
Delay-Constrained Caching in Cognitive Radio
Networks

Jing Zhao∗, Wei Gao†, Yi Wang∗ and Guohong Cao∗
∗Pennsylvania State University, University Park, PA

†University of Tennessee, Knoxville, TN
∗ {juz139,yuw124,gcao}@cse.psu.edu, † weigao@utk.edu

Abstract—In cognitive radio networks, unlicensed users can
use under-utilized licensed spectrum to achieve substantial per-
formance improvement. To avoid interference with licensed users,
unlicensed users must vacate the spectrum when it is accessed by
licensed (primary) users. Since it takes some time for unlicensed
users to switch to other available channels, the ongoing data
transmissions may have to be interrupted and the transmission
delay can be significantly increased. This makes it hard for
cognitive radio networks to meet the delay constraints of many
applications. To the best of our knowledge, we are the first to
use caching techniques to address this problem. We formulate
the cache placement problem in cognitive radio networks as
an optimization problem, where the goal is to minimize the
total cost, subject to some delay constraint, i.e., the data access
delay can be statistically bounded. To solve this problem, we
propose three approaches: cost-based, delay-based, and hybrid.
Simulation results show that our approaches outperform existing
caching solutions in terms of total cost and delay constraint, and
the hybrid approach performs the best among the approaches
satisfying the delay constraint.

I. INTRODUCTION

Due to the proliferation of unlicensed wireless devices,

unlicensed spectrum (e.g., ISM) is becoming increasingly

congested; On the other hand, some licensed spectrum (e.g.,

UHF) is highly under-utilized. As a result, FCC approved

unlicensed use of licensed spectrum through cognitive radio

techniques [1], [2], which enable dynamic configuration of the

operating spectrum.

To avoid interference with licensed users, unlicensed users

must vacate the spectrum when it is accessed by the primary
users who are licensed to access the spectrum. Since it takes

some time for the unlicensed users to switch to other available

channels, the ongoing data transmissions may have to be

interrupted, and the transmission delay will be significantly

increased [3]. As a result, it is hard to meet the delay

constraints of many applications in cognitive radio networks.

One way to reduce the data access delay is through caching.

Suppose node A wants to access the data generated at node

B which is faraway. Without caching, the data has to travel

multiple hops to reach A. If any link along the routing path is

affected by the primary user appearance, the data transmission

will be interrupted, which increases the data access delay. If

B’s data is cached/replicated at multiple nodes in the network,

This work was supported in part by the US National Science Foundation
(NSF) under grant number CNS-1320278 and by Network Science CTA under
grant W911NF-09-2-0053.

A will be able to access the data from nearby nodes. This

reduces the chance of transmission interruption, and then

reduces the data access delay.
Although caching techniques have been well studied in

traditional wireless networks, they cannot be directly applied

to cognitive radio networks due to the following reasons.

Traditional caching techniques assume the link transmission

delay is known. For example, some previous works [4], [5],

[6] model the access delay by the number of hops required to

obtain the data, and assume all links have equal transmission

delay. Some others [7], [8] assume the link transmission

delay can be calculated accurately. However, in cognitive radio

networks, the link transmission delay depends on the primary

user appearance, and it will be much longer when primary

users appear.
To overcome the aforementioned difficulty, we model the

primary user appearance as a continuous-time Markov chain

following several prior works [9], [10], and then derive the

distribution of the link transmission delay and the data access

delay. Since the data access delay depends on the primary

user appearance, it may be long in some cases. By caching

data at the right places, we can statistically control the data

access delay within the delay constraint [11], [12], i.e., the

data access delay is statistically bounded.
Although the delay constraint can be satisfied by caching

data at all nodes, it is inefficient due to the cost which is

affected by different factors. For example, disseminating data

to the caching nodes consumes more energy and bandwidth,

especially when the data is frequently updated. For each node,

it also incurs some cost to access the data. Thus, we should

design better caching algorithms to reduce various types of

cost while satisfying the delay constraint. The contributions

of the paper are three folds.

• We are the first to use caching techniques to meet

the delay constraints of data access in cognitive radio

networks. We formulate the cache placement problem in

cognitive radio networks as to minimize the total cost,

subject to the delay constraint.

• By modeling the primary user appearance as a

continuous-time Markov chain, we derive the distribution

of the link transmission delay and the data access delay.

• We propose three caching approaches: cost-based, delay-

based, and hybrid, to solve the cache placement problem.

Simulation results show that our approaches outperform

existing caching solutions in terms of total cost and delay

constraint, and the hybrid approach has the lowest total

cost among the approaches satisfying the delay constraint.

The remainder of the paper is organized as follows. Sec-

tion II reviews related work. In Section III, we provide

an overview of our work. We define the system models in

Section IV, and then formulate our problem in Section V.

Sections VI, VII and VIII present the three caching approaches

in detail. We show simulation results in Section IX, and

conclude the paper in Section X.

II. RELATED WORK

Caching is an effective technique to reduce the data access

delay in wireless networks. The problem of finding the optimal

cache placement can be formalized as a special case of the

connected facility location problem [13], which is known to

be NP-hard. The problem can be solved by using a greedy

algorithm poach [5], which is within a factor of 6 of the

optimal solution. If there are multiple data items, a node (user)

may not cache all of them due to the capacity constraint. To

address this challenge, cooperative caching [4], [6], [7], [8],

[14] allows the sharing and coordination of cached data among

multiple nodes. However, these caching approaches cannot be

applied to cognitive radio networks since they assume the

link transmission delay is known, but the link transmission

delay in cognitive radio networks depends on the primary

user appearance. Recently, a spectrum-aware data replication

approach has been proposed for intermittently connected cog-

nitive radio networks [15]. However, it does not consider the

cost for disseminating data to the caching/replicating nodes.

Due to primary user appearance, the delay in cognitive radio

networks is much longer compared with traditional wireless

networks, and it has been studied by several prior works. The

distribution of transmission delay was first studied by Wang

et al [16]. They found that if the occupying time of licensed

channels follows heavy tailed distribution, the transmission

delay also follows heavy tailed distribution. However, they did

not propose any solution to reduce the effect of transmission

delay on network performance. Some routing protocol [17] has

been proposed to select paths with the smallest transmission

delay, but the selected routing path may frequently change

due to primary user appearance. To address this problem, some

protocols [18], [19] have been proposed to find the path that is

least affected by primary users. However, none of the existing

work can statistically bound the data access delay, which is

the focus of this paper.

III. OVERVIEW

In this paper, we consider a caching scenario of multi-hop

cognitive radio network consisting of unlicensed users (nodes)

whose links may be affected by primary users. Each data item

is generated by the data source and cached at appropriate

nodes, so that queries from the requesters can be answered by

the caching nodes directly with less delay. The data is updated

periodically, and thus the data source needs to disseminate the

Primary user

50

200

80

400

50

100

130

500

70

400

150

600

200

900

190

700
100

300

Data access delay without

primary users (ms)

Data access delay with

primary users (ms)

1

2

3

Unlicensed user

Fig. 1. Delay-constrained caching for data item d1. The data access delay is at
90% confidence interval, i.e., the actual data access delay has 90% probability
to be less than this value.

updated data to the caching nodes. The focus of this paper is

hence on determining appropriate caching nodes.

Figure 1 shows the caching scenario for data item d1. Note

that different data items (e.g., d1, d2, and d3) may be generated

by different nodes. The data access delay is generally increased

due to the presence of primary users which affect the data

transmission of unlicensed users. To reduce the data access

delay, data item d1 should be cached at appropriate nodes. In

this paper, we consider that the total cost consists of two parts,

i.e., the dissemination cost for the data source to disseminate

the data to all caching nodes and the access cost for the

requesters to access the data. The formal definition is given in

Section V.

The uncertain behavior of the primary users makes it

challenging to correctly estimate the total cost. We propose

a model to formulate the behavior of primary users as a

continuous-time Markov chain, based on which we derive

the distribution of link transmission delay. Based on this

model, we propose various techniques for determining caching

locations, such that the delay constraint is satisfied for each

node and the total cost is minimized. More specifically, we

first propose a cost-based approach to minimize the total cost

without considering the delay constraint. Then, we propose a

delay-based approach which greedily caches data at the node

that violates the delay constraint the most. Both approaches

determine the caching nodes in a centralized manner. Thus,

we propose a distributed hybrid approach to minimize the total

cost subject to the delay constraint. The total cost is further

reduced via local coordination among nodes themselves.

IV. SYSTEM MODEL

We consider a multi-hop cognitive radio network, where

each unlicensed user has one cognitive radio to opportunisti-

cally access C licensed channels. The network is modeled as a

connected graph G(V,E) where each node v ∈ V corresponds

to an unlicensed user, and an edge e = (u, v) ∈ E represents

the link between u and v if they are within the transmission

range. Each link e can work on a channel which is not

currently accessed by primary users. Following several prior

works [9], [10], the primary user appearance is modeled as

the following continuous-time Markov chain, based on which

the link transmission delay is probabilistically estimated.

A. Primary User Appearance

For link e, we denote the current primary user appearance by

Me(t) = (Me,1(t),Me,2(t), . . . ,Me,C(t)) where Me,c(t) = 1
if channel c is accessed by some primary user; otherwise,

Me,c(t) = 0. Me,c(t) follows a continuous-time Markov

chain with two states, state 1 (Me,c(t) = 1) and state 0
(Me,c(t) = 0). qi,je,c is the transition rate from state i to state j,

and corresponds to the (i, j)th element of the generator matrix

for Markov chain Me,c(t).
We assume that the primary user appearance on differ-

ent channels is independent. Then, the composition of the

corresponding C continuous-time Markov chains is still a

continuous-time Markov chain. Let Qe,c be the generator

matrix for Markov chain Me,c(t), then
⊕C

c=1 Qe,c is the

generator matrix for Markov chain Me(t) [20]. Here
⊕

represents the Kronecker sum which is defined as follows.

Definition 1: Kronecker Sum
Let A be an n× n matrix, B be a p× p matrix, Im be an

m×m identity matrix. A
⊕

B = A
⊗

Ip + In
⊗

B.
The operation

⊗
in Definition 1 denotes Kronecker product,

which is defined in Definition 2:

Definition 2: Kronecker Product
Let A be a n×m matrix, B be a p× q matrix, and C be

a np ×mq matrix. Let Xij be the (i, j)th element of matrix
X . C = A

⊗
B denotes that Cij = Ai1j1Bi2j2 where i =

(i1 − 1)p+ i2 and j = (j1 − 1)q + j2.

B. Link Transmission Delay

T

P

x
eT u

eT

()l
eP T

O

()d
eP T

Fig. 2. Approximation of link transmission delay

The basic idea for modeling the link transmission delay

is as follows. Suppose node v wants to send data over link

e = (u, v). If all licensed channels are currently accessed by

primary users, node v may wait until some licensed channel

becomes available, or switch to an unlicensed channel for

data transmission. Generally speaking, if the appearance of

primary users lasts a long time (e.g., TV transmitters), the link

should switch to an unlicensed channel; otherwise, the link

should wait for an available licensed channel. Therefore, the

transmission delay of link e, denoted by T d
e , can be modeled

as follows.

T d
e = Tw

e + T x
e =

{
T l
e + T x

e T l
e < Tu

e

Tu
e + T x

e otherwise

where Tw
e is the time that link e must wait (switch) for an

available channel, T x
e is the time for actual data transmission,

T l
e is the time that link e waits until some licensed channel

becomes available, and Tu
e is the time that link e switches to

an unlicensed channel. Note that the link transmission delay

is bounded (T d
e ≤ Tu

e + T x
e), so there still exists persistent

network connection. This differs from Disruption Tolerant

Networks (DTNs) [21] in which nodes are only intermittently

connected, and hence it is unsuitable to use delay tolerant

networking approaches in our scenario.

By defining a C×1 vector 1 = (1, 1, . . . , 1)′, T l
e is the time

period that Me(t) stays at state 1, which is equivalent to that

Me,c(t) stays at state 1 for each channel c. Since Me(t) is a

continuous-time Markov chain, T l
e is exponentially distributed

with parameter −q11e [22]. Here q11e is the element at row 1
and column 1 of the generator matrix for Me(t).

In Figure 2, P (T d
e) shows the distribution of link transmis-

sion delay. In order to formally derive the distribution of data

access delay in Section VII, we approximate P (T d
e) by ex-

ponential distribution P (T l
e) with the following assumptions.

We assume large data items can be split into smaller ones to

make T x
e very small. Another observation is that, due to the

nature of exponential distribution, P (T l
e) approaches zero very

quickly as T l
e increases, so there is generally little chance for

T l
e to be much larger than Tu

e . Therefore, P (T d
e) is very close

to P (T l
e) so P (T l

e) can be used to approximate P (T d
e).

V. PROBLEM FORMULATION

We first formally define the cost (the dissemination cost

and the access cost) and the delay constraint, and then for-

mulate the delay-constrained caching problem. We assume

the storage cost is insignificant because wireless devices are

recently equipped with huge storage capacity. As a result,

cache placement of different data items can be decoupled. To

simplify the presentation, we will focus on cache placement

of a specific data item in the rest of the paper.

A. Cost

1) Dissemination Cost: We define the dissemination cost

as the amount of bandwidth consumed for data dissemination.

Let V be the set of caching nodes (including the data

source). The data is disseminated from the data source along

a tree connecting all nodes in V . Let G be such dissemination

graph, and b be the traffic rate for data dissemination, which is

defined as the data size divided by the data update interval. Let

L(G) be the total number of edges of G, then the dissemination

cost can be represented by bL(G).
In our work, the data source builds a minimum Steiner tree

connecting all caching nodes, and use it as the dissemina-

tion graph. This minimizes the dissemination cost since the

minimum Steiner tree has the minimum total length (which

can be the total number of edges if each edge has unit

weight). Since the minimum Steiner tree problem is NP-hard,

an approximation algorithm in [23] is used to build it.

2) Access Cost: We define the access cost as the aggregated

data access delay, following several prior caching works [4],

[6]. Let duv be the expected transmission delay between nodes

u and v, which is modeled by the length of the shortest

u-v path in a weighted graph where the link weight is

the mean link transmission delay. The access cost can then

be represented by
∑

v pvDv , where pv is the data access

probability of node v (the probability that node v accesses

the data), and Dv = 2minu∈V dvu indicating the expected

round-trip transmission delay from v to the nearest caching

node.

Generally speaking, as the number of caching nodes in-

creases, the access cost decreases while the dissemination cost

increases. Since wireless devices are usually equipped with

limited amount of energy and bandwidth, the dissemination

cost should not be too high, and the caching approach should

balance the access cost and the dissemination cost. Since the

access cost and the dissemination cost have different units,

they cannot be simply added together. We use some cost

ratio W to match the units and adjust the weight of the

dissemination cost, in order to reflect the relative importance

of the dissemination cost and the access cost. The effect of

W on the network performance is further evaluated through

simulations. The total cost is defined as the sum of the access

cost and W times of the dissemination cost.

B. Delay Constraint

Let α be the confidence level, and β be the delay threshold.

For node v, the delay constraint is defined as P (av ≤ β) ≥ α,

where av is the data access delay of node v and is approxi-

mated by Dv (the expected round-trip transmission delay from

v to the nearest caching node) in the access cost.

C. Delay-constrained Caching Problem

The cache placement problem in cognitive radio networks

can be formulated as the following delay-constrained caching

problem.

minimize
∑
v

pvDv +WbL(G)

subject to P (av ≤ β) ≥ α, ∀v
The delay-constrained caching problem is NP-hard. If β is

very large, the delay constraint is always satisfied. This reduces

the problem to the same connected facility location problem

addressed by poach [5] which is NP-hard in general.

Our problem is essentially a chance-constrained program-

ming problem since the data access delay is a random variable.

The chance-constrained programming problem is considered

as very difficult and intractable [24]. There is even no general

solution for chance-constrained programming problems. How-

ever, the structure of the problem may be exploited to design

efficient solutions. Next we propose three caching approaches

specific to our problem.

VI. COST-BASED APPROACH

In this approach, we formulate the problem as the following

linear programming problem to minimize the total cost. Here

v1 is the data source, and pu is the data access probability of

node u. xuv takes 1 or 0. xuv = 1 if node u gets the data

from node v which caches the data; otherwise, xuv = 0. ze is a

binary variable indicating whether e is in dissemination graph

G (defined in Section V). ze = 1 if e is in G; otherwise, ze = 0.

δ(S) is the set of edges who have only one end-node belonging

to S. duv is the expected transmission delay between nodes u
and v (defined in Section V). The objective function (1) is the

total cost which is to be minimized. Constraint (2) ensures that

each node gets the data from one caching node. Constraint (3)

ensures that if node u gets the data from some caching node

v, v is connected with an edge in the dissemination graph.

minimize
∑
u∈V

pu
∑
v∈V

duvxuv +Wb
∑
e∈E

ze (1)

subject to∑
v∈V

xuv = 1, ∀u ∈ V (2)

∑
v∈S

xuv ≤
∑

e∈δ(S)

ze, ∀S ⊆ V \ {v1}, ∀u ∈ V (3)

xuv, ze ∈ {0, 1} (4)

Our formulated problem is a special case of the connected

facility location problem, in which we are given the location

of an existing facility along with a set of locations at which

further facilities can be built. Each location has demand which

must be served by one facility, and all facilities must be

connected by a Steiner tree. The objective is to find a solution

to minimize the sum of serving cost and connection cost. In

our problem, each node represents a location, the data source

represents the existing facility, and caching nodes represent

new facilities. Thus, we address our problem using an existing

approach [13] for the connected facility location problem.

Note that the delay constraint cannot be contained in the

aforementioned linear programming problem, since a linear

programming problem cannot contain any random variable

such as the data access delay. We will evaluate whether

the cost-based approach satisfies the delay constraint or not

through simulations.

VII. DELAY-BASED APPROACH

In this section, we first describe how to derive the distri-

bution of data access delay, and then discuss how to check

the delay constraint. At the end of this section, we present

the delay-based cache placement algorithm for satisfying the

delay constraint.

A. Distribution of Data Access Delay

The problem of deriving the distribution of data access delay

can be reduced to the following problem. In the network graph,

suppose each edge has length equal to the corresponding

link transmission delay, which is an exponentially distributed

random variable. Let luv be the length of the shortest u-v
path. If the query is allowed to be flooded over the network

from u to all caching nodes (this assumption is relaxed in the

hybrid approach), u’s data access delay is approximately twice

of minv∈V luv . Here minv∈V luv is the minimum of all luv’s

in which v is a caching node (the data source is regarded as

a caching node). If we obtain the distribution of minv∈V luv ,

the distribution of u’s data access delay is obtained.

In the literature, Kulkarni has proposed an algorithm [25]

to derive the distribution of the shortest path length from one

node to another node, in a graph where the edge lengths are

exponentially distributed. That algorithm cannot be directly

applied since our problem considers the shortest path length

from a data requester to multiple caching nodes. Next, we

describe how to extend it to our problem.

1) Distribution of the Shortest Path Length from a Data
Requester to a Data Source: Suppose a query is broadcast

from the requester at time 0. The query is flooded over the

network and travels at unit speed so that the time for traversing

each link is equal to the corresponding edge length. Thus, the

time when the data source first receives the query is equal to

the shortest path length.

1q

2q

3q

4q
5q

6q

Fig. 3. An example of a data source. Each edge is associated with the
transmission delay represented by an exponential distribution. The label
associated with each link represents the parameter of the distribution.

Let N (t) be the set of disabled nodes at time t. The disabled

nodes are the nodes that are useless for the propagation of

the query towards the data source. For example, in Figure 3,

suppose a query is broadcast from node 1 at time 0 when nodes

1-2 and nodes 1-4 do not share any common channel due to

primary user appearance. Since nodes 2 and 4 have to wait

some time before receiving the query, the query first reaches

node 3 before it reaches nodes 2 and 4. After node 3 broadcasts

the query, it becomes disabled. Node 2 is also disabled even

if node 2 has not received the query. This is because any

query sent from node 2 cannot reach any nodes that are not

disabled. Since node 2 is useless for the propagation of the

query towards the data source (node 5), node 2 is a disabled

node.

TABLE I
STATE SPACE FOR THE EXAMPLE NETWORK

State State Description
1 {1}
2 {1,2}
3 {1,4}
4 {1,2,4}
5 {1,2,3}
6 {1,2,3,4}
7 {1,2,3,4,5}

According to [25], {N (t), t ≥ 0} is a continuous-time

Markov chain. The state space for the example graph (Fig-

ure 3) is shown in Table I, and the generator matrix Q is shown

in Table II. Let Si be the ith state, and n be the number of

states. In this example, n = 7. If the state is the final state Sn,

the data source (node 5) receives the message, and ends the

aforementioned stochastic process. Let T be the the shortest

TABLE II
GENERATOR MATRIX FOR THE EXAMPLE NETWORK

Qij 1 2 3
1 −(q1 + q2 + q3) q1 q3
2 0 −(q2 + q3 + q4) 0
3 0 0 −(q1 + q2 + q6)
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0

Qij 4 5 6 7
1 0 q2 0 0
2 q3 q2 + q4 0 0
3 q1 0 q2 q6
4 −(q2 + q4 + q6) 0 q2 + q4 q6
5 0 −(q3 + q5) q3 q5
6 0 0 −(q5 + q6) q5 + q6
7 0 0 0 0

path length from the requester to the data source. We have

T = min{t ≥ 0 : N (t) = Sn|N (0) = S1}
Let F (t) be the cumulative distribution function of T , i.e.,

F (t) = P (T ≤ t). F (t) has no closed-form expression, and

can be approximated by Fk(t) and F̃k(t) defined as follows.

Fk(t) = 1−
k∑

i=0

(1− λi)e
−qt(qt)i/i!

F̃k(t) = λk −
k∑

i=0

(λk − λi)e
−qt(qt)i/i!

with

Fk(t) ≤ F (t) ≤ F̃k(t)

0 ≤ F̃k(t)− Fk(t) ≤ 1− λk

where λk is the (1, n)th element in the kth power of Q∗ =
[q∗ij]. Here q∗ij = δij + qij/q, where qij is the (i, j)th element

in the generator matrix, q = max1≤i≤n{−qii}, and δij is an

indicator function, i.e., δij = 1 if i = j; otherwise, δij = 0.

Property of λk: 0 ≤ λk ≤ 1 and λk increases to 1 as

k → ∞.

2) Distribution of the Shortest Path Length from a Data
Requester to Multiple Caching Nodes: We use an example

graph (Figure 4) to show how to derive the distribution of the

shortest path length from a data requester to multiple caching

nodes. If node 4 also caches the data, the aforementioned

stochastic process should be adjusted as follows. That is, if

either node 4 or node 5 receives the message, the process can

be ended and thus states 3, 4, 6, 7 of Table I are merged into

one final state. The updated state space is shown in Table III,

and the corresponding generator matrix is shown in Table IV.

Then the distribution function of the shortest path length can

be calculated accordingly.

B. Checking the Delay Constraint

Let α be the confidence level, and β be the delay threshold.

Suppose we want to check the delay constraint for some data

requester. The data access delay is twice of the shortest path

1q

2q

3q

4q
5q

6q

Fig. 4. An example of multiple caching nodes, where each edge is associated
with the transmission delay represented by an exponential distribution.

TABLE III
STATE SPACE FOR THE EXAMPLE NETWORK (FIGURE 4) WITH NODE 4 AS

A CACHING NODE

State State Description
1 {1}
2 {1,2}
3 {1,2,3}
4 {1,2,3,4,5}

length from the requester to the caching nodes (i.e., 2T). The

delay constraint can be denoted by P (2T ≤ β) ≥ α, or

equivalently,

F (β/2) ≥ α

Since it is impossible to get the exact value of F (t), we use

the approximation Fk(t) to check the delay constraint. Here k
should be large enough to make Fk(t)− F̃k(t) < ε (ε is a very

small positive value) so that Fk(t) is a good approximation.

C. Algorithm Description

We check whether the delay constraint is satisfied for each

node. If some nodes do not satisfy the delay constraint, the

node violating the delay constraint the most is selected for

caching the data. Here we use α − FV
v (β/2) (FV

v (t) denotes

F (t) (see Section VII-B), with v as a requester and V as the

set of caching nodes) to record how much node v violates the

delay constraint. Since the exact value of FV
v (β/2) cannot

be obtained, we use its lower bound (recall Fk(β/2) in

Section VII-B) as an approximation. We check again whether

the delay constraint is satisfied for all other nodes. If not,

the aforementioned procedure is repeated. Otherwise, we have

selected enough caching nodes.

VIII. HYBRID APPROACH

In this section, we describe the data structure maintained at

each node for distributed cache placement and data access.

Then, we discuss how to check the delay constraint in a

distributed manner, and present the distributed algorithm.

A. Data Structure

1) Caching Node List: Each node maintains a subset of

caching nodes in a node list, which is built and updated in the

distributed algorithm.

2) Caching Path List: Each node selects a path to each

node in the caching node list, and maintains these paths in a

path list. Next we describe how to select these paths. Suppose

node v wants to select a path towards node u which is in the

caching node list. Similar to routing discovery in AODV [26],

v discovers a number of paths to u, during which the delay

information of each path (the distribution parameter of link

TABLE IV
GENERATOR MATRIX FOR THE EXAMPLE NETWORK (FIGURE 4) WITH

NODE 4 AS A CACHING NODE

Qij 1 2 3 4
1 −(q1 + q2 + q3) q1 q2 q3
2 0 −(q2 + q3 + q4) q2 + q4 q3
3 0 0 −(q3 + q5) q3 + q5
4 0 0 0 0

transmission delay) is also collected. If a node collects more

than one path to the caching node, the path with the minimum

expected transmission delay is selected.
If a node v wants to access data, it multicasts queries along

the pre-selected paths to all caching nodes in the caching node

list. More specifically, node v uses source routing to send the

query to caching node u. That is, the query includes a v-u
path as a subfield, so other nodes in the network know to

which node to forward the message. Through source routing,

v can force the query to be forwarded along a path chosen by

itself. By choosing a good path, the data access delay can be

statistically bounded.

B. Checking the Delay Constraint
Based on the caching node list and the caching path list,

each node derives the distribution of data access delay, so that

the delay constraint can be checked.
Let Nv be node v’s caching node list, and let Pu

v be node

v’s caching path for caching node u. Node v constructs a

graph Gv(Vv, Ev). Here Vv includes v, all nodes in Nv , and

all nodes on path Pu
v for ∀u ∈ Nv . Ev includes all edges on

path Pu
v for ∀u ∈ Nv . For example, node 1 constructs graph

G1 as shown in Figure 5. Here nodes 4 and 5 are in node 1’s

caching node list. The caching path for node 4 is 1-4, and the

caching path for node 5 is 1-3-5.
If each edge has length equal to the corresponding link

transmission delay, then the data access delay of node v is

twice of the shortest path length from requester v to the

caching nodes in Nv . The distribution of data access delay

can be derived by applying aforementioned techniques in

Section VII-A2 to Gv .

2q

3q

5q

Fig. 5. The graph for calculating the data access delay of node 1. Nodes 4
and 5 are in the caching node list.

C. Distributed Algorithm
The distributed algorithm consists of two procedures,

caching node selection and update. The caching node selection

procedure selects enough caching nodes so that the delay

constraint is satisfied for all requesters. When some node

becomes a caching node, it informs the data source, and the

data source informs all requesters of the new caching node.

Then each requester uses the update procedure to update the

caching node list and the caching path list.

1) Caching Node Selection: Each node checks whether

the delay constraint is satisfied. If the constraint is satisfied,

nothing is done. Otherwise, the node requests to be a caching

node.

The delay-based approach greedily caches data at the node

that violates the delay constraint the most. To implement it in

a distributed environment, each node informs all its neighbors

of its average access delay and whether the delay constraint

is satisfied. For a specific node, if all its neighbors with

higher average access delay satisfy the delay constraint, it may

request to be a caching node; otherwise, the node must wait

until all the neighbors with higher average access delay satisfy

the delay constraint.

Reducing the Total Cost After the delay constraint is sat-

isfied, the total cost may still be reduced by placing more

caching nodes. For node v, it estimates the amount of reduction

in total cost if it caches the data, i.e., Δv = pvDv −Wbhv .

Here pv is node v’s access probability, Dv is v’s average

data access delay, b is the amount of traffic rate for data

dissemination (defined in Section V), and hv is the number

of hops from node v to the nearest caching node in the

caching node list. If Δv > 0, v requests to be a caching node.

Otherwise, nothing is done.

2) Update: Suppose node v is informed that u becomes

a new caching node. The update procedure is divided into

two cases. If the caching node list Nv is empty, we add

u to Nv , and assign the caching path Pu
v to be the v-u

path with minimum expected transmission delay (selected

following Section VIII-A). Otherwise, we set an upper limit γ
on the size of Nv . This is because if the caching node list has

too many nodes, a huge amount of traffic would be generated

by multi-casting a query towards these caching nodes.

(i) |Nv| < γ: we calculate the v-u path with minimum

expected transmission delay. Node u is added to Nu
v , and the

calculated path is assigned to Pu
v .

(ii) |Nv| = γ: node v decides whether u should replace

some caching node in Nv . Let u′ be the caching node with

the longest expected transmission delay from v. Node v checks

whether replacing u′ by u leads to any improvement.

Specifically, v calculates the v-u path with the mini-

mum expected transmission delay (selected following Sec-

tion VIII-A1), and checks whether the expected transmission

delay of the new v-u path is less than that of the former v-u′

path. If so, the replacement is performed. Otherwise, v does

not perform the replacement.

IX. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our ap-

proaches through extensive simulations.

A. Simulation Setup

In our simulations, we randomly place 25 nodes in a

3200 × 300 m2 area. The transmission range is 250 m. If

two nodes are within the transmission range, there is a link

between them.

We use the same data query model as in previous studies [4],

[6], [7]. Each node generates a stream of queries. The query

generation time follows exponential distribution with mean

value 5s. After a query is sent out, the node does not generate

new query until the query is served. The data access pattern is

based on Zipf-like distribution, in which the access probability

of the ith data item is proportional to i−θ. Here θ shows how

skewed the access distribution is and we choose θ to be 0.8
based on studies on real Web traces [27].

The access pattern is location-dependent; nodes around

the same location tend to access similar data. The whole

simulation area is divided into 10 (X axis) by 2 (Y axis) grids.

These grids are named grid 0, 1, 2, . . . 19 in a column-wise

fashion. For each node in grid i, if the generated query should

access data id according to the original Zip-like access pattern,

the new id would be (id+n mod i) mod n, where n is the

database size (n = 100 in our simulation).

The data items are generated by two nodes, node 0 and

node 1; data items with even id’s are generated by node 0 and

the rests are generated by node 1. The data size is uniformly

distributed between 100B and 7KB. The data update interval

follows exponential distribution with mean value 10s.

In our system model, the link transmission delay depends

on the primary user appearance, and is approximated by expo-

nential distribution. The primary user appearance is location-

dependent; nodes around the same location are affected by

similar primary users. For each grid i, the distribution param-

eter qi is assigned a random variable between 0.001 and 0.01,

corresponding to the mean waiting period between 100ms and

1s. For each link e = (u, v), if u is in grid i and v is in grid

j, the distribution parameter is min{qi, qj}.

To check the delay constraint, we use confidence level

α = 0.9. The delay threshold β is different for different

experiments. The cost ratio W is also adjusted to study its

effect on performance.

We evaluate our three caching approaches, cost-based (cost),
delay-based (delay) and hybrid (hybrid). In delay and hybrid,

parameters ε and γ are set to 10−5 and 3, respectively.

We also compare them with caching approaches designed

for traditional wireless networks. Specifically, we implement

an existing approach poach [5] which balances the access

delay and the energy cost (including disseminating data to

all caching nodes) without considering the primary user ap-

pearance. We also implement two naive approaches, all-cache
in which data is cached at all nodes, and no-cache in which

no node caches the data.

The evaluation is based on several metrics: the amount of

delay constraint violation, the total cost, the access cost and the

dissemination cost. The amount of delay constraint violation
shows how far the data access delay deviates from the delay

threshold (β), and it is calculated as follows. For each node

v, we measure the access delay for each query and calculate

tv such that 90% of the measured access delay (av) does not

exceed it, i.e., P (av ≤ tv) = 90%. The amount of delay
constraint violation is defined as the largest tv − β among

the nodes that do not satisfy the delay constraint. If all nodes

satisfy the delay constraint, the amount of delay constraint

violation is zero.

B. Effects of the Cost Ratio (W)

0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

W

de
la

y
co

ns
tra

in
t v

io
la

tio
n

(m
s)

poach
cost
delay
hybrid
all−cache
no−cache

(a) effect of W (β = 800ms)

200 300 400 500 600 700 800
0

2000

4000

6000

8000

10000

β (ms)

de
la

y
co

ns
tra

in
t v

io
la

tio
n

(m
s)

poach
cost
delay
hybrid
all−cache
no−cache

(b) effect of β (W = 0.2ms/bps)

Fig. 6. The amount of delay constraint violation

Figure 6(a) shows the effect of W on the amount of delay

constraint violation. no-cache has the highest amount of delay

constraint violation 8565ms since all data has to be accessed

from the data sources. For poach (cost), they are unaware

of the delay constraint, and the amount of delay constraint

violation increases as W increases. For example, when W
increases from 0.2 to 1, the amount of delay constraint

violation increases from 239ms (404ms) to 859ms (1011ms).

This is because increasing W increases the weight of the

dissemination cost, and then these two cost-based approaches

place less caching nodes to reduce the dissemination cost.

This increases the data access delay and thus increases delay

constraint violations. For delay and hybrid, the amount of

delay constraint violation is zero since the delay constraint

is satisfied for all nodes. For all-cache, the amount of delay

constraint violation is also zero since all data can be accessed

locally.

Figure 7 shows the effect of W on the total cost, and

Figures 8, 9 show the effect of W on the access cost and

the dissemination cost, respectively.

Total cost: For no-cache, the total cost stays flat as W
increases since the dissemination cost is zero (no data is

cached). For the other approaches, the total cost increases as

W increases since the dissemination cost is given more weight.

cost has 6%-10% lower total cost than poach since the link

transmission delay is modeled more accurately by considering

primary user appearance. Although hybrid also minimizes the

total cost in the procedure of caching node selection, it has to

satisfy the delay constraint at the same time, so it has 11%-

17% higher total cost than cost. delay does not minimize the

total cost, and it has 5%-29% higher total cost than hybrid.

all-cache and no-cache have the highest total cost.

Access cost and Dissemination cost: For the delay-based

approach (delay), the access cost (the dissemination cost)

stays flat as W increases, since it only considers the delay

constraint and is hence unaffected by W . The access cost is the

highest among all non-naive approaches since the number of

caching nodes to be placed is only enough to satisfy the delay

constraint. Note that the access cost can be further reduced

by placing more caching nodes along the path used for data

dissemination, without increasing the dissemination cost. This

explains why the other three non-naive approaches (poach,
cost, hybrid) have similar dissemination cost but much lower

access cost compared to the delay-based approach (delay).

For the other three non-naive approaches, the access cost

increases as W increases. When the dissemination cost is given

more weight, the number of caching nodes (the dissemination

cost) should be reduced so that the total cost can increase less

rapidly. As a result, the dissemination cost decreases while the

access cost increases.

The approach all-cache (no-cache) has the highest dissem-

ination cost (the highest access cost) among all approaches.

Note that the access cost of all-cache (the dissemination cost

of no-cache) is zero although not shown in the figures.

C. Effects of the Delay Threshold (β)

Figure 6(b) shows the effect of β on the amount of delay

constraint violation. For poach (cost, no-cache), the amount of

delay constraint violation decreases as β increases; the amount

of delay constraint violation decrease is actually the amount

of increase of β. For example, when β increases from 200ms

to 800ms, the amount of delay constraint violation decreases

from 839ms (1004ms, 9165ms) to 239ms (404ms, 8565ms).

no-cache has the highest amount of delay constraint violation.

For delay, hybrid and all-cache, the delay constraint is satisfied

for all nodes, so the amount of delay constraint violation is

zero.

Figure 10 shows the effect of β on the total cost. Figures 11

and 12 show the effect of β on the access cost and the

dissemination cost, respectively.

For poach, cost, all-cache, and no-cache, the total cost (the

access cost, the dissemination cost) stays flat as β increases.

These four approaches are unaware of the delay constraint, so

they are unaffected by the delay threshold β. As mentioned

before, cost has the lowest total cost since minimizing the

total cost is the main goal. The total cost of cost is 35% (84%)

lower than that of all-cache (no-cache), and 6% lower than that

of poach since the link transmission delay is modeled more

accurately by considering primary user appearance. all-cache
and no-cache have the highest total cost.

For delay, the total cost increases as β increases from 200ms

to 800ms. Increasing β relaxes the delay constraint, so less

nodes are needed to cache the data. Since delay does not

minimize the total cost, the access cost increases by 372%

and it outweighs 6% decrease of dissemination cost, leading

to 19% increase of the total cost.

For hybrid, the total cost decreases by 5% as β increases

from 200ms to 800ms. As the delay constraint is relaxed,

hybrid focuses more on minimizing the total cost (in the

procedure of caching node selection), and thus the total

cost decreases. Among the approaches satisfying the delay

constraint (hybrid and delay), hybrid has 3%-29% lower total

cost than delay.

X. CONCLUSIONS

This paper studied the cache placement problem in multi-

hop cognitive radio networks, which aims to minimize the

0.2 0.4 0.6 0.8 1
1000

3000

5000

7000

9000

W

to
ta

l c
os

t

poach
cost
delay
hybrid
all−cache
no−cache

Fig. 7. total cost vs. W (β = 800ms)

0.2 0.4 0.6 0.8 1
101

102

103

104

W

ac
ce

ss
 c

os
t (

m
s)

poach
cost
delay
hybrid
no−cache

Fig. 8. access cost vs. W (β = 800ms)

0.2 0.4 0.6 0.8 1
4000

5000

6000

7000

8000

9000

W

di
ss

em
in

at
io

n
co

st
 (b

ps
) poach

cost
delay
hybrid
all−cache

Fig. 9. dissemination cost vs. W (β = 800ms)

200 300 400 500 600 700 800
1000

3000

5000

7000

9000

β (ms)

to
ta

l c
os

t

poach
cost
delay
hybrid
all−cache
no−cache

Fig. 10. total cost vs. β (W = 0.2)

200 300 400 500 600 700 800
100

101

102

103

104

β (ms)

ac
ce

ss
 c

os
t (

m
s)

poach
cost
delay
hybrid
no−cache

Fig. 11. access cost vs. β (W = 0.2)

200 300 400 500 600 700 800
4000

5000

6000

7000

8000

9000

β (ms)

di
ss

em
in

at
io

n
co

st
 (b

ps
) poach

cost
delay
hybrid
all−cache

Fig. 12. dissemination cost vs. β (W = 0.2)

total cost subject to some delay constraint. To solve the

problem, we proposed three approaches: cost-based, delay-

based, and hybrid. Extensive simulations demonstrated that our

approaches outperform existing caching approaches in terms

of total cost and delay constraint, and the hybrid approach

performs the best among the approaches satisfying the delay

constraint.

REFERENCES

[1] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cognitive
radio ad hoc networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810–836,
2009.

[2] A. M. Wyglinski, M. Nekovee, and T. Hou, Cognitive Radio Commu-
nications and Networks: Principles and Practice. Academic Press,
2009.

[3] J. Zhao and G. Cao, “Robust Topology Control in Multi-hop Cognitive
Radio Networks,” in IEEE INFOCOM, 2012.

[4] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc
Networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 1, pp.
77–89, 2006.

[5] P. Nuggehalli, V. Srinivasan, and C.-F. Chiasserini, “Energy-Efficient
Caching Strategies in Ad Hoc Wireless Networks,” in ACM MobiHoc,
2003.

[6] B. Tang, H. Gupta, and S. R. Das, “Benefit-Based Data Caching in Ad
Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 3,
pp. 289–304, 2008.

[7] J. Zhao, P. Zhang, G. Cao, and C. R. Das, “Cooperative Caching in
Wireless P2P Networks: Design, Implementation, and Evaluation,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 2, pp.
229–241, 2010.

[8] X. Fan, J. Cao, and W. Wu, “Design and Performance Evaluation of
Overhearing-aided Data Caching in Wireless Ad Hoc Networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 3, pp.
450–463, 2013.

[9] A. W. Min, K.-H. Kim, J. P. Singh, and K. G. Shin, “Opportunistic
Spectrum Access for Mobile Cognitive Radios,” in IEEE INFOCOM,
2011.

[10] S. Bayhan and F. Alagoz, “A Markovian approach for best-fit channel
selection in cognitive radio networks,” Ad Hoc Networks, 2011.

[11] L. Musavian, S. Aissa, and S. Lambotharan, “Effective capacity for
interference and delay constrained cognitive radio relay channels,” IEEE

Transactions on Wireless Communications, vol. 9, no. 5, pp. 1698–1707,
2010.

[12] V. Asghari and S. Aissa, “Statistical QoS Provisionings for Wireless
Unicast/Multicast of Multi-Layer Video Streams,” IEEE Journals on
Selected Areas in Communications, vol. 28, no. 3, pp. 420–443, 2010.

[13] C. Swamy and A. Kumar, “Primal-Dual Algorithms for Connected Fa-
cility Location Problems,” in International WOrkshop on Approximation
Algorithms for Combinatorial Optimization (APPROX), 2002.

[14] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Supporting Cooperative
Caching in Disruption Tolerant Networks,” in IEEE ICDCS, 2011.

[15] J. Zhao and G. Cao, “Spectrum-Aware Data Replication in Intermittently
Connected Cognitive Radio Networks,” in IEEE INFOCOM, 2014.

[16] P. Wang and I. F. Akyildiz, “Can Dynamic Spectrum Access Induce
Heavy Tailed Delay?” in IEEE International Symposium on New Fron-
tiers in Dynamic Spectrum Access Networks (DySPAN), 2011.

[17] G. Cheng, W. Liu, Y. Li, and W. Cheng, “Spectrum Aware On-
demand Routing in Cognitive Radio Networks,” in IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), 2007.

[18] A. Abbagnale and F. Cuomo, “Leveraging the Algebraic Connectivity of
a Cognitive Network for Routing Design,” IEEE Transcations on Mobile
Computing, vol. 99, 2011.

[19] X. Huang, D. Lu, P. Li, and Y. Fang, “Coolest Path: Spectrum Mobility
Aware Routing Metrics in Cognitive Ad Hoc Networks,” in IEEE
ICDCS, 2011.

[20] S. Donatelli, “Kronecker algebra and (stochastic) Petri nets: Is it worth
the effort,” Application and Theory of Petri Nets, vol. 2075, no. 2001,
pp. 37–56, 2001.

[21] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in ACM SIGCOMM, 2003.

[22] S. M. Ross, Introduction to Probability Models. Academic Press, 1997.
[23] A. Agrawal, P. Klein, and R. Ravi, “When trees collide: An approxima-

tion algorithm for the generalized Steiner problem on networks,” SIAM
Journal on Computing, vol. 24, no. 3, pp. 440–456, 1995.

[24] O. Klopfenstein, “Tractable algorithms for chance-constrained combi-
natorial problems,” RAIRO - Operations Research, vol. 43, no. 2, pp.
157–187, 2009.

[25] V. G. Kulkarni, “Shortest Paths in Networks with Exponentially Dis-
tributed Arc Lengths,” Networks, vol. 16, pp. 255–274, 1986.

[26] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector
routing,” in IEEE Workshop on Mobile Computing Systems and Appli-
cations, 1999.

[27] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications,” in IEEE INFO-
COM, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

