
AI at the Edge

Wei Gao

AI At the Edge

2

Key Challenges
 Limited computing resources at the edge devices
 Limited computing power
 Limited memory space

 Slow speed of training and inference

3

Huge NN Models
• Image Recognition
• AlexNet (2012) ILSVRC winner

• 8 layers, 62Mparameters
• 1.4 GFLOP inference
• 16% error rate

• ResNet (2015) ILSVRC winner
• 152 layers, 60Mparameters
• 22.6 GFLOP inference
• 6.16% error rate

4

Huge NN Models
• Network design and training time have become a

huge bottleneck

 Error rate Training time
 ResNet 18: 10.76% 2.5 days
 ResNet 50: 7.02% 5 days
 ResNet 101: 6.21% 1 week
 ResNet 152: 6.16% 1.5 weeks

5

Potential Solutions

6

1. Local Inference – NN Pruning/Compression

7

before pruning after pruning

pruning
neurons

pruning
synapses

Scenario 1: You only have a model
• Naïve pruning: Remove weights based on magnitude,

weights close to zero are removed
• No well-founded theory, error increases rapidly

• Data-Free parameter pruning based upon weight
similarity

8

W1

W4

a1

a4

z

W1

a1← a1+a4

z=

𝑧𝑧 = 𝑎𝑎1𝜑𝜑 𝑊𝑊1
𝑇𝑇𝑋𝑋 + 𝑎𝑎2𝜑𝜑 𝑊𝑊2

𝑇𝑇𝑋𝑋 + ⋯+ 𝑎𝑎𝑛𝑛𝜑𝜑 𝑊𝑊𝑛𝑛
𝑇𝑇𝑋𝑋

Suppose, 𝑊𝑊1 = 𝑊𝑊4

Then, 𝜑𝜑 𝑊𝑊1
𝑇𝑇𝑋𝑋 = 𝜑𝜑 𝑊𝑊4

𝑇𝑇𝑋𝑋

𝑧𝑧 = 𝑎𝑎1 + 𝑎𝑎4 𝜑𝜑 𝑊𝑊1
𝑇𝑇𝑋𝑋 + 𝑎𝑎2𝜑𝜑 𝑊𝑊2

𝑇𝑇𝑋𝑋 + ⋯

Data-Free pruning uses only the
model sensitivity
• In practice neurons are different, 𝑊𝑊1 −𝑊𝑊2 =

𝜀𝜀1,2 ≥ 0
• Compute errors for Weight replacement and naïve removal, so called

saliency matrix M
– Pick minimum entry in the list e.g. indices 𝑖𝑖′, 𝑗𝑗′ , delete the 𝑗𝑗′th neuron

and update 𝑎𝑎𝑖𝑖′ ← 𝑎𝑎𝑖𝑖′+ 𝑎𝑎𝑗𝑗′
– Update M by removing 𝑗𝑗′th column and row, and update the 𝑖𝑖′th column for updated 𝑎𝑎𝑖𝑖′

• When to stop?
• Saliency in line with test

error
• Find the mode in the gauss

like curve

9

Scenario 2: You have data: how to
prune aggressively?
• With access to training data, you can do a lot more
1. Train your network differently such that you have

more zero weights
2. Retrain you network after pruning to fix the errors

10

Training a neural network: With a
weight regularization
• The neural network is a function of inputs 𝑥𝑥𝑖𝑖 and weights
𝜃𝜃: 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

• Start with feed forward batch (i=1..64) through the network: 𝑥𝑥𝑖𝑖
➙ �𝑦𝑦𝑖𝑖

• Insert network results and desired target labels into a loss
function: ℒ 𝜃𝜃;𝑦𝑦, 𝑓𝑓

• Compute a score on how well the net performs, not only error
also weight organization

11

∑=p

w0

w1

w2

x0

x1

x2

xK-1

Bias
b

Synaptic
weigths

Summing
junction

p

wK-1

Input: x
Targets: y

𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 + 𝜆𝜆 𝜃𝜃

ℒ 𝜃𝜃;𝑦𝑦, 𝑓𝑓�𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

Tune the weights by gradient descent

• Compute the error gradients
• Update the coefficients to reduce error, also taking into

account regularization
• Repeat

𝜕𝜕𝜕 𝜃𝜃; �𝑦𝑦, 𝑓𝑓
𝜕𝜕 �𝑦𝑦

𝜕𝜕 �𝑦𝑦
𝜕𝜕𝑓𝑓

𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃
𝜕𝜕𝜕𝜕𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝜂𝜂𝑡𝑡𝛻𝛻𝜃𝜃 ℒ

∑=p

w0

w1

w2

x0

x1

x2

xK-1

Bias
b

Synaptic
weigths

Summing
junction

p

wK-1

Input: x
Targets: y

𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 + 𝜆𝜆 𝜃𝜃

ℒ 𝜃𝜃;𝑦𝑦, 𝑓𝑓�𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

12

Iterative Pruning and Retraining
• Train a neural network until reasonable solution or

download a pretrained net
1. Prune the weights base on magnitudes that are less than a threshold
2. Train the network until a reasonable solution is obtained
3. Iterate to step 1

13

Where does pruning help the most?

 Fully connected layers

Pruning and Network Sparsity Improvements

14

What happens to the weight
distribution?
• Before: Most weights are close to zero; almost all

between [-0.015, 0.015]
• After pruning: Bimodal distribution and more spread

across x-axis, between [-0.025, 0.025]

15

Using sparse Matrix Computations
• Use Intel Core i7 5930K, MKL CBLAS GEMV (full) vs

MKS SPBLAS CSRMV (sparse)
• Use NVIDIA GTX Titan X, cuBLAS GEMV (full) vs

cuSPARSE CSRMV (sparse)
• Use NVIDIA Tegra K1 as embedded GPU

16

Energy Efficiency
• 6x improvement CPU 3.2x improvement GPU

4x embedded GPU
• Difficult to exploit the large parameter reduction due

to irregularity
• Sparse matrices have also storage overhead; 16% for storing indices

17

From Fine to Coarse-Grained Pruning

• Prune to match the underlying data-parallel
hardware

• E.g. prune by eliminating entire filter planes

Pruning and Network Sparsity Improvements

18

Structured Pruning
• Example 2-way SIMD
• Less storage overhead

Pruning and Network Sparsity Improvements

19

2. NN Partitioning
 Why not offloading the work to the edge?

 Representative work: Neurosurgeon

 Partition the neural network in layers

20

Key Question
 Where to partition?

21

Practical Use

22

More Fine-Grained Partitioning?
 Vertical vs. Horizontal Partitioning
 Partitioning the feature space

 Adaptive partitioning

23

Federated and Distributed Learning

24

min 𝐹𝐹 𝑥𝑥 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖 𝑥𝑥

m ni n pi Fi(x) F(x)
Number of clients Number of

samples at client i
Total number of

samples
ni / n, relative
sample size

Local objective
function at client i

Global objective
function

Challenges

25

Expensive Communication:
Communication in the network can be
slower than local computation by many
orders of magnitude.

Soultion: Smaller messages or sending
less frequently

Systems Heterogeneity:
• Size of data
• Computational power
• Network stability
• Local solvers
• Learning rate

Privacy Concerns:
Sensitive information can still be
revealed to third party or central server
during the communication.

Statistical Heterogeneity:

How to Achieve Parallelism

26

Different Operational Modes

27

The Ecosystem

28

SGD Parallelization

29

Some more recent works
 TinyML / MCUNet
 https://mcunet.mit.edu/

 Split learning
 http://splitlearning.mit.edu/

30

https://mcunet.mit.edu/
http://splitlearning.mit.edu/

	AI at the Edge
	AI At the Edge
	Key Challenges
	Huge NN Models
	Huge NN Models
	Potential Solutions
	1. Local Inference – NN Pruning/Compression
	Scenario 1: You only have a model
	Data-Free pruning uses only the model sensitivity
	Scenario 2: You have data: how to prune aggressively?
	Training a neural network: With a weight regularization
	Tune the weights by gradient descent
	Iterative Pruning and Retraining
	Where does pruning help the most?
	What happens to the weight distribution?
	Using sparse Matrix Computations
	Energy Efficiency
	From Fine to Coarse-Grained Pruning
	Structured Pruning
	2. NN Partitioning
	Key Question
	Practical Use
	More Fine-Grained Partitioning?
	Federated and Distributed Learning
	Challenges
	How to Achieve Parallelism
	Different Operational Modes
	The Ecosystem
	SGD Parallelization
	Some more recent works

