
Eavesdropping User Credentials via GPU Side Channels on
Smartphones

Boyuan Yang
University of Pittsburgh

USA
by.yang@pitt.edu

Ruirong Chen
University of Pittsburgh

USA
ruirongchen@pitt.edu

Kai Huang
University of Pittsburgh

USA
k.huang@pitt.edu

Jun Yang
University of Pittsburgh

USA
juy9@pitt.edu

Wei Gao
University of Pittsburgh

USA
weigao@pitt.edu

ABSTRACT

Graphics Processing Unit (GPU) on smartphones is an effective

target for hardware attacks. In this paper, we present a new side

channel attack on mobile GPUs of Android smartphones, allowing

an unprivileged attacker to eavesdrop the user’s credentials, such

as login usernames and passwords, from their inputs through on-

screen keyboard. Our attack targets on Qualcomm Adreno GPUs

and investigate the amount of GPU overdraw when rendering the

popups of user’s key presses of inputs. Such GPU overdraw caused

by each key press corresponds to unique variations of selected

GPU performance counters, from which these key presses can

be accurately inferred. Experiment results from practical use on

multiple models of Android smartphones show that our attack can

correctly infer more than 80% of user’s credential inputs, but incur

negligible amounts of computing overhead and network traffic

on the victim device. To counter this attack, this paper suggests

mitigations of access control on GPU performance counters, or

applying obfuscations on the values of GPU performance counters.

CCS CONCEPTS

· Security and privacy→ Systems security; ·Human-centered

computing→ Ubiquitous and mobile computing.

KEYWORDS

Mobile GPU, Side Channel, Input Eavesdropping, Smartphones,

Performance Counters.

ACM Reference Format:

Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao. 2022.

Eavesdropping User Credentials via GPU Side Channels on Smartphones.

In Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’22),

February 28 ś March 4, 2022, Lausanne, Switzerland. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3503222.3507757

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507757

1 INTRODUCTION

Malicious attacks against smartphones have recently become a

major technical concern [3, 41]. These attacks target on both system

software and hardware. Software attacks exploit vulnerabilities in

mobile OS and applications to steal users’ text chats [9, 38], video

calls [36], or gain device control [6, 19, 22], but can be mitigated

through software updates. Hardware attacks exploit unintended

information leakage from system hardware, and are difficult to

eliminate as hardware upgrade cannot be easily done on commodity

devices.

Existing hardware eavesdropping attacks on smartphonesmainly

focus on CPU and on-board sensors. For example, access time on

CPU cache provides information about victim applications when

they contend for cache accesses [13, 15, 53], and IMU sensor read-

ings could be used to infer users’ keystrokes [1, 2, 26, 33, 35, 39].

However, the correlations between these hardware data and user

activities are usually weak and ambiguous, and are susceptible to

various system factors and random noise in practice [25]. These

attacks are hence limited to rough estimation of user activities

such as the applications being launched [15, 49, 50], user locations

[17, 34] and user identities [5, 7, 57].

Alternatively, GPU has been considered as another effective tar-

get for eavesdropping attacks. Existing GPU attacks mainly monitor

the variation of GPU workloads that can be measured by either the

GPU cache access time [37] or GUI performance metrics [32, 37],

and infer user activities from such variations. The strengths of these

attacks, however, are determined by the amount of GPU workload

variation caused by user activities, and they are incapable of infer-

ring user’s keyboard inputs that result in only a negligible amount

of GPU workload.

Instead, in this paper, we present a new eavesdropping attack on

mobile GPUs that allows an unprivileged attacker to precisely infer

the user’s credential inputs through the on-screen keyboard. Our

basic rationale is the explicit correlation between user inputs and

screen display on smartphones: on one hand, user inputs are always

reflected into screen display as visible feedback; on the other hand,

display contents are always rendered by GPU, and GPU is solely

used for graphics rendering in most cases. Based on this rationale,

we found that GPU performance counters (PCs) in certain categories

reflect the amount of screen display changes at the granularity of

individual pixels. This explicit and fine correlation allows direct

eavesdropping without any ambiguity.

285

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507757
https://doi.org/10.1145/3503222.3507757

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

(a) Popup with a key press (b) GPU overdraw

Figure 1: GPU overdraw on popups of key presses in Android.

Blue: 1x overdraw; green: 2x overdraw; pink: 3x overdraw;

red: 4x overdraw.

More specifically, our attack utilizes the popups that come by

default with every key press1. Since a popup is rendered on top

of the keyboard, popups with different key presses, as shown in

Figure 1, result in different amounts of GPU overdraw, which is the

number of draws on the same pixel when drawing keyboard UI

in multiple layers. Such amounts of GPU overdraw is reflected by

certain categories of GPU PCs, such as Low Resolution Z (LRZ) pass,

Rasterization (RAS) and Vertex Cache (VPC) on Qualcomm Adreno

GPUs. On the victim device, by reading these PCs that have unique

variations for each key press, we can infer the key press without

random guess.

The major challenge of our attack is how to access GPU PCs

on Android. Unlike desktop systems with well-developed libraries

(e.g., CUDA for Nvidia GPUs), most Android systems do not provide

explicit interfaces for GPU status queries. Further, Android enforces

many security protections, including permission requirements for

system resource access and resource isolation by SELinux, making

it harder for an unprivileged attacker to retrieve the global GPU

information. Our approach to this challenge is to read the raw values

of GPU PCs from the GPU device file. In Android, this device file is

used as the interface to access GPU hardware by user-space drivers

(e.g., OpenGL ES and Vulkan), which run as shared libraries with

the same PID as the calling user application. Hence, it is accessible

to unprivileged user programs. In particular, we target Qualcomm

Adreno GPUs2 and use their GPU drivers’ open-source header file

(msm_kgsl.h) as the reference to choose the right parameters of

the ioctl() system call to access the GPU device file.

Besides, the eavesdropping accuracy could also be affected by

many system and user factors. For example, one key press may

result in irregular changes of GPU PC values, cursor blinking and

OS notifications may also produce unexpected display changes that

affect GPU performance counters. The users may also correct their

past inputs or switch to other applications during inputs, causing

confusions in eavesdropping. To address the system factors, we

build classification models using the GPU PC data being collected

offline, and further use these models online to distinguish between

GPU hardware events caused by key presses and other system fac-

tors. To address the user factors, we identify specific GPU PCs that

show strong features indicating input corrections and application

switch, so as to exclude these factors from eavesdropping.

1These popups are used as visible feedback to user inputs, and help the user verify
that the correct key is being pressed.
2Qualcomm Adreno GPUs are the most popular mobile GPUs, and are used on over
40% of mobile devices worldwide in 2020 [54].

To our best knowledge, our work is the first that allows eaves-

dropping of user credentials via on-screen keyboard inputs on

smartphones. Our detailed contributions include:

• We identified the GPU PCs as reliable hardware indicators

of user’s key presses, and quantified the correlation between

GPU PC values and different key presses.

• We allowed an unprivileged attacker to read the global values

of selected GPU PCs on the victim device.

• We quantified the impacts of various system and user factors

on the eavesdropping accuracy, and developed methods to

eliminate these impacts in practical system settings.

We implemented our attack as an Android application running

on the victim device, and evaluated the attack on Android smart-

phones with different Qualcomm Adreno GPUs. A demo video is

provided to illustrate our attack3. From our experiment results, we

have the following conclusions:

• Our attack is accurate. It can correctly eavesdrop more than

80% of user’s login usernames and passwords over different

target applications, and this accuracy retains even when user

credentials contain 16 characters.

• Our attack is adaptive. It can well adapt to different device

models, system settings and user’s input behaviors.

• Our attack is lightweight. Since our attack does not need

repetitive guesses, the inference latency is <0.1ms, and the

attack incurs negligible computing overhead and network

traffic on the victim device.

We also discussed possible mitigation methods to this attack.

Some intuitive methods, such as disabling key press popups and

malware detection, could be used to mitigate this attack, but still

leave important security vulnerabilities that can be utilized by the

attacker to infer useful information about the user’s input creden-

tials. Instead, we consider that using role-based access control is a

more effective mitigation method, and such access control can be

practically enforced in Android systems by either redesigning the

Android graphics APIs or utilizing the SELinux Access Manager.

Disclosure: We have reported all of our findings to Qualcomm and

Google following their disclosure requirements. We are informed

that Google will provide a patch in future Android security updates

to mitigate this vulnerability.

2 BACKGROUND AND MOTIVATION

To better understand our attack, we first introduce the basics of GPU

overdraw in Android, and then motivate our design of attack by

explaining the performance counters of Qualcomm Adreno GPUs

that relate to GPU overdraw.

2.1 GPU Overdraw in Android

All graphics contents in Android are rendered in multiple layers

based on their layout and components. As shown in Figure 2, GPU

renders these layers in a back-to-front order to handle translucent

effects and shadows. Parts of the bottom layers, hence, are occluded

by the top layers and invisible to the user [23]. GPU overdraw, then,

occurs when layers overlap and pixels in the overlapping portion

are drawn multiple times.

3Link to the demo video: https://youtu.be/f40TvdDaxqw

286

https://youtu.be/f40TvdDaxqw

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

On Android devices with Qualcomm Adreno GPUs, the screen

is divided into equally sized tiles that are separately rendered. The

tile sizes are automatically determined by the GPU hardware to

reach optimal performance [24], and the amount of overdraw is

counted as the number of involved tiles. For example in Figure 2, 3

tiles are involved in 3x overdraw.

The amount of overdraw varies with different screen contents.

Hence, we can infer screen contents from values of GPU PCs that

reflect such overdraw. Note that, the same screen content (e.g., a

character being displayed) may correspond to different PC values in

different applications, on different device models, or with different

system configurations.

Layer 1

Layer 2

Layer 3

3x overdraw

Rendered

Displayed

Graphics

one

tile

Figure 2: Android graphics rendering with Qualcomm

Adreno GPUs. GPU overdraw occurs when layers overlap.

2.2 Performance Counters of Adreno GPUs

GPU performance counters (PCs) are special-purpose hardware reg-

isters that count occurrences of GPU hardware events and amounts

of hardware resource usage [55]. By design, they are used for per-

formance analysis in program and system debugging, and can also

be used to adjust the system configuration based on GPU workload

[44]. Hence, they are usually exposed to users and can be queried

through GPU drivers.

On Qualcomm Adreno GPUs, there are 3 categories of GPU PCs

that relate to GPU overdraw [24], as listed below.

• PCs about LowResolution Z (LRZ) pass record the amount

of tiles not rendered by GPU due to occlusion from higher

layers. Occluded pixels are discarded early in the render-

ing pipeline to improve GPU performance. Since character

shapes in popups of different key presses are different, they

result in different occlusions and hence different values of

LRZ-related PCs.

• Rasterization (RAS) converts vector graphics into pixels,

and RAS-related PCs measure the amount of pixels as the

rasterization output. These amounts are determined by vec-

tor shapes from all layers, and are different with popups of

different key presses.

• Vertex cache (VPC) caches vertex data for faster reuse in

GPU rendering, and VPC-related PCs measure the amount

of such cache use. Popups of different key presses vary the

tile occlusions and LRZ passes, and affect such cache use.

As illustrated in Figure 3, the popup of a key press will result in

three GPU PC value changes, reflecting different screen changes: 1)

when the key is pressed and the popup appears; 2) when the key is

released and the text echo appears; 3) when the popup disappears.

In most cases, the first PC value change exhibits significant but

unique differences over popups of different key presses. Hence, in

0

Key press events for key "w"

2.2

2.3

2.4

2.5

2.6

2.7

Time (s)Press down Key release

1. 2.

3.

P
e

rf
o

rm
a

n
ce

 C
o

u
n

te
r

V
a

lu
e

w

Figure 3: A key press results in 3 GPU PC value changes

the rest of this paper, we will only use these first PC value changes

for eavesdropping.

3 OVERVIEW

In this section, we first introduce our threat model, and then provide

an overview of our attack.

3.1 Threat Model

We assume that an eavesdropping application made by the attacker

can be installed and launched on the victim device. The attacker

can first build a benign application in popular categories and then

embed the malicious codes into it. Since these malicious codes

will only involve legitimate Linux system calls, the application can

be safely published at Google Play Store and evade Google’s mal-

ware detection or on-device scanning like Google Play Protect [4]

(see Section 9.1). When being executed, the eavesdropping appli-

cation will silently run in the background as an Android service

to query GPU PC data, but will not require any special Android

OS permission. As a result, the user will be totally unaware of the

eavesdropping application being executed.

Our attack targets sensitive user credentials, i.e., usernames and

passwords being used in target applications, such as online banking

(e.g., Chase, American Express, Bank of America), investments (e.g.,

Fidelity, Robinhood, Charles Schwab), and personal credit report

(myFICO, Experian, etc.). Our targets also include the corresponding

webpages when being launched in Google Chrome. Due to security

reasons, these applications and webpages do not remember user’s

credentials, and the user instead needs to input these credentials

every time. In these cases, the login menu will be the first screen

that the user sees, and we can eavesdrop credential inputs from the

first set of key presses after application launch.

3.2 Attack Overview

As shown in Figure 4, our attack consists of an Offline Phase and

an Online Phase. In the Offline Phase, the attacker emulates all key

presses over different device models and configurations to collect

a sufficient amount of GPU PC data. The data is used to identify

the correlation between key press popups and GPU PC values, and

knowledge about such correlation result in classification models

that are preloaded to the attacking application for eavesdropping.

A separate classification model will be built for each device model

and configuration (e.g., the screen resolution and the on-screen

keyboard being used).

287

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

Victim’s device

distribute

installed

& run in

background

Offline Phase

Online Phase

Send back

inferred key

presses

Attacker

Classifier

construction

Attacking

application

Reading GPU

perf. counters

Key press

inference

App Store

Device

recognition

Data collection

165

280

…

“A”

“B”

“C” APK

APK File

APK APK

preloadtraining

165

280

…

110

280

…

533

280

…

200

280

…

165

280

…

110

280

…

533

280

…

200

280

…

165

280

…

110

280

…

533

280

…

200

280

…

“A”

“B”

“C”

Dev. A

Kbd. C

User inputs

Implement

attacking

application

target app

launched

BANK

APK

Victim device

Figure 4: Attack overview

In the Online Phase, the attacking application will spawn a moni-

toring process, which runs as an Android service in background and

uses the existing techniques [14, 15, 49, 50] to detect the launch of

target applications4. If a target application is launched, the monitor-

ing process will start reading the selected GPU PCs. These readings

will be first used to recognize the current device model and config-

uration, and then applied to the corresponding classification model

for eavesdropping. Only the results of eavesdropping are sent back

to the attacker.

3.3 Accessing GPU Performance Counters

To access GPU PCs that relate to GPU overdraw, our first step is

to identify the names of these PCs on Android systems with Adreno

GPUs.We use the function calls in the GL_AMD_performance_monitor

extension provided by Qualcomm to the standard OpenGL ES APIs

[12]. These PCs are groupedwith counter IDs in each group.We iter-

ate through all PCs and use GetPerfMonitorCounterStringAMD()

to get a string identifier for each PC as its description. By doing so,

we select PCs in groups of LRZ, RAS and VPC, as listed in Table 1, for

eavesdropping. These PCs are specified by the GPU manufacturer,

and we have verified that they remain the same over all mainstream

Adreno GPU models released after Adreno 540.

Next, the PC values need to be read by the attacking application.

The GL_AMD_performance_monitor extension can only be used by

the attacking application to read the local PC value changes caused

by this application itself [28], but cannot provide any global GPU

information about other applications. Instead, we access the global

GPU information by directly reading the GPU PC values from the

GPU device file. More details are described in Section 4.

3.4 Eavesdropping User Inputs

As described in Section 2, the selected GPU PCs reflect the amount

of GPU overdraw at the granularity of pixels, and hence exhibit

unique value changes for popups of different key presses. To verify

this correlation, we conducted experiments over a Oneplus 8 Pro

smartphone with Google Keyboard. Figure 5 shows that the PC

values remain unchanged if the screen display does not change, and

4These techniques have been proved to be highly accurate, and achieves>90% accuracy
in >100 target applications.

Table 1: PCs on Adreno GPUs being used for eavesdropping

Group ID String identifier

LRZ 13 PERF_LRZ_VISIBLE_PRIM_AFTER_LRZ

14 PERF_LRZ_FULL_8X8_TILES

15 PERF_LRZ_PARTIAL_8X8_TILES

18 PERF_LRZ_VISIBLE_PIXEL_AFTER_LRZ

RAS 1 PERF_RAS_SUPERTILE_ACTIVE_CYCLES

4 PERF_RAS_SUPER_TILES

5 PERF_RAS_8X4_TILES

8 PERF_RAS_FULLY_COVERED_8X4_TILES

VPC 9 PERF_VPC_PC_PRIMITIVES

10 PERF_VPC_SP_COMPONENTS

12 PERF_VPC_LRZ_ASSIGN_PRIMITIVES

exhibits significant but different changes with popups of different

key presses: 1637 for key ‘w’ and 1625 for key ‘n’. Such difference

is further exemplified in Figure 6, and we also verified that for

each key, repetitive presses always result in the same change of PC

values.

0

Key presses

2.2

2.5

2.8

3.1

3.4

3.7

P
e

rf
.

c
o

u
n

te
r

v
a

lu
e

10
4

1637

Time (s)

1637

1637

1625

Cursor blinking

System

notification

‘w’ ‘w’ ‘n’

Split

Duplication

Figure 5: Variations of the PERF_LRZ_VISIBLE_PRIM_AFTER_

LRZ PC (ID 13 in Table 1) due to different key presses and

system factors. Note that only the first PC value change for

each key press is measured and used for eavesdropping.

Intuitively, such explicit correlation allows accurate eavesdrop-

ping by jointly examining the value changes of all the selected GPU

288

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

1.21 1.215 1.22

PERF_LRZ_FULL_8X8_TILES 10
4

6.75

6.79

6.83

P
E

R
F

_
R

A
S

_
8

X
4

_
T

IL
E

S
10

4

a

e
f

g

h

i

j

k

l

m

n

r t

w

x

s

d

c
y

u

b

v
o
z

p
q

Figure 6: PC value changes with popups of different key

presses, with one LRZ PC and one RAS PC as an example.

PCs. However in practice, the eavesdropping accuracy could be

impaired due to various system factors:

• Duplication: Due to the rich animation of popups on some

keyboard (e.g., Google Keyboard), one key press may result

in two consecutive PC value changes with the same amount,

and incorrectly results in two duplicated key presses being

inferred (see the second key press ‘w’ in Figure 5).

• Split: If a PC is being read when the GPU is in the process of

drawing the key press popup, the change of this PC could be

split intomultiple consecutive changes with smaller amounts

(see key press ‘n’ in Figure 5), and hence prevents the key

press from being correctly inferred.

• System noise: Irrelevant OS behaviors, such as cursor blink-

ing and system notification icons, could also result in changes

of GPU PC values.

In addition, the eavesdropping accuracy could also be affected

by the heterogeneous user behaviors during credential inputs. The

user may switch to other running applications, whose operations

may result in irrelevant GPU PC value changes. The user may also

press the backspace key to remove and correct the past inputs,

which however, could have already been inferred and recorded.

The impact of these system and user factors will be addressed in

Section 5.

Kernel space

User spaceGPU Device File

GPU Driver

GPU Hardware

Attacking

App

OpenGL

Library

API call

Custom

ioctl()

ioctl()

(a) Function call relationship

/

└── system
└── data

└── app
└── dev

├── [other device files]
├── kgsl-3d0
├── tty
├── tty0
└── [other device files]

(b) Android device file directories

Figure 7: GPU device file in Android OS

4 READING PERFORMANCE COUNTER
VALUES

To effectively read the global values of GPU PCs from the unpriv-

ileged attacking application, our basic approach is to bypass the

regular APIs provided by OpenGL ES and directly access the GPU

device file /dev/kgsl-3d0. As shown in Figure 7, this file in An-

droid is part of Qualcomm’s Kernel Graphics Support Layer (KGSL)

to provide an interface for userspace applications to access the GPU

hardware [8]. Since this interface is also used by user-space drivers

(e.g., OpenGL ES and Vulkan) that run as a shared library with the

same PID and SELinux context as the calling user application, it is

always accessible to unprivileged user applications [16].

As an interface, the device file could be used by user applications

to query GPU PCs through the ioctl() Linux system call. As

shown in Figure 8, this system call takes a GPU request code, which

specifies the GPU PC being selected as its input parameter, and

then writes the PC value into the provided memory block.

int ioctl (int fd, unsigned long request, void *ptr);

Reference to the

GPU device file
GPU request code

Pointer to

memory block

Figure 8: The ioctl() system call

The GPU request codes and data structures for reading GPU PCs,

as shown in Figure 9, are specified by the msm_kgsl.h header file

in the Qualcomm GPU KGSL driver5. Based on these specifications,

Figure 10 demonstrates the procedure of reading the value of a spe-

cific GPU PC from the GPU device file. Before reading the device

file, we will need to first notify the GPU hardware to prepare the

I/O and make the current PC value available in the device file. After-

wards, the PC value is blockread through the wrapper data_read

and eventually written into data.value.

/* Perf counter group IDs*/

#define KGSL_PERFCOUNTER_GROUP_VPC 0x5

#define KGSL_PERFCOUNTER_GROUP_RAS 0x7

#define KGSL_PERFCOUNTER_GROUP_LRZ 0x19

...

/* Data structure of a perf counter */

struct kgsl_perfcounter_read_group {

unsigned int groupid; // Group ID

unsigned int countable; // Counter ID

unsigned long value; // Perf counter value

... ... };

/* To initialize a perf counter query */

#define IOCTL_KGSL_PERFCOUNTER_GET \

_IOWR(KGSL_IOC_TYPE, 0x38,

struct kgsl_perfcounter_get)

struct kgsl_perfcounter_get {

unsigned int groupid; // Group ID

unsigned int countable; // Counter ID

... ...};

/* Blockread to GPU performance counters */

#define IOCTL_KGSL_PERFCOUNTER_READ \

_IOWR(KGSL_IOC_TYPE, 0x3B,

struct kgsl_perfcounter_read)

struct kgsl_perfcounter_read {

struct kgsl_perfcounter_read_group

*reads; // Pointer to rx buffer

unsigned int count; // Buffer size

... ...};

Figure 9: The GPU request codes and data structures for read-

ing GPU performance counters, as specified in msm_kgsl.h

5This file is open sourced and can be found in the Android kernel’s source codes from
AOSP [20] or open-source graphics libraries such as Mesa [10].

289

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

/* Open GPU device file */
Int fd = open("/dev/kgsl_3d0", O_RDWR);

/* To initialize a performance counter query */
struct kgsl_perfcounter_get data_get;
data_get.groupid = KGSL_PERFCOUNTER_GROUP_LRZ;

data_get.countable = data_put.countable = 14;

ioctl(fd, IOCTL_KGSL_PERFCOUNTER_GET, &data_get);

/* Specify the perf counter for blockread */
struct kgsl_perfcounter_read_group data;
data.groupid = data_get.groupid; // group ID
data.countable = data_get.countable; // counter ID

/* Specify the pointer to rx buffer in blockread */
struct kgsl_perfcounter_read data_read;
data_read.reads = data;
data_read.count = 1; // The amount of reads

/* Read the value of performance counter*/
ioctl(fd, IOCTL_KGSL_PERFCOUNTER_READ, &data_read);

Figure 10: An example of using the ioctl() system call to

read the PERF_LRZ_FULL_8X8_TILES performance counter

In the Online Phase, the attacking application periodically in-

vokes the ioctl() system call to read values of selected GPU PCs.

By default, the interval of such readings is set to be equal to or

slightly smaller than half of the screen refresh interval, to ensure

that GPU status for each screen frame is at least covered by one

PC reading. We will further investigate the best reading interval in

Section 7.4.

5 ACCURATE EAVESDROPPING IN
PRACTICAL SYSTEMS

In this section, we tackle the system and user factors that may

impair the eavesdropping accuracy in practical systems.

5.1 Addressing the Impacts of System Factors

As described in Section 3.4, inferring user’s key presses from the

changes in GPU PC values could be affected by various system

factors, including duplication, split and system noise. The impacts

of these system factors are further illustrated in Figure 11, where a

key press may not always result in a single and constant change of

the PC value. To demonstrate the impacts of these system factors

on inference accuracy, we investigated the value changes of our

selected GPU PCs over 3,485 key presses, using Google keyboard on

a Oneplus 8 Pro smartphone. Among these key presses, we found

633 duplication cases, 316 split cases and 21 cases with high system

noise, indicating that these system factors will make 28% of key

presses to be incorrectly inferred.

First, our basic insight on identifying duplications is that the

interval between two key presses of a human user is at least hun-

dreds of milliseconds [43], and is much longer than our interval

of GPU PC readings (<10ms as described in Section 4). As a result,

for every change of the GPU PC value, we will backtrace a time

period 𝑡𝑤 in the past, and only consider this change as indicating a

key press if no key press has been recently inferred within 𝑡𝑤 in

the past. In practice, the value of 𝑡𝑤 should be the shortest possible

interval between two key presses, and we choose 𝑡𝑤 to be 75ms as

suggested in [43].

∆PC value

time

Key press 1 Key press 2 Key press 3

: Reading of perf counter value

Normal

Duplication SplitSystem noise

a b

a+b∆1∆2∆3
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 11: Illustrations of duplication, split and system noise

when inferring user’s key presses. Δ1, Δ2 and Δ3 indicate the

change of PC value corresponding to the key press 1, 2 and 3,

respectively, in normal cases.

Second, to tackle split and system noises, we collect GPU PC data

about the normal cases of different key presses during the Offline

Phase, and then use such data to build a classification model for

online eavesdropping: online readings of PC value changes could be

considered as valid key presses only if they are close enough to the

collected offline data. For example, as shown in Figure 12, readings

A are inferred as key press ‘w’ and readings B are considered as

system noise.

PC 1 value change

P
C

 2
 v

a
lu

e
 ch

a
n

g
e

Key press ‘n’

Key press ‘w’

A

Considered as noise

B

Inferred as ‘w’

𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐

Figure 12: Illustration of the classification model for online

eavesdropping, with an example of two GPU PCs. In practical

systems, all the selected GPU PCs will be involved to build

the classification model in a high-dimension space.

In practice, a classification model is separately built for each

device model and device configuration, and all the classification

models are preloaded to the attacking application. The classification

threshold (𝑇𝐶) will be decided accordingly to eliminate any false

positives. For example, on a Oneplus 8 Pro smartphone with Google

Keyboard, our collected offline data shows that the maximum dif-

ference in PC value change between cases of split or system noises

and normal key presses is 370, which is then used as the value of

𝑇𝐶 .

Then, our solution to split and system noises is shown in Algo-

rithm 1. For each new change 𝑅 of PC values, we first examine if it

can be classified to a key press with our classification model. If not,

we backtrace to combine 𝑅 and the previous PC change 𝑅𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ,

and see if [𝑅𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 , 𝑅] is a split (like the readings at time 13 and

14 in Figure 11). If 𝑅 cannot be inferred as a key press in both steps,

it will be considered as system noise (like readings at time 9 and 12

in Figure 11).

290

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Algorithm 1: Online algorithm to tackle split and system

noises

Output: Set of inferred key presses E and timestamps of

these key presses M

1 while new PC readings 𝑅 received at time 𝑡 do

2 𝑘𝑒𝑦, 𝑑min ← SearchMinDist(𝑅) ; // Apply to

classification model

3 if 𝑑min < 𝑇𝐶 then

4 E← E
⋃
{𝑘𝑒𝑦} ; // Not system noise

5 M← M
⋃
{𝑡};

6 else

7 𝑘𝑒𝑦, 𝑑min ← SearchMinDist(𝑅 + 𝑅𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) ;

// Check if it is split by with the

previous PC reading 𝑅𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

8 if 𝑑min < 𝑇𝐶 then

9 E← E
⋃
{𝑘𝑒𝑦} ; // Not split

10 M← M
⋃
{𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 };

Algorithm 1 is a greedy algorithm and may make mistakes, be-

cause it will combine two consecutive PC value changes and infer

the combination into a key press whenever possible. For example

in Figure 11, at time 13, the algorithm combines PC value changes

at time 12 and 13, and may incorrectly infer a key press at time

12. Addressing this limitation requires knowledge about the entire

trace of GPU PC readings, meaning that eavesdropping can only be

done after the user input finishes. In Section 7, we will experimen-

tally investigate such tradeoff between the accuracy and timeliness

of eavesdropping.

0 1 2 3 4 5 6 7

Time (s)

0

500

1000

1500

2000

P
C

 v
a
lu

e
 c

h
a
n
g
e
s

Time (s)

User inputs

App switch App switchIn target app

Figure 13: PERF_LRZ_VISIBLE_PRIM_AFTER_LRZ value

changes when switching between applications

5.2 Recognizing Application Switch

In practical scenarios, before finishing the credential input, the

user may switch to and use other applications at any time. Oper-

ations in these applications may also create irrelevant GPU PC

value changes and hence confuse our eavesdropping. The key

to addressing this issue is how to correctly decide if a GPU PC

value change is caused by our target application (e.g., the ones

listed in Section 3.1), and we find that specific GPU PCs, such as

PERF_LRZ_VISIBLE_PRIM_AFTER_LRZ, show strong features when

the user switches to another app.

As shown in Figure 13, due to the rich animation and screen

display changes6, there will be fierce value changes of these PCs at

the beginning and end of app switch procedure, and the interval

between these value changes (e.g., <50ms) will be much smaller

than that between human typings. Hence, we could reliably use

these PCs to detect application switches and only eavesdrop when

the user types in the target application.

80

82

84

86

88

90

92

0

Input or deletion

Cursor blinking

Time (s)

0.5s

P
e

rf
.

co
u

n
te

r
v
a

lu
e

 c
h

a
n

g
e

0.5s0.5s 0.5s0.5s0.5s0.5s

Input or deletion

Cursor blinking

Figure 14: PERF_LRZ_VISIBLE_PRIM_AFTER_LRZ value

changes with 3 letter inputs and then 2 letter deletions

5.3 Eavesdropping with Input Corrections

Deleting and correcting the past input by pressing the backspace key

is also a common behavior during user input, and it is necessary to

correctly detect such input corrections to make sure that the deleted

inputs are not included in the eavesdropping results. The difficulty

of such detection is that pressing the backspace key does not trigger

a popup onmost on-screen keyboards. Instead, we observed that the

value changes of the PERF_LRZ_VISIBLE_PRIM_AFTER_LRZ have

strong correlation with the current input length: as shown in Figure

14, the PC value strictly increases by 2 with a new input charac-

ter and decreases by 2 whenever an input character is deleted by

backspace. We can hence use the value changes of this PC to detect

input corrections.

In particular, the values of this PC may also be changed by cursor

blinking. However, since cursor blinking in most systems has a fixed

interval of 0.5 seconds, these PC value changes can be recognized

according to their timestamps.

6 IMPLEMENTATION

The source codes of our implementations are released in a GitHub

repository7.

Offline Phase:We implement a bot program in Python to automat-

ically emulate all on-screen key presses by injecting screen input

commands through the Android /dev/input/eventX interface, so

as to collect GPU PC data. This program runs in the Termux emu-

lator on rooted Android devices under the attacker’s control, and

the collected data is stored in the device’s local storage.

During data collection, we launch a target application and run

the bot program in background to generate text inputs in the target

application. As shown in Figure 15, we connect the device to a host

6To switch between apps, the user first presses the bottom app switcher button to
show the app overview screen, and then select the app to switch.
7https://github.com/perfinfer/code

291

https://github.com/perfinfer/code

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

Bot program log

(program is running

on Android device)
App

password field

On-screen

keyboard

Figure 15: The bot program for offline data collection

system and remotely log into the device’s Android system via ADB

to monitor the data collection process.

Online Phase: The attacking application launches an Android

service in background to continuously read GPU PC values. To

maximize the performance and ensure timely readings of GPU PC

values, we also incorporate the functionality of online inference

from GPU PC values into this service, and implement this service

in C++ using Android NDK [29, 48].

7 EVALUATION

We evaluate the accuracy, timeliness, overhead and adaptability

of our attack on Android smartphones with different Qualcomm

Adreno GPUs. Different system configurations (e.g., the screen

refresh rate and on-screen keyboard being used) are applied and

evaluated on these devices. By default, the values of the selected

GPU PCs are read every 8ms, and we will also evaluate the impacts

of different reading intervals.

Our experiments are conducted by running target applications on

the smartphone and using the bot program implemented in Section

6 to emulate different key presses. The attacking application will

then be running on the smartphone to read GPU PCs and infer the

emulated key presses.

0 0.5 1 1.5

Interval between key presses (s)

0.1

0.2

D
u

ra
ti
o

n
 o

f
k
e

y
 p

re
s
s
 (

s
)

Volunteer 1

Volunteer 2

Volunteer 3

Volunteer 4

Volunteer 5

Figure 16: Durations and intervals of key presses

To mimic real human inputs when emulating these key presses,

we collect human input data by having 5 student volunteers to

randomly type text strings on a Oneplus 8 Pro smartphone with

Google Keyboard. The lengths of these text strings randomly vary

between 8 and 16, and each student volunteer types 50 times. The

durations8 of these key presses and intervals between key presses,

8The duration of a key press starts when the key is being pressed and ends when the
key is being released.

as shown in Figure 16, exhibit noticeable heterogeneity across dif-

ferent student volunteers, and will be used to emulate key presses

in our experiments.

7.1 Inference Accuracy

We first evaluate the accuracy of our attack over the Chase Mobile

application9. Our experiments are being conducted on a Oneplus 8

Pro smartphone with Google Keyboard, and the length of username

and password ranges between 8 and 16. For each length, 300 random

texts are emulated using the durations and intervals of key presses

shown in Figure 16. Results in Figure 17(a) show that the accuracy

of our attack is always higher than 75% and the average accuracy

is 81.3%. Furthermore, Figure 17(b) shows that only 1 key press is

incorrectly inferred for most text inputs, and our average accuracy

of inferring individual key presses is 98.3%. In practice, such single

errors in inference could be addressed with a small number of

guesses.

The accuracy over different groups of key presses is shown in

Figure 17(c), and the accuracy over individual key presses is shown

in Figure 18. These results show that most errors happen on a few

key presses, such as the symbols ‘,’ and ‘.’ that result in the minimum

amount of GPU overdraw.

In comparison, we also evaluated the eavesdropping accuracy

using the GPU PCs suggested in [37] over desktop Nvidia RTX

2070 GPU. The Nvidia 470.57 driver is used in evaluation on Linux

Ubuntu 20.04, and we use the Nvidia CUPTI interface to read GPU

PCs every 10ms. In our experiments, a bot program repeatedly

type characters into the gedit text editor, Gmail login webpage in

Chrome and the login fields in Dropbox client app, with an interval

of 0.5s for 10 times. As shown in Table 2, when the collected PC

traces are applied to different classification algorithms, the eaves-

dropping accuracy is lower than 14%. These results demonstrate

the ineffectiveness of existing work [37] on eavesdropping user’s

keyboard inputs that incur negligible amounts of GPU workloads.

Table 2: The eavesdropping accuracy of existing work [37]

that uses PCs of desktop Nvidia GPUs

gedit Gmail web Dropbox client

Naive Bayers 8.7% 9.5% 8.9%

KNN3 8.4% 9.2% 9.7%

Random Forest 13.7% 14.2% 14.0%

Accuracy over different target applications:We evaluate the ac-

curacy on target applications of online banking (Chase and Amex),

online investment (Fidelity and Charles Schwab) and personal credit

report (MyFICO and Experian). Website access to some target ap-

plications in Google Chrome are also evaluated. Results in Figure

19 show that our attack can be applied to target applications in all

categories, and its accuracy of inference over these applications is

always higher than 80%.

Accuracy on different on-screen keyboards: We use a Oneplus

8 Pro smartphone to evaluate the accuracy on 6 popular on-screen

keyboards: Microsoft Swift, Google Keyboard, Sogou Keyboard,

Google Pinyin Keyboard, Go Keyboard and Grammarly Keyboard.

9https://play.google.com/store/apps/details?id=com.chase.sig.android

292

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

8 9 10 11 12 13 14 15 16 all

Text Input Length

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y
 (

%
)

(a) Accuracy of inferring text inputs

8 10 12 14 16

Text Input Length

0

0.5

1

1.5

A
v
g
 N

o
.

M
is

s
in

g
 C

h
a
ra

c
te

rs

(b) Average number of incorrectly inferred key presses in each
text input

lower upper number symbol

Character group

0.85

0.9

0.95

1

A
c
c
u

ra
c
y
 (

%
)

(c) Inference accuracy in different groups

Figure 17: Accuracy of inferring user’s text inputs

a b c d e f g h i j k l mn o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 0 , . ABCDEFGH I JKLMNOPQRSTUVWXYZ@# $ _& - + () / * " ' : ; ! ?

Keyboard Characters

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y
 (

%
)

Figure 18: Inference accuracy over individual key presses

Figure 20 shows that, even though these keyboards have different

UI designs, our attack retains high inference accuracy on all cases,

with <5% variation.

7.2 Impact of User Input Speed

To evaluate the impact of different user inputs speeds, we split

the key presses that we collected from 5 student volunteers into

3 parts with the same amount, based on the interval between key

presses. We then use these 3 parts to emulate different speeds of

user inputs: fast (typing interval <0.24s), medium (typing interval

between 0.24s and 0.4s) and slow (typing interval >0.4s), and apply

each of these parts to 300 random text inputs in target applications.

The impact of different input speeds is shown in Figure 21. While

the accuracy of inferring individual key presses remains constant,

Figure 21(a) shows that the accuracy of inferring user’s text inputs

drops to 60% when the input speed decreases. The main reason is

that when the interval of reading GPU PCs remains unchanged,

infrequent key presses have higher chances of involving random

system noise. However, as shown in Figure 21(b), the average num-

ber of errors is <1.3, allowing low-cost correction with few guesses.

Chase Amex Fidelity Schwab myFICO chase.com schwab.com experian.com

Targeted App

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y
 (

%
)

Text input accuracy Individual key press accuracy

Figure 19: Inference accuracy on different target apps

7.3 Impact of CPU and GPU Workloads

Our attack runs a monitoring process in background, and its ac-

cess to GPU PCs could be affected by other concurrent CPU and

GPU workloads. To evaluate the impacts of these concurrent sys-

tem workloads, we emulate different CPU workloads by running a

multi-threaded process that occupies all CPU cores by a varying

percentage, and emulate different GPU workloads by running a

custom program that invokes OpenGL ES APIs to render 3D objects

in background using GPU10.

swift gboard sogou pinyin go grammarly

On-Screen Keyboard

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

Figure 20: Inference accuracy on different keyboards

As shown in Figure 22, our accuracy experiences negligible re-

duction when the CPU workload is <50% or the GPU workload is

<25%, but will drop to 60% if such workloads both increase to 75%.

The basic reason is that when the Android system has heavy CPU

or GPU workloads, our attacking application has to compete CPU

or GPU access with other applications and hence may be unable to

10The current GPU utilization ratio is retrieved through the
/sys/class/kgsl/kgsl-3d0/gpu_busy_percentage interface.

293

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

slow medium fast overall

Typing Speed

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y
 (

%
)

Text input accuracy Individual key press accuracy

(a) Inference accuracy with different speeds

slow medium fast overall

Typing Speed

0

0.5

1

1.5

A
v
g
 N

o
.

M
is

s
in

g
 C

h
a
ra

c
te

rs

(b) Average number of incorrectly inferred key presses in each
text input

lower upper number symbol

Character group

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y
 (

%
)

fast medium slow

(c) Inference accuracy in different groups

Figure 21: The impact of different speeds of user inputs

0 25 50 75 100

CPU utilization (%)

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

(a) Inference with CPU workloads

0 25 50 75

GPU utilization (%)

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

(b) Inference with GPU workloads

Figure 22: Impacts of CPU and GPU workloads

timely read GPU performance counters. However in practice, most

of our target applications produce only a small amount of CPU or

GPU workloads in their login menus.

7.4 Impact of Interval Reading GPU PCs

As discussed in Section 4, the GPU PCs should be at least read once

for each screen frame being rendered, to ensure timely inference of

any user input. To evaluate the impact of interval reading GPU PCs,

we adjust the screen refresh rate on a Oneplus 8 Pro smartphone

between 60Hz and 120Hz. The inference accuracy with different

intervals of reading GPU PCs, in these cases, is shown in Figure

23. While the accuracy of inferring individual key presses can be

generally retained to be >95%, the accuracy of inferring text inputs

drops by 20% if such interval increases to 12ms. As a result, we

recommend that such interval should not be longer than 8ms if the

screen refresh rate is 60Hz, and should be at most 4ms for 120Hz.

4 8 12

Sampling interval (ms)

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y
 (

%
)

60Hz 120Hz

(a) Accuracy of infering key presses

4 8 12

Sampling interval (ms)

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y
 (

%
)

60Hz 120Hz

(b) Accuracy of inferring text inputs

Figure 23: Accuracy with different reading intervals

7.5 Adaptability of Attack

In this section, we evaluate the accuracy of our attack over different

Android device models and configurations. Our experiments are

conducted over the following smartphonemodels: LGV30+ (Adreno

540 GPU and Android 9), Google Pixel 2 (Adreno 540 GPU and An-

droid 10), Oneplus 7 Pro (Adreno 640 GPU and Android 11), Oneplus

8 Pro (Adreno 650 GPU and Android 11), Oneplus 9 (Adreno 660

GPU and Android 11), and Samsung Galaxy S21 (Adreno 660 GPU

and Android 11). Results in Figure 24 show that, since our attacking

application carries preloaded classification models for each device

model and configuration, it retains similar accuracy over all the

different system situations. In particular, note that in Figure 24(c),

we compared the inference accuracy over different smartphone

models with the same GPU (e.g., LG V30+ and Google Pixel 2 with

Adreno 540, Oneplus 9 and Samsung Galaxy 21 with Adreno 660),

and demonstrated that different smartphone manufacturers and

software systems have negligible impacts on the eavesdropping

accuracy.

540 640 650 660

Adreno GPU

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

(a) Different GPU models

FHD+ (2376×1080) QHD+ (3168×1440)

Resolution

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

(b) Different screen resolutions

V30+ PIXEL2 ONEPLUS9 S21

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

(c) Different phone models with the same
GPU

8.1 9 10 11

Android OS Version

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

Text input accuracy

Individual key press accuracy

(d) Different Android OS versions

Figure 24: Adaptability of attack

7.6 Timeliness and Overhead

The amount of computing time needed for our inference is shown in

Figure 25, which shows the histogram of inference time over 3,300

key presses on a Oneplus 8 Pro smartphone. These results show

that more than 95% of key presses can be inferred within 0.1ms.

294

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

These results also verified that our attack produces a negligible

amount of computing overhead on the victim device and is hence

hard to be detected.

We also evaluated the device power being consumed by our

attack. Results in Figure 26 show that our attack consumes a maxi-

mum of 4% extra power after two hours of use.

Figure 25: Computing time needed for eavesdropping

The data size of one classification model in our attack is 3.59

kilobytes on average. The size of our attacking application, hence,

is at most 13.40 megabytes11 with 3,000 preloaded classification

models to cover 100 smartphone models, 15 different on-screen

keyboards on each smartphone model, and 2 screen resolutions on

these smartphone models.

0 30 60 90 120

Time (min)

0

1

2

3

4

E
x
tr

a
 b

a
tt

e
ry

 c
o

n
s
u

m
p

ti
o

n
 %

LGV30

Oneplus8Pro

Pixel2

Oneplus7Pro

Figure 26: Power consumption for inferring user inputs

8 EXPERIMENTATIONWITH PRACTICAL USE

In this section, we further evaluate the accuracy of our attack in

practical usage sessions, where the user is actually using our attack-

ing application on the victim device and will perform random app

switch and input corrections. In our experiments, 5 student volun-

teers use a Oneplus 8 Pro smartphone to input random texts over

3 different apps12 for 3 minutes. They are requested to randomly

switch between these apps, make corrections to their inputs and

perform other UI interactions. After each input, they are also asked

to freely use other apps installed on the device within the 3 minutes.

Each experiment is repeated for 10 times, and some sample traces

of these user behavior events are shown in Figure 27.

As shown in Figure 28, the average accuracy of eavesdropping

individual key press inference is 97.1%, and average accuracy of

input eavesdropping is 78.0%. This accuracy slightly drops com-

pared to those results in Section 7.1 due to the handling of input

corrections, but is still sufficient to ensure practical eavesdropping

with a few guesses.

11The maximum application size allowed by Google Play Store is 100 megabytes.
12The apps used in each experiment are randomly chosen from six apps, including
Chase, Amex, Fidelity, Charles Schwab, MyFICO and Experian.

0 5 10 15 20 25 30

Time (s)

0

500

1000

1500

2000

2500

.

Time (s)

Student 1

Student 2

Student 3

Student 4

Student 5

Credential typing Backspace

Switch to another app Switch back to target app

View notification bar

Figure 27: User behavior events during experiments

1 2 3 4 5

Volunteers

0.6

0.7

0.8

0.9

1

In
fe

re
n

c
e

 A
c
c
u

ra
c
y
%

Trace accuracy Character accuracy

Figure 28: Accuracy in practical usage

9 ATTACK MITIGATION

9.1 Simple Mitigation Methods

We will first discuss some simple and intuitive methods to mitigate

our attack.

Disabling popups of key presses. The most straightforward

mitigation method is to disable keyboard popups of key presses in

Android settings. For example, on a Google Pixel 6 smartphone with

Android 12 and Google Keyboard, this disabling option can be found

at System→Languages & Input→On-screen keyboard→Gboard→

Preferences→Popup on keypress. Although this method can pre-

vent direct eavesdropping of user inputs, it may cause inconve-

nience for many users, especially those with vision problems, as

popups are designed as feedback to help verify that the correct key

is being pressed. Furthermore, since this method did not disable

user applications’ access to GPU PCs, the attacker can still infer

useful information about the user’s input credentials, such as the

input length, from GPU PCs as described in Section 5.3.

Malware detection. Another simple approach to attack mitiga-

tion is to rely on Google’s malware detection on Play Store [4]

or on-device detection such as Google Play Protect [21] to detect

abnormal behaviors in our attacking application, such as frequent

ioctl() calls. However, since ioctl() is a standard Linux system

call and the only Android interface to access the GPU hardware

[52], it is invoked at a very high frequency in normal OS operations

(e.g., thousands of invocations per second are expected in such

normal cases [46]). As a result, frequent invocations of this call for

GPU PC queries will not be considered by Android as abnormal.

Other existing approaches on run-time malware detection that are

based on behavior recognition and classification [42, 45], on the

other hand, are usually considered difficult to be integrated into

commodity Android OS systems.

295

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

To further verify this, we built a testing application that periodi-

cally queries GPU PCs using the ioctl() call and submitted it to

Google Play Store. The application passed all Google’s checks and

has been published13.

9.2 Mitigation through GPU PC Access Control

A more viable solution to mitigating this attack is to apply access

control on GPU PCs in Android. The most intuitive approach is to

completely disable any smartphone application from accessing any

GPU PC, but is practically infeasible due to its big impact on many

applications’ executions. First, access to GPU PCs is the foundation

of GPU profiling and debugging tools provided by Qualcomm and

Google, and disabling such access will prevent these tools from

being usable. Second, access to GPU PCs allows many run-time tun-

ing and adaptations for applications to optimize their performance.

For example, the run-time information about GPU overdraw could

be used to adjust the application’s 3D rendering strategy and save

GPU resources.

Instead, a better mitigation is role-based access control (RBAC)

that limits the access to GPU PCs within a safe scope. RBAC has

been adopted for desktop GPUs (e.g., by Nvidia [37]) at a coarse

granularity, such that unprivileged applications are prohibited from

accessing any GPU PCs and privileged applications have unre-

stricted access to GPU PCs. However, this coarse-grained RBAC

cannot be applied on Android systems, where the Android security

model prohibits escalating any user application’s privilege to root

or administrator [47, 56]. In these cases, RBAC should be enforced

at a finer granularity, so that only listed applications are allowed

to access the global values of GPU PCs and all other applications

can only access their local values of GPU PCs. In practical Android

systems, such RBAC can be possibly implemented in multiple ways,

which are discussed in detail as follows.

First, as discussed in Section 3.3, the access to each application’s

local GPU PCs is provided as part of OpenGL ES APIs. Hence, RBAC

on such local GPU PC access can be enforced by redesigning the

Android interfaces provided for GPU hardware access, so that the

graphics APIs are running as separate processes and the Android OS

kernel can effectively identify whether the ioctl() calls are made

through standard system interfaces. Details about such redesign,

however, is out of the scope of this paper.

Second, RBAC on GPU PCs can be enforced through Android’s

security-enhanced Linux (SELinux), which has been used in An-

droid OS to enforce mandatory access control (MAC) overall pro-

cesses [18]. In SELinux, all the running processes are assigned

roles based on their functionality, and their accesses to system re-

sources and functions are then monitored and controlled by the

SELinux Access Manager, based on a set of pre-defined policies pro-

vided by the OS. As a result, the SELinux-based ioctl() command

whitelisting [52] can be used to filter suspicious ioctl() calls that

try to illegally access GPU PCs, by adding GPU PC access rules

to SELinux policies. For example, unprivileged user applications

(with the untrusted_app role in Android) can be prohibited from

accessing any global value of GPU PCs. Development of such RBAC

based on SELinux will be our future work.

13App link: https://play.google.com/store/apps/details?id=me.alittletool.rgbdisplaycol
or

9.3 Other Mitigations

Some other mitigation methods could be more effective, but would

require collaborations and significant efforts from app/OS develop-

ers or user experience changes in authentication procedure.

Using password manager or biometric login. Using password

manager or biometric login could avoid text typing using on-screen

keyboards. However, this approach needs wider deployment of

biometric sensors on smartphones and high adoption of password

managers in the big population [40, 51]. In addition, users also need

to manually enter their credentials on first-time login, which is still

vulnerable to our attack.

Obfuscation on GPU PC values. Obfuscating the GPU PC val-

ues could confuse the attacker. Some target applications contain

decorative animations on their login menu and could hence defend

against this attack. For example, the PNC Mobile Bank application,

as shown in Figure 29, reduces our eavesdropping accuracy to 30.2%

with such animation. Obfuscation could also be more effectively

applied from the OS, by randomly executing small GPU workloads

in background. The major challenge, however, is how to decide the

appropriate amount of these workloads, as excessive GPU work-

loads impair the system’s performance. This is an open research

question, and we believe that it is worth further investigation.

Moving circles and triangles

Figure 29: Animations on the PNC Mobile Bank application

10 RELATED WORK

Side channel attacks on desktop GPUs. Attacks on Nvidia GPUs

use CUDA APIs to infer various types of user activities [32] or sys-

tem computing information [37]. These attacks, however, are not

applicable tomobile systems due to the large difference in GPU hard-

ware architecture and availability of APIs. Some other approaches

include exploiting sensitive data left in uninitialized GPU memory

[30] and using OpenGL and OpenCL libraries for microarchitectural

attacks on GPU cache contents [11, 37]. However, as we have shown

in Section 7.1, the strengths of these attacks depend on the amount

of GPU workloads caused by user activities. They are hence limited

to inferring coarse-grained user activities, and cannot be used to

eavesdrop users’ keyboard inputs that incur negligible amounts of

GPU workloads.

Side channel attacks on mobile devices. IMU sensor readings

on mobile devices have been used to infer user inputs such as PIN

296

https://play.google.com/store/apps/details?id=me.alittletool.rgbdisplaycolor
https://play.google.com/store/apps/details?id=me.alittletool.rgbdisplaycolor

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

inputs [33], graphical patterns [1] and password inputs [26, 35, 39],

but are known to be very sensitive to random noise and hetero-

geneous human behavior patterns. Mobile CPU caches have also

been exploited for side channel attacks, to infer coarse-grained user

activities [15, 31]. Some recent work further demonstrated the pos-

sibility of inferring users’ PIN inputs from knowledge about cache

behaviors [53], but only achieved low accuracy (30%). In contrast,

our proposed attack achieves much higher accuracy (>80%) without

requiring any guess, and hence has higher applicability in practical

systems.

Side channel attacks on mobile GPUs. Existing attacks on mo-

bile GPUs used GPU timing information to infer ciphertexts in

AES encryption [27], and reverse engineered GPU hardware to

implement Rowhammer attack on GPU memory [11]. These at-

tacks, however, are not focusing on eavesdropping keyboard inputs

and are orthogonal to our work. Google’s Project Zero recently

reported a security vulnerability of Qualcomm Adreno GPUs [16],

which allows the attacker to overwrite device memory or obtain

root control through the ioctl() system call. However, this attack

does not involve eavesdropping user inputs. The fix provided by

Google, on the other hand, did not disable user applications from

using the ioctl() system call or accessing the GPU device file.

11 CONCLUSION

In this paper, we present new side channel attacks on mobile GPUs

that allow unprivileged applications to eavesdrop the user’s input

credentials typed through the on-screen keyboard. Our attack builds

on the different amounts of GPU overdraw caused by popups of

key presses, and infers key presses from the corresponding changes

of GPU PC values. Experiment results demonstrate that this attack

can achieve >80% accuracy of eavesdropping and can be widely

applied to smartphones with Qualcomm Adreno GPUs.

ACKNOWLEDGMENTS

We thank our shepherd, Nandita Vijaykumar, and the anonymous

reviewers for their comments and feedback. This work was sup-

ported in part by the National Science Foundation (NSF) under

grant number CNS-1812407, CNS-2029520 and IIS-1956002.

A ARTIFACT APPENDIX

A.1 Abstract

We provide the source codes and the compiled Android application

executable (i.e., the .apk file) to launch our proposed attack of eaves-

dropping the user login credentials on Android devices. With the

eavesdropping application running in background, the user’s cre-

dential inputs using the on-screen keyboard can be eavesdropped,

and the eavesdropping results will be displayed in real-time at the

notification bar of the device.

As described in the paper, our attack can be applied to a wide

range of Android devices, with the attacking application’s parame-

ters being customized for each specific device hardware model and

software configurations. To facilitate artifact evaluation, we have

customized the source codes and application executable being pro-

vided with respect to the Google Pixel 5 smartphone with Android

11, Google keyboard and certain user interface configuration being

used, as described below. More details about how to customize

parameters for different Android devices can be found in the paper.

A.2 Artifact Checklist
• Program: Android application for the eavesdropping attack.

• Compilation: Android Studio 2020.3.1 Patch 3.

• Transformations: No transformation tools required.

• Binary: Source codes are included to build binaries.

• Run-time environment: Android 11.

• Hardware: Google Pixel 5 smartphone (GD1YQ, unlocked).

• Run-time state: Not sensitive to runtime state.

• Execution: App execution on the Android device described above.

• Metrics: Qualitative result evaluation.

• Output: Eavesdropping result being displayed in the Android noti-

fication bar.

• Experiments: Start the eavesdropping App, and then type login

credentials in the selected user applications or webpages.

• How much disk space required (approximately)?: 200 MB.

• How much time is needed to prepare workflow (approxi-

mately)?: Approximately 1 hour.

• How much time is needed to complete experiments (approxi-

mately)?: Approximately 40 minutes.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT License.

• Workflow framework used?: No.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5733423.

A.3 Description

A.3.1 How to Access. This artifact can be downloaded from the

DOI link https://doi.org/10.5281/zenodo.5733423.

A.3.2 Hardware Dependencies. To build the Android app from the

source codes, a generic PC with Android Studio being installed is

needed. Running the artifact requires a certain model of Android

smartphone device (Google Pixel 5 GD1YQ unlocked).

A.3.3 Software Dependencies. The attacking app needs to be built

using Android Studio 2020.3.1 Patch 3. The runtime environment

of the app requires that the smartphone uses its factory-set OS and

software configurations as listed below:

• Android 11 (RQ3A.210605.005)

• Google Keyboard (GBoard 11.1.04.397969183-release-arm64-

v8a)

The attacking app being provided has been tested to be functional

over the following user applications:

• Google Chrome (the latest version on Google Play store)

• Chase Mobile Banking App (version 4.256)

• Amex Mobile App (version 6.48.1)

A.4 Installation

This section describes the steps of building and installing the eaves-

dropping app and setting up the runtime environment.

To build the eavesdropping app, the provided artifact needs to

be retrieved and unpacked onto a PC with stable Internet connec-

tion and Android Studio installed. Use Android Studio to open the

extracted artifact directory with name androidapp. Select łBuild

ś Make Projectž in the menu to build the App. To install the built

App, enable the Developer options submenu on Android device and

297

https://doi.org/10.5281/zenodo.5733423
https://doi.org/10.5281/zenodo.5733423

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Boyuan Yang, Ruirong Chen, Kai Huang, Jun Yang, and Wei Gao

enable USB Debugging option under Developer options submenu.

After connecting the Android device to the PC through USB cable,

select łRun ś Run appž in Android Studio to install the built app

into Android device.

Alternatively, a prebuilt copy of the app executable is also pro-

vided in the artifact, as androidapp/

app-release.apk file in the artifact. To install the prebuilt App,

copy .apk file onto Android device, and click the file in the file

browser on Android system.

Third-party applications being involved (e.g., Google keyboard,

Chase Mobile App, Amex Mobile App) are also provided as .apk

packages with the artifact. To install them, copy the .apk files under

3rdparty directory of the extracted artifact onto Android device.

Finish installation by clicking the .apk files in the file browser on

Android system.

The following default Android OS configurations on Pixel 5

device are required in reproducing the paper’s experiment results.

Please check these settings before the experiment in the Settings

App of Android OS:

• System dark theme enabled (in Settings ś Display)

• Smooth Display enabled (in Settings ś Display)

• Gesture navigation enabled (in Settings ś System ś Gestures)

A.5 Experiment Workflow

After the runtime environment has been properly set up, the fol-

lowing steps can be performed for each eavesdropping experiment:

(1) Launch the installed eavesdropping app.

(2) Click łSTART SERVICEž button on top-left corner of the

eavesdropping app.

(3) Launch a victim app (e.g., Chase Mobile or Amex Mobile as

listed above), or visit certain webpages (e.g., https://m.face

book.com, https://instagram.com) in Chrome.

(4) In the victim app’s password input field, type numbers and

alphabet letters at your choice.

A.6 Evaluation and Expected Results

After each experiment, the eavesdropped user credential input is

expected to show up in the notification bar of Android. To verify

the eavesdropping accuracy as described in Section 7.1 of the paper,

the user can repeat the experiments described above with different

keyboard inputs.

A.7 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-

badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Adam J Aviv, Benjamin Sapp, Matt Blaze, and JonathanM Smith. 2012. Practicality

of accelerometer side channels on smartphones. In Proceedings of the 28th annual
computer security applications conference (ACSAC ’12). Association for Computing
Machinery, New York, NY, USA, 41ś50. https://doi.org/10.1145/2420950.2420957

[2] Liang Cai and Hao Chen. 2011. TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion. USENIX Summit on Hot Topics in Security
(HotSec) (2011).

[3] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. 2020. An empirical assessment of security risks of

global android banking apps. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 1310ś1322.

[4] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. 2019. Android HIV: A study of repackaging malware for
evading machine-learning detection. IEEE Transactions on Information Forensics
and Security 15 (2019), 987ś1001. https://doi.org/10.1109/TIFS.2019.2932228

[5] Anupam Das, Nikita Borisov, and Matthew Caesar. 2016. Tracking Mobile Web
Users Through Motion Sensors: Attacks and Defenses.. In NDSS.

[6] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
2010. Privilege escalation attacks on android. In international conference on
Information security. Springer, 346ś360. https://doi.org/10.1007/978-3-642-
18178-8_30

[7] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari
Nelakuditi. 2014. AccelPrint: Imperfections of Accelerometers Make Smartphones
Trackable.. In NDSS.

[8] Mohammad Javad Dousti, Majid Ghasemi-Gol, Mahdi Nazemi, and Massoud
Pedram. 2015. ThermTap: An online power analyzer and thermal simulator for
Android devices. In IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED). 341ś346. https://doi.org/10.1109/ISLPED.2015.7273537

[9] Facebook. 2019. Facebook advisory for CVE-2019-3568. https://www.facebook.c
om/security/advisories/cve-2019-3568.

[10] Freedesktop.org. 2021. The Mesa 3D Graphics Library. https://mesa3d.org/.
[11] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand

pwning unit: Accelerating microarchitectural attacks with the GPU. In 2018 IEEE
Symposium on Security and Privacy (SP). 195ś210. https://doi.org/10.1109/SP.201
8.00022

[12] Dan Ginsburg. 2007. AMD_performance_monitor. https://www.khronos.org/re
gistry/OpenGL/extensions/AMD/AMD_performance_monitor.txt.

[13] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Trachtenberg,
Jason Hennessey, Alex Ionescu, and Anders Fogh. 2019. Page cache attacks. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’19). 167ś180. https://doi.org/10.1145/3319535.3339809

[14] Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. 2017. Cache-based appli-
cation detection in the cloud using machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security (ASIA CCS
’17). 288ś300. https://doi.org/10.1145/3052973.3053036

[15] Berk Gulmezoglu, Andreas Zankl, M Caner Tol, Saad Islam, Thomas Eisenbarth,
and Berk Sunar. 2019. Undermining user privacy on mobile devices using ai. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security (Asia CCS ’19). ACM New York, NY, USA, 214ś227. https://doi.org/10.1
145/3321705.3329804

[16] Ben Hawkes and Project Zero. 2020. Project Zero: Attacking the Qualcomm
Adreno GPU. https://googleprojectzero.blogspot.com/2020/09/attacking-
qualcomm-adreno-gpu.html.

[17] Bo-Jhang Ho, Paul Martin, Prashanth Swaminathan, and Mani Srivastava. 2015.
From pressure to path: Barometer-based vehicle tracking. In Proceedings of the
2nd ACM International Conference on Embedded Systems for Energy-Efficient Built
Environments. 65ś74. https://doi.org/10.1145/2821650.2821665

[18] Google Inc. 2020. Security-Enhanced Linux in Android. https://source.android.c
om/security/selinux.

[19] Google Inc. 2021. Google Android fts_driver_test_write Heap-based Buffer
Overflow Privilege Escalation Vulnerability. https://www.zerodayinitiative.com/
advisories/ZDI-21-279/.

[20] Google Inc. 2021. include/uapi/linux/msm_kgsl.h - kernel/msm - Git at Google.
https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/include/ua
pi/linux/msm_kgsl.h.

[21] Google Inc. 2021. Play Protect | Google Developers. https://developers.google.co
m/android/play-protect.

[22] Google Inc. 2021. Privilege escalation in Google Android. https://source.android
.com/security/bulletin/pixel/2021-01-01.

[23] Google Inc. 2021. Reduce overdraw. https://developer.android.com/topic/perfor
mance/rendering/overdraw.

[24] Qualcomm Technologies Inc. 2021. Qualcomm Adreno GPU Overview. https://de
veloper.qualcomm.com/docs/adreno-gpu/developer-guide/gpu/overview.html.

[25] Akanksha Jain and Calvin Lin. 2019. Cache Replacement Policies. Synthesis
Lectures on Computer Architecture 14, 1 (2019), 1ś87. https://doi.org/10.2200/S0
0922ED1V01Y201905CAC047

[26] Abdul Rehman Javed, Mirza Omer Beg, Muhammad Asim, Thar Baker, and Ali Hi-
lal Al-Bayatti. 2020. AlphaLogger: Detecting motion-based side-channel attack
using smartphone keystrokes. Journal of Ambient Intelligence and Humanized
Computing (2020), 1ś14. https://doi.org/10.1007/s12652-020-01770-0

[27] Elmira Karimi, Zhen Hang Jiang, Yunsi Fei, and David Kaeli. 2018. A timing
side-channel attack on a mobile gpu. In 2018 IEEE 36th International Conference on
Computer Design (ICCD). IEEE, 67ś74. https://doi.org/10.1109/ICCD.2018.00020

[28] Jari Komppa. 2009. QCOM_performance_monitor_global_mode. https://www.
khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monit
or_global_mode.txt.

298

https://m.facebook.com
https://m.facebook.com
https://instagram.com
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://doi.org/10.1145/2420950.2420957
https://doi.org/10.1109/TIFS.2019.2932228
https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1109/ISLPED.2015.7273537
https://www.facebook.com/security/advisories/cve-2019-3568
https://www.facebook.com/security/advisories/cve-2019-3568
https://mesa3d.org/
https://doi.org/10.1109/SP.2018.00022
https://doi.org/10.1109/SP.2018.00022
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_performance_monitor.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_performance_monitor.txt
https://doi.org/10.1145/3319535.3339809
https://doi.org/10.1145/3052973.3053036
https://doi.org/10.1145/3321705.3329804
https://doi.org/10.1145/3321705.3329804
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://doi.org/10.1145/2821650.2821665
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.zerodayinitiative.com/advisories/ZDI-21-279/
https://www.zerodayinitiative.com/advisories/ZDI-21-279/
https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/include/uapi/linux/msm_kgsl.h
https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/include/uapi/linux/msm_kgsl.h
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect
https://source.android.com/security/bulletin/pixel/2021-01-01
https://source.android.com/security/bulletin/pixel/2021-01-01
https://developer.android.com/topic/performance/rendering/overdraw
https://developer.android.com/topic/performance/rendering/overdraw
https://developer.qualcomm.com/docs/adreno-gpu/developer-guide/gpu/overview.html
https://developer.qualcomm.com/docs/adreno-gpu/developer-guide/gpu/overview.html
https://doi.org/10.2200/S00922ED1V01Y201905CAC047
https://doi.org/10.2200/S00922ED1V01Y201905CAC047
https://doi.org/10.1007/s12652-020-01770-0
https://doi.org/10.1109/ICCD.2018.00020
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt

Eavesdropping User Credentials via GPU Side Channels on Smartphones ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

[29] Sangchul Lee and Jae Wook Jeon. 2010. Evaluating performance of Android
platform using native C for embedded systems. In ICCAS 2010. IEEE, 1160ś1163.
https://doi.org/10.1109/ICCAS.2010.5669738

[30] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. 2014. Stealing webpages
rendered on your browser by exploiting GPU vulnerabilities. In 2014 IEEE Sym-
posium on Security and Privacy. IEEE, 19ś33. https://doi.org/10.1109/SP.2014.9

[31] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In Proceedings
of the 25th USENIX Conference on Security Symposium (SEC’16). 549ś564.

[32] Chao Luo, Yunsi Fei, and David Kaeli. 2019. Side-channel Timing Attack of RSA
on a GPU. ACM Transactions on Architecture and Code Optimization (TACO) 16, 3
(2019), 1ś18. https://doi.org/10.1145/3341729

[33] Anindya Maiti, Murtuza Jadliwala, Jibo He, and Igor Bilogrevic. 2015. (Smart)
watch your taps: Side-channel keystroke inference attacks using smartwatches.
In Proceedings of the 2015 ACM International Symposium on Wearable Computers.
27ś30. https://doi.org/10.1145/2802083.2808397

[34] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan Boneh,
and Gabi Nakibly. 2015. Powerspy: Location tracking using mobile device power
analysis. In 24th USENIX Security Symposium. 785ś800.

[35] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. 2012. Tapprints: your finger taps have fingerprints. In Proceedings
of the 10th international conference on Mobile systems, applications, and services
(MobiSys ’12). 323ś336. https://doi.org/10.1145/2307636.2307666

[36] Elizabeth Montalbano. 2020. Facebook Messenger Bug Allows Spying on Android
Users. https://threatpost.com/facebook-messenger-bug-spying-android/161435
/.

[37] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh.
2018. Rendered insecure: GPU side channel attacks are practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). 2139ś2153. https://doi.org/10.1145/3243734.3243831

[38] Lucky Onwuzurike and Emiliano De Cristofaro. 2015. Danger is my middle name:
experimenting with SSL vulnerabilities in Android apps. In Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile Networks. 1ś6.
https://doi.org/10.1145/2766498.2766522

[39] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. 2012. Ac-
cessory: password inference using accelerometers on smartphones. In Proceedings
of the twelfth workshop on mobile computing systems & applications (HotMobile
’12). 1ś6. https://doi.org/10.1145/2162081.2162095

[40] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. 2019. Why people (don’t) use password managers effectively. In
The 15th Symposium on Usable Privacy and Security. 319ś338.

[41] Bahman Rashidi and Carol J Fung. 2015. A Survey of Android Security Threats
and Defenses. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 6, 3
(2015), 3ś35. https://doi.org/10.22667/JOWUA.2015.09.31.003

[42] Jose Ribeiro, Firooz B Saghezchi, Georgios Mantas, Jonathan Rodriguez, and
Raed A Abd-Alhameed. 2020. Hidroid: prototyping a behavioral host-based
intrusion detection and prevention system for android. IEEE Access 8 (2020),
23154ś23168. https://doi.org/10.1109/ACCESS.2020.2969626

[43] Jong-hyuk Roh, Sung-Hun Lee, and Soohyung Kim. 2016. Keystroke dynamics
for authentication in smartphone. In 2016 International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 1155ś1159. https:
//doi.org/10.1109/ICTC.2016.7763394

[44] Martin Peres Samuel Pitoiset. 2014. Expose NVIDIA’s performance counters to
the userspace for NV50/Tesla. https://www.x.org/wiki/Events/XDC2014/XDC2
014PitoisetNouveau/talk-perf.pdf.

[45] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2016.
Madam: Effective and efficient behavior-based android malware detection and
prevention. IEEE Transactions on Dependable and Secure Computing 15, 1 (2016),
83ś97. https://doi.org/10.1109/TDSC.2016.2536605

[46] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012.
łAndromalyž: a behavioral malware detection framework for android devices.
Journal of Intelligent Information Systems 38, 1 (2012), 161ś190. https://doi.org/
10.1007/s10844-010-0148-x

[47] Yuru Shao, Xiapu Luo, and Chenxiong Qian. 2014. Rootguard: Protecting rooted
android phones. Computer 47, 6 (2014), 32ś40. https://doi.org/10.1109/MC.2014.
163

[48] Ki-Cheol Son and Jong-Yeol Lee. 2011. The method of android application speed
up by using NDK. In 2011 3rd International Conference on Awareness Science and
Technology (iCAST). IEEE, 382ś385. https://doi.org/10.1109/ICAwST.2011.616310
4

[49] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan Mangard. 2018.
Procharvester: Fully automated analysis of procfs side-channel leaks on android.
In Proceedings of the 2018 on Asia Conference on Computer and Communications
Security (ASIACCS ’18). 749ś763. https://doi.org/10.1145/3196494.3196510

[50] Raphael Spreitzer, Gerald Palfinger, and Stefan Mangard. 2018. Scandroid: Au-
tomated side-channel analysis of android apis. In Proceedings of the 11th ACM
Conference on Security & Privacy in Wireless and Mobile Networks (WiSec ’18).
224ś235. https://doi.org/10.1145/3212480.3212506

[51] Elizabeth Stobert and Robert Biddle. 2015. Expert password management. In
International Conference on Passwords. Springer, 3ś20. https://doi.org/10.1007/97
8-3-319-29938-9_1

[52] Jeff Vander Stoep. 2015. ioctl command whitelisting in SELinux. http://kernsec.
org/files/lss2015/vanderstoep.pdf.

[53] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-Ghazaleh, Srikanth V
Krishnamurthy, Edward JMColbert, and Paul Yu. 2019. Unveiling your keystrokes:
A Cache-based Side-channel Attack on Graphics Libraries. In NDSS.

[54] Davey Winder. 2020. Qualcomm Snapdragon Bugs Leave 40% Of World’s Smart-
phones Exposed To Spying Threat. https://www.forbes.com/sites/daveywind
er/2020/08/06/hundreds-of-millions-of-android-phones-can-spy-on-users-
as-400-snapdragon-security-flaws-confirmed-qualcomm-google-lg-samsung-
oneplus/.

[55] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth. 2009. Accuracy of
performance counter measurements. In 2009 IEEE International Symposium on
Performance Analysis of Systems and Software. IEEE, 23ś32. https://doi.org/10.1
109/ISPASS.2009.4919635

[56] Hang Zhang, Dongdong She, and Zhiyun Qian. 2015. Android root and its
providers: A double-edged sword. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 1093ś1104. https:
//doi.org/10.1145/2810103.2813714

[57] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A Gunter, and Klara Nahrstedt. 2013. Identity, loca-
tion, disease and more: Inferring your secrets from android public resources. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 1017ś1028. https://doi.org/10.1145/2508859.2516661

299

https://doi.org/10.1109/ICCAS.2010.5669738
https://doi.org/10.1109/SP.2014.9
https://doi.org/10.1145/3341729
https://doi.org/10.1145/2802083.2808397
https://doi.org/10.1145/2307636.2307666
https://threatpost.com/facebook-messenger-bug-spying-android/161435/
https://threatpost.com/facebook-messenger-bug-spying-android/161435/
https://doi.org/10.1145/3243734.3243831
https://doi.org/10.1145/2766498.2766522
https://doi.org/10.1145/2162081.2162095
https://doi.org/10.22667/JOWUA.2015.09.31.003
https://doi.org/10.1109/ACCESS.2020.2969626
https://doi.org/10.1109/ICTC.2016.7763394
https://doi.org/10.1109/ICTC.2016.7763394
https://www.x.org/wiki/Events/XDC2014/XDC2014PitoisetNouveau/talk-perf.pdf
https://www.x.org/wiki/Events/XDC2014/XDC2014PitoisetNouveau/talk-perf.pdf
https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1007/s10844-010-0148-x
https://doi.org/10.1007/s10844-010-0148-x
https://doi.org/10.1109/MC.2014.163
https://doi.org/10.1109/MC.2014.163
https://doi.org/10.1109/ICAwST.2011.6163104
https://doi.org/10.1109/ICAwST.2011.6163104
https://doi.org/10.1145/3196494.3196510
https://doi.org/10.1145/3212480.3212506
https://doi.org/10.1007/978-3-319-29938-9_1
https://doi.org/10.1007/978-3-319-29938-9_1
http://kernsec.org/files/lss2015/vanderstoep.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf
https://www.forbes.com/sites/daveywinder/2020/08/06/hundreds-of-millions-of-android-phones-can-spy-on-users-as-400-snapdragon-security-flaws-confirmed-qualcomm-google-lg-samsung-oneplus/
https://www.forbes.com/sites/daveywinder/2020/08/06/hundreds-of-millions-of-android-phones-can-spy-on-users-as-400-snapdragon-security-flaws-confirmed-qualcomm-google-lg-samsung-oneplus/
https://www.forbes.com/sites/daveywinder/2020/08/06/hundreds-of-millions-of-android-phones-can-spy-on-users-as-400-snapdragon-security-flaws-confirmed-qualcomm-google-lg-samsung-oneplus/
https://www.forbes.com/sites/daveywinder/2020/08/06/hundreds-of-millions-of-android-phones-can-spy-on-users-as-400-snapdragon-security-flaws-confirmed-qualcomm-google-lg-samsung-oneplus/
https://doi.org/10.1109/ISPASS.2009.4919635
https://doi.org/10.1109/ISPASS.2009.4919635
https://doi.org/10.1145/2810103.2813714
https://doi.org/10.1145/2810103.2813714
https://doi.org/10.1145/2508859.2516661

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 GPU Overdraw in Android
	2.2 Performance Counters of Adreno GPUs

	3 Overview
	3.1 Threat Model
	3.2 Attack Overview
	3.3 Accessing GPU Performance Counters
	3.4 Eavesdropping User Inputs

	4 Reading Performance Counter Values
	5 Accurate Eavesdropping in Practical Systems
	5.1 Addressing the Impacts of System Factors
	5.2 Recognizing Application Switch
	5.3 Eavesdropping with Input Corrections

	6 Implementation
	7 Evaluation
	7.1 Inference Accuracy
	7.2 Impact of User Input Speed
	7.3 Impact of CPU and GPU Workloads
	7.4 Impact of Interval Reading GPU PCs
	7.5 Adaptability of Attack
	7.6 Timeliness and Overhead

	8 Experimentation with Practical Use
	9 Attack Mitigation
	9.1 Simple Mitigation Methods
	9.2 Mitigation through GPU PC Access Control
	9.3 Other Mitigations

	10 Related Work
	11 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Methodology

	References

