ECE 1175 Embedded Systems Design

Introduction

Wei Gao

Course Information

- Class time: 2:30pm 3:45pm TuTh
 - Lectures will be online in the first two weeks
 - Zoom link for lectures: https://pitt.zoom.us/j/96782480025
 - Password: 191903
- Instructor: Wei Gao, weigao@pitt.edu
 - Office hour: 1:30pm 2:30pm TuTh
 - Zoom link for office hours: https://pitt.zoom.us/j/91955368165
- TA: Xiangyu Yin, <u>eric.yin@pitt.edu</u>
 - TA Office hour: TBD
- Schedule and lecture notes posted at instructor website
 - http://www.pitt.edu/~weigao/ece1175/fall2021/ece1175-fa21.html
 - Each lecture note will be posted before class
 - For online lectures, lectures will be recorded and video recordings will also be available online
- Canvas will be used for posting announcements and grades

Lab Information

- Lab hours: Friday 12:00pm 2:50pm
 - 1211A/B
 - Pitt policy: any lab should only accommodate <25 students
- No labs in the first weeks of the semester
 - Labs will be open after we have covered the basics of course contents
 - Roughly in mid September
 - Notifications will follow.

Definition

 Embedded system: any device that includes a computer but is not itself a general-purpose computer.


- Application specific
 - The design is specialized and optimized for specific application
 - Don't need all the general-purpose bells and whistles.

Examples of Embedded Systems

- Cellphone, Personal Digital Assistant (PDA)
- Printer.
- GPS.
- Automobile: engine, brakes, dash, etc.
- Digital camera.
- Household appliances: microwave, air conditioning
- Wrist watch.
- Implanted medical devices.
- and a lot more ...
- Fact: > 95% of all microprocessors are used for embedded systems.

Embedding a Computer

- A computer-on-a-chip
 - a type of microprocessor emphasizing self-sufficiency and costeffectiveness
 - has CPU, input/output, RAM, ROM, clock and etc on a single chip

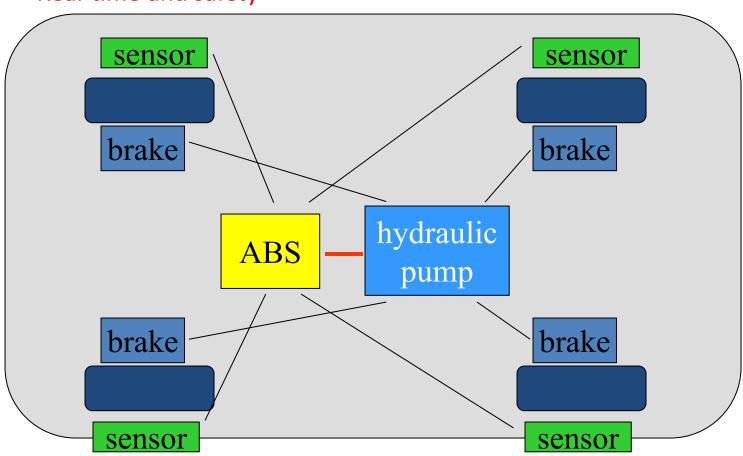
Embedding a Computer

More than simply a computer

- Functionality
 - Sensing
 - Communication
 - Control & actuation

The appropriate I/O is important!

Early history


- Late 1940's: MIT Whirlwind computer was designed for real-time operations.
 - Originally designed to control an aircraft simulator.
- First microprocessor was Intel 4004 in early 1970's.
 - Predecessor of the famous Intel 8086
- HP-35 calculator used several chips to implement a microprocessor in 1972.

Early history

- Automobiles used microprocessor-based engine controllers starting in 1970's.
 - Control fuel/air mixture, engine timing, etc.
 - Multiple modes of operation: warm-up, cruise, hill climbing, etc.
 - Provides lower emissions, better fuel efficiency, and better safety

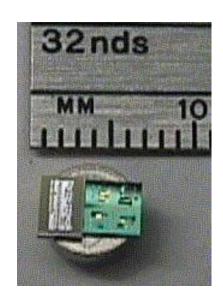
Anti-Lock Brake System

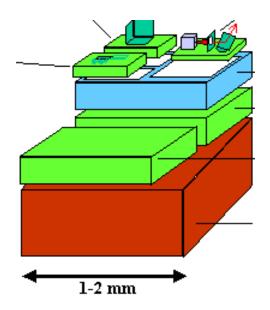
- Pumps brakes to reduce skidding.
 - Real-time and safety

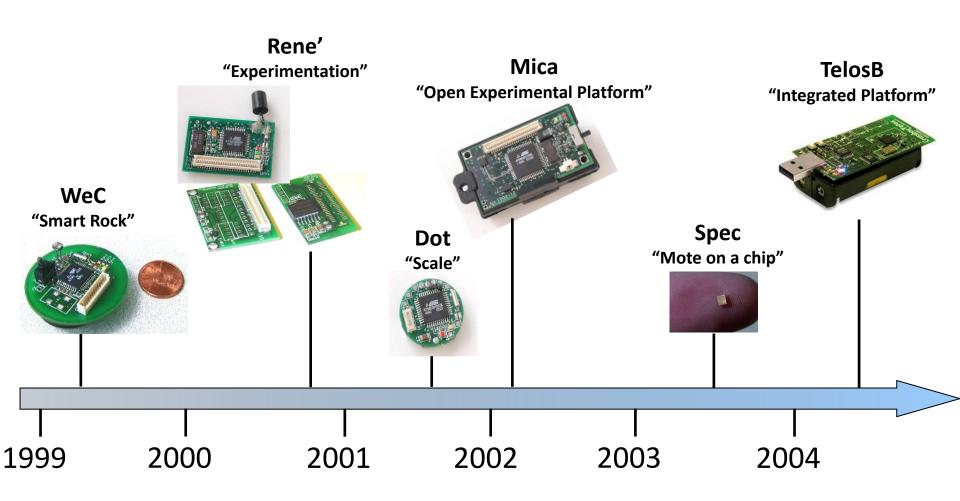
Automotive Systems

- A high-end car may have 100 microprocessors:
 - 4-bit microcontroller checks seat belt;
 - microcontrollers run dashboard devices;
 - 16/32-bit microprocessor controls engine;
 - Navigation;
 - Entertainment: DVD, audio, satellite radio...

Other examples


- Simple control
 - Front panel of microwave oven
 - Digital control of air conditioning
- Canon EOS 3 has three microprocessors.
 - 32-bit RISC CPU runs autofocus and eye control systems.
- Sony BRAVIA LCD TV has a standalone microprocessor for image processing
 - BRAVIA Engine
 - HD video streaming: high throughput required
 - Al embedding



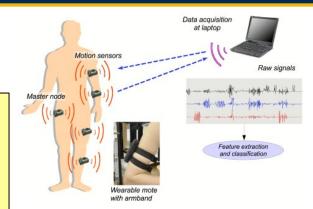

Typical Application: Wireless Sensor Motes

- sensors + microcontroller + radio
 - All feasible at very small scale
 - e.g., Berkeley Smart Dust



Sensor Motes Timeline

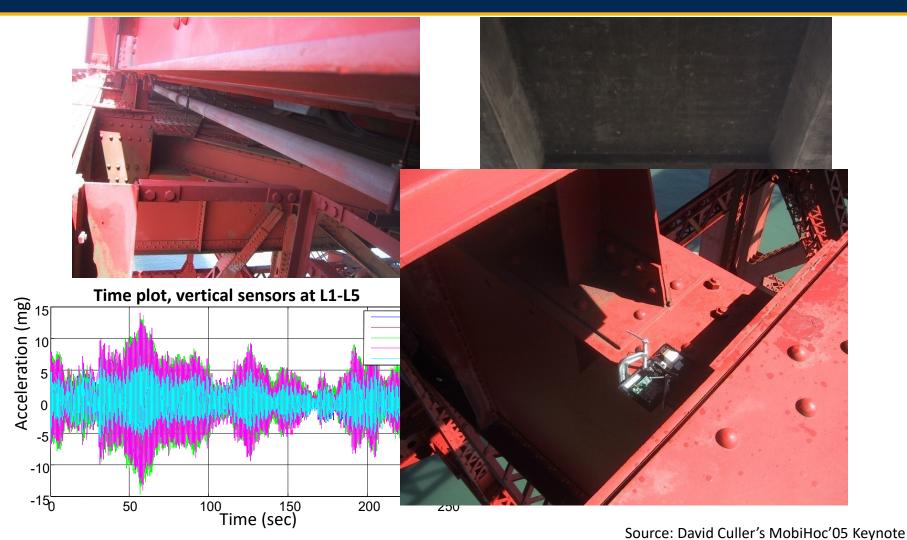
Typical Applications of Sensor Networks



Structural Health Monitoring

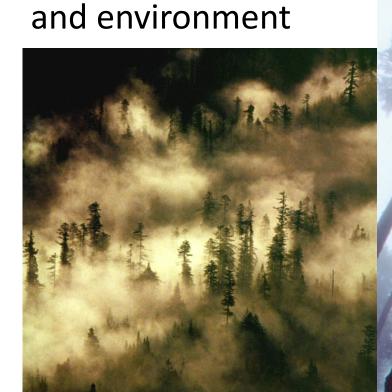
Fire Monitoring

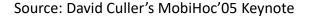
- Smart sensors massively distributed and embedded in environments
- 2. Self-organized wireless network by communicating with each other
- 3. Real-time environment monitoring and control



Health Care

Habitat Monitoring




Structural Health Monitoring

Habitat Monitoring – Redwood Trees

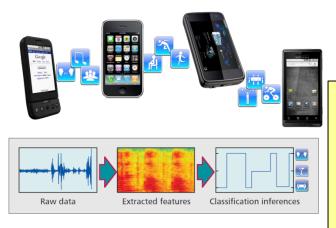
To understand complex interactions of tree growth

Smartphones – Blurring Boundary

- Specialized microprocessor
 - Somehow much more powerful

Samsung Galaxy S8

2.3 GHz w/8 cores


iPhone X

2.4 GHz w/6 cores

- Controls radio, sensors, display, speaker, ...
- Multimedia contents and applications

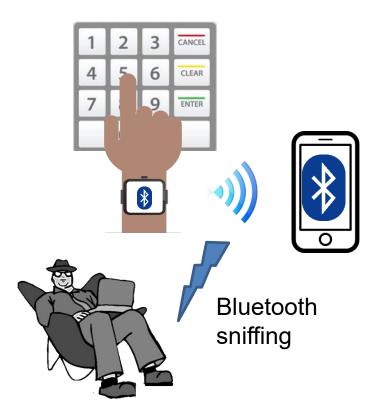
Typical Applications using Smartphones

Sensing human behaviors Demo from Dartmouth

- Sensing capabilities of smartphones
 - **Mobile sensing**
- **Mobile Internet access** 2. and user interaction
 - Mobile social media
- Location-based services

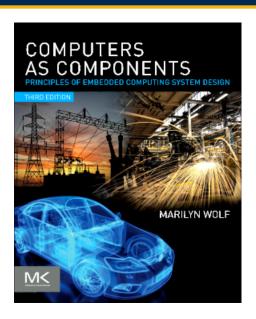
Mobile social networks

Yelp on smartphones


Wearables

Smartwatches & wristbands

New opportunities and challenges


Why are those systems special?

- Application specific
 - Specialize and optimize the design for specific application
 - Not a general-purpose computer.
 - Don't need all the bells and whistles, e.g., hard drive, monitor, keyboard...
- Have to worry about both hardware and software
- Have to worry about non-functional constraints
 - Real-time
 - Memory footprint
 - Power
 - Reliability and safety
 - Cost

Just functionally working is NOT enough!

Goal of This Course

- The common principles of embedded systems design
 - Instead of a specific type of microcontroller
 - Emphasize aspects that are distinct to embedded systems
- Recommended Textbook:
 - Computers as Components: Principles of Embedded Computing System Design, 3rd edition
 - Marilyn Wolf, Georgia Tech
 - Available online: https://pitt.primo.exlibrisgroup.com/permalink/01PITT_INST/g3767l/alma-9998575204906236
- Experimentation platform
 - The up-to-date microcontroller platform with strong capabilities

Goal of This Course

- References
 - Introduction to Embedded Systems: A Cyber-Physical System Approach
 - Ashford Lee and Sanjit Seshia
 - http://leeseshia.org/releases/LeeSeshia DigitalV1 06.pdf
 - Embedded Systems: A Contemporary Design Tool
 - James Peckol
 - Wiley, 2011

What will you learn from this course?

- Hardware/software co-design
 - Integrating individual component designs towards a <u>holistic system</u>
 - Systematic views and rationales
- Hardware
 - Embedded system components: microprocessors, I/O, caches, memory, bus
- Software
 - Programming and optimization for optimal performance and low power
 - Real-Time Scheduling Analysis
 - Operating System Basics
 - Real-Time Operating Systems (RTOS)
- Practical system programming
 - Embedded operating system: Raspberry Pi

Skillsets & Prerequisites

- What skills do you need?
 - Basic understanding of analog and digital circuits
 - Logic gates, Boolean algebra, circuit building
 - Basic understanding about computers
 - Concept of processor, register, memory
 - Basic programming skills with sufficient proficiency with C and/or Python
- What skills will you get?
 - How to think and design systems as a whole piece
 - Hands-on system building skills
 - Operating digital I/O with heterogeneous data inputs and outputs
 - Practical programming over embedded platforms
 - Practicing buzz-word techniques over real system platforms

What will you NOT learn from this course?

- Hardware chip design
 - ECE 1192/2192: Introduction to VLSI Design
 - ECE 2162: Computer Architecture
- Communication and Networking
 - ECE 1150: Introduction to Computer Networks
 - ECE 1472: Analog Communication Systems
- Mobile application development
 - Fancy UI, graphics optimization, user experience...

Grading

- Homework assignments (4): 15%
 - HW1: 3%, HW2 HW4: 4% each
 - One-week turnaround time
 - 2-4 short questions
- Lab assignments (5): 30% 6% each
 - Two-week turnaround time
 - Each lab corresponds to a specific topic covered in lectures
 - Provide opportunities to practice hands-on skills
- Midterm exam: 25%
- Final exam: 25%
- Participation 5%

Course policy

- Academic integrity
 - Must be your OWN work
 - No collaboration for homework/lab assignments
- Lab policy
 - Results must be checked by TA
- Exam policy
 - Closed-book, No discussion, No make-up exams
 - Online proctoring
- Class policy
 - Attend each lecture