state of the system.

Constructed graph:Approximation generated by the controller

during the execution of its algorithm .

the global wait-for graph can be constructed when:

a new edge is inserted in or removed from one of the local wait-

for graphs.

a number of changes have occurred in a local wait-for graph.

the coordinator needs to invoke cycle-detection.

If the coordinator finds a cycle, it selects a victim and notifies all sites.

The sites roll back the victim transaction.

41

42

22

Local and Global Wait-For Graphs

Local

Global

Example Wait-For Graph for False Cycles

Initial state:

43

44

23

Availability

High availability: time for which system is not fully usable should be

extremely low (e.g. 99.99% availability)

Robustness: ability of system to function spite of failures of

components

Failures are more likely in large distributed systems

To be robust, a distributed system must

Detect failures

Reconfigure the system so computation may continue

Recovery/reintegration when a site or link is repaired

Failure detection: distinguishing link failure from site failure is hard

(partial) solution: have multiple links, multiple link failure is likely a

site failure

Reconfiguration

Reconfiguration:

Abort all transactions that were active at a failed site

 Making them wait could interfere with other transactions since

they may hold locks on other sites

 However, in case only some replicas of a data item failed, it

may be possible to continue transactions that had accessed

data at a failed site (more on this later)

If replicated data items were at failed site, update system catalog

to remove them from the list of replicas.

 This should be reversed when failed site recovers, but

additional care needs to be taken to bring values up to date

If a failed site was a central server for some subsystem, an

election must be held to determine the new server

 E.g. name server, concurrency coordinator, global deadlock

detector

45

46

24

Site Reintegration

When failed site recovers, it must catch up with all updates that it

missed while it was down

Problem: updates may be happening to items whose replica is

stored at the site while the site is recovering

Solution 1: halt all updates on system while reintegrating a site

 Unacceptable disruption

Solution 2: lock all replicas of all data items at the site, update to

latest version, then release locks

 Other solutions with better concurrency also available

47

