Chapter 3

Random Vectors and Multivariate

Normal Distributions

3.1 Random vectors

Definition 3.1.1. Random vector. Random vectors are vectors of random
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variables. For instance,

[ X, )

Xs

\ X, /

where each element represent a random variable, is a random vector.

Definition 3.1.2. Mean and covariance matrix of a random vector.

The mean (expectation) and covariance matrix of a random vector X is de-

fined as follows:

EX] =

and

[ EX)] )
B [Xo]

\E[in] )

cou(X) = B [{X - BE(X)}{X - B(X)}']

O'% 012 ... O1p
2
B 021 05 ... O2p
- )
2
| Onl Op2 ... O, i
(3.1.1)
where (7]2 = var(X;) and o, = cov(X,, Xy) for j, bk =1,2,...,n.
Chapter 3 84



BIOS 2083 Linear Models Abdus S. Wahed

Properties of Mean and Covariance.

1. If X and Y are random vectors and A, B, C and D are constant matrices,

then
E]AXB+ CY + D] =AF[X]B + CE[Y] + D. (3.1.2)
Proof. Left as an exercise. ]
2. For any random vector X, the covariance matrix cov(X) is symmetric.
Proof. Left as an exercise. ]

3. If X;,j =1,2,...,n are independent random variables, then cov(X) =

diag(a?,j =1,2,...,n).
Proof. Left as an exercise. H
4. cov(X + a) = cov(X) for a constant vector a.

Proof. Left as an exercise. ]
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Properties of Mean and Covariance (cont.)
5. cov(AX) = Acov(X)AT for a constant matrix A.

Proof. Left as an exercise. H
6. cov(X) is positive semi-definite.

Proof. Left as an exercise. ]
7. cov(X) = E[XXT] — EX]{E[X]}".

Proof. Left as an exercise. ]
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Definition 3.1.3. Correlation Matrix.

A correlation matrix of a vector of random variable X is defined as the

matrix of pairwise correlations between the elements of X. Explicitly,

I pi2 ... pmn
1 ... pon
corr(X) = P P : (3.1.3)
| Pnl Pn2 - 1 i

where pj, = corr(X;, Xy) = o/ (0j01), 5,k =1,2,...,n.

Example 3.1.1. If only successive random variables in the random vector X
are correlated and have the same correlation p, then the correlation matrix

corr(X) is given by

1 p0 ...0
p 1 p ... 0

corr(X) = |0 p 1 ...0], (3.1.4)
000 ...1
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Example 3.1.2. If every pair of random variables in the random vector X

have the same correlation p, then the correlation matrix corr(X) is given by

L pp ...p
p 1l p ... p

corr(X) = | pp 1l ... pl, (3.1.5)
ppp ... 1

and the random variables are said to be exchangeable.

3.2 Multivariate Normal Distribution

Definition 3.2.1. Multivariate Normal Distribution. A random vector
X = (X4, Xq,..., Xn)T is said to follow a multivariate normal distribution

with mean p and covariance matrix ¥ if X can be expressed as
X =AZ+ pu,

where ¥ = AAT and Z = (24,2, ...,7Z,) with Z;,i = 1,2,...,n iid N(0,1)

variables.
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Definition 3.2.2. Mult

X

.,Xn)T is said to follow a multivariate normal distribution

(X4, Xo, ..

with mean p and a positive definite covariance matrix 3J if X has the density

(3.2.1)

(X—MTE*@—MJ

1
2

P

(2m)2[S |12 erp

fx(x)
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Properties

1. Moment generating function of a N(u,¥) random variable X is given

by

1
Mx(t) = exp {,uTt + §tTEt} : (3.2.2)

2. E(X) = p and cov(X) = X.

3. If X4,Xy,...,X, are i.i.d N(0,1) random variables, then their joint
distribution can be characterized by X = (X1, Xa, ..., X,)T ~ N(0,1,).

4. X ~ Np(u,X) if and only if all non-zero linear combinations of the

components of X are normally distributed.
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Linear transformation

5. If X ~ N,(p,X) and A, x, is a constant matrix of rank m, then Y =
Ax ~ N,(Ap, AXAT).

Proof. Use definition 3.2.1 or property 1 above. Il

Orthogonal linear transformation

6. If X ~ N,(u,I,) and A, is an orthogonal matrix and ¥ = I,, then
Y = Ax ~ N,(An, 1,,).
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Marginal and Conditional distributions

Suppose X is N, (u, ¥) and X is partitioned as follows,
x= |,
X

where X is of dimension p x 1 and X5 is of dimension n—p x 1. Suppose

the corresponding partitions for p and X are given by

i1 X
= 251 Cand 3 — 11 12

H2 o1 Moo
respectively. Then,

7. Marginal distribution. X is multivariate normal - N, (g1, 311).
Proof. Use the result from property 5 above. []

8. Conditional distribution. The distribution of X;|X5 is p-variate nor-

mal - Ny (ft1)2, X1j2), where,

Hij2 = p1 + 315355 (Xo — p2),
and
Sip = i — Z1eZg; Boy,

provided X is positive definite.

Proof. See Result 5.2.10, page 156 (Ravishanker and Dey). ]
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Uncorrelated implies independence for multivariate normal random vari-

ables

9. If X, i, and X are partitioned as above, then X; and X, are independent
if and only if X5 = 0= X1,

Proof. We will use m.g.f to prove this result. Two random vectors Xy

and Xy are independent iff

Mx, x,)(t1, t2) = Mx, (t1) Mx,(t2).
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3.3 Non-central distributions

We will start with the standard chi-square distribution.

Definition 3.3.1. Chi-square distribution. If X;, X5, ..., X,, be n inde-
pendent N (0, 1) variables, then the distribution of ! ; X? is x? (ch-square

with degrees of freedom n).

x2-distribution is a special case of gamma distribution when the scale
parameter is set to 1/2 and the shape parameter is set to be n/2. That is,

the density of x2 is given by

1/2 n/2
felz) = %e—ﬁ/%n/%l, t>0:n=12...,. (3.3.1)

Example 3.3.1. The distribution of (n — 1)S?/0?, where S% = Y " (X, —
X)?/(n—1) is the sample variance of a random sample of size n from a normal

distribution with mean p and variance o2, follows a x2_;.

The moment generating function of a chi-square distribution with n d.f.

is given by
Me(t) = (1—2t)"2% t < 1/2. (3.3.2)
The m.g.f (3.3.2) shows that the sum of two independent ch-square random
variables is also a ch-square. Therefore, differences of sequantial sums of
squares of independent normal random variables will be distributed indepen-

dently as chi-squares.
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Theorem 3.3.2. If X ~ N, (u,X) and X is positive definite, then
(X =)' 27X~ ) ~ x;n (3.3.3)

Proof. Since X is positive definite, there exists a non-singular A, «,, such that
3> = AAT (Cholesky decomposition). Then, by definition of multivariate
normal distribution,

X =AZ+ pu,

where Z is a random sample from a N (0, 1) distribution. Now, ]
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Figure 3.1: Non-central chi-square densities with df 5 and non-centrality parameter \.

Definition 3.3.2. Non-central chi-square distribution. Suppose X'’s
are as in Definition (3.3.1) except that each X; has mean pu;, i = 1,2,...,n.
Equivalently, suppose, X = (Xi,...,X,)? be a random vector distributed
as N,(u,I,), where u = (p1, ..., ptn)". Then the distribution of Y1 | X? =
XTX is referred to as non-central chi-square with d.f. n and non-centrality
parameter A\ = Y pu?/2 = tu’ . The density of such a non-central chi-
square variable x2(\) can be written as a infinite poisson mixture of central

chi-square densities as follows:

0 —)\)\j 1/2) (n+25)/2 _
) e~ /2 (n+25)/2-1, 3.3.4
Faon®) = 3 Tz .
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Properties

1. The moment generating function of a non-central chi-square variable
x2(\) is given by

2t

2. E[x2(\)] =n+2X

3. Var [x2(N)] = 2(n +4)).
4. x(0) = x;.

5. For a given constant c,

(a) P(x2()\) > ¢) is an increasing function of .

(b) P(xi(A) > ¢) = P(x;; > o).
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Theorem 3.3.3. If X ~ N, (u,X) and X is positive definite, then
X2 X ~ 2N =2 )2). (3.3.6)

Proof. Since X is positive definite, there exists a non-singular matrix A, «,

such that ¥ = AAT (Cholesky decomposition). Define,
Y = {AT} X

Then, []
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0.8

Figure 3.2: Non-central F-densities with df 5 and 15 and non-centrality parameter .

Definition 3.3.3. Non-central F-distribution. If U; ~ x2 (\) and U, ~

X%Q and Uy and U, are independent, then, the distribution of

. Ul/nl

F =
Ug/ng

(3.3.7)

is referred to as non-central F-distribution with df n; and no, and non-

centrality parameter \.
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Figure 3.3: Non-central t-densities with df 5 and non-centrality parameter .

Definition 3.3.4. Non-central ¢t-distribution. If U; ~ N(\, 1) and U; ~

x> and U; and U, are independent, then, the distribution of

U
T=—_ (3.3.8)

\/Uz/n

is referred to as non-central t-distribution with df n and non-centrality pa-

rameter \.
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3.4 Distribution of quadratic forms

Caution: We assume that our matrix of quadratic form is sym-

metric.

Lemma 3.4.1. If A, «, is symmetric and idempotent with rank r, then r of

its etgenvalues are exactly equal to 1 and n — r are equal to zero.

Proof. Use spectral decomposition theorem. (See Result 2.3.10 on page 51 of
Ravishanker and Dey). [

Theorem 3.4.2. Let X ~ N, (0,1,). The quadratic form XTAX ~ x2 iff A

is idempotent with rank(A) = r.

Proof. Let A be (symmetric) idempotent matrix of rank r. Then, by spectral

decomposition theorem, there exists an orthogonal matrix P such that

PTAP = A = (3.4.1)
0 0
PTX Y,
Define Y = PTX = = , so that PIP; = I,. Thus, X =
PIX Y,
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PY and Y; ~ N,(0,1I,). Now,

XTAx = (PY)TAPY

_ 7 I 0
0 0
= Y{Y; ~ (3.4.2)

Now suppose XTAX ~ x2. This means that the moment generating

function of X7 AX is given by
Myxrax(t) = (1 —2t)7"72. (3.4.3)
But, one can calculate the m.g.f. of X7 AX directly using the multivariate
normal density as
Mxrax(t) = E [exp {(X"AX)t}]

= /exp{(XTAX)t} fx(x)dx

= /eajp{(XTAX)t} (27T1)n/26xp [—%XTX] dx

1 1
= /Wea:p [—ixT(In — 2tA)X] dx

= |I, — 2tA|7/?

n

= JJ—2tn)2 (3.4.4)

1=1

Equate (3.4.3) and (3.4.4) to obtain the desired result.
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Theorem 3.4.3. Let X ~ N, (u, 3) where 3 is positive definite. The quadratic
form XTAX ~ x2(\) where A = T Ap/2, iff A is idempotent with rank(AX) =

r.
Proof. Omitted. ]

Theorem 3.4.4. Independence of two quadratic forms. Let X ~
N, (1, X) where X is positive definite. The two quadratic forms XTAX and
XTBX are independent if and only if

AYB =0=BXYA. (3.4.5)
Proof. Omitted. ]

Remark 3.4.1. Note that in the above theorem, the two quadratic forms need
not have a chi-square distribution. When they are, the theorem is referred

to as Craig’s theorem.

Theorem 3.4.5. Independence of linear and quadratic forms. Let
X ~ N, (1, ) where X is positive definite. The quadratic form XTAX and

the linear form BX are independently distributed if and only if
BXA =0. (3.4.6)

Proof. Omitted. ]

Remark 3.4.2. Note that in the above theorem, the quadratic form need not

have a chi-square distribution.
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Example 3.4.6. Independence of sample mean and sample vari-
ance. Suppose X ~ N,(0,1,). Then X = > X;/n = 17X/n and
S% =>"" (X; — X)?/(n — 1) are independently distributed.

Proof. n
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Theorem 3.4.7. Let X ~ N,(u,X). Then
E [X"AX] = " Ap+ trace(AY). (3.4.7)

Remark 3.4.3. Note that in the above theorem, the quadratic form need not

have a chi-square distribution.

Proof. ]
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Theorem 3.4.8. Fisher-Cochran theorem. Suppose X ~ N, (u,1,). Let
Q, =XTA,X,j=1,2,...,k be k quadratic forms with rank(A;) = r; such
that XTX = Z§:1 Q;. Then, Q;’s are independently distributed as X?«j()\j)
where \; = p" A;p/2 if and only if Zle rj =n.

Proof. Omitted. ]

Theorem 3.4.9. Generalization of Fisher-Cochran theorem. Sup-
pose X ~ Np(u,1,). Let Aj,j =1,2,...,k be k n x n symmetric matrices
with rank(A;) = r;j such that A = Z?Zl A, with rank(A) =r. Then,

1. XTA;X s are independently distributed as X%j(/\j) where \j = p Aju/2,

and
2. XTAX ~ y2(\) where A = Y5 )
if and only if ANY ONE of the following conditions is satisfied.
C1. A;X is idempotent for all j and A;XA), =0 for all j < k.
C2. A;X is idempotent for all j and AX is idempotent.
C3. A;¥AL =0 for all j <k and A is idempotent.
C4. r= Z?Zl r; and A3 is idempotent.

Ch. the matrices AX, A;¥, 5 =1,2,...,k—1 are idempotent and A3

1$ non-negative definite.
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3.5 Problems

1. Consider the matrix

8 442222
4402200
4040022
A=[12202000
2200200
2020020
\2020002/

(a) Find the rank of this matrix.
(b) Find a basis for the null space of A.

(¢) Find a basis for the column space of A.

2. Let X;,7 = 1,2,3 are independent standard normal random variables.

Show that the variance-covariance matrix of the 3-dimensional vector

Y, defined as
5X;4

Y=| 16X, 12X, |,
2X1 — Xo

is not positive definite.
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3. Let ) )
X1 G L p O
X=X | ~Ns|| 2|0 10p

X3 |\ M3 0 p1/]

(a) Find the marginal distribution of Xj.

(b) What is the conditional distribution of X5 given X7 = x; and X3 =

x3? Under what condition does this distribution coincide with the

marginal distribution of X7
4. If X ~ N, (1, X), then show that (X — p)T 271X — p) ~ x2.
5. Suppose Y = (Y1, Yy, Y3)T be distributed as N3(0, 0213).

(a) Consider the quadratic form:

o (n—n>2+(3@—31@)2+(1@,—¥1)% 3.5.1)

Write Q as YTAY where A is symmetric. Is A idempotent? What
is the distribution of Q/c*? Find E(Q).

(b) What is the distribution of L = Y1+Y5+Y3? Find E(L) and Var(L).

(c) Are Q and L independent? Find E(Q/L?)
6. Write each of the following quadratic forms in X? AX form:

(a) %X% + %X% + %X32 — %XlXQ + %Xng — %XQX?,
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(b) 220, X7
(c) Z?:l (Xi - X)z

(d) 37 300 (Xiy — Xi)", where X; = XaxXa

() 2300, (Xi - X..)2, where X = Sttt XntXn

In each case, determine if A is idempotent. If A is idempotent, find
rank(A).

7. Let X ~ No(u, ), where p = , and X = . Show

2 05 1
that Q; = (X1—X3)? and Q, = (X1+X3)? are independently distributed.

Find the distribution of ()1, )2, and 3%21

8. Assume that Y ~ N3(0,13). Define Q; = YTAY and @, = YT BY,

where
110 1 -1 0
A=1110 |,and,B=| -1 1 0 |- (3.5.2)
001 0 00

Are Q; and @, independent? Do Q; and ), follow y? distribution?

9. Let Y ~ Ng(o,lg). Let U1 = YTA1Y, U2 = YTAQY , and V = BY
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where
1/2 1/2 0 /2 —=1/2 0

Ar=11/2 1/2 0 |, A=] -1/2 1/2 0 ,and,B:<1 1 O>-
0o 0 1 0 0 1

(a) Are Uy and U, independent?

(b) Are U; and V independent?

(¢) Are Uy and V independent?

(d) Find the distribution of V.

(e) Find the distribution of % (Include specific values for any param-

eters of the distribution.)

10. Suppose X ~ Ns3(u, ), where

0 of 0 0
p=1 py |,and X = 0 o5 0
M3 0 O 0'32)

X2

. Express the parameters of its

Find the distribution of Q = 327,

distribution in terms of p; and ¢?,i = 1,2,3. What is the variance of
Q7
11. Suppose X ~ N(0,1) and Y = UX, where U follows a uniform distri-

bution on the discrete space {—1, 1} independently of X.
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(a) Find E(Y) and cov(X,Y).

(b) Show that Y and X are not independent.

12. Suppose X ~ Ny(u, 1), where

(xu\ [a+a )

X12 a—+ ap
X21 o+ a

() \ava)

(a) Find the distribution of £ = 25:1 25:1 (Xz'j — Xi,)z, where X; =

Xii+Xio

5 .

(b) Find the distribution of ) = 2 Z?Zl ()_(L — X._)Q, where X = X“JFX”IX?lJFX”.

(c¢) Use Fisher-Cochran theorem to prove that E and () are indepen-
dently distributed.

(d) What is the distribution of Q/E?
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