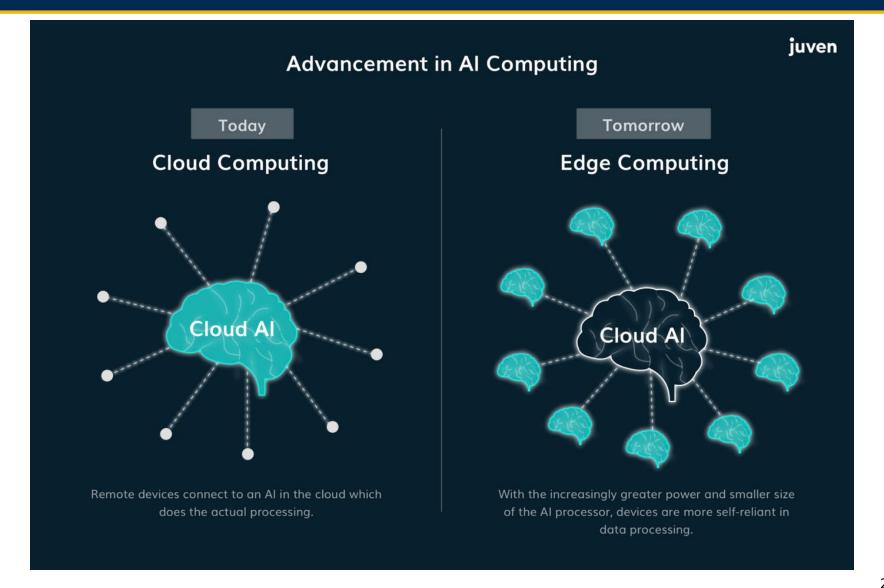
Al at the Edge

Wei Gao

Al At the Edge

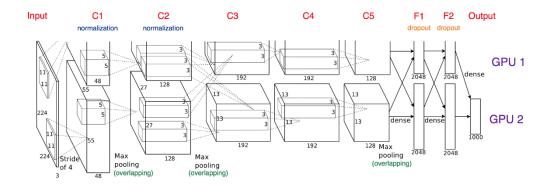


Key Challenges

- Limited computing resources at the edge devices
 - Limited computing power
 - Limited memory space
- Slow speed of training and inference

Huge NN Models

- Image Recognition
- AlexNet (2012) ILSVRC winner
 - 8 layers, 62Mparameters
 - 1.4 GFLOP inference
 - 16% error rate



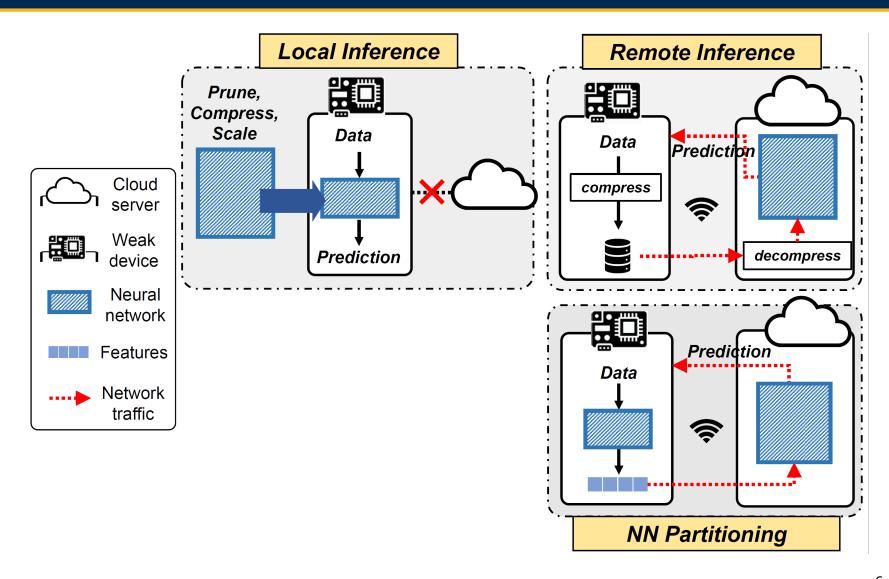
- ResNet (2015) ILSVRC winner
 - 152 layers, 60Mparameters
 - 22.6 GFLOP inference
 - 6.16% error rate

Huge NN Models

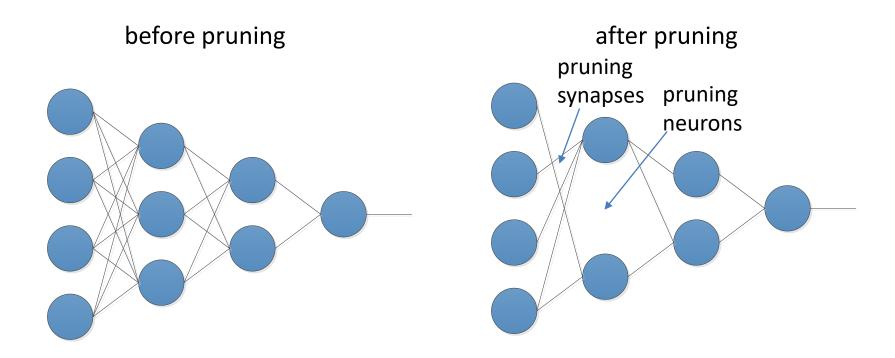
 Network design and training time have become a huge bottleneck

	Error rate	Training time	
ResNet 18:	10.76%	2.5 days	
ResNet 50:	7.02%	5 days	
ResNet 101:	6.21%	1 week	
ResNet 152:	6.16%	1.5 weeks	

Potential Solutions

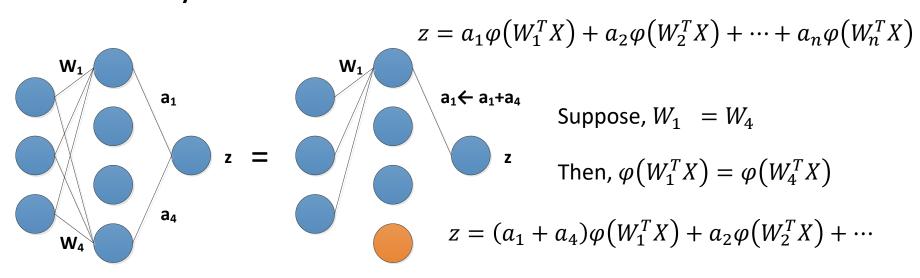


1. Local Inference – NN Pruning/Compression



Scenario 1: You only have a model

- Naïve pruning: Remove weights based on magnitude, weights close to zero are removed
 - No well-founded theory, error increases rapidly
- Data-Free parameter pruning based upon weight similarity

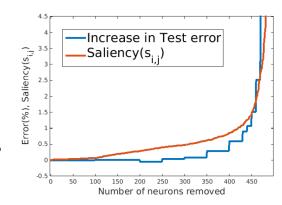


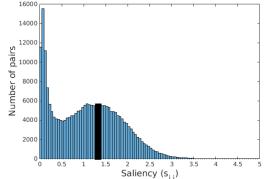
Data-Free pruning uses only the model sensitivity

- In practice neurons are different, $\|W_1 W_2\| = \|\varepsilon_{1,2}\| \ge 0$
 - Compute errors for Weight replacement and naïve removal, so called saliency matrix M
 - Pick minimum entry in the list e.g. indices (i',j'), delete the j'^{th} neuron and update $a_{i'} \leftarrow a_{i'} + a_{i'}$
 - Update ${\it M}$ by removing $j'^{\rm th}$ column and row, and update the $i'^{\rm th}$ column for updated $a_{i'}$

When to stop?

- Saliency in line with test error
- Find the mode in the gauss like curve



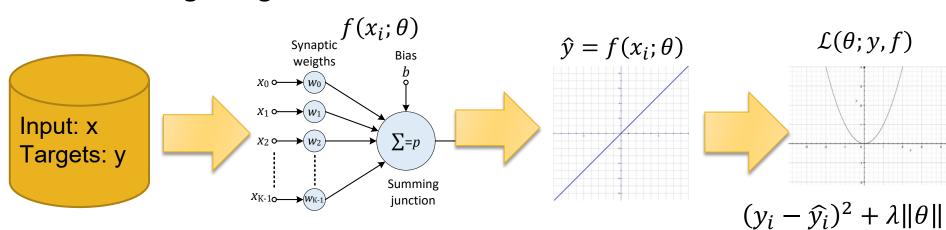


Scenario 2: You have data: how to prune aggressively?

- With access to training data, you can do a lot more
- 1. Train your network differently such that you have more zero weights
- 2. Retrain you network after pruning to fix the errors

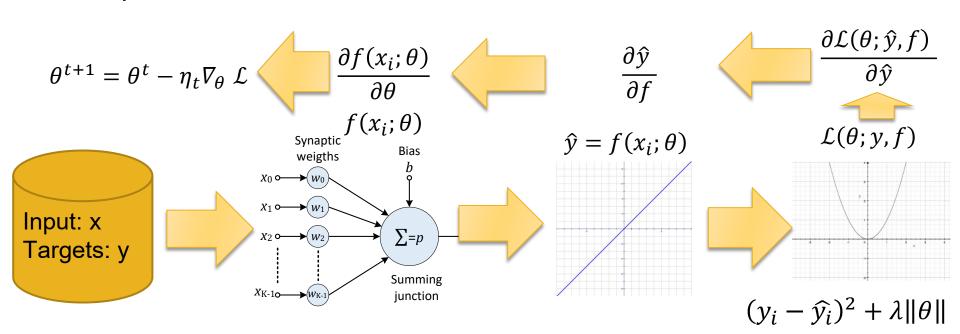
Training a neural network: With a weight regularization

- The neural network is a function of inputs x_i and weights θ : $f(x_i; \theta)$
- Start with feed forward batch (i=1..64) through the network: x_i $\rightarrow \widehat{y_i}$
- Insert network results and desired target labels into a loss function: $\mathcal{L}(\theta; y, f)$
- Compute a score on how well the net performs, not only error also weight organization



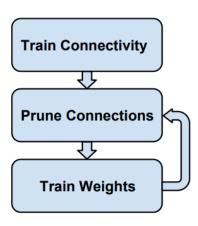
Tune the weights by gradient descent

- Compute the error gradients
- Update the coefficients to reduce error, also taking into account regularization
- Repeat



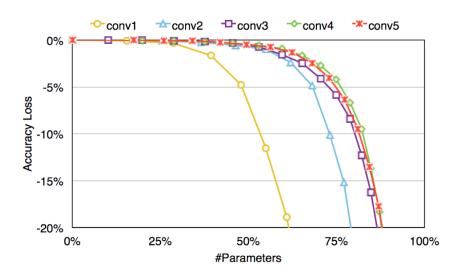
Iterative Pruning and Retraining

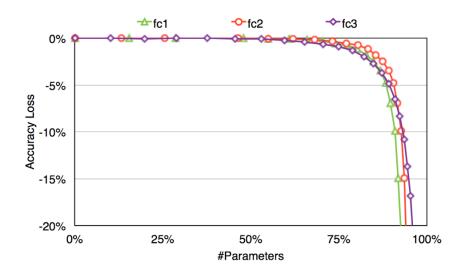
- Train a neural network until reasonable solution or download a pretrained net
 - 1. Prune the weights base on magnitudes that are less than a threshold
 - 2. Train the network until a reasonable solution is obtained
 - Iterate to step 1



Where does pruning help the most?

Fully connected layers

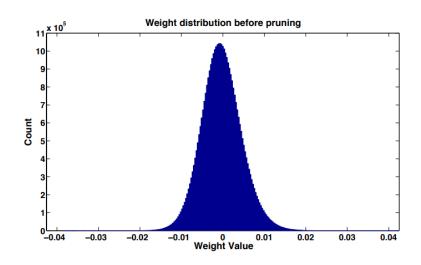




Pruning and Network Sparsity Improvement

What happens to the weight distribution?

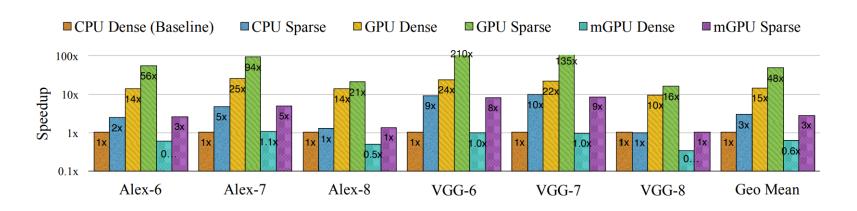
- Before: Most weights are close to zero; almost all between [-0.015, 0.015]
- After pruning: Bimodal distribution and more spread across x-axis, between [-0.025, 0.025]





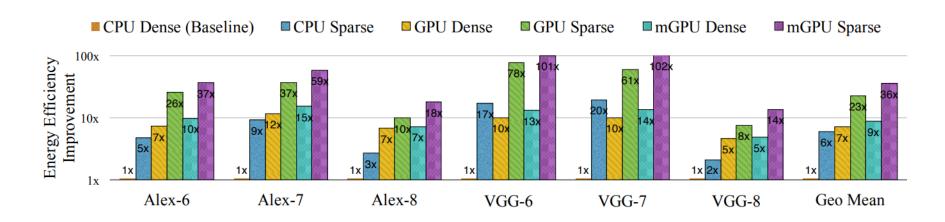
Using sparse Matrix Computations

- Use Intel Core i7 5930K, MKL CBLAS GEMV (full) vs MKS SPBLAS CSRMV (sparse)
- Use NVIDIA GTX Titan X, cuBLAS GEMV (full) vs cuSPARSE CSRMV (sparse)
- Use NVIDIA Tegra K1 as embedded GPU



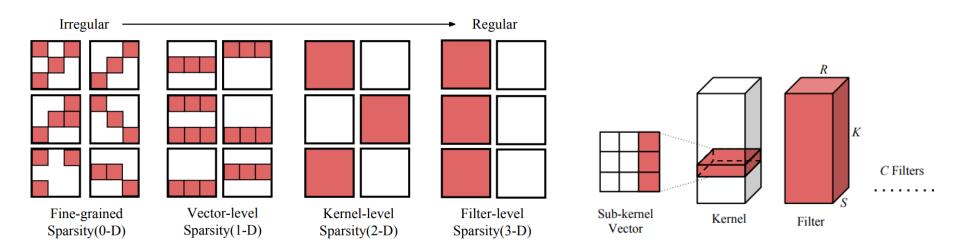
Energy Efficiency

- 6x improvement CPU 3.2x improvement GPU 4x embedded GPU
- Difficult to exploit the large parameter reduction due to irregularity
 - Sparse matrices have also storage overhead; 16% for storing indices



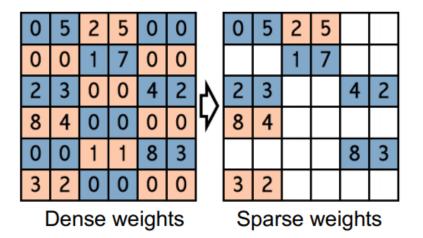
From Fine to Coarse-Grained Pruning

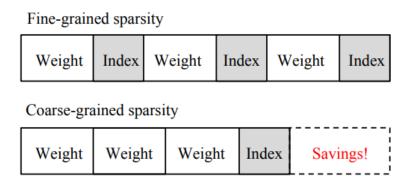
- Prune to match the underlying data-parallel hardware
 - E.g. prune by eliminating entire filter planes



Structured Pruning

- Example 2-way SIMD
- Less storage overhead

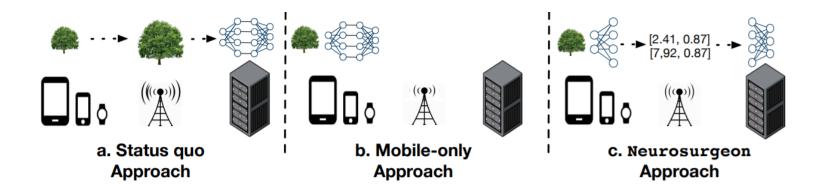




2. NN Partitioning

Why not offloading the work to the edge?

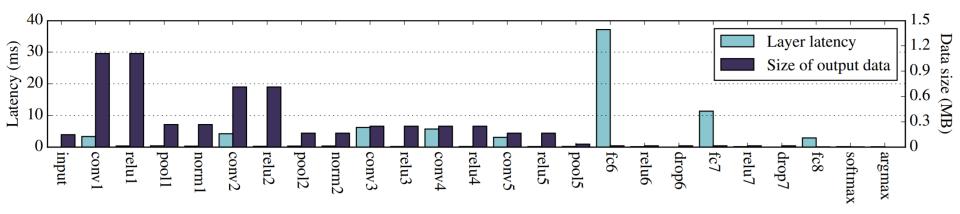
Representative work: Neurosurgeon

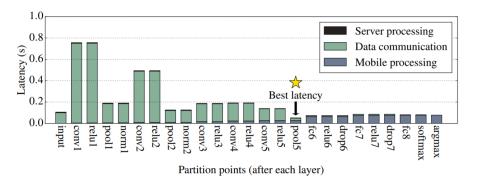


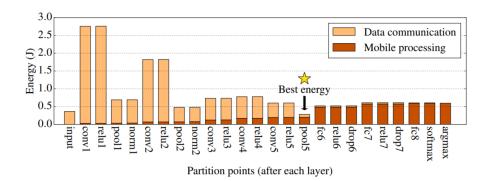
Partition the neural network in layers

Key Question

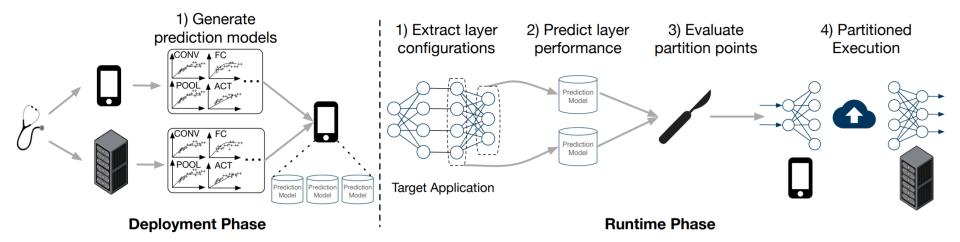
Where to partition?







Practical Use

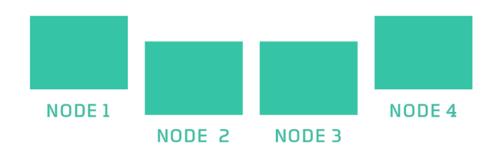


More Fine-Grained Partitioning?

- Vertical vs. Horizontal Partitioning
 - Partitioning the feature space

Adaptive partitioning

Federated and Distributed Learning



$$\min \left[F(x) = \sum_{i=1}^{m} p_i F_i(x) \right]$$

m	n _i	n	p _i	F _i (x)	F(x)
Number of clients	Number of samples at client i	Total number of samples	n _i / n, relative sample size	Local objective function at client i	Global objective function

Challenges

Expensive Communication:

Communication in the network can be slower than local computation by many orders of magnitude.

Soultion: Smaller messages or sending less frequently

Privacy Concerns:

Sensitive information can still be revealed to third party or central server during the communication.

Systems Heterogeneity:

- Size of data
- Computational power
- Network stability
- Local solvers
- Learning rate

Statistical Heterogeneity:

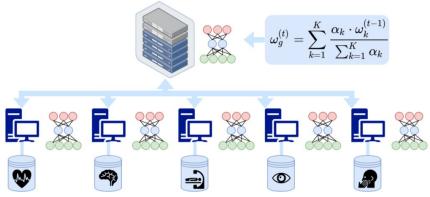
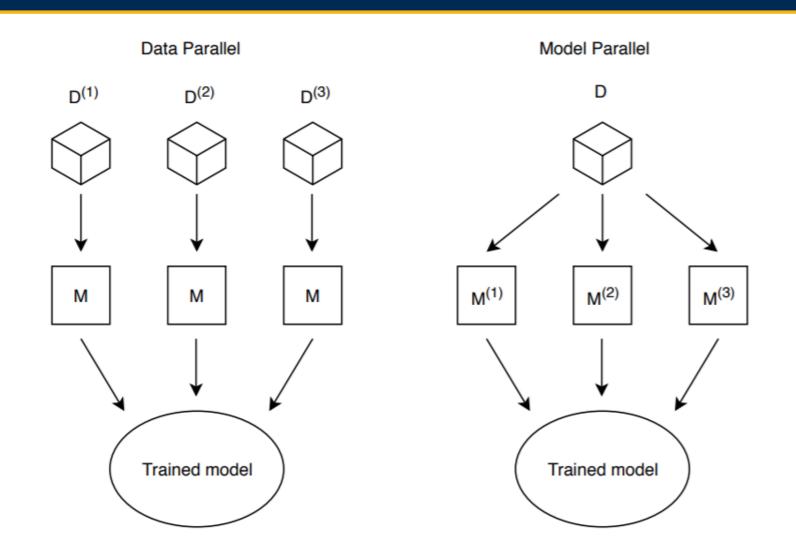
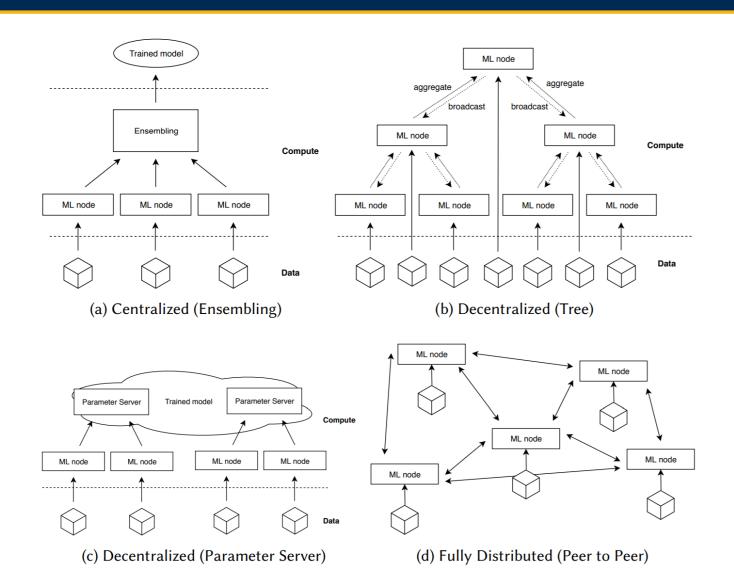


Fig. 1: Federated learning with non-iid data - The data has different distributions among clients.

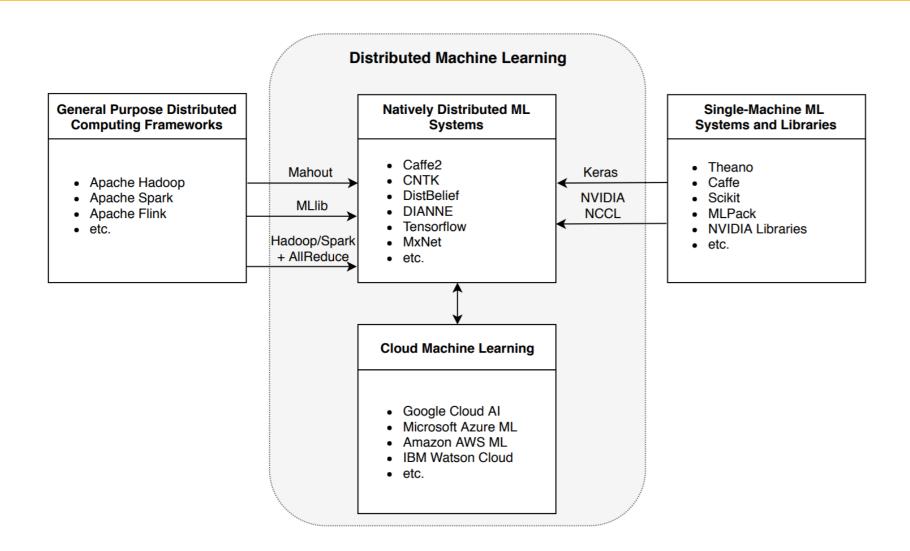
How to Achieve Parallelism



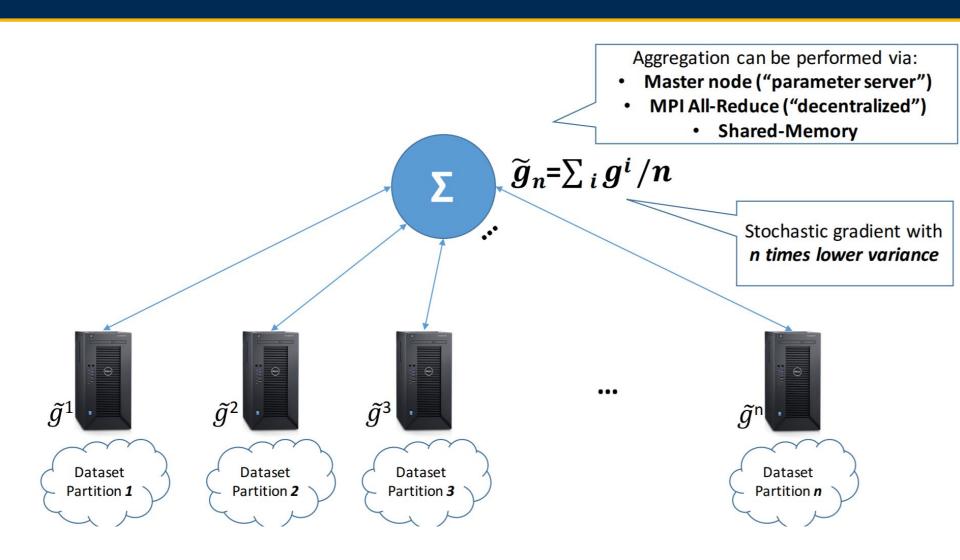
Different Operational Modes



The Ecosystem



SGD Parallelization



Some more recent works

- TinyML / MCUNet
 - https://mcunet.mit.edu/

- Split learning
 - http://splitlearning.mit.edu/