
Homeworks
 Grades of HW1 have been posted on Canvas

 HW2 will be due on 10/7 before class
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Recap from previous classes
 Design Methodology

 Non-functional requirements: real-time, power, memory, cost
 Alternative technologies

• Microprocessor (dominant player), ASIC, FPGA

 Microprocessors
 Von Neumann vs. Harvard
 RISC vs. CISC

 I/O, interrupts, bus
 Busy-wait, interrupts, buffer, priorities and vectors 

 Caches and Memory 
 Memory access time, replacement strategies (LRU, random)
 Cache organizations (direct-mapped, fully/set associative)
 Segment/page-based memory management
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Outline
 Typical I/O devices
 Embedded computing platform
 Put everything together

 Hardware/software development
 Debugging and testing
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Typical I/O Devices
 Keyboards
 Serial links
 LEDs
 Displays
 Cathode ray tube (CRT)
 Liquid crystal display (LCD) - Touchscreens
 Plasma, etc.

 A/D and D/A converters
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Keyboards
 A keyboard is an array of switches
 A mechanical contact makes an electrical circuit

 Switch debouncing
 A switch must be debounced to eliminate multiple 

contacts caused by mechanical bouncing.
 A hardware debouncing circuit can be built using a one-

shot timer
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Touchscreens
 Includes both input and output device.

 Registers the position of a touch to its surface
 Input device is a two-dimensional voltmeter:

 Two conductive sheets separated by spacer balls
 A voltage is applied across the sheet upon a touch
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A/D Converter
 Periodic sampling
 Rate: higher than

Nyquist frequency

 Resolution: # of bits
 The number of possible

digital outputs
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D/A Converter
 The reverse procedure

 The analog circuitry
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Embedded Computing Platform
 Designing with microprocessors
 Components that we have learned
 Microprocessors, caches, memory, CPU bus, I/O devices, 

interrupt mechanism

 How to put them all together?
 As an embedded computing platform
 Architectures and components:

• Hardware.
• Software;

 Debugging and testing.
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Hardware Platform Architecture
 CPU: 
 Most important choice but cannot be made without 

considering the application software
 Bus: 
 Closed tied to CPU; enough for required data bandwidth

 Memory: 
 Total size? ratio of ROM and RAM, SRAM vs. DRAM

 I/O devices: 
 Networking, sensors, actuators, etc.

How big/fast must each one be? Identify bottleneck?
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Typical PC Hardware Architecture
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Typical CPU Bus
 ISA (Industry Standard Architecture)

 Original IBM PC bus, low-speed by today’s standard.
 Primarily used for low-speed devices and backward compatibility, 
 About 2Mbps

 PCI (Peripheral Component Interconnect) 
 Dominant high-performance system bus
 Standard for high-speed interfacing, up to 264/524 Mbps

 High-speed serial buses
 ISA and PCI use wide buses with many data/address/control bits

• High-cost interface and complicated physical connection to the bus
 Relatively low-cost serial interface with high speed.
 USB (Universal Serial Bus), 480Mbps (2.0), 12Mbps (1.1).
 Firewire (IEEE 1394), 400Mbps (1394a), 800Mbps (1394b).
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Hardware and Software Architectures

Hardware and software are intimately related:
 Software doesn’t run without hardware;
 How much hardware you need is determined by the 

software requirements:
 Speed;
 Memory.

 Special-purpose hardware often consumes much less 
power.
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Software Architecture
 Functional description must be broken into pieces:
 Division among people;
 Conceptual organization;
 Performance;
 Testability;
 Maintenance.

 Need to break the design up into pieces to be able to 
write the code
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Software State Machine
 State machine keeps internal state as a variable, 

changes state based on inputs.
 Examples: control-dominated code; reactive systems.
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C Code Structure
 Current state is kept in a variable.
 State table is implemented as a switch.
 Cases define states.
 States can test inputs.

 Switch is repeatedly evaluated in a while loop.
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C Implementation of State Machine
while (TRUE) {

switch (state) {
case A: if (in1==1) 

{ x = a; state = B; }
else { x = b; state = D; }
break;

case B: if (r==0) 
{ out2 = 1; state = B; }

else { out1 = 0; state = C; }
break;

case C: if (s==0) 
{ out1 = 0; state = C; }

else { out1 = 1; state = D; }
break;

}
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Software Design Techniques
 Want to develop as much code as possible on the 

host system (usually the PC):
 More friendly programming environment;
 Easier debugging.

 Testability concern
 May need to devise software stubs to allow testing of 

software elements without the full hardware/software 
platform.

 How to test your project?
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Development and Debugging of 
Embedded Systems
 Development environments
 Use a host system to prepare software for target system:
 Host should (1) load programs to the target; (2) start and 

stop program execution on the target; and (3) debug the 
program
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Debugging Embedded Systems
 Challenges:
 Target system may be hard to observe;

• e.g., only three LEDs on the motes

 Target may be hard to control;
• e.g., packets may get lost in wireless communication

 May be hard to generate realistic inputs;
• e.g., fire event, plume, etc
• Need to emulate the events from host systems by injecting packets

 Setup sequence may be complex.
• e.g., need additional tools and environment
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Common Debugging Techniques
 Compiling and simulating the code on a PC
 Debugging tool through serial port

 Using MSP430 debugging tool with GDB
 Breakpoints

 A breakpoint allows the user to stop execution, examine system state, 
and change state

 LEDs as debugging devices
 Microprocessor in-circuit emulator (ICE)

 Need special version of the microprocessor that allows its internal 
registers to be read out

 Logic analyzer
 Sample many signals and display only 0, 1 and changing

 Exercise code through hardware/software co-verification
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How to Exercise Code
 Run on host system.

 To simulate the target system, e.g., make pc

 Run on target system.
 Use debugging tool to monitor execution

 Run in instruction-level simulator.
 Run on cycle-accurate simulator.

 Simulate the hardware operation within clock-cycle accuracy

 Run in hardware/software co-simulation environment.
 Injecting a packet to the network of real motes
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Software vs. Hardware Testing
 Implementation testing
 No fault model: don’t know exactly what potential faults 

we are looking for
 We verify the implementation, not the manufacturing.

• e.g., compare to the video online

 Simple tests (e.g., ECC) work well to verify software 
manufacturing.

 Hardware requires manufacturing tests in addition to 
implementation verification.
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Manufacturing Testing
 Goal: ensure that manufacturing produces defect-

free copies of the design.
 Different from implementation testing
 Know particular faults may appear
 Assume design is correct
 Look for variations between the design and copies

 Challenge: maximize confidence while minimizing 
testing cost.
 Shortest test to determine if a particular fault appears
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Summary
 Typical I/O devices
 Timer, counter, keyboards, touchscreens

 Embedded computing platform
 Put everything together

 PC as a platform
 Hardware/software development
 State machine implementation

 Debugging and testing
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