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Key Challenges
 Limited computing resources at the edge devices
 Limited computing power
 Limited memory space

 Slow speed of training and inference
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Huge NN Models
• Image Recognition
• AlexNet (2012) ILSVRC winner

• 8 layers, 62Mparameters
• 1.4 GFLOP inference
• 16% error rate

• ResNet (2015) ILSVRC winner
• 152 layers, 60Mparameters
• 22.6 GFLOP inference
• 6.16% error rate
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Huge NN Models
• Network design and training time have become a 

huge bottleneck

 Error rate Training time
 ResNet 18: 10.76% 2.5 days
 ResNet 50: 7.02% 5 days
 ResNet 101: 6.21% 1 week
 ResNet 152: 6.16% 1.5 weeks
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Potential Solutions
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1. Local Inference – NN Pruning/Compression
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Scenario 1: You only have a model
• Naïve pruning: Remove weights based on magnitude, 

weights close to zero are removed
• No well-founded theory, error increases rapidly

• Data-Free parameter pruning based upon weight 
similarity
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Data-Free pruning uses only the 
model sensitivity
• In practice neurons are different, 𝑊𝑊1 −𝑊𝑊2 =

𝜀𝜀1,2 ≥ 0
• Compute errors for Weight replacement and naïve removal, so called 

saliency matrix M
– Pick minimum entry in the list e.g. indices 𝑖𝑖′, 𝑗𝑗′ , delete the 𝑗𝑗′th neuron 

and update 𝑎𝑎𝑖𝑖′ ← 𝑎𝑎𝑖𝑖′+ 𝑎𝑎𝑗𝑗′
– Update M by removing 𝑗𝑗′th column and row, and update the 𝑖𝑖′th column for updated 𝑎𝑎𝑖𝑖′

• When to stop?
• Saliency in line with test 

error
• Find the mode in the gauss 

like curve
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Scenario 2: You have data: how to 
prune aggressively?
• With access to training data, you can do a lot more
1. Train your network differently such that you have 

more zero weights
2. Retrain you network after pruning to fix the errors
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Training a neural network: With a 
weight regularization
• The neural network is a function of inputs 𝑥𝑥𝑖𝑖 and weights 
𝜃𝜃: 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

• Start with feed forward batch (i=1..64) through the network: 𝑥𝑥𝑖𝑖
➙ �𝑦𝑦𝑖𝑖

• Insert network results and desired target labels into a loss 
function: ℒ 𝜃𝜃;𝑦𝑦, 𝑓𝑓

• Compute a score on how well the net performs, not only error 
also weight organization
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Tune the weights by gradient descent

• Compute the error gradients
• Update the coefficients to reduce error, also taking into 

account regularization
• Repeat

𝜕𝜕ℒ 𝜃𝜃; �𝑦𝑦, 𝑓𝑓
𝜕𝜕 �𝑦𝑦

𝜕𝜕 �𝑦𝑦
𝜕𝜕𝑓𝑓
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Iterative Pruning and Retraining
• Train a neural network until reasonable solution or 

download a pretrained net
1. Prune the weights base on magnitudes that are less than a threshold
2. Train the network until a reasonable solution is obtained
3. Iterate to step 1
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Where does pruning help the most?

 Fully connected layers

Pruning and Network Sparsity Improvements
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What happens to the weight 
distribution?
• Before: Most weights are close to zero; almost all 

between [-0.015, 0.015]
• After pruning: Bimodal distribution and more spread 

across x-axis, between [-0.025, 0.025]
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Using sparse Matrix Computations
• Use Intel Core i7 5930K, MKL CBLAS GEMV (full) vs 

MKS SPBLAS CSRMV (sparse)
• Use NVIDIA GTX Titan X, cuBLAS GEMV (full) vs 

cuSPARSE CSRMV (sparse)
• Use NVIDIA Tegra K1 as embedded GPU
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Energy Efficiency
• 6x improvement CPU   3.2x improvement GPU

4x embedded GPU
• Difficult to exploit the large parameter reduction due 

to irregularity
• Sparse matrices have also storage overhead; 16% for storing indices
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From Fine to Coarse-Grained Pruning

• Prune to match the underlying data-parallel 
hardware

• E.g. prune by eliminating entire filter planes 

Pruning and Network Sparsity Improvements
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Structured Pruning
• Example 2-way SIMD
• Less storage overhead

Pruning and Network Sparsity Improvements
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2. NN Partitioning
 Why not offloading the work to the edge?

 Representative work: Neurosurgeon

 Partition the neural network in layers
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Key Question
 Where to partition?
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Practical Use
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More Fine-Grained Partitioning?
 Vertical vs. Horizontal Partitioning
 Partitioning the feature space

 Adaptive partitioning
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Federated and Distributed Learning
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min 𝐹𝐹 𝑥𝑥 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖 𝑥𝑥

m ni n pi Fi(x) F(x)
Number of clients Number of 

samples at client i
Total number of 

samples
ni / n, relative 
sample size

Local objective 
function at client i

Global objective 
function



Challenges
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Expensive Communication: 
Communication in the network can be 
slower than local computation by many 
orders of magnitude.

Soultion: Smaller messages or sending 
less frequently

Systems Heterogeneity: 
• Size of data
• Computational power
• Network stability
• Local solvers
• Learning rate

Privacy Concerns: 
Sensitive information can still be 
revealed to third party or central server 
during the communication.

Statistical Heterogeneity:



How to Achieve Parallelism
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Different Operational Modes
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The Ecosystem
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SGD Parallelization
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Some more recent works
 TinyML / MCUNet
 https://mcunet.mit.edu/

 Split learning
 http://splitlearning.mit.edu/
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