Al at the Edge

Wei Gao

Al At the Edge

Advancement in Al Computing

Today Tomorrow

Cloud Computing Edge Computing

Remote devices connect to an Al in the cloud which With the increasingly greater power and smaller size
does the actual processing. of the Al processor, devices are more self-reliant in

data processing.

Key Challenges

Limited computing resources at the edge devices
= Limited computing power
= Limited memory space

Slow speed of training and inference

Huge NN Models

Image Recognition

AlexNet (2012) ILSVRC winner
8 layers, 62Mparameters
1.4 GFLOP inference

c2 C3 C4 C5 F1 F2 OQOutput

rmalization
= ¥ 1. \ ¥ 3 |.X S
g 1 | IR 1R AV GPU 1
. 3
- o 192 192 128 LZE: 2048 \dense
27 128 T -
NN 13 13
- FJ i EAS AN

= T hs dense’| |dense| [| GPU 2

\ 27 NE 3 i
o 3| 1600
16 / t 192 192 128 Max L | LI
o error rate . I . o
pooling pooling (overlapping)
“—=—"(overlapping) (overlapping)

ResNet (2015) ILSVRC winner
152 layers, 60Mparameters
22.6 GFLOP inference
6.16% error rate

3x3 conv, 128

3x3 conv, 25¢

3x3 conv, 256
3x3 conv, 512, /2

a| |=
8 3
N
8| |8
al |2
Al A

Huge NN Models

Network design and training time have become a
huge bottleneck

Error rate Training time
ResNet 18: 10.76% 2.5 days
ResNet 50: 7.02% 5 days
ResNet 101: 6.21% 1 week

ResNet 152: 6.16% 1.5 weeks

Potential Solutions

Local Inference Remote Inference
' ° s l‘ o o '\
" Prune, | ;
| LX) 1 -

. Compress, —'mnait— ! 0 — |
- Scale Data - O R . 1
' p ¥ D"’;t"’ Predictipi :

| . "
- N . o Y I
d “_\ Cloud |] 7 AV ; compress ;
server |i / % & 1 = :
| L d
Weak |; : 1 | = : |
: i : icti B - — B TTIT TLLLLtLr d ;
1 device !\ | Prediction N = -T ecompress ,I
777 Neur LIRS
network I: !
. X A) |
Features ! o Predigtion ;
| Data i
-...pp Network ! [
traffic ! I
) ’ : = :
! I
I -
1 ssnnhonssnnnnnseennnnnnn® I
1 A
| \ J .|

NN Partitioning

1. Local Inference — NN Pruning/Compression

before pruning after pruning
pruning
synapses pruning

Scenario 1: You only have a model

Naive pruning: Remove weights based on magnitude,
weights close to zero are removed
No well-founded theory, error increases rapidly
Data-Free parameter pruning based upon weight
similarity
z=a,0(WIX) + azeo(WSX) + -+ anp(WIX)

a;: € a;t+a,

Suppose, W; =W,

4

Then, p(W{X) = (W] X)

Data-Free pruning uses only the

model sensitivit

In practice neurons are different, ||W; — W, || =
le1 2| = 0

Compute errors for Weight replacement and naive removal, so called
saliency matrix M

— Pick minimum entry in the list e.g. indices (i’, j'), delete the j'" neuron

and update a; < a;/+ a;r

— Update M by removing j'" column and row, and update the i'*" column for updated a;

When to Stop? 4:' I—Ir;créaselin "I'estl err‘or]] j:j:
. . . . = _Saliency(si’j) ,, 12000
Saliency in line with test 3’ | B
error : i
Find the mode in the gauss i,
. i

. 3
Saliency (sIJ)

like curve

Scenario 2: You have data: how to

ressively?

With access to training data, you can do a lot more

Train your network differently such that you have
more zero weights

Retrain you network after pruning to fix the errors

10

Training a neural network: With a

ight regularization

The neural network is a function of inputs x; and weights

0: f(x;;0)

Start with feed forward batch (i=1..64) through the network: x;
-V

Insert network results and desired target labels into a loss
function: L(6;y, f)

Compute a score on how well the net performs, not only error
also weight organization

x;; 0
Syn'apticf(l Biaz y = f(xl.; 6) L(Gl y; f)
Input: x T~ T
Targets: y g
v : ' Summing
XK-1o junction

i = 3% + Al

11

Tune the weights by gradient descent

Compute the error gradients

Update the coefficients to reduce error, also taking into
account regularization

Repeat

0 (x:0) 99 L2

-7 a’\
20 af Y

x;; 0
/\ izllziag?:sf(l Biaz y = f(xug) L(H'y'f)
b 1
N ° '
Input: x
Targets: y

\/ XK-1o

9t+1 — Ht _ T’tVG L

Summing
junction

i — 7% + Alloll

12

Iterative Pruning and Retraining

Train a neural network until reasonable solution or

download a pretrained net
Prune the weights base on magnitudes that are less than a threshold
Train the network until a reasonable solution is obtained
Iterate to step 1

-

Train Connectivity

Ly

s ™\
Prune Connections
- J/
s
' ™\
Train Weights

| vy

13

Where does pruning help the most?

Fully connected layers

convi conv2 Trconv3 convd “*-convs
0% K—E—x{:!—x{-a-—x-a=xq+x_ﬁ=x 0%
-5% -5%
w (2]
w (2]
S 5
> >
g -10% \ S -10%
3 3
< X <
-15% -15%
X
-20% \ -20%
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
#Parameters #Parameters

14

What happens to the weight

distribution?

Before: Most weights are close to zero; almost all
between [-0.015, 0.015]

After pruning: Bimodal distribution and more spread
across x-axis, between [-0.025, 0.025]

Weight distribution before pruning

15

Using sparse Matrix Computations

Use Intel Core i7 5930K, MKL CBLAS GEMV (full) vs
MKS SPBLAS CSRMV (sparse)

Use NVIDIA GTX Titan X, cuBLAS GEMV (full) vs
cuSPARSE CSRMYV (sparse)

Use NVIDIA Tegra K1 as embedded GPU

@ CPU Dense (Baseline) CPU Sparse =~ @ GPU Dense B GPU Sparse EmGPU Dense ®EmGPU Sparse

1

VGG-8 Geo Mean

100x

A8X

16

Energy Efficiency

6x improvement CPU 3.2x improvement GPU
4x embedded GPU
Difficult to exploit the large parameter reduction due

to irregularity
Sparse matrices have also storage overhead; 16% for storing indices

B CPU Dense (Baseline) BCPU Sparse BGPU Dense BGPU Sparse BmGPU Dense BmGPU Sparse

100x

Energy Efficiency
Improvement

e

Alex-8 VGG-6 VGG-7 VGG-8 Geo Mean

17

From Fine to Coarse-Grained Pruning

Prune to match the underlying data-parallel
hardware

« E.g. prune by eliminating entire filter planes

Irregular Regular
e = [| & R
A = [l (16
oy |- B ‘B
Fine-grained Vector-level Kernel-level Filter-level e
Sparsity(0-D) Sparsity(1-D) Sparsity(2-D) Sparsity(3-D) Vector

Kernel Filter

18

Structured Pruning

Example 2-way SIMD
Less storage overhead

0[5/2]5]0)0 015(2]5 Fine-grained sparsity

0(Of1|7]0]0 1(7

213]ololal2 E 42 Weight | Index| Weight | Index | Weight | Index
814{0]0(0]0 ¢ 8|4 Coarse-grained sparsity

0|0(1(1]8]3 813\ [1T T 1 | :
3l2Tolololo 3[2 Weight | Weight | Weight | Index “S-aj-'i_n_gi;[_":
Dense weights Sparse weights

19

2. NN Partitioning

Why not offloading the work to the edge?

Representative work: Neurosurgeon

_ I
s !
A :ﬁ% > (77, 0o %
| |
(((()))) | D (<) |
Uoo 0 §@iUoe & § 0o %
a. Status quo ! b. Mobile-only ! C. Neurosurgeon

Approach Approach Approach

= Partition the neural network in layers

20

Data size (MB) =
T o I~ NN Am & argmax
—_ - O O O m ‘2 softmax
L T T T m m fc8
i S| m g argmax m s drop7
< | ' o 2
o | : s “.m relu?
. . <
2 2| - {softmax a3 fc7
p . .
pnu m _H_ - drop6
s © | :
| = o | : m fc8 g n.m_co
m.lv o ! ! Wc fc6
| nvaJ .nuv ;_ ﬁ:.OHuq AwMMl pool5
— | : g reluS
: : _ convs
I relu?7 relu4
m : conv4d
i m fc7 relu3
. _ conv3
- h:.Omu@ [Jnorm2
: : : [Jpool2
L dretws —
m m : [Jconv2
| : : : fc6 ~__|norml
pooll
: : : _ = E relul
I UOO—M [: convl
: : []input
- relu$
S o n g n o
S T T SR Sy
s convs () ABsaug
g relud
- conv4 S 50 argmax
2 s £
= m Z softmax
s relu3 g E 8 fc8
¥ &g & drop7
L] = o =2
cC s conv3 c 8% relu?
O »w A = fc7
drop6
.— s norm2 - _H_ - rop
o relu6
o N © m— 2 fc6
- Q
e + pool2 3¢ E i fpools
o) % [Mlrelus
S B H.QMCN = _H—OO:<M
e p [|relud
O - conv2 [l conv4
u — [relu3
| BOR.BH _H—OO:<W
e [norm2
- | pooll [pool2
e H relu2
h conv2
y - relul ot
e W pooll
- convl I relul
K . convl
- ; ” input [Einput
| | |
S o © o o S ® © % o o
< <a} N — - S8 o S © o
(s) Aougye

(sw) Aouare]

21

Partition points (after each layer)

Partition points (after each layer)

Practical Use

1) Generate
prediction models

‘CONYH FC

1) Extract layer 2) Predict layer 3) Evaluate 4) Partitioned
configurations performance partition points Execution

Prediction

Model
—P 6

Prediction
Model

|
Target Application D

Runtime Phase

Il
) (]
}

.
.
CONV 4 FC
e
i ATl L i
" L .
POOL 4 ACT . .

Thor " . .
o — — —
Prediction| | Prediction| |Prediction

Model Model Model

Deployment Phase

22

More Fine-Grained Partitioning?

Vertical vs. Horizontal Partitioning

= Partitioning the feature space

Adaptive partitioning

23

Federated and Distributed Learning

min

Fx) = ZpiFi<x>|

S T T S e

Total number of
samples

Number of
samples at client i

Number of clients Global objective

function

~-T

Local objective
function at client i

n;/ n, relative
sample size

Challenges

Expensive Communication: Systems Heterogeneity:
Communication in the network can be e Size of data
slower than local computation by many * Computational power
orders of magnitude. * Network stability

* Local solvers
Soultion: Smaller messages or sending * Learning rate

less frequently

Statistical Heterogeneity:

Privacy Concerns: QP 0 i %
Sensitive information can still be B& SRX
revealed to third party or central server
during the communication. 3 32 32 U= 3
8 DELEDLEDLEDE
g @ =) @ 2

Fig. 1: Federated learning with non-iid data - The data has different distributions
among clients.

25

How to Achieve Parallelism

Data Parallel Model Parallel
p(1) D(2) D3 D
M M M M) M@ M3

Different Operational Modes

Trained model

RN
l ML node | l ML node | | ML node |
------ premee

v U O

(a) Centralized (Ensembling)

Parameter Server Trained model Parameter Server

XA R
aggregateﬁ_,‘--;if--" ___l.aggregate
"broadcast broadcast” :'—'f,
e A
Compute
e A A5 A
[ML node | ML node | ML node | | ML node ‘

(b) Decentralized (Tree)

N

Compute

\
ML node

@@ ®®

(c) Decentralized (Parameter Server)

ML node

<
Ny
Ng
(d) Fully Distributed (Peer to Peer)
27

The Ecosystem

General Purpose Distributed
Computing Frameworks

Apache Hadoop
Apache Spark
Apache Flink
etc.

Distributed Machine Learning

Natively Distributed ML

Single-Machine ML

Systems and Libraries

Cloud Machine Learning

Google Cloud Al
Microsoft Azure ML
Amazon AWS ML
IBM Watson Cloud
etc.

Systems
« Caffe2
Mahout > « CNTK < Keras
) « DistBelief NVIDIA
__MUib_]} . DIANNE NCCL
« Tensorflow <
‘Hadoop/Spark e MxNet
- + AllReduce_ - efc.
A
Y

Theano

Caffe

Scikit

MLPack

NVIDIA Libraries
etc.

28

SGD Parallelization

Aggregation can be performed via:
* Master node (“parameter server”)
* MPIAIll-Reduce (“decentralized”)
* Shared-Memory

;gun=2 igi/n
T

.

Stochastic gradient with
n times lower variance

Dataset
Partitionn

Dataset
Partition 3

Dataset
Partition 2

Dataset
Partition 1

29

Some more recent works

TinyML / MCUNet
= https://mcunet.mit.edu/

Split learning
= http://splitlearning.mit.edu/

30

https://mcunet.mit.edu/
http://splitlearning.mit.edu/

	AI at the Edge
	AI At the Edge
	Key Challenges
	Huge NN Models
	Huge NN Models
	Potential Solutions
	1. Local Inference – NN Pruning/Compression
	Scenario 1: You only have a model
	Data-Free pruning uses only the model sensitivity
	Scenario 2: You have data: how to prune aggressively?
	Training a neural network: With a weight regularization
	Tune the weights by gradient descent
	Iterative Pruning and Retraining
	Where does pruning help the most?
	What happens to the weight distribution?
	Using sparse Matrix Computations
	Energy Efficiency
	From Fine to Coarse-Grained Pruning
	Structured Pruning
	2. NN Partitioning
	Key Question
	Practical Use
	More Fine-Grained Partitioning?
	Federated and Distributed Learning
	Challenges
	How to Achieve Parallelism
	Different Operational Modes
	The Ecosystem
	SGD Parallelization
	Some more recent works

