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Abstract—Disruption Tolerant Networks (DTNs) are charac-
terized by the low node density, unpredictable node mobility
and lack of global network information. Most of current
research efforts in DTNs focus on data forwarding, but only
limited work has been done on providing effective data access
to mobile users. In this paper, we propose a novel approach
to support cooperative caching in DTNs, which enables the
sharing and coordination of cached data among multiple nodes
and reduces data access delay. Our basic idea is to intentionally
cache data at a set of Network Central Locations (NCLs),
which can be easily accessed by other nodes in the network.
We propose an effective scheme which ensures appropriate
NCL selection based on a probabilistic selection metric, and
coordinate multiple caching nodes to optimize tradeoff between
data accessibility and caching overhead. Extensive trace-driven
simulations show that our scheme significantly improves data
access performance compared to existing schemes.

I. INTRODUCTION

Disruption Tolerant Networks (DTNs) [7] consist of mo-
bile devices which contact each other opportunistically. Due
to the low node density and unpredictable node mobility,
only intermittent connectivity among mobile nodes exist in
DTNs, and the subsequent difficulty of maintaining persis-
tent end-to-end connection makes it necessary to use “carry-
and-forward” methods for data transmission. Node mobility
is exploited to let mobile nodes physically carry data as
relays, and forward data opportunistically when contacting
others. The key problem is therefore how to determine the
appropriate relay selection strategy.

Although many data forwarding schemes have been pro-
posed in DTNs [4], [1], [6], [12], [10], there is only limited
research effort on providing effective data access to mobile
users, despite the importance of data accessibility in many
mobile computing applications. For example, it is desirable
that Smartphone users can find interesting digital content
from their nearby peers. In Vehicular Ad-hoc Networks
(VANETs), the availability of live traffic information will
be beneficial for vehicles to avoid traffic delays.

In these applications, data will only be requested by
mobile users whenever needed, and requesters do not know
the data locations in advance. The destination of data is
hence unknown when data is generated. This communication
paradigm differs from well-studied publish/subscribe sys-
tems [24], [16], in which data is forwarded by broker nodes
to users according to their data subscriptions. Appropriate

network design is needed to ensure that data can be promptly
accessed by the requesters in such cases.

A common technique used to improve data access perfor-
mance is caching, i.e., to cache data at appropriate network
locations based on the query history, so that queries in the
future can be responded with less delay. Although cooper-
ative caching has been extensively studied for both web-
based applications [8], [22] and wireless ad-hoc networks
[23] to allow the sharing and coordination of cached data
among multiple nodes, it is difficult to be realized in DTNs
due to the lack of persistent network connectivity. First, the
opportunistic network connectivity complicates the estima-
tion about data transmission delay, and furthermore makes
it difficult to determine appropriate caching location for
reducing data access delay. This difficulty is also raised by
the incomplete information at individual nodes about query
history. Second, due to the uncertainty of data transmission,
multiple data copies need to be cached at different locations
to ensure data accessibility. The difficulty in coordinating
multiple caching nodes makes it hard to optimize the tradeoff
between data accessibility and caching overhead.

In this paper, we propose a novel scheme to address the
aforementioned challenges and to effectively support coop-
erative caching in DTNs. Our basic idea is to intentionally
cache data at a set of Network Central Locations (NCLs),
each of which corresponds to a group of mobile nodes being
easily accessed by other nodes in the network. Each NCL is
represented by a central node, which has high popularity in
the network and is prioritized for caching data. Due to the
limited caching buffer of central nodes, multiple nodes near
a central node may be involved for caching, and we ensure
that popular data is always cached nearer to the central nodes
via dynamic cache replacement based on query history. Our
detailed contributions are listed as follows:

∙ We develop an effective approach to NCL selection in
DTNs based on a probabilistic selection metric.

∙ We propose a data access scheme to probabilistically
coordinate multiple caching nodes for responding to
user queries, and furthermore optimize the tradeoff
between data accessibility and caching overhead.

∙ We propose a utility-based cache replacement scheme
to dynamically adjust cache locations based on query
history, and our scheme achieves good tradeoff between
the data accessibility and access delay.
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Figure 1. Caching strategies in different network environments. Data 𝑑1 generated by node 𝐴 is requested by nodes 𝐷 and 𝐸, and 𝑑2 generated by node
𝐵 is requested by node 𝐹 . A solid line in Figure 1(a) between nodes indicates a wireless link, and a dotted line in Figure 1(b) indicates that two nodes
opportunistically contact each other.

The rest of this paper is organized as follows. In Section
II we briefly review existing work. Section III provides an
overview of our approach and highlights our motivation of
intentional caching in DTNs. Section IV describes how to
appropriately select NCLs in DTNs, and Section V describes
the details of our proposed caching scheme. The results of
trace-driven performance evaluations are shown in Section
VI, and Section VII concludes the paper.

II. RELATED WORK

Research on data forwarding in DTNs originates from
Epidemic routing [21] which floods the entire network.
Some later studies develop relay selection strategies to
approach the performance of Epidemic routing with lower
forwarding cost, based on prediction of node contact in the
future. Some schemes do such prediction based on their
mobility patterns, which are characterized by semi-Markov
chains [25] or Hidden Markov Models [9]. Some others [4],
[1] exploit node contact records in the past as stochastic
processes for better prediction accuracy.

Data access in DTNs, on the other hand, can be provided
in various ways. Data can be disseminated to appropriate
users based on their interest profiles [11]. Publish/subscribe
systems [24], [16] are most commonly used for such data
dissemination, and they usually exploit social community
structures to determine the brokers. In other schemes [15],
[2] without brokers, data items are grouped into pre-defined
channels, and data dissemination is based on the users’
subscriptions to these channels.

Caching is another way to provide data access. In [23],
the authors studied cooperative caching in wireless ad-hoc
networks, in which each node caches pass-by data based on
data popularity, so that queries in the future can be responded
with less delay. They selected caching locations incidentally
among all the network nodes. Some research efforts [18],
[13] have been made for caching in DTNs, but they only
improve data accessibility from infrastructure network such
as WiFi Access Points (APs) [13] or Internet [18]. Peer-
to-peer data sharing and access among mobile users are
generally neglected.

Distributed determination of caching policies for mini-
mizing data access delay has been studied in DTNs [19],
[14], but they generally rely on assumptions which simplify
the network conditions. In [19], it is assumed that all the
nodes in the network contact each other with the same rate.
In [14], mobile users are artificially partitioned into several
classes, such that users in the same class are statistically
identical. Comparatively, in this paper we propose to support
cooperative caching among peer mobile nodes in DTNs with
heterogeneous contact patterns and behaviors.

III. OVERVIEW

A. Motivation

A requester generally queries the network to access a data
item. The data source or caching nodes then reply to the
requester with data, after having received the query. The
key difference between caching strategies in wireless ad-
hoc networks and DTNs is illustrated in Figure 1. Note that
the key constraint is that each node has limited space for
caching. Otherwise, data can be cached everywhere and it
is trivial to design different caching strategies.

The design of caching strategy in wireless ad-hoc net-
works benefits from the existence of end-to-end paths among
mobile nodes, and the path from a requester to the data
source remains unchanged during data access in most cases.
Therefore, any intermediate node on the path is able to cache
the pass-by data. For example, in Figure 1(a), 𝐶 forwards
all the three queries to the data sources 𝐴 and 𝐵, and also
forwards the data 𝑑1 and 𝑑2 to the requesters. In case of
limited cache space, 𝐶 caches the more popular data 𝑑1
based on the query history, and similarly data 𝑑2 is cached
at node 𝐾. In general, any node in the network is able to
cache the pass-by data incidentally.

However, the effectiveness of such incidental caching
strategy is seriously impaired in DTNs due to the lack
of persistent network connectivity. Since data is forwarded
via opportunistic contacts, the query and replied data may
take different routes, which makes it difficult for nodes
to collect the information about query history and make
caching decision. For example, in Figure 1(b), after having
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Figure 2. The big picture of intentional caching

forwarded query 𝑞2 to the data source 𝐴, node 𝐶 may lose
its connection to 𝐺, and hence does not have chance to cache
data 𝑑1 replied to requester 𝐸. Node 𝐻 which forwards the
replied data to 𝐸 does not cache the pass-by data 𝑑1 either,
because it did not record the query 𝑞2 and considers 𝑑1 less
popular. In this case, 𝑑1 will eventually be cached at node 𝐺,
and hence needs longer time to be replied to the requester.

Our basic solution to address this challenge and improve
the caching performance in DTNs is to restrain the scope of
nodes being involved for caching. Instead of being inciden-
tally cached “anywhere”, data is intentionally cached only at
specific nodes. These nodes are carefully selected to ensure
data accessibility, and the constrained scope of caching
locations then reduces the complexity of maintaining query
history and making appropriate caching decision.

B. Network Model

Opportunistic contacts in DTNs are described by network
contact graph 𝐺(𝑉,𝐸), where stochastic contact process
between a node pair 𝑖, 𝑗 ∈ 𝑉 is modeled as an edge 𝑒𝑖𝑗 . The
characteristics of an edge 𝑒𝑖𝑗 ∈ 𝐸 are mainly determined by
the properties of inter-contact time among mobile nodes.
Similar to previous work [1], [26], we consider the pairwise
node inter-contact time as exponentially distributed. The
contacts between nodes 𝑖 and 𝑗 then form a Poisson process
with contact rate 𝜆𝑖𝑗 , which remains relatively constant
and is calculated at real-time from the cumulative contacts
between nodes 𝑖 and 𝑗 since the network starts.

C. The Big Picture

We consider a general caching scenario, in which each
node may generate data with a globally unique identifier
and finite lifetime, and may also request for another data
by sending queries with a finite time constraint. Therefore,
data requesters are randomly distributed in the network and
are not spatially correlated with each other. We focus on
effectively utilizing the available node buffer to optimize the
overall caching performance indicated by data access delay.

Our basic idea is to intentionally cache data only at a
specific set of NCLs, which can be easily accessed by other
nodes in the network. Queries are forwarded to NCLs for

data access1. The big picture of our proposed scheme is
illustrated in Figure 2. Each NCL is represented by a central
node2, which corresponds to a star in Figure 2. The push and
pull caching strategies conjoin at the NCLs. The data source
𝑆 actively pushes its generated data towards the NCLs, and
the central nodes 𝐶1 and 𝐶2 of NCLs are prioritized for
caching data. If the buffer of a central node 𝐶1 is full, data is
cached at another node 𝐴 near 𝐶1. Multiple nodes at a NCL
may be involved for caching, and a NCL hence corresponds
to a connected subgraph of the network contact graph 𝐺,
which is illustrated as the dashed circles in Figure 2. A
requester 𝑅 pulls data by querying NCLs, and data copies
from multiple NCLs are returned to ensure prompt data
access. Particularly, some NCL such as 𝐶2 may be too far
from 𝑅 to receive the query on time, and does not respond
with the data. In this case, data accessibility is determined
by both node contact frequency and data lifetime.

IV. NETWORK CENTRAL LOCATIONS

In this section, we describe how to select NCLs based on
a probabilistic metric evaluating the data transmission delay
among nodes in DTNs. The applicability of such selection
in practice is supported by the heterogeneity of node contact
pattern in realistic DTN traces.

A. NCL Selection Metric

We first define the multi-hop opportunistic connection on
network contact graph 𝐺 = (𝑉,𝐸).

Definition 1: Opportunistic path
A 𝑟-hop opportunistic path 𝑃𝐴𝐵 = (𝑉𝑃 , 𝐸𝑃 ) be-

tween nodes 𝐴 and 𝐵 consists of a node set 𝑉𝑃 =
{𝐴,𝑁1, 𝑁2, ..., 𝑁𝑟−1, 𝐵} ⊂ 𝑉 and an edge set 𝐸𝑃 =
{𝑒1, 𝑒2, ..., 𝑒𝑟} ⊂ 𝐸 with edge weights {𝜆1, 𝜆2, .., 𝜆𝑟}. Path
weight 𝑝𝐴𝐵(𝑇 ) is the probability that data is opportunisti-
cally transmitted from 𝐴 to 𝐵 along 𝑃𝐴𝐵 within time 𝑇 .

The inter-contact time 𝑋𝑘 between nodes 𝑁𝑘 and 𝑁𝑘+1

on 𝑃𝐴𝐵 , as a random variable, follows an exponential dis-
tribution with probability density function (PDF) 𝑝𝑋𝑘

(𝑥) =
𝜆𝑘𝑒

−𝜆𝑘𝑥. Hence, the total time needed to transmit data from
𝐴 to 𝐵 is 𝑌 =

∑𝑟
𝑘=1𝑋𝑘 following a hypoexponential

distribution [20], such that

𝑝𝑌 (𝑥) =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 𝑝𝑋𝑘

(𝑥), (1)

where the coefficients 𝐶(𝑟)
𝑘 =

𝑟∏
𝑠=1,𝑠 ∕=𝑘

𝜆𝑠

𝜆𝑠−𝜆𝑘
.

From Eq. (1), the path weight is written as

𝑝𝐴𝐵(𝑇 ) =

∫ 𝑇

0

𝑝𝑌 (𝑥)𝑑𝑥 =

𝑟∑
𝑘=1

𝐶
(𝑟)
𝑘 ⋅ (1− 𝑒−𝜆𝑘𝑇 ), (2)

1Note that our scheme is different from publish/subscribe system, in
which the published data is forwarded to subscribers instead of being cached
by the brokers.

2In the rest of this paper, a central node is used equivalently to denote
the corresponding NCL.
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Table I
TRACE SUMMARY

Trace Infocom05 Infocom06 MIT Reality UCSD

Network type Bluetooth Bluetooth Bluetooth WiFi
No. of devices 41 78 97 275

No. of internal contacts 22,459 182,951 114,046 123,225
Duration (days) 3 4 246 77

Granularity (secs) 120 120 300 20
Pairwise contact frequency (per day) 4.6 6.7 0.024 0.036

(a) Infocom05 (b) Infocom06 (c) MIT Reality (d) UCSD

Figure 3. Values of NCL selection metric on realistic DTN traces

and the data transmission delay between two nodes 𝐴 and 𝐵
is measured by the weight of the shortest opportunistic path
between the two nodes. In practice, mobile nodes maintain
the information about shortest opportunistic paths between
each other in a distance-vector manner when they contact.

The metric 𝐶𝑖 for a node 𝑖 to be selected as a central
node to represent a NCL is then defined as follows:

𝐶𝑖 =
1

𝑁 − ∣ℕ𝐶 ∣ ⋅
∑

𝑗∈𝑉 ∖ℕ𝐶

𝑝𝑖𝑗(𝑇 ), (3)

where 𝑁 = ∣𝑉 ∣, 𝑝𝑖𝑖(𝑇 ) = 0 and ℕ𝐶 indicates the set of
selected central nodes. This metric indicates the average
probability that data can be transmitted from a random non-
central node to node 𝑖 within time 𝑇 .

Central nodes representing NCLs are selected sequentially
by the network administrator before data access, based
on the global knowledge about pairwise contact rates and
shortest opportunistic paths among mobile nodes. Each time
the node in 𝑉 ∖ℕ𝐶 with the highest metric value is selected
as the central node, until the required 𝐾 central nodes
are selected. 𝐾 is a pre-defined parameter determined by
performance requirements and will be discussed in Section
V-E in more details. Note that in Eq. (3) the existing central
nodes are excluded from calculating 𝐶𝑖, the selected central
nodes hence will not be clustered on network contact graph.

A network warm-up period is reserved for nodes to collect
information and calculate their pairwise contact rate as
described in Section III-B. The parameter 𝑇 used in Eq.
(3) is determined by the average node contact frequency in
the network. This parameter is generally trace-dependent and
will be discussed later in Section IV-B.

After the central nodes representing NCLs are selected,
the network administrator is responsible for notifying each

node in the network about the information of NCLs, and this
notification can be done via cellular 3G links. Since each
node is only notified about the list of central nodes, this
notification is cost-effective without producing noticeable
communication overhead.

The central nodes are selected due to their popularity
in the network, rather than their computation or storage
capabilities. Therefore, in general we assume that the central
nodes have similar capabilities in computation, data trans-
mission and storage with other nodes in DTNs. According to
Section III-B, the pairwise contact rates among nodes tends
to remain stable during long time, and hence the selected
NCLs do not need to be changed during data access. Since
central nodes are selected in a sequential manner, a selected
central node unwilling to cache data can be simply neglected
without affecting the selection of other central nodes.

B. Trace-based Validation

The practical applicability of NCL selection is based on
the heterogeneity of node contact patterns, such that nodes
in DTNs differ in their popularity and few nodes contact
many others frequently. In this section, we validate this
applicability using realistic DTN traces.

These traces record contacts among users carrying hand-
held mobile devices in corporate environments, includ-
ing conference sites and university campus. The devices
equipped with a Bluetooth interface periodically detect their
peers nearby, and a contact is recorded when two devices
move close to each other. The devices equipped with a WiFi
interface search for nearby WiFi Access Points (APs) and
associate themselves to the APs with the best signal strength.
A contact is recorded when two devices are associated to the
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same AP. The traces are summarized in Table I.
We calculate pairwise node contact rates based on their

cumulative contacts during the entire trace. According to
Eq. (2), inappropriate values of 𝑇 will make 𝐶𝑖 close to 0
or 1. Instead, the values of 𝑇 are adaptively determined in
different traces to ensure the differentiation of NCL selection
metric values of mobile nodes. 𝑇 is set as 1 hour for the
two Infocom traces, 1 week for the MIT Reality trace, and
3 days for the UCSD trace.

The results in Figure 3 show that the distributions of
NCL selection metric values of nodes are highly skewed
in all traces, such that the metric values of few nodes are
much higher than that of others. This difference can be up to
tenfold, and supports that our proposed NCL selection metric
appropriately indicates the heterogeneity of node contact
pattern. As a result, the selected NCLs can be easily accessed
by other nodes in the network.

V. CACHING SCHEME

In this section, we present our cooperative caching
scheme. Our basic idea is to intentionally cache data at a set
of NCLs which can be promptly accessed by other nodes.
Our scheme consists of the following three components:

1) When a data source generates data, it pushes data to
central nodes of NCLs which are prioritized to cache
data. One copy of data is cached at each NCL. If the
caching buffer of a central node is full, another node
near the central node will be decided to cache the data.
Such decisions are automatically made based on buffer
conditions of nodes involved in the pushing process.

2) A requester multicasts a query to central nodes of
NCLs to pull data, and a central node forwards the
query to the caching nodes. Multiple data copies are
returned to the requester, and we optimize the tradeoff
between data accessibility and transmission overhead
by controlling the number of returned data copies.

3) Utility-based3 cache replacement is conducted when-
ever two caching nodes contact each other, and ensures
that popular data is cached nearer to central nodes.
We generally cache more copies of popular data to
optimize the cumulative data access delay, and proba-
bilistically cache less popular data to ensure the overall
data accessibility.

A. Caching Location

Whenever a node 𝑆 generates new data, 𝑆 pushes the
data to NCLs by sending a data copy to each central node
representing a NCL. We use the opportunistic path weight
to the central node as relay selection metric for such data
forwarding, and a relay forwards data to another node with
higher metric than itself.

3For newly created data, the utility value will initially be low since the
data has not yet been requested.
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Figure 4. Determining caching location at NCLs

Figure 5. Pulling data from the NCLs

For newly generated data, the initial caching locations are
automatically determined during such forwarding process
based on node buffer conditions. The caching locations are
then dynamically adjusted by cache replacement described
in Section V-D according to query history. In general, data
is forwarded to and cached at central nodes. This forwarding
process only stops when the caching buffer of the next relay
is full4, and data is cached at the current relay in such
cases. In other words, during the data forwarding process
towards central nodes, relays carrying data are considered
as temporal caching locations of the data.

Such determination of caching location is illustrated in
Figure 4, where the solid lines indicate opportunistic con-
tacts used to forward data, and the dashed lines indicate
data forwarding stopped by node buffer constraint. Central
node 𝐶1 is able to cache data, but data copies to 𝐶2 and 𝐶3

are stopped and cached at relays 𝑅2
4 and 𝑅3

3 respectively,
because neither 𝐶2 nor 𝑅3

4 has enough buffer to cache data.

B. Queries

We assume that any node may request data, and hence
data requesters are randomly distributed in the network. A
requester multicasts query with a finite time constraint to all
the central nodes to pull data, and existing multicast schemes
in DTNs [12] can be exploited for this purpose.

After having received the query, a central node immedi-
ately replies to the requester with the data if it is cached

4Since the data is newly generated and has not been requested yet, no
cache replacement is necessary at the relay.
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Figure 6. Probability for deciding data response

locally5. Otherwise, it broadcasts query to the nodes nearby.
This process is illustrated in Figure 5. While the central
node 𝐶1 is able to return the cached data to 𝑅 immediately,
the caching nodes 𝐴 and 𝐵 only reply to 𝑅 after they
have received the query from central nodes 𝐶2 and 𝐶3,
respectively. The query broadcast finishes when the query
expires, so that each caching node at the NCLs is able
to maintain the up-to-date information about query history,
which is used in Section V-D for cache replacement.

C. Probabilistic Response

As shown in Figure 5, multiple data copies are replied
to the requester from NCLs to ensure that the requester
receives data before the query expires. However, only the
first data copy received by the requester is useful, and all the
others are essentially useless and waste network resources.
The major challenge for solving this problem arises from
the intermittent network connectivity in DTNs. First, it is
difficult for caching nodes to promptly communicate with
each other, and hence the optimal number of data copies
returned to requester cannot be determined in advance.
Second, a relay carrying a data copy does not know the
locations of other data copies being returned, and therefore
cannot determine whether the requester has received data.

In this section, we propose a probabilistic scheme to
address these challenges and optimize the tradeoff between
data accessibility and transmission overhead. Our basic
idea is that, having received the query, a caching node
probabilistically decides whether to return the cached data to
the requester. Different strategies are used for this decision,
according to the availability of network contact information.

We assume that the query is generated with a time
constraint 𝑇𝑞 , and it takes 𝑡0 < 𝑇𝑞 for the query to be
forwarded from requester 𝑅 to caching node 𝐶. If 𝐶 knows
the information about the shortest opportunistic paths to all
the nodes in the network, 𝐶 can determine whether to reply
data to 𝑅 with the probability 𝑝𝐶𝑅(𝑇𝑞 − 𝑡0). According to

5Particularly, if a caching node is selected as the relay during multicasting
of a query, it directly sends the cached data to the requester, without
forwarding the query to the center node.

Eq. (2), 𝑝𝐶𝑅(𝑇𝑞 − 𝑡0) indicates the probability that data can
be transmitted from 𝐶 to 𝑅 within the remaining time 𝑇𝑞−𝑡0
for responding to the query.

Otherwise, 𝐶 only maintains the information about short-
est opportunistic paths to central nodes, and it is difficult
for 𝐶 to estimate the data transmission delay to 𝑅. Instead,
the probability for deciding data response is calculated only
based on the remaining time 𝑇𝑞 − 𝑡0. In general, this proba-
bility should be proportional to 𝑇𝑞−𝑡0, and we calculate this
probability as a Sigmoid function 𝑝𝑅(𝑡), where 𝑝𝑅(𝑇𝑞) =
𝑝max ∈ (0, 1] and 𝑝𝑅(0) = 𝑝min ∈ (𝑝max/2, 𝑝max). This
function is written as

𝑝𝑅(𝑡) =
𝑘1

1 + 𝑒−𝑘2⋅𝑡 , (4)

where 𝑘1 = 2𝑝min, 𝑘2 = 1
𝑇𝑞

⋅ ln( 𝑝max

2𝑝min−𝑝max
). The quantities

𝑝max and 𝑝min in Eq. (4) are user-specified parameters of
the maximum and minimum response probabilities. As an
example, the sigmoid function with 𝑝min = 0.45, 𝑝max =
0.8, and 𝑇𝑞 = 10 hours is shown in Figure 6.

D. Cache Replacement

Caching locations of data are dynamically adjusted via
cache replacement. This replacement is based on data pop-
ularity, and places popular data nearer to the central nodes
of NCLs. Traditional cache replacement strategies such as
LRU, which removes the least-recently-used data from cache
when new data is available, are ineffective due to its over-
simplistic consideration of data popularity. Greedy-Dual-
Size [5] calculates data utility by considering data popularity
and size simultaneously, but cannot ensure optimal selection
of cached data. We improve previous work by proposing
a probabilistic cache replacement strategy, and heuristically
balances between data accessibility and access delay.

1) Data Popularity: The popularity of a data item is
probabilistically estimated based on the past 𝑘 requests to
this data happened during time period [𝑡1, 𝑡𝑘]. We assume
that such occurrences of data requests follow a Poisson
distribution with the parameter 𝜆𝑑 = 𝑘/(𝑡𝑘 − 𝑡1), and data
popularity is defined as the probability that this data will be
requested again in the future before data expires. If data 𝑑𝑖
expires at time 𝑡𝑒, its popularity is 𝑤𝑖 = 1− 𝑒−𝜆𝑑⋅(𝑡𝑒−𝑡𝑘).

2) Basic Strategy: Cache replacement opportunistically
occurs whenever two caching nodes 𝐴 and 𝐵 contact each
other, and they exchange their cached data to optimize
the cumulative data access delay6. We collect the cached
data at both nodes into a selection pool 𝕊 = {𝑑1, ..., 𝑑𝑛},
and formulate cache replacement as the following knapsack
problem:

6In DTNs, since nodes are only able to exchange data when they contact,
it is unnecessary for a caching node to actively remove obsolete data from
its local cache.
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(a) Normal cache replacement

(b) Possible data removal

Figure 7. Cache replacement

max
𝑛∑

𝑖=1

𝑥𝑖𝑢𝑖 +
𝑛∑

𝑗=1

𝑦𝑗𝑣𝑗

s.t.
𝑛∑

𝑖=1

𝑥𝑖𝑠𝑖 ≤ 𝑆𝐴,

𝑛∑
𝑗=1

𝑦𝑗𝑠𝑗 ≤ 𝑆𝐵

𝑥𝑖 + 𝑦𝑖 ≤ 1, for ∀𝑖 ∈ [1, 𝑛],

(5)

where 𝑥𝑖, 𝑦𝑖 ∈ [0, 1] indicate whether data 𝑑𝑖 is cached at
node 𝐴 and 𝐵 after replacement, respectively. 𝑠𝑖 indicates
size of data 𝑑𝑖, and 𝑆𝐴 and 𝑆𝐵 is the size of caching buffer
of node 𝐴 and 𝐵. 𝑢𝑖 = 𝑤𝑖 ⋅𝑝𝐴 and 𝑣𝑖 = 𝑤𝑖 ⋅𝑝𝐵 indicate the
utility of data 𝑑𝑖 at node 𝐴 and 𝐵 to cumulative caching
performance, where 𝑤𝑖 is popularity of data 𝑑𝑖; 𝑝𝐴 and
𝑝𝐵 are the weight of the shortest opportunistic path to the
corresponding central node of 𝐴 and 𝐵.

This formulation places popular data to caching nodes
near the central nodes. It is NP-hard since the standard 0-1
knapsack problem can reduce to this problem. We propose
a heuristic to approximate the solution of this problem.

Without loss of generality we assume that 𝑝𝐴 > 𝑝𝐵 . In
such cases, node 𝐴 is prioritized to select its data to cache
from the selection pool 𝕊, by solving the following knapsack
problem extracted from Eq. (5):

max

𝑛∑
𝑖=1

𝑥𝑖𝑢𝑖

s.t.
𝑛∑

𝑖=1

𝑥𝑖𝑠𝑖 ≤ 𝑆𝐴.

(6)

Afterwards, node 𝐵 selects data to cache from the re-
maining part of 𝕊 by solving a similar problem to Eq. (6).
Since 𝑆𝐴 and 𝑠𝑖 in Eq. (6) are usually integers in numbers
of bytes, this problem can be solved in pseudo-polynomial
time 𝑂(𝑛⋅𝑆𝐴) using a dynamic programming approach [17].

This replacement process is illustrated by an example
shown in Figure 7, where initially node 𝐴 caches data 𝑑1,
𝑑2 and 𝑑3, and node 𝐵 caches data 𝑑4, 𝑑5, 𝑑6 and 𝑑7. The
unused caching buffer of both nodes is left blank in the
figure. The two nodes exchange and replace their cached
data upon contact, based on the data utility values listed
as 𝑢𝐴 and 𝑢𝐵 . As shown in Figure 7(a), since 𝑝𝐴 > 𝑝𝐵 ,
node 𝐴 generally caches the popular data 𝑑4, 𝑑5 and 𝑑7, and
leaves data 𝑑2 and 𝑑3 with lower popularity to node 𝐵.

In cases of limited cache space, some cached data with
lower popularity may be removed from caching buffer. In
Figure 7(b), when the sizes of caching buffer of nodes 𝐴
and 𝐵 decrease, 𝐴 does not have enough buffer to cache
data 𝑑7, which is instead cached at node 𝐵. Data 𝑑6 with the
lowest popularity will then be removed from cache, because
neither node 𝐴 nor 𝐵 has enough space to cache it.

3) Probabilistic Data Selection: The aforementioned re-
moval of cached data essentially prioritizes popular data
during cache replacement, but may impair the cumulative
data accessibility. The major reason is that, according to our
network modeling in Section III-B, the data accessibility
does not increase linearly with the number of cached data
copies in the network. More specifically, the data accessibil-
ity will increase considerably if the number of cached data
copies increases from 1 to 2, but the benefit will be much
smaller if the number increases from 10 to 11. In such cases,
for the example shown in Figure 7(b), caching 𝑑1 at node
𝐴 may be ineffective, because the popular 𝑑1 may already
be cached at many other places in the network. In contrast,
removing 𝑑6 out from the cache of node 𝐵 may greatly
impair the accessibility of 𝑑6, because there may be only
few cached copies of 𝑑6 due to its lower popularity.

In other words, the basic strategy of cache replacement
only optimizes the cumulative data access delay within the
local scope of the two caching nodes in contact. Such
optimization at the global scope is challenging in DTNs
due to the difficulty of maintaining the knowledge about the
current number of cached data copies in the network, and
we instead propose a probabilistic strategy to heuristically
control the number of cached data copies at the global scope.

The basic idea is to probabilistically select data to cache
when the knapsack problem in Eq. (6) is solved by a
dynamic programming approach. More specifically, if data
𝑑𝑖 is selected by the dynamic programming algorithm, it
has probability 𝑢𝑖 to be cached at node 𝐴. This algorithm is
described in detail in Algorithm 1, where GetMax(𝕊, 𝑆𝐴)
calculates the maximal possible value of the items in the
knapsack via dynamic programming, and SelectData(𝑑𝑖max

)
determines whether to select data 𝑑𝑖max

to cache at node
𝐴 by conducting a Bernoulli experiment with probability
𝑢𝑖max

. Such probabilistic selection may be iteratively con-
ducted multiple times to ensure that the caching buffer is
fully utilized. By proposing this probabilistic strategy, we
still prioritize the popular data with higher utility during
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the caching decision, but also enable the data with less
popularity to have non-negligible chance to be cached.

Algorithm 1: Probabilistically Data Selection at node 𝐴
among the data set 𝕊

𝑖min = argmin
𝑖
{𝑠𝑖∣𝑑𝑖 ∈ 𝕊, 𝑥𝑖 == 0}

while 𝕊 ∕= ∅ && 𝑆𝐴 > 𝑠𝑖min
do

𝑉max = GetMax(𝕊, 𝑆𝐴)
𝕊
′ = 𝕊

while 𝕊
′ ∕= ∅ && 𝑉max > 0 do

𝑖max = argmax
𝑖

{𝑢𝑖∣𝑑𝑖 ∈ 𝕊
′}

if SelectData(𝑑𝑖max
)==true && 𝑉max ≥ 𝑠𝑖max

then
𝑥𝑖max

= 1
𝕊 = 𝕊 ∖ 𝑑𝑖max

𝑆𝐴 = 𝑆𝐴 − 𝑠𝑖max
, 𝑉max = 𝑉max − 𝑠𝑖max

𝕊
′ = 𝕊

′ ∖ 𝑑𝑖max

𝑖min = argmin
𝑖
{𝑠𝑖∣𝑑𝑖 ∈ 𝕊, 𝑥𝑖 == 0}

E. Discussions

In summary, data access delay of our scheme consists of
three parts: i) the time for query to be transmitted from
requester to central nodes; ii) the time for central nodes
to broadcast query to caching nodes; iii) the time for the
cached data to be returned to requester. The major reason for
such delay is opportunistic network connectivity in DTNs,
which can be a result of node mobility, device power outage
or malicious attacks. In other words, the effects of node
mobility to caching performance is implicitly considered by
exploiting node contact process.

Data access delay is closely related to the number (𝐾)
of NCLs. When 𝐾 is small, the average distance from a
node to the NCLs is longer, which makes the first and third
parts of the delay bigger. Meanwhile, since the total amount
of data being cached in the network is small, data is more
likely to be cached near to the central nodes, and the second
part of the delay can be short.

In contrast, if 𝐾 is large, the metric values of some
central nodes may not be high, and hence caching at the
corresponding NCLs may be less effective. Moreover, when
the node buffer constraint is tight, a caching node may be
shared by multiple NCLs. The NCLs with lower caching
effectiveness may disturb the caching decision of other
NCLs, and furthermore impair the caching performance.

It is clear that the number (𝐾) of NCLs is vital to the
performance of our caching scheme. In Section VI-D, we
will experimentally investigate the impact of different values
of 𝐾 to the caching performance in more details.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed intentional caching scheme, which is compared with
the following data access schemes:

(a) Amount of network data (b) Data request probabilities
Figure 8. Experiment setup

∙ No Cache, where caching is not used for data access
and each query is only responded by data source.

∙ Random Cache, in which every requester caches the
received data to facilitate data access in the future.

∙ CacheData [23], which is proposed for cooperative
caching in wireless ad-hoc networks, and lets each se-
lected relay in DTNs cache the pass-by data according
to their popularity.

∙ Bundle Cache [18], which packs network data as
bundles, and makes caching decision on pass-by data
by considering the node contact pattern in DTNs, so as
to minimize the average data access delay.

Cache replacement algorithms are proposed in CacheData
and Bundle Cache, and will also be used in our evaluations.
For No Cache and Random Cache, LRU is used for cache
replacement. The following metrics are used for evaluations.
Each simulation is repeated multiple times with randomly
generated data and queries for statistical convergence.

∙ Successful ratio, the ratio of queries being satisfied
with the requested data.

∙ Data access delay, the average delay for getting re-
sponses to queries.

∙ Caching overhead, the average number of data copies
being cached in the network.

A. Experiment Setup

Our performance evaluations are performed on the Info-
com06 and MIT Reality traces. In all the experiments, the
first half of the trace is used as warm-up period for the
accumulation of network information and subsequent NCL
selection, and all the data and queries are generated during
the second half of trace.

1) Data Generation: Each node periodically checks
whether it has generated data which has not expired yet. If
not, it determines whether to generate new data with proba-
bility 𝑝𝐺. Each generated data has finite lifetime uniformly
distributed in range [0.5𝑇, 1.5𝑇 ], and the period for data
generation decision is also set as 𝑇 . In our evaluations we
fix 𝑝𝐺 = 0.2, and the amount of data in the network is hence
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(a) Successful ratio (b) Data access delay (c) Caching overhead
Figure 9. Performance of data access with different data lifetime

(a) Successful ratio (b) Data access delay (c) Caching overhead
Figure 10. Performance of data access with different node buffer conditions

controlled by 𝑇 , as illustrated in Figure 8(a) for the MIT
Reality trace. Similarly, data size is uniformly distributed
in range [0.5𝑠𝑎𝑣𝑔, 1.5𝑠𝑎𝑣𝑔], and caching buffer of nodes
is uniformly distributed in range [200Mb, 600Mb]. 𝑠𝑎𝑣𝑔 is
adjusted to simulate different node buffer conditions.

2) Query Pattern: Queries are randomly generated at all
nodes, and each query has a finite time constraint 𝑇/2. We
assume that query pattern follows Zipf distribution which
has been proved to describe the query pattern of web data
access [3]. Let 𝑃𝑗 ∈ [0, 1] be the probability that data
𝑗 is requested, and 𝑀 be the number of data items in
the network, we have 𝑃𝑗 = 1

𝑗𝑠 /(
∑𝑀

𝑖=1
1
𝑖𝑠 ) where 𝑠 is

an exponent parameter. Values of 𝑃𝑗 with different 𝑠 are
shown in Figure 8(b). Every time 𝑇/2, each node determines
whether to request data 𝑗 with probability 𝑃𝑗 .

B. Caching Performance

We first evaluate the caching performance of our scheme
using the MIT Reality trace. We set the number (𝐾) of NCLs
as 8 and generate query pattern following Zipf distribution
with 𝑠 = 1. By default, 𝑇 = 1 week and 𝑠𝑎𝑣𝑔 = 100
Mb. These two parameters are then adjusted for different
performance evaluation purposes.

The simulation results with different values of 𝑇 are
shown in Figure 9. The successful ratio of data access is
mainly restrained by 𝑇 itself. When 𝑇 increases from 12

hours to 3 months, the successful ratio of all schemes is
significantly improved, because data has more time to be
delivered to requesters before expiration. Since the selected
NCLs are effective in communicating with other nodes, our
proposed intentional caching scheme achieves much better
successful ratio and delay of data access. As shown in
Figures 9(a) and 9(b), the performance of our scheme is
200% better than that of NoCache, and also exhibits 50%
improvement over BundleCache where nodes also inciden-
tally cache pass-by data. Comparatively, RandomCache is
ineffective due to the random distribution of requesters in
the network, and CacheData is also inappropriate to be used
in DTNs due to the difficulty of maintaining query history.

Meanwhile, Figure 9(c) shows that our proposed scheme
only requires moderate cache size, which is much lower
than that required by RandomCache and BundleCache,
especially when 𝑇 is large. RandomCache consumes the
largest caching buffer, such that each data has 5 cached
copies when 𝑇 increases to 3 months. The major reason is
that each requester blindly caches any received data until its
buffer is filled up. CacheData consumes 30% less buffer than
our scheme, but also leaves a lot of data uncached, which
seriously impairs data access performance. We notice that
caching overhead in our scheme also includes the transmis-
sion and storage cost when queries and data are transmitted
between requesters and caching nodes, and realize that such
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(a) Successful ratio (b) Data access delay (c) Cache Replacement overhead
Figure 11. Performance of data access with different cache replacement strategies

(a) Successful ratio (b) Data access delay (c) Caching overhead
Figure 12. Performance of data access with different number of NCLs

cost is proportional to data access delay during which data
is carried by relays. Hence, the cost-effectiveness of our
scheme is strongly supported by Figure 9(b).

We also evaluated data access performance with different
node buffer conditions, which is realized by adjusting 𝑠𝑎𝑣𝑔.
The simulation results are shown in Figure 10. When data
size becomes larger, less data can be cached as shown in
Figure 10(c), and data access performance is hence reduced.
In Figures 10(a) and 10(b), when 𝑠𝑎𝑣𝑔 increases from 20Mb
to 200Mb, the successful ratio of our scheme decreases
from 60% to 45%, and data access delay increases from
18 hours to 25 hours. However, the performances of other
schemes even decrease much faster, and the advantage of our
scheme becomes even larger when node buffer constraint is
tight. This is mainly due to the intelligent cache replacement
strategy used in our scheme, which ensures that the most
appropriate data is cached in the limited cache space.

C. Effectiveness of Cache Replacement

In this section, we evaluate the effectiveness of our
proposed cache replacement strategy in Section V-D for
improving data access performance. Our proposed strategy
is compared with the traditional replacement strategies in-
cluding FIFO and LRU. It is also compared with Greedy-
Dual-Size which is widely used in web caching.

We use MIT Reality trace for such evaluation, and set 𝑇

as 1 week. The simulation results are shown in Figure 11.
FIFO and LRU leads to poor data access performance due to
improper consideration of data popularity. In Figure 11(a),
when data size is small and node buffer constraint is not
tight, cache replacement will not be frequently conducted.
Hence, the successful ratio of traditional strategies is only
10%-20% lower than that of our scheme. However, when
data size becomes larger, these strategies do not always
select the most appropriate data to cache, and the advantage
of our scheme rises to over 100% when 𝑠𝑎𝑣𝑔 = 200Mb.
Data access delay of FIFO and LRU also becomes much
longer when 𝑠𝑎𝑣𝑔 increases as shown in Figure 11(b).
Greedy-Dual-Size performs better than FIFO and LRU due
to consideration of data popularity and size, but it is unable
to ensure optimal cache replacement decision.

In Figure 11(c), we also compared the overhead of those
strategies, which is the amount of data exchanged for cache
replacement. Since cache replacement is only conducted
locally between mobile nodes in contact, there are only
slight differences of this overhead among different strategies.
Greedy-Dual-Size makes the caching nodes exchange a bit
more data, but this difference is generally negligible.

D. Number of NCLs

In this section, we investigate the impact of different
numbers (𝐾) of NCLs on data access performance using
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Infocom06 trace. We set 𝑇 = 3 hours and all the other
parameters remain the same as in Section VI-B.

The simulation results are shown in Figure 12. When 𝐾
is small, it takes longer to forward queries and data between
requesters and caching nodes, and hence data access perfor-
mance is reduced. This reduction is particularly significant
when 𝐾 < 3. As shown in Figures 12(a) and 12(b), when 𝐾
is reduced from 2 to 1, the delivery ratio decreases by 25%,
and the data access delay increases by 30%. In contrast,
when 𝐾 is large, further increase of 𝐾 will not improve
data access performance, because the newly selected central
nodes are essentially not good at communicating with other
nodes in the network. Meanwhile, as shown in Figure 12(c),
when 𝐾 is small, increasing 𝐾 will consume considerably
more buffer space for caching. However, this increase is
negligible when 𝐾 is large or node buffer constraint is tight.

In summary, when node buffer constraint is tight, using
smaller value of 𝐾 is helpful to provide acceptable caching
performance with lower overhead. However, selecting too
many NCLs will not provide any extra benefit, and may
even impair the caching performance. From Figure 12, we
generally conclude that 𝐾 = 5 is the best choice for the
Infocom06 trace, which is surprisingly consistent with the
result of trace-based validation shown in Figure 3(b).

VII. CONCLUSIONS

In this paper, we propose a novel scheme to support coop-
erative caching in DTNs. Our basic idea is to intentionally
cache data at a pre-specified set of NCLs which can be
easily accessed by other nodes. We propose an effective
scheme which ensures appropriate NCL selection based on
a probabilistic selection metric, and furthermore coordinates
multiple caching nodes to optimize the tradeoff between data
accessibility and caching overhead. Extensive trace-driven
simulations show that our scheme significantly improves
the ratio of queries satisfied and reduces data access delay,
compared with existing caching schemes.
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