
Homeworks
 Grades of HW1 have been posted on Canvas

 HW2 will be due on 10/7 before class

1



Recap from previous classes
 Design Methodology

 Non-functional requirements: real-time, power, memory, cost
 Alternative technologies

• Microprocessor (dominant player), ASIC, FPGA

 Microprocessors
 Von Neumann vs. Harvard
 RISC vs. CISC

 I/O, interrupts, bus
 Busy-wait, interrupts, buffer, priorities and vectors 

 Caches and Memory 
 Memory access time, replacement strategies (LRU, random)
 Cache organizations (direct-mapped, fully/set associative)
 Segment/page-based memory management

2



Wei Gao

ECE 1175
Embedded Systems Design

Embedded Computing Platform

3



Outline
 Typical I/O devices
 Embedded computing platform
 Put everything together

 Hardware/software development
 Debugging and testing

4



Typical I/O Devices
 Keyboards
 Serial links
 LEDs
 Displays
 Cathode ray tube (CRT)
 Liquid crystal display (LCD) - Touchscreens
 Plasma, etc.

 A/D and D/A converters

5



Keyboards
 A keyboard is an array of switches
 A mechanical contact makes an electrical circuit

 Switch debouncing
 A switch must be debounced to eliminate multiple 

contacts caused by mechanical bouncing.
 A hardware debouncing circuit can be built using a one-

shot timer

6

time

voltage



Touchscreens
 Includes both input and output device.

 Registers the position of a touch to its surface
 Input device is a two-dimensional voltmeter:

 Two conductive sheets separated by spacer balls
 A voltage is applied across the sheet upon a touch

7

ADC

voltage



A/D Converter
 Periodic sampling
 Rate: higher than

Nyquist frequency

 Resolution: # of bits
 The number of possible

digital outputs

8



D/A Converter
 The reverse procedure

 The analog circuitry

9



Embedded Computing Platform
 Designing with microprocessors
 Components that we have learned
 Microprocessors, caches, memory, CPU bus, I/O devices, 

interrupt mechanism

 How to put them all together?
 As an embedded computing platform
 Architectures and components:

• Hardware.
• Software;

 Debugging and testing.

10



Hardware Platform Architecture
 CPU: 
 Most important choice but cannot be made without 

considering the application software
 Bus: 
 Closed tied to CPU; enough for required data bandwidth

 Memory: 
 Total size? ratio of ROM and RAM, SRAM vs. DRAM

 I/O devices: 
 Networking, sensors, actuators, etc.

How big/fast must each one be? Identify bottleneck?

11



Typical PC Hardware Architecture

12

CPU

CPU bus

RAM

DMA
controller

Timers

Bus
interface

Bu
s

in
te

rf
ac

e

high-speed bus

low-speed bus

High-speed
devices

Devices

ROM



Typical CPU Bus
 ISA (Industry Standard Architecture)

 Original IBM PC bus, low-speed by today’s standard.
 Primarily used for low-speed devices and backward compatibility, 
 About 2Mbps

 PCI (Peripheral Component Interconnect) 
 Dominant high-performance system bus
 Standard for high-speed interfacing, up to 264/524 Mbps

 High-speed serial buses
 ISA and PCI use wide buses with many data/address/control bits

• High-cost interface and complicated physical connection to the bus
 Relatively low-cost serial interface with high speed.
 USB (Universal Serial Bus), 480Mbps (2.0), 12Mbps (1.1).
 Firewire (IEEE 1394), 400Mbps (1394a), 800Mbps (1394b).

13



Hardware and Software Architectures

Hardware and software are intimately related:
 Software doesn’t run without hardware;
 How much hardware you need is determined by the 

software requirements:
 Speed;
 Memory.

 Special-purpose hardware often consumes much less 
power.

14



Software Architecture
 Functional description must be broken into pieces:
 Division among people;
 Conceptual organization;
 Performance;
 Testability;
 Maintenance.

 Need to break the design up into pieces to be able to 
write the code

15



Software State Machine
 State machine keeps internal state as a variable, 

changes state based on inputs.
 Examples: control-dominated code; reactive systems.

16

A B

C D

in1==1/x=a

in1==0/x=b

r==0/out2=1
r==1/out1=0

s==1/out1=1

s==0/out1=0



C Code Structure
 Current state is kept in a variable.
 State table is implemented as a switch.
 Cases define states.
 States can test inputs.

 Switch is repeatedly evaluated in a while loop.

17



C Implementation of State Machine
while (TRUE) {

switch (state) {
case A: if (in1==1) 

{ x = a; state = B; }
else { x = b; state = D; }
break;

case B: if (r==0) 
{ out2 = 1; state = B; }

else { out1 = 0; state = C; }
break;

case C: if (s==0) 
{ out1 = 0; state = C; }

else { out1 = 1; state = D; }
break;

}

18

A B

C D

in1==1/x=a

in1==0/x=b

r==0/out2=1

r==1/out1=0

s==1/out1=1

s==0/out1=0



Software Design Techniques
 Want to develop as much code as possible on the 

host system (usually the PC):
 More friendly programming environment;
 Easier debugging.

 Testability concern
 May need to devise software stubs to allow testing of 

software elements without the full hardware/software 
platform.

 How to test your project?

19



Development and Debugging of 
Embedded Systems
 Development environments
 Use a host system to prepare software for target system:
 Host should (1) load programs to the target; (2) start and 

stop program execution on the target; and (3) debug the 
program

20

CPU

target
system

host system
serial line



Debugging Embedded Systems
 Challenges:
 Target system may be hard to observe;

• e.g., only three LEDs on the motes

 Target may be hard to control;
• e.g., packets may get lost in wireless communication

 May be hard to generate realistic inputs;
• e.g., fire event, plume, etc
• Need to emulate the events from host systems by injecting packets

 Setup sequence may be complex.
• e.g., need additional tools and environment

21



Common Debugging Techniques
 Compiling and simulating the code on a PC
 Debugging tool through serial port

 Using MSP430 debugging tool with GDB
 Breakpoints

 A breakpoint allows the user to stop execution, examine system state, 
and change state

 LEDs as debugging devices
 Microprocessor in-circuit emulator (ICE)

 Need special version of the microprocessor that allows its internal 
registers to be read out

 Logic analyzer
 Sample many signals and display only 0, 1 and changing

 Exercise code through hardware/software co-verification

22



How to Exercise Code
 Run on host system.

 To simulate the target system, e.g., make pc

 Run on target system.
 Use debugging tool to monitor execution

 Run in instruction-level simulator.
 Run on cycle-accurate simulator.

 Simulate the hardware operation within clock-cycle accuracy

 Run in hardware/software co-simulation environment.
 Injecting a packet to the network of real motes

23



Software vs. Hardware Testing
 Implementation testing
 No fault model: don’t know exactly what potential faults 

we are looking for
 We verify the implementation, not the manufacturing.

• e.g., compare to the video online

 Simple tests (e.g., ECC) work well to verify software 
manufacturing.

 Hardware requires manufacturing tests in addition to 
implementation verification.

24



Manufacturing Testing
 Goal: ensure that manufacturing produces defect-

free copies of the design.
 Different from implementation testing
 Know particular faults may appear
 Assume design is correct
 Look for variations between the design and copies

 Challenge: maximize confidence while minimizing 
testing cost.
 Shortest test to determine if a particular fault appears

25



Summary
 Typical I/O devices
 Timer, counter, keyboards, touchscreens

 Embedded computing platform
 Put everything together

 PC as a platform
 Hardware/software development
 State machine implementation

 Debugging and testing

26


	Homeworks	
	Recap from previous classes
	Slide Number 3
	Outline
	Typical I/O Devices
	Keyboards
	Touchscreens
	A/D Converter
	D/A Converter
	Embedded Computing Platform
	Hardware Platform Architecture
	Typical PC Hardware Architecture
	Typical CPU Bus
	Hardware and Software Architectures
	Software Architecture
	Software State Machine
	C Code Structure
	C Implementation of State Machine
	Software Design Techniques
	Development and Debugging of Embedded Systems
	Debugging Embedded Systems
	Common Debugging Techniques
	How to Exercise Code
	Software vs. Hardware Testing
	Manufacturing Testing
	Summary

