
Chapter 3

Random Vectors and Multivariate

Normal Distributions

3.1 Random vectors

Definition 3.1.1. Random vector. Random vectors are vectors of random
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variables. For instance,

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where each element represent a random variable, is a random vector.

Definition 3.1.2. Mean and covariance matrix of a random vector.

The mean (expectation) and covariance matrix of a random vector X is de-

fined as follows:

E [X] =

⎛
⎜⎜⎜⎜⎜⎜⎝

E [X1]

E [X2]

...

E [Xn]

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

cov(X) = E
[
{X − E (X)} {X − E (X)}T

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

...
...

σn1 σn2 . . . σ2
n

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(3.1.1)

where σ2
j = var(Xj) and σjk = cov(Xj,Xk) for j, k = 1, 2, . . . , n.
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Properties of Mean and Covariance.

1. If X and Y are random vectors and A,B,C and D are constant matrices,

then

E [AXB + CY + D] = AE [X]B + CE[Y] + D. (3.1.2)

Proof. Left as an exercise.

2. For any random vector X, the covariance matrix cov(X) is symmetric.

Proof. Left as an exercise.

3. If Xj, j = 1, 2, . . . , n are independent random variables, then cov(X) =

diag(σ2
j , j = 1, 2, . . . , n).

Proof. Left as an exercise.

4. cov(X + a) = cov(X) for a constant vector a.

Proof. Left as an exercise.
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Properties of Mean and Covariance (cont.)

5. cov(AX) = Acov(X)AT for a constant matrix A.

Proof. Left as an exercise.

6. cov(X) is positive semi-definite.

Proof. Left as an exercise.

7. cov(X) = E[XXT ] − E[X] {E[X]}T .

Proof. Left as an exercise.
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Definition 3.1.3. Correlation Matrix.

A correlation matrix of a vector of random variable X is defined as the

matrix of pairwise correlations between the elements of X. Explicitly,

corr(X) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n

...
...

...
...

ρn1 ρn2 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.1.3)

where ρjk = corr(Xj,Xk) = σjk/(σjσk), j, k = 1, 2, . . . , n.

Example 3.1.1. If only successive random variables in the random vector X

are correlated and have the same correlation ρ, then the correlation matrix

corr(X) is given by

corr(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ 0 . . . 0

ρ 1 ρ . . . 0

0 ρ 1 . . . 0

...
...

...
...

...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.1.4)
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Example 3.1.2. If every pair of random variables in the random vector X

have the same correlation ρ, then the correlation matrix corr(X) is given by

corr(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ

...
...

...
...

...

ρ ρ ρ . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.1.5)

and the random variables are said to be exchangeable.

3.2 Multivariate Normal Distribution

Definition 3.2.1. Multivariate Normal Distribution. A random vector

X = (X1,X2, . . . ,Xn)
T is said to follow a multivariate normal distribution

with mean μ and covariance matrix Σ if X can be expressed as

X = AZ + μ,

where Σ = AAT and Z = (Z1,Z2, . . . ,Zn) with Zi, i = 1, 2, . . . , n iid N(0, 1)

variables.
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Bivariate normal distribution with mean (0, 0)T and covariance matrix
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Definition 3.2.2. Multivariate Normal Distribution. A random vector

X = (X1,X2, . . . ,Xn)
T is said to follow a multivariate normal distribution

with mean μ and a positive definite covariance matrix Σ if X has the density

fX(x) =
1

(2π)n/2|Σ|1/2exp

[
−1

2
(x − μ)T Σ−1 (x − μ)

]
(3.2.1)

.
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Properties

1. Moment generating function of a N(μ,Σ) random variable X is given

by

MX(t) = exp

{
μT t +

1

2
tTΣt

}
. (3.2.2)

2. E(X) = μ and cov(X) = Σ.

3. If X1,X2, . . . ,Xn are i.i.d N(0, 1) random variables, then their joint

distribution can be characterized by X = (X1,X2, . . . ,Xn)
T ∼ N(0, In).

4. X ∼ Nn(μ,Σ) if and only if all non-zero linear combinations of the

components of X are normally distributed.
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Linear transformation

5. If X ∼ Nn(μ,Σ) and Am×n is a constant matrix of rank m, then Y =

Ax ∼ Np(Aμ,AΣAT ).

Proof. Use definition 3.2.1 or property 1 above.

Orthogonal linear transformation

6. If X ∼ Nn(μ, In) and An×n is an orthogonal matrix and Σ = In, then

Y = Ax ∼ Nn(Aμ, In).
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Marginal and Conditional distributions

Suppose X is Nn(μ,Σ) and X is partitioned as follows,

X =

⎛
⎝ X1

X2

⎞
⎠ ,

where X1 is of dimension p×1 and X2 is of dimension n−p×1. Suppose

the corresponding partitions for μ and Σ are given by

μ =

⎛
⎝ μ1

μ2

⎞
⎠ , and Σ =

⎛
⎝ Σ11 Σ12

Σ21 Σ22

⎞
⎠

respectively. Then,

7. Marginal distribution. X1 is multivariate normal - Np(μ1,Σ11).

Proof. Use the result from property 5 above.

8. Conditional distribution. The distribution of X1|X2 is p-variate nor-

mal - Np(μ1|2,Σ1|2), where,

μ1|2 = μ1 + Σ12Σ
−1
22 (X2 − μ2),

and

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21,

provided Σ is positive definite.

Proof. See Result 5.2.10, page 156 (Ravishanker and Dey).
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Uncorrelated implies independence for multivariate normal random vari-

ables

9. If X, μ, and Σ are partitioned as above, then X1 and X2 are independent

if and only if Σ12 = 0 = ΣT
21.

Proof. We will use m.g.f to prove this result. Two random vectors X1

and X2 are independent iff

M(X1,X2)(t1, t2) = MX1
(t1)MX2

(t2).
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3.3 Non-central distributions

We will start with the standard chi-square distribution.

Definition 3.3.1. Chi-square distribution. If X1, X2, . . . , Xn be n inde-

pendent N(0, 1) variables, then the distribution of
∑n

i=1 X2
i is χ2

n (ch-square

with degrees of freedom n).

χ2
n-distribution is a special case of gamma distribution when the scale

parameter is set to 1/2 and the shape parameter is set to be n/2. That is,

the density of χ2
n is given by

fχ2
n
(x) =

(1/2)n/2

Γ(n/2)
e−x/2xn/2−1, x ≥ 0; n = 1, 2, . . . , . (3.3.1)

Example 3.3.1. The distribution of (n − 1)S2/σ2, where S2 =
∑n

i=1(Xi −
X̄)2/(n−1) is the sample variance of a random sample of size n from a normal

distribution with mean μ and variance σ2, follows a χ2
n−1.

The moment generating function of a chi-square distribution with n d.f.

is given by

Mχ2
n
(t) = (1 − 2t)−n/2, t < 1/2. (3.3.2)

The m.g.f (3.3.2) shows that the sum of two independent ch-square random

variables is also a ch-square. Therefore, differences of sequantial sums of

squares of independent normal random variables will be distributed indepen-

dently as chi-squares.
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Theorem 3.3.2. If X ∼ Nn(μ,Σ) and Σ is positive definite, then

(X − μ)TΣ−1(X − μ) ∼ χ2
n. (3.3.3)

Proof. Since Σ is positive definite, there exists a non-singular An×n such that

Σ = AAT (Cholesky decomposition). Then, by definition of multivariate

normal distribution,

X = AZ + μ,

where Z is a random sample from a N(0, 1) distribution. Now,
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Figure 3.1: Non-central chi-square densities with df 5 and non-centrality parameter λ.

Definition 3.3.2. Non-central chi-square distribution. Suppose X’s

are as in Definition (3.3.1) except that each Xi has mean μi, i = 1, 2, . . . , n.

Equivalently, suppose, X = (X1, . . . , Xn)
T be a random vector distributed

as Nn(μ, In), where μ = (μ1, . . . , μn)
T . Then the distribution of

∑n
i=1 X2

i =

XTX is referred to as non-central chi-square with d.f. n and non-centrality

parameter λ =
∑n

i=1 μ2
i /2 = 1

2μ
Tμ. The density of such a non-central chi-

square variable χ2
n(λ) can be written as a infinite poisson mixture of central

chi-square densities as follows:

fχ2
n(λ)(x) =

∞∑
j=1

e−λλj

j!

(1/2)(n+2j)/2

Γ((n + 2j)/2)
e−x/2x(n+2j)/2−1. (3.3.4)
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Properties

1. The moment generating function of a non-central chi-square variable

χ2
n(λ) is given by

Mχ2
n(n,λ)(t) = (1 − 2t)−n/2exp

{
2λt

1 − 2t

}
, t < 1/2. (3.3.5)

2. E
[
χ2

n(λ)
]

= n + 2λ.

3. V ar
[
χ2

n(λ)
]

= 2(n + 4λ).

4. χ2
n(0) ≡ χ2

n.

5. For a given constant c,

(a) P (χ2
n(λ) > c) is an increasing function of λ.

(b) P (χ2
n(λ) > c) ≥ P (χ2

n > c).
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Theorem 3.3.3. If X ∼ Nn(μ,Σ) and Σ is positive definite, then

XTΣ−1X ∼ χ2
n(λ = μTΣ−1μ/2). (3.3.6)

Proof. Since Σ is positive definite, there exists a non-singular matrix An×n

such that Σ = AAT (Cholesky decomposition). Define,

Y = {AT}−1X.

Then,
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Figure 3.2: Non-central F-densities with df 5 and 15 and non-centrality parameter λ.

Definition 3.3.3. Non-central F -distribution. If U1 ∼ χ2
n1

(λ) and U2 ∼
χ2

n2
and U1 and U2 are independent, then, the distribution of

F =
U1/n1

U2/n2
(3.3.7)

is referred to as non-central F -distribution with df n1 and n2, and non-

centrality parameter λ.
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Figure 3.3: Non-central t-densities with df 5 and non-centrality parameter λ.

Definition 3.3.4. Non-central t-distribution. If U1 ∼ N(λ, 1) and U2 ∼
χ2

n and U1 and U2 are independent, then, the distribution of

T =
U1√
U2/n

(3.3.8)

is referred to as non-central t-distribution with df n and non-centrality pa-

rameter λ.
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3.4 Distribution of quadratic forms

Caution: We assume that our matrix of quadratic form is sym-

metric.

Lemma 3.4.1. If An×n is symmetric and idempotent with rank r, then r of

its eigenvalues are exactly equal to 1 and n − r are equal to zero.

Proof. Use spectral decomposition theorem. (See Result 2.3.10 on page 51 of

Ravishanker and Dey).

Theorem 3.4.2. Let X ∼ Nn(0, In). The quadratic form XTAX ∼ χ2
r iff A

is idempotent with rank(A) = r.

Proof. Let A be (symmetric) idempotent matrix of rank r. Then, by spectral

decomposition theorem, there exists an orthogonal matrix P such that

PTAP = Λ =

⎡
⎣ Ir 0

0 0

⎤
⎦ . (3.4.1)

Define Y = PTX =

⎡
⎣ PT

1 X

PT
2 X

⎤
⎦ =

⎡
⎣ Y1

Y2

⎤
⎦, so that PT

1 P1 = Ir. Thus, X =
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PY and Y1 ∼ Nr(0, Ir). Now,

XTAx = (PY)TAPY

= YT

⎡
⎣ Ir 0

0 0

⎤
⎦Y

= YT
1 Y1 ∼ χ2

r. (3.4.2)

Now suppose XTAX ∼ χ2
r. This means that the moment generating

function of XTAX is given by

MXT AX(t) = (1 − 2t)−r/2. (3.4.3)

But, one can calculate the m.g.f. of XTAX directly using the multivariate

normal density as

MXT AX(t) = E
[
exp

{
(XTAX)t

}]
=

∫
exp

{
(XTAX)t

}
fX(x)dx

=

∫
exp

{
(XTAX)t

} 1

(2π)n/2exp

[
−1

2
xTx

]
dx

=

∫
1

(2π)n/2exp

[
−1

2
xT (In − 2tA)x

]
dx

= |In − 2tA|−1/2

=
n∏

i=1

(1 − 2tλi)
−1/2. (3.4.4)

Equate (3.4.3) and (3.4.4) to obtain the desired result.
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Theorem 3.4.3. Let X ∼ Nn(μ,Σ) where Σ is positive definite. The quadratic

form XTAX ∼ χ2
r(λ) where λ = μTAμ/2, iff AΣ is idempotent with rank(AΣ) =

r.

Proof. Omitted.

Theorem 3.4.4. Independence of two quadratic forms. Let X ∼
Nn(μ,Σ) where Σ is positive definite. The two quadratic forms XTAX and

XTBX are independent if and only if

AΣB = 0 = BΣA. (3.4.5)

Proof. Omitted.

Remark 3.4.1. Note that in the above theorem, the two quadratic forms need

not have a chi-square distribution. When they are, the theorem is referred

to as Craig’s theorem.

Theorem 3.4.5. Independence of linear and quadratic forms. Let

X ∼ Nn(μ,Σ) where Σ is positive definite. The quadratic form XTAX and

the linear form BX are independently distributed if and only if

BΣA = 0. (3.4.6)

Proof. Omitted.

Remark 3.4.2. Note that in the above theorem, the quadratic form need not

have a chi-square distribution.
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Example 3.4.6. Independence of sample mean and sample vari-

ance. Suppose X ∼ Nn(0, In). Then X̄ =
∑n

i=1 Xi/n = 1TX/n and

S2
X =

∑n
i=1(Xi − X̄)2/(n − 1) are independently distributed.

Proof.
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Theorem 3.4.7. Let X ∼ Nn(μ,Σ). Then

E
[
XTAX

]
= μTAμ + trace(AΣ). (3.4.7)

Remark 3.4.3. Note that in the above theorem, the quadratic form need not

have a chi-square distribution.

Proof.
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Theorem 3.4.8. Fisher-Cochran theorem. Suppose X ∼ Nn(μ, In). Let

Qj = XTAjX, j = 1, 2, . . . , k be k quadratic forms with rank(Aj) = rj such

that XTX =
∑k

j=1 Qj. Then, Qj’s are independently distributed as χ2
rj
(λj)

where λj = μTAjμ/2 if and only if
∑k

j=1 rj = n.

Proof. Omitted.

Theorem 3.4.9. Generalization of Fisher-Cochran theorem. Sup-

pose X ∼ Nn(μ, In). Let Aj, j = 1, 2, . . . , k be k n × n symmetric matrices

with rank(Aj) = rj such that A =
∑k

j=1 Aj with rank(A) = r. Then,

1. XTAjX’s are independently distributed as χ2
rj
(λj) where λj = μTAjμ/2,

and

2. XTAX ∼ χ2
r(λ) where λ =

∑k
j=1 λj

if and only if any one of the following conditions is satisfied.

C1. AjΣ is idempotent for all j and AjΣAk = 0 for all j < k.

C2. AjΣ is idempotent for all j and AΣ is idempotent.

C3. AjΣAk = 0 for all j < k and AΣ is idempotent.

C4. r =
∑k

j=1 rj and AΣ is idempotent.

C5. the matrices AΣ, AjΣ, j = 1, 2, . . . , k− 1 are idempotent and AkΣ

is non-negative definite.
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3.5 Problems

1. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 4 4 2 2 2 2

4 4 0 2 2 0 0

4 0 4 0 0 2 2

2 2 0 2 0 0 0

2 2 0 0 2 0 0

2 0 2 0 0 2 0

2 0 2 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(a) Find the rank of this matrix.

(b) Find a basis for the null space of A.

(c) Find a basis for the column space of A.

2. Let Xi, i = 1, 2, 3 are independent standard normal random variables.

Show that the variance-covariance matrix of the 3-dimensional vector

Y, defined as

Y =

⎛
⎜⎜⎜⎝

5X1

1.6X1 − 1.2X2

2X1 − X2

⎞
⎟⎟⎟⎠ ,

is not positive definite.
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3. Let

X =

⎛
⎜⎜⎜⎝

X1

X2

X3

⎞
⎟⎟⎟⎠ ∼ N3

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

μ1

μ2

μ3

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 ρ 0

ρ 1 ρ

0 ρ 1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ .

(a) Find the marginal distribution of X2.

(b) What is the conditional distribution of X2 given X1 = x1 and X3 =

x3? Under what condition does this distribution coincide with the

marginal distribution of X2?

4. If X ∼ Nn(μ,Σ), then show that (X − μ)TΣ−1(X − μ) ∼ χ2
n.

5. Suppose Y = (Y1, Y2, Y3)
T be distributed as N3(0, σ

2I3).

(a) Consider the quadratic form:

Q =
(Y1 − Y2)

2 + (Y2 − Y3)
2 + (Y3 − Y1)

2

3
. (3.5.1)

Write Q as YTAY where A is symmetric. Is A idempotent? What

is the distribution of Q/σ2? Find E(Q).

(b) What is the distribution of L = Y1+Y2+Y3? Find E(L) and V ar(L).

(c) Are Q and L independent? Find E(Q/L2)

6. Write each of the following quadratic forms in XTAX form:

(a) 1
6X

2
1 + 2

3X
2
2 + 1

6X
2
3 − 2

3X1X2 + 1
3X1X3 − 2

3X2X3
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(b)
∑n

i=1 X2
i

(c)
∑n

i=1

(
Xi − X̄

)2

(d)
∑2

i=1
∑2

j=1

(
Xij − X̄i.

)2
, where X̄i. = Xi1+Xi2

2

(e) 2
∑2

i=1

(
X̄i. − X̄..

)2
, where X̄.. = X11+X12+X21+X22

4 .

In each case, determine if A is idempotent. If A is idempotent, find

rank(A).

7. Let X ∼ N2(μ, Σ), where μ =

⎛
⎝ μ1

μ2

⎞
⎠, and Σ =

⎛
⎝ 1 0.5

0.5 1

⎞
⎠. Show

that Q1 = (X1−X2)
2 and Q2 = (X1+X2)

2 are independently distributed.

Find the distribution of Q1, Q2, and Q2

3Q1
.

8. Assume that Y ∼ N3(0, I3). Define Q1 = Y TAY and Q2 = Y TBY ,

where

A =

⎛
⎜⎜⎜⎝

1 1 0

1 1 0

0 0 1

⎞
⎟⎟⎟⎠ , and, B =

⎛
⎜⎜⎜⎝

1 −1 0

−1 1 0

0 0 0

⎞
⎟⎟⎟⎠ . (3.5.2)

Are Q1 and Q2 independent? Do Q1 and Q2 follow χ2 distribution?

9. Let Y ∼ N3(0, I3). Let U1 = Y TA1Y , U2 = Y TA2Y , and V = BY
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where

A1 =

⎛
⎜⎜⎜⎝

1/2 1/2 0

1/2 1/2 0

0 0 1

⎞
⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎝

1/2 −1/2 0

−1/2 1/2 0

0 0 1

⎞
⎟⎟⎟⎠ , and, B =

(
1 1 0

)
.

(a) Are U1 and U2 independent?

(b) Are U1 and V independent?

(c) Are U2 and V independent?

(d) Find the distribution of V .

(e) Find the distribution of U2

U1
. (Include specific values for any param-

eters of the distribution.)

10. Suppose X ∼ N3(μ, Σ), where

μ =

⎛
⎜⎜⎜⎝

μ1

μ2

μ3

⎞
⎟⎟⎟⎠ , and Σ =

⎛
⎜⎜⎜⎝

σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

⎞
⎟⎟⎟⎠ .

Find the distribution of Q =
∑3

i=1
X2

i

σ2
i
. Express the parameters of its

distribution in terms of μi and σ2
i , i = 1, 2, 3. What is the variance of

Q?

11. Suppose X ∼ N(0, 1) and Y = UX, where U follows a uniform distri-

bution on the discrete space {−1, 1} independently of X.
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(a) Find E(Y ) and cov(X, Y ).

(b) Show that Y and X are not independent.

12. Suppose X ∼ N4(μ, I4), where

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X11

X12

X21

X22

⎞
⎟⎟⎟⎟⎟⎟⎠

μ =

⎛
⎜⎜⎜⎜⎜⎜⎝

α + a1

α + a1

α + a2

α + a2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(a) Find the distribution of E =
∑2

i=1
∑2

j=1

(
Xij − X̄i.

)2
, where X̄i. =

Xi1+Xi2

2 .

(b) Find the distribution of Q = 2
∑2

i=1

(
X̄i. − X̄..

)2
, where X̄.. = X11+X12+X21+X22

4 .

(c) Use Fisher-Cochran theorem to prove that E and Q are indepen-

dently distributed.

(d) What is the distribution of Q/E?
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