
Perceptual-Centric Image Super-Resolution using
Heterogeneous Processors on Mobile Devices

Kai Huang
University of Pittsburgh, USA

k.huang@pitt.edu

Xiangyu Yin
University of Pittsburgh, USA

eric.yin@pitt.edu

Tao Gu
Macquarie University, Australia

tao.gu@mq.edu.au

Wei Gao
University of Pittsburgh, USA

weigao@pitt.edu

ABSTRACT

Image super-resolution (SR) is widely used on mobile devices
to enhance user experience. However, neural networks used
for SR are computationally expensive, posing challenges for
mobile devices with limited computing power. A viable solu-
tion is to use heterogeneous processors on mobile devices,
especially the specialized hardware AI accelerators, for SR
computations, but the reduced arithmetic precision on AI ac-
celerators can lead to degraded perceptual quality in upscaled
images. To address this limitation, in this paper we present
SR For Your Eyes (FYE-SR), a novel image SR technique that
enhances the perceptual quality of upscaled images when
using heterogeneous processors for SR computations. FYE-
SR strategically splits the SR model and dispatches different
layers to heterogeneous processors, to meet the time con-
straint of SR computations while minimizing the impact of
AI accelerators on image quality. Experiment results show
that FYE-SR outperforms the best baselines, improving per-
ceptual image quality by up to 2×, or reducing SR computing
latency by up to 5.6× with on-par image quality.

CCS CONCEPTS

• Human-centered computing→ Ubiquitous and mo-
bile computing; • Computing methodologies→Artifi-
cial intelligence;

KEYWORDS

Image super-resolution, perceptual quality, neural networks,
heterogeneous computing, mobile devices

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0489-5/24/11.

https://doi.org/10.1145/3636534.3690698

ACM Reference Format:

Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao. 2024. Perceptual-
Centric Image Super-Resolution using Heterogeneous Processors
on Mobile Devices. In The 30th Annual International Conference on

Mobile Computing and Networking (ACM MobiCom ’24), November

18–22, 2024, Washington D.C., DC, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3636534.3690698

1 INTRODUCTION

Image super-resolution (SR) enhances the image quality by
upscaling the image resolution [3, 52], and finds applications
in various domains such as gaming [31], video streaming
[83] and healthcare [45], when the original image quality
from data sources is low. SR has been widely used on mo-
bile devices (e.g., smartphones and tablets) to enhance user
experience, due to the increasing complexity of multimedia
contents and the need of real-time rendering in gaming and
camera preview on these devices [23, 42, 66, 78].
Current SR techniques are mainly based on Neural net-

works (NNs) that can better capture such non-linearity and
hence improve the image quality [12, 33, 40, 73, 82]. How-
ever, NN-based SR models1 are computationally expensive
for mobile devices with limited computing power. For exam-
ple, even when using mobile GPU on flagship smartphones
(e.g., a Google Pixel 6 smartphone with a Mali-G78 MP20
GPU that provides 1.94 TFLOPS computing power), it still
takes >180ms to upscale a 240p image to 480p, and such high
computing latency makes it difficult to apply SR in many
interactive applications such as gaming. An intuitive solu-
tion is to offload SR computations to the cloud [71, 79], but
incurs high communication overhead, especially when the
upscaled images have high resolutions [9, 34].
A better alternative is to involve specialized hardware AI

accelerators that have been readily available in mobile SoCs,
such as Neural Processing Units (NPUs)2, in addition to tradi-
tional processors (e.g., CPU and GPU). These AI accelerators
use fixed-point arithmetic and systolic array architecture

1Without loss of generality, the terms of “NN model” and “SR model” will

be used interchangeably in the rest of this paper.
2Typical NPUs include Google Tensor [58] and Qualcomm Hexagon [56].

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

Upscaled by
quantized NN

Upscaled by
unquantized NN

(a) Image quality drop

Unquantized patchesUnquantized patches
Quantized patches

(b) Visual inconsistency

Figure 1: Reduced arithmetic precision affects the
quality and visual consistency of upscaled SR images

[10, 35] to achieve higher speed and energy efficiency in NN
computations [35, 49, 65]. However, the use of fixed-point
arithmetic could result in low quality in upscaled images
[23, 24] when being applied to regression-based SR tasks as
shown in Figure 1(a), due to the required quantization and
reduced arithmetic precision in NNs [38, 55]. While certain
NPU designs (e.g., Qualcomm Snapdragon 8 Gen 3) offer
limited support for floating-point computations (e.g., FP16)
[27] and such capability of mixed-precision computations
have been utilized for SR computations [69], the availability
of these NPUs is still limited on commodity mobile devices.
To mitigate such image quality drop, existing schemes

split input images into small patches and dispatch these
patches to traditional processors and AI accelerators (Figure
2 bottom-left), based on the varying difficulty levels of up-
scaling each patch [37, 69]. However, when upscaled patches
are re-stitched to form a complete image, such image-based
split of SR computations often leads to color mismatch and
visual inconsistency across image patches, as shown in Fig-
ure 1(b). This inconsistency may not impact the structural
image quality with a small portion of mismatching patches
(e.g., <15% according to [37]), but can largely affect the hu-
man perception of images. Providing extra information about
images alleviates the difficulty of SR and mitigates such in-
consistency [42, 78], but adds significant communication and
storage overhead among heterogeneous processors.
To address this limitation, in this paper we present SR For

Your Eyes (FYE-SR), a novel image SR technique that aims
to enhance the perceptual quality of upscaled images on
mobile devices. FYE-SR addresses the visual inconsistency
in upscaled images by introducing a new procedure-based
approach to splitting SR computations among heterogeneous
processors, as opposed to the traditional image-based split-
ting. We split the SR model (Figure 2 bottom-right) and adap-
tively dispatch different NN layers of the SR model to hetero-
geneous processors, according to the computing complexity
of these NN layers and how SR computations in these layers
are affected by the reduced arithmetic precision. Our goal
is to maximize the utilization of AI accelerators within the
given time constraints on SR computations, while minimiz-
ing their impact on perceptual image quality.
The major challenge is how to ensure proper split of the

SRmodel. The reduced arithmetic precision impacts different

AI accelerator
(e.g., NPU)

Unquantized
neural network

Quantized
neural network

CPU / GPU Only NPU Only

Image-based Split Ours: FYE-SR

Traditional processor
(e.g., CPU/GPU)

Figure 2: Existing work vs. FYE-SR

NN layers in various ways, but such impact should be cumu-
latively evaluated for the optimal SR model split. Traditional
approaches separately evaluate such impacts of individual
layers and aggregate them additively [14, 51, 64], but ignore
the interdependency among layers. Instead, our approach is
to evaluate such cumulative impact through an end-to-end
learning process, by designating the SR model split as a set of
trainable parameters and constructing differentiable training
losses with respect to perceptual image quality. These param-
eters are then transformed into vectorized formulations to
ensure the stability and computational efficiency of training.
On the other hand, precise measurement of the comput-

ing times for different NN layers across heterogeneous pro-
cessors is essential for a proper split of the SR model. In
particular, since such split results in switches between pro-
cessors during SR computations, the switching costs should
also be properly measured, minimized, and considered when
deciding the SR model split. To ensure precise profiling of
computing times, we developed new software techniques
that efficiently utilize the interrupt information from An-
droid OS kernel to extract timestamps of relevant hardware
access events. To minimize the runtime computing costs of
switching, we made custom modifications to the OpenCL
library in Android OS and utilize mobile GPU for parallel
conversion of intermediate data formats, a significant aspect
of the switching process with substantial overhead.
To our best knowledge, our work is the first that aims to

explicitly enhance the perceptual quality of upscaled images
on mobile devices, and our key contributions are as follows:

• Our end-to-end learning approach ensures proper split
of SR model between heterogeneous processors, by ap-
plying computing times and perceptual image quality
of SR into the loss with differentiable forms.

• We propose system techniques to ensure accurate pro-
filing of SR computing times on different processors,
by retrieving timestamps of hardware access events
from Android OS kernel.

• Our custom OpenCL modification supports computa-
tionally efficient conversion of data formats and hence

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

minimizes the runtime switching costs between het-
erogeneous processors.

We implemented FYE-SR on the Google Pixel smartphones,
and utilize their on-board GPU and Tensor NPU for SR com-
putations by converting intermediate data in SR models be-
tween INT8 and FP32. We evaluated the performance of
FYE-SR on multiple commonly used image datasets with
different SR configurations. From our experiment results, we
have the following conclusions:

• FYE-SR is highly effective. Compared to the best base-
lines, FYE-SR reaches the similar SR computing latency
but improves the upscaled image quality by up to 50%,
or retains on-par image quality but reduces the SR
computing latency by up to 5.6×.

• FYE-SR is adaptive. It can retain high perceptual qual-
ity of upscaled images with different SR configurations
and datasets. When the timing constraint of SR com-
putation varies, FYE-SR can adaptively adjust the SR
model split to achieve the optimal tradeoff between
image quality and SR computing latency.

• FYE-SR is lightweight. It consumes <20% of battery
power after 1-hr use on various smartphone models,
and hence ensures continuous SR computations in
practical applications.

2 BACKGROUND & MOTIVATION

We first provide backgrounds about image SR and different
metrics to measure image quality. We further highlight the
possibility of speeding up NN-based SR computations using
AI accelerators, and the necessity of splitting SR computa-
tions between traditional processors and AI accelerators.

Neighbor pixel

Interpolated pixel

Interpolation Sharpening
Filter

…

NN layer

Interpolation-based SR Filter-based SR

NN-based SR

Figure 3: Different image SR approaches that approxi-
mate the reverse form (f −1) of degradation function

2.1 Overview of Image Super-Resolution

Image super-resolution (SR) recovers high-resolution (HR)
images from low-resolution (LR) images, by approximating
the reverse form f −1 of the degradation function f : HR →

LR. In practice, since a LR image may correspond to multiple
possibilities of HR images, f is irreversible unless provid-
ing assumptions about f −1 [3]. As shown in Figure 3, basic
interpolation-based SR assumes full linearity of f −1 and thus
creates new pixels via simple arithmetic (e.g., weighted av-
erage) over existing nearby pixels [13, 67], but the restored

HR images usually lack high-frequency graphics informa-
tion (e.g., edge of objects) due to over-simplified f −1. Filter-
based SR [17, 18, 52, 74] incorporates a moderate level of
non-linearity into f −1 with sharpening filters (e.g., Lanzcos
kernel [15]), but the HR image quality is still limited.
In recent years, convolutional NNs [12, 40] and transform-

ers [8, 43] have been adopted for SR to learn a generic non-
linear approximation of f −1 via a regression task. Advanced
deep learning techniques, such as adversarial training [33],
can be further used to enhance the training feedback and
improve the training quality. In the rest of this paper, we will
focus on NN-based SR for the maximum image quality.

SR Model CPU GPU Tensor NPU

SRCNN [11] 0.075s 0.022s 0.006s
EDSR [40] 1.91s 0.21s 0.034s

ESRGAN [73] 3.24s 0.46s 0.074s

Table 1: SR computing latency using different proces-
sors on a Google Pixel 6 smartphone. 4× SR is applied
to an input image with size of 640×480.

However, most NN-based SR models are computationally
expensive. Being different from NNs in other tasks (e.g., im-
age classification), the intermediate data size in SR models
increases as the layer goes deeper, and SR models hence
incur much more computations with the same parameter
size. For example, both SwinIR [39] (SR model) and ResNet18
[19] (classification model) contain 11M parameters, but the
former incurs 202 GFLOPs in inference and the latter only
incurs 2 GFLOPs. Recent popular SR models, such as EDSR
[40] and ESRGAN [73], have even larger parameter sizes
and their inferences can only reach 2.2-4.8 FPS on flagship
smartphones as shown in Table 1. Such high computing costs
motivate us to explore more opportunities of speedup using
heterogeneous on-device processors.

2.2 Image Quality Metrics

The quality of upscaled images produced by SR can be eval-
uated with different metrics. The commonly used structural
metrics, such as PSNR and SSIM, measure the structural
similarity of target images with their corresponding refer-
ence images. However, they cannot correctly depict humans’
perception on images, because they tend to underestimate
humans’ sensitivity to visual artifacts, especially distortions
at hard edges and in high-intensity regions [21, 50]. Subjec-
tive metrics, such as Mean Opinion Score [3], use human
ratings to ensure correct alignments with human perception
but are time-consuming and expensive.
Instead, objective Image Quality Assessment (IQA) met-

rics, including LPIPS [81], NIQE [47] and PIQE [70], are more
commonly used to measure images’ perceptual quality, as the
target images’ statistical deviation from natural images that

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

(a) Original Image

PIQE: 38.85 (fair)

PSNR: +inf

(b) Partially Cropped

PIQE: 40.88 (fair)

PSNR: 14.02 (very bad)

(c) Random Noise

PIQE: 67.13 (bad)

PSNR: 26.36 (fair)

Figure 4: Image quality evaluated with PSNR (struc-
tural) and PIQE (perceptual) metrics

are known to be perceptually photo-realistic. These percep-
tual metrics, hence, reflect different aspects of image quality
and are usually inconsistent with traditional structural qual-
ity metrics [6]. For example, Figure 4 shows that the same
image distortion could result in large difference in PIQE and
PSNR quality scores. Most existing work in SR, however, are
limited to measuring the quality of upscaled images using
structural metrics and ignore the images’ perceptual quality.
In our work, we explicitly use perceptual quality metrics as
the feedback when training SR models, hence ensuring the
maximum perceptual quality of upscaled images.

Weight Buffer

In
pu

t B
uf

fe
r

MAC

MAC

MACMAC

MAC MAC

MAC MAC MAC

Output Buffer

… …

…

…

…

…

Acc Acc Acc

Figure 5: The micro-architecture of a typical systolic
array (MAC: multiply-and-add, Acc: accumulator)

2.3 Speedup with AI Accelerators

As shown in Figure 5, current designs of AI accelerators use
systolic arrays to allow 2D multiplication and summation
to be performed concurrently, hence accelerating NN opera-
tions based onmatrix multiplications [10]. Table 1 shows that
such concurrency can reduce SR computing latency by up
to 6.3× from GPU execution and 55.8× from CPU execution.
On the other hand, such speedup requires a sufficient

amount of multiply-and-add (MAC) units in systolic arrays.
Most AI accelerators, hence, only support integer compu-
tations with fixed-point arithmetic (e.g., INT8) [35] to save
chip space, because floating-point MAC units (e.g., FP32)
require 25× more space [27] and 3× more transistors. The
reduced arithmetic precision could result in significant drop
of upscaled images’ quality, even if measured with percep-
tual metrics, as shown in Figure 6. Some recent designs of AI
accelerators (e.g., Qualcomm Snapdragon 8 Gen 3) provide
limited support on floating-point computations (e.g., FP16)

(a) Original Image

PIQE: 18.03 (excellent)

(b) After SR

PIQE: 36.73 (fair)

(c) Quantized SR

PIQE: 53.35 (poor)

Figure 6: Impact of reduced arithmetic precision on
perceptual image quality using SRCNN [11]

[27], but their floating-point performance is much lower.
For example, as shown in Table 2, the FP16 performance
of Qualcomm Hexagon NPU on Samsung Galaxy S24 Ultra
smartphone is only 11.6% of its INT8 performance and is
even lower than the smartphone’s GPU performance.

Device Model GPU NPU (FP16) NPU (INT8)

Google Pixel 6 0.022s - 0.006s
Galaxy S24 Ultra 0.019s 0.043s 0.005s

Table 2: The SR computing latencies using different
arithmetic precisions. 4× SR with SRCNN model [11]
is applied to an input image with size of 640×480.

Such limitation of AI accelerators motivates us to split SR
computations between traditional processors and AI acceler-
ators, and enhance the perceptual quality of upscaled images
by avoiding SR computations that are sensitive to arithmetic
precision from being executed on AI accelerators after being
quantized. In particular, as shown in Figure 7, different layers
in a SR model exhibit highly diverse sensitivity to arithmetic
precision. These results verify that we can still execute the
majority of SR computations on AI accelerators, to speed up
SR computations with the minimum perceptual quality loss.

(a) First 3 blocks quan-

tized. PIQE: 40.02

(b) Middle 3 blocks quan-

tized. PIQE: 70.57

(c) Last 3 blocks quan-

tized. PIQE: 13.77

Figure 7: Image quality difference with different lay-
ers of the SR model being quantized. 4× SR is applied
using EDSR model with 32 residual blocks [40].

In practice, a proper split of SR computations builds on
quantitative understanding about SR model’s sensitivity to
arithmetic precision. Existing work uses layer importance
metrics based on accuracy loss [64], weight magnitude [51]
or gradient [14] to quantize such sensitivity, but ignores the
interdependency among NN layers and cannot correctly re-
flect the cumulative sensitivity of multiple NN layers. Instead,
in FYE-SR we adopt a learning-based approach to implicitly
incorporate such interdependency.

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

Model Split Learner

SR Timing Profiler

Layer

Dummy Input

Dummy layer

Layer to profile
=
==
=

…
…

… …

G
PU

 T
im

in
g

……

N
PU

 T
im

in
g

Training feedback to update
Quantized
Unquantized

OFFLINE ONLINE

Enforcing …

La
ye

r 1

La
ye

r 2

La
ye

r 3

Data Format Converter

GPU

NPU

FP
32

IN
T8

IN
T8

FP
32

Layer 1

If = 1
If = 0

Layer 1

Layer 2

If = 1
If = 0

Layer 2 If = 1
If = 0

Layer N

Layer N

Figure 8: Overview of FYE-SR Design

3 SYSTEM OVERVIEW

Our goal of FYE-SR design is to simultaneously minimize
the end-to-end SR computing latency (T) and maximize the
perceptual quality of upscaled images (Q), by solving the
following multi-objective optimization problem:

minP (T (P),−Q(P)), (1)

where P indicates the SR computation split between tra-
ditional processors and AI accelerators. In most practical
scenarios when these two optimization objectives cannot be
simultaneously met, we instead look for a Pareto optimal so-
lution, in which either objective cannot be further improved
without degrading the other. More specifically, we adopt the
ϵ-constraint method [46] where T (P) is considered as mini-
mized if it’s lower than a requiredTob j , and the optimization
problem in Eq. (1) is then simplified as

minP (−Q(P)) s.t. T (P) ≤ Tob j . (2)

Based on this formulation, our design of FYE-SR consists
of three main modules as shown in Figure 8. During the
offline phase, we first use a SR Timing Profiler to measure the
computing latencies of SR model’s different NN layers on
traditional processors (e.g., GPU) and AI accelerators (e.g.,
NPU), respectively. Then, knowledge about such latencies
will be used to train a Model Split Learner to solve Eq. (2) for
the optimal split of SR model.
During the online phase, FYE-SR enforces such model

split, and uses a Data Format Converter to convert the in-
termediate feature maps into the right data formats (e.g.,
INT8 and FP32) for properly switching SR computations be-
tween heterogeneous processors. Note that, FYE-SR splits
the SR model by layers, because more fine-grained partitions
(e.g., tensor-level split) cannot benefit from AI accelerator’s
micro-architecture that is specifically designed for fused NN
operations (e.g., a complete layer).

3.1 SR Timing Profiler

To measure the computing latency of a NN layer in the SR
model, an intuitive approach is to run another small NN

model that contains only the target layer. However, the mea-
sured latency in this way also includes the overhead of input
and output data handling. Instead, as shown in Figure 8, given
a target layer i of the SR model, we first measure the end-to-
end computing latency of layer i and dummy input/output
layers3, and then measure the computing latency of these
dummy layers only. The computing latency of layer i can
then be derived as the difference of these two measurements.
Results from our preliminary results in Table 3 show that our
method can effectively remove the timings of input/output
data handling from measurements on the target NN layer.

Method Layer 1 Layer 2 Layer 3

Small NN model with target layer only 20.5 51.0 58.6

Dummy layer differences 5.2 7.0 9.8

Table 3: Timing measurement (ms) for different
layers in the SRCNN model on Google Pixel 6 GPU

When different layers of SRmodels are executed on hetero-
geneous processors, FYE-SR needs to switch between these
processors during the SR procedure. The timings of such
switching between processors will also be profiled and taken
into account when making decisions on SR model split. More
specifically, we extract and utilize the interrupt information
from Android OS kernel and use the timestamps of hardware
access events to ensure precise calculation of these timings.
More details about such timestamp access are in Section 4.

3.2 Model Split Learner

Due to the nonlinearity of Eq. (2), FYE-SR decides the optimal
split of SR model through an iterative learning process. In
the offline phase, the Model Split Learner creates two repli-
cas of the SR model, i.e., quantized and unquantized, and
flexibly alters the data flow to enter layers in each replica
to emulate different split options. Such alternation between

3In practice, these dummy layers should be at least a few convolutional

layers, to avoid being automatically dropped from the model’s computing

graph in deep learning frameworks (e.g., TFLite).

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

split options is grounded by a vector of binary variables
α = [α1,α2, ...,αM], where αi = 1 indicates that layer i is
executed on AI accelerators (e.g., NPU) and αi = 0 indicates
otherwise. FYE-SR learns these binary variables by using
1) the profiled computation timings of different NN layers
and 2) a SR image dataset that contains pairs of LR and HR
images (e.g., DIV2K [1] and UHDSR [80]) as training data.
Such learning is jointly guided by the following loss terms
that are aligned with the objective and constraint in Eq. (2):
First, the Timing loss (Lt ime = max(0,T (α) − Tob j)),

where T (α) indicates the end-to-end SR computing latency
when the SR model is split with α , enforces that the SR
model split should satisfy the time constraint (Tob j) of SR
computations. The use of max(·) ensures that Lt ime ≥ 0 even
if the latency constraint Tob j cannot be met due to mobile
devices’ limited computing power. Details about calculating
such computing latency T (α) is in Section 5.1.
Second, the Image quality loss λ1Lstruct + λ2Lpercept

involves both perceptual metrics and structural metrics to
maximize the perceptual quality of upscaled images. On one
hand, since most perceptual image quality metrics measure
the images’ statistical deviation from human perception and
are hence not differentiable, we instead train a differentiable
NN-based perceptual quality estimator to mimic the behav-
ior of these metrics in the learning process, and details of
such training are in Section 5.2. On the other hand, we also
involve structural metrics4 to ensure that upscaled images
approximate the ground truth. λ1, λ2 are hyper-parameters
to balance each term’s contribution to the learning process
and will be further discussed in Section 5.3.
To apply gradient-based optimizers (e.g., SGD [2] and

Adam [29]) in training, we adopt a continuous represen-
tation of α , by applying siдmoid(·) over a trainable weight
wi . As shown in Figure 9, there are two choices to ground the
SR model split. Pre-selection places the weighting module
before entering a NN layer. When αi → 1, the input to the
unquantized layer will be zeroed out, but this cannot guar-
antee that the layer’s output will be zeroed due to internal
bias parameters. Instead, we adopt post-selection to ensure
that unselected layers do not affect the forward pass.

Layer

Layer ×
× (1)= ()

Layer

Layer ×
× (1)= ()

Pre-selection Post-selection

Figure 9: Design choices forModel Split Learner

Effectiveness ofModel Split Learning.Model split can be
decided in various ways. Compared to naive methods such as
exhaustive enumeration or heuristic search [5], our proposed

4Most structural metrics (e.g., SSIM and PSNR) are differentiable and can be

directly used in the learning process.

NN-basedModel Split Learner can better depict the nonlinear
correlation between different NN layers’ computations on
GPU/NPU and SR image quality, and also achieves higher
compute efficiency with a smaller problem space.
To further verify such compute efficiency, we evaluated

the amount of offline time consumed by deciding the optimal
model split, using a Nvidia A5000 GPU with different NN
models and datasets. Results in Table 4 show that our NN-
based Model Split Learner spent at least 25% less compute
time on small SR models such as EDSR. In particular, since
such computing overhead of our Model Split Learner linearly
increaseswith the number of layers in the SRmodel, on larger
SR models such as ESRGAN, our compute efficiency is at
least 2.2x higher than heurstic search methods.

Method Dataset
NN NN Time

Model Layer count (hour)

Exhaustive search DIV2K EDSR 37 3.5

Heuristic search DIV2K EDSR 37 1.7

Model Split Learner DIV2K EDSR 37 1.4

Exhaustive search DIV2K ESRGAN 171 78.6

Heuristics search DIV2K ESRGAN 171 14.4

Model Split Learner DIV2K ESRGAN 171 6.5

Table 4: Amount of offline computation time in
finding the optimal SR model split

3.3 Data Format Converter

Since AI accelerators usually support only fixed-point arith-
metic, data format conversion is needed whenever SR com-
putations are switched between heterogeneous processors.
Quantization and dequantization, as the most common form
of such conversion, are computed as

q = r/s + z, r = (q − z) · s, (3)

where q and r indicate quantized and dequantized data, re-
spectively, and s and z are constants.
The major challenge of data format conversion in FYE-

SR is that such conversion incurs non-negligible computing
overhead. Table 5 shows that, when using smartphone CPU
for such conversion on a single image, such computing la-
tency could be up to 46ms. Even if we convert dequantization
computations into table lookup, the computing latency is
still about 27ms, which is even higher than the SR computing
latency on NPU, as shown in Table 1 and Table 2.

Method
640×360×64

quant./dequant.
640×360×32

quant./dequant.

Arithmetic 46.4/46.1 27.7/28.9

Table lookup -/20.0 -/10.5

Table 5: Computing latency (ms) of CPU-based data
format conversion on a Google Pixel 6 smartphone

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

To reduce the overhead, our approach is to conduct such
conversion on mobile GPU with high parallelism. Unfor-
tunately, such conversion is not supported by current deep
learning frameworks on mobile devices (e.g., TFLite). Instead,
we modify the commodity TFLite library that handles mo-
bile NN execution, and implement our custom GPU-based
parallel format conversion on top of the TFLite library. More
details are in Section 6.

User app (CPU)

Ashmem bridge: /dev/ashmem

NN libraries (e.g.,
TFLite)

NNAPI framework (NPU)
or GPU user space driver

GPU/NPU driver

GPU/NPU firmware

Android Kernel (CPU)

invoke() return

ioctl() return

RPC irq_handler(entry, exit)

ioctl() return ioctl() return

command
transmission

Android binder

User app to processor
Processor to user app

Time……
… …GPU NPU

…

CPUGPU NPU

…
compute computeswitch

Figure 10:Hardware access events inAndroidOSwhen
executing NNs on heterogeneous processors

4 RETRIEVING TIMESTAMPS FROM
MOBILE OS

As shown in Figure 10, we measure the time needed to switch
SR computations between different processors, by retrieving
timestamps of the hardware access events in the Android
OS kernel, including the Android kernel’s Remote Procedure
Calls (RPCs) and hardware interrupt (irq_handler) sent
by the processor (e.g., GPU or NPU). More specifically, the
time switching between processors contains i) the overhead
of function returns from NN computation on the current
processor, corresponding to events from 1 to 3 ; and ii)
the overhead of system calls to continue NN computation
on the other processor, corresponding to events from 4 to
6 . The switching time between processors can then be
calculated as the sum of elapsed time from 4 to 6 and
the time from 1 to 3 .
To capture 4 , we use the Linux tracing subsystem through

the /sys/kernel/tracing pseudo-file interface. It can record
various system events in the kernel, including interrupts
(irq) and system calls such as ioctl(). The two system
events, irq_handler_entry and irq_handler_exit, indi-
cate start and end of IRQ interrupt handling, respectively,
and we consider irq_handler_entry to be the exact times-
tamp 4 , which indicates end of NN computation on the
current processor and start of switching between processors.

To capture 3 , one intuitive approach is to modify the
processor drivers so that they can send a message to the
OS kernel’s ring buffer immediately before SR computation
is launched on the processor. This message, as well as its
timestamp (3), could then be retrieved through dmesg pro-
gram that reads the Linux kernel ring buffer. However, this
approach cannot be applied to most current Android systems
where GPU and NPU drivers are close-sourced. Instead, in
FYE-SR we monitor the closest event ACQUIRE_WAKE_LOCK
ioctl() (2) as an approximation to 3 .

5 CONSTRUCTING TRAINING LOSS FOR
MODEL SPLIT LEARNER

In this section, we describe technical details of constructing
the loss when training the Model Split Learner.

5.1 Calculating the Timing Loss

To properly calculateT (α) that indicates the end-to-end com-
puting latency of SR model on heterogeneous processors, we
separately calculate the computing time on processors and
switching time between processors. First, letting tGi and tNi
denote the computing time of SR model’s layer i on GPU and
NPU, the total computing time on heterogeneous processors
can be calculated as

Tcomp =
∑M

i=1

(
αit

N
i + (1 − αi)t

G
i

)
, (4)

whereM is the number of layers in SR model, and αi is the
binary variable indicating whether layer i is computed at
NPU or GPU. αi and 1−αi are hence contradictory to ensure
each layer is only computed on one processor.
Switching between processors only happens on layer i

when αi � αi+1 and layer i + 1 is hence computed on a
different processor. Letting tG→N

i and tN→G
i denote the time

needed to switch computations from GPU to NPU and from
NPU to GPU, respectively, the total switching time between
processors during SR computations can be calculated as

Tswitch =
∑M−1

i=1

(
(1 − αi)αi+1t

G→N
i + αi (1 − αi+1)t

N→G
i

)
,

(5)

where for any layer i , only one of the two additive terms will
be non-zero.
Although Tcomp and Tswitch are both differentiable, it is

inefficient to compute gradient-based feedback from their
non-vectorized formulations in current NN libraries. Hence,
we convert Eq. (4) and Eq. (5) to a vectorized formulation on
a layer basis. For example, the vectorized T (α) with respect
to layer 1 can be calculated as

T (α) = α � t
N + (1 − α) � t

G

+ [(1 − α 1:M−1)α 2:M] � t
G→N

+ [α 1:M−1(1 − α 2:M)] � t
N→G

(6)

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

where � denotes the inner product andα a:b = [αa ,αa+1, ...,αb].
Since values in the continuous form of α may not be close
to 0 or 1 in training, we only use such continuous α in the
backward pass, but still use discrete α in the forward pass
based on the straight-through estimator method [4].

C
onv2D

B
N

AvgPool

FC…×N

Non-differentiable
perceptual quality metric

Input
image

Estimated
quality score

Ground
Truth

Perceptual Quality Estimator

Training feedback

Figure 11: Training a differentiable PIQE estimator

5.2 Differentiable Perceptual Loss

As described in Section 3.2, the perceptual loss (Lpercept)
should also be differentiable to guide the training of Model
Split Learner. Our approach to a differentiable perceptual loss
is to construct a NN-based perceptual quality estimator that
mimics the behavior of a perceptual image quality metric.
As shown in Figure 11, the estimator consists of a few blocks
of convolution and batch normalization (BN) layers to ex-
tract global and local features from the input image, and use
average pooling (AvgPool) + fully connected (FC) layers to
project the extracted features into a scalar. When training
this estimator, we use the image quality score given by the
original non-differentiable metric as the ground truth.

Figure 12: Error of estimating perceptual image qual-
ity with different numbers of Conv2D+BN blocks

To ensure that the knowledge that the NN-based estimator
learned about the perceptual quality metric is complete, we
use the LIVE image database [61] as the training dataset,
where images are distorted with 5 distortion types (e.g., JPEG
compression and Gaussian blur) and ensured to cover all the
possible levels of perceptual quality. Our experiment results
in Figure 12 show that, by using 5 Conv2D+BN blocks in the
estimator, the estimator can restrain the quality estimation
error within 4.7% with low computing cost, and we will use
this design in the rest of the paper.

5.3 Combined Training Loss

As described in Section 3.2, the timing loss and image quality
loss are combined in training by hyper-parameters λ1 and
λ2, which affect the relative intensity of training feedback.
When adopting SGD [2] as the optimizer, the update of α ’s
trainable weightsw in each iteration is

w ← w − η · (
∂Lt ime

∂w
+ λ1
∂Lpercept

∂w
+ λ2
∂Lstruct
∂w

), (7)

where η is the learning rate.
In practice, we empirically determine the values of λ1 and

λ2 based on the scales Lt ime , Lpercept , and Lstruct , so as to
avoid training bias. For example, when PSNR and PIQE are
used as the structural and perceptual image quality metrics,
respectively, our experiment results show that the best values
of λ1 and λ2 are 0.001 and 0.25 for the SRCNN model [11]
running a Google Pixel 6 smartphone.

NN model

Input data

User config

TFLite user
interface

GPU
delegate

NN code
generator

Conversion
Code Generator

combine

Output:
FP32 INT8

Input:
INT8 FP32

NN
execution

OpenCL code

TFLite OpenCL
adapter

OS OpenCL library
(by GPU vendor)

GPU driverData Format
Conversion

Figure 13: Generating OpenCL codes for data format
conversion, by modifying the existing OpenCL code
generator in TFLite backend library

6 DATA FORMAT CONVERSION

To minimize the runtime computing cost of data format
conversion between fixed-point (e.g., INT8) and floating-
point (e.g., FP32) precisions, we perform such conversion on
mobile GPU with high parallelism. To do this in Android,
an intuitive solution is to add additional NN layers in the
SR model when defining the model structure in user space.
However, current deep learning libraries on Android, such as
TFLite, do not support efficient operators for such conversion
like tf.cast() provided in TensorFlow desktop APIs.
Instead, we directly append and prepend conversion codes

to the OpenCL program that is generated by TFLite library
for GPU execution. As shown in Figure 13, TFLite converts
the computing graph of the NN model to OpenCL GPU pro-
grams for parallel GPU execution. The original NN code
generator works by stitching OpenCL code strings of each
NN operator, and we combine it with our custom Conversion
Code Generator by modifying the original code to handle
INT8 data input and output. Figure 14 shows a code piece of
the implemented Conversion Code Generator. It generates
code strings that call convert_char() to cast input data
from FP32 to INT8 for quantization. Dequantization from
INT8 to FP32 can be supported in the similar way.

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

std::string c;
c += "__kernel void vector_f32toint8_gpu(__global const float* src_f,";
c += " __global char* res, const int num){";
c += " const int idx = get_global_id(0);";
c += " if (idx < num) {";
c += " res[idx] = convert_char(src_f[idx]);";
c += " }";
c += "}";

Figure 14: Code piece of generating data format con-
version code
We conducted preliminary experiments to explore the

computing efficiency of GPU-based data format conversion,
by comparing it with multithreading CPU execution. As
shown in Table 6, GPU-based conversion is up to 5× faster
than CPU conversion, 14× faster than naive Java implemen-
tation, and its overhead if 25% of data transmission overhead
between GPU and NPU. Note that, such data conversion
latency is also incorporated when measuring the switching
times between processors in SR computations.

Time (ms)

layer 1 to 2

GPU→NPU

layer 1 to 2

NPU→GPU

layer 2 to 3

GPU→NPU

layer 2 to 3

NPU→GPU

Data Tx 21.32 19.83 11.22 10.91

Naive Java 46.41 46.14 27.73 28.88

CPU conversion - 20.01 - 10.50

GPU conversion 4.31 5.28 1.64 1.98

Table 6: Latency (ms) of data format conversion on a
Google Pixel 6 smartphone with SRCNN [11] model

7 IMPLEMENTATION

Offline Phase:We implement our SR Timing Profiler using
a rooted smartphone with Android OS and a workstation. A
bot program written in Python runs on the workstation to
control the profiling on smartphone. The bot program first
generates SR model files containing the target NN layer and
dummy input/output layers with TensorFlow. It then sends
the generated model files in .tflite format to smartphone,
and controls the test program on smartphone to perform pro-
filing via ADB debugging connection. The test program writ-
ten in C++ runs in the Termux emulator on rooted Android
OS. It executes the .tflitemodels using TFLite C++ library,
measures execution time using timestamps from Linux ker-
nel ring buffer and Linux tracking subsystem, and sends the
profiling results back to the bot program on workstation.
With the time profiling results, we implement the learning

program for Model Split Learner on the workstation. The
learning program utilizes TensorFlow’s Model Optimization
Toolkit (tfmot) to handle trainingwith quantizedmodel com-
ponents. Split model files with quantized and unquantized
components, together with a metadata file, are generated for
the online phase based on the training results of model split.
Online Phase: SR computation is implemented as an An-
droid App, which incorporates our modified TFLite library
to execute pre-defined split SR model files. The Data Format
Converter written in C++ and OpenCL is integrated into
modified TFLite library.

8 PERFORMANCE EVALUATION

Our evaluations use three NN-based SR models: EDSR [40],
ESRGAN [73], and ENet-PAT [59] with different designs
and model complexities. EDSR and ESRGAN models are re-
implemented with the latest TensorFlow 2 API [22, 30] and
pre-trained on the DIV2K dataset [1]. ENet-PAT’s weights
are loaded from the originally released model trained on
MSCOCO dataset [41].
To evaluate SR performance, the following datasets are

used in training the Model Split Learner:

• DIV2K [1]: It contains 800 training and 100 validation
images at 2K resolution, and covers a wide range of out-
door and indoor photos. Since the test data in DIV2K
is not publicly available, we randomly take 100 images
from the original 800 training images for testing, and
use the rest 700 images for training.

• OST300 [72]: It contains 10,324 training images and
300 testing images with various resolutions of out-
door scenes in 7 categories (e.g., buildings, sky, and
mountains). We randomly select 1,000 images from
testing images for validation, and use the original test-
ing dataset for evaluation.

• Flickr2K [40]: It contains 2,650 images of 2K reso-
lution in urban and natural landscapes. We randomly
select 2,000 images for training, 300 images for valida-
tion and the rest 350 images for testing.

We first apply common pre-processing methods to obtain
augmented HR images from the original datasets, and then
use bicubic down-sampling over HR images to obtain paired
LR images. In evaluations, these LR images are used as in-
put to the SR model, whose outputs are compared with the
original HR images. The output image quality is measured
by both structural metrics (PSNR and SSIM) and perceptual
metrics (PIQE [70] and LPIPS [81]). We measure the end-to-
end latency of SR computations, including the computing
times on all processors and the switching times between
processors including both OS operations (as shown in Figure
10) and data format conversion (as described in Section 6).
We compare FYE-SR with the following baselines that use

heterogeneous mobile processors for SR:

• MobiSR [37] splits input images into patches and
dispatches them to CPU, GPU and AI accelerator based
on SR difficulty.

• μLayer [28] speeds up per-layer execution by split-
ting each NN layer by channels onto different proces-
sors. Each layer’s execution requires synchronization
and communication for data consistency.

• CoDL [26] performs image SR in full precision be-
tween GPU and CPU by splitting image data. It re-
duces communication overhead by performing less
GPU-CPU communication, at the cost of computing
extra image features on both processors.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

EDSR
Tobj=66.6ms

EDSR
Tobj=90ms

ESRGAN
Tobj=250ms

ENet-PAT
Tobj=66.6ms

0

0.2

0.4

0.6

0.8

1

S
S

IM
GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(a) Structural image quality (SSIM↑)

EDSR
Tobj=66.6ms

EDSR
Tobj=90ms

ESRGAN
Tobj=250ms

ENet-PAT
Tobj=66.6ms

0

20

40

60

80

100

P
IQ

E

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(b) Perceptual image quality (PIQE↓)

EDSR
Tobj=66.6ms

EDSR
Tobj=90ms

ESRGAN
Tobj=250ms

ENet-PAT
Tobj=66.6ms

0

100

200

300

400

500

600

L
at

en
cy

 (
m

s)

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(c) SR computing latency

Figure 15: SR image quality and computing latency using EDSR, ESRGAN, and ENet-PATmodels onDIV2K dataset
with 4× 720×480 output on a Pixel 6 smartphone

(a) GPU Only (PIQE=26.84) (b) NPU Only (PIQE=62.58) (c) MobiSR (PIQE=47.10) (d) FYE-SR (PIQE=32.75)

Figure 16: Samples of upscaled images using ESRGAN model with 4× 720×480 output. FYE-SR can effectively
suppress the distortions and visual inconsistency at detailed objects (windows on buildings).

In all experiments, we use the Adam optimizer [29] with
a learning rate of 1 × 10−4 and batch size of 8 to train the
Model Split Learner. With the SR model split being learned,
we adopt our implementation in Section 7 and conduct ex-
periments on Google Pixel smartphones, including Pixel 6, 7
and 8 models, using their on-board GPU and Tensor NPU.

8.1 Image Quality and Computing Latency

We first compare FYE-SR with other baseline schemes on
DIV2K dataset for 4× SR with 720×480 image output. We use
EDSR and ESRGAN models, and set the timing constraint
(Tob j) to range between 66.6ms (15 FPS) and 250ms (4 FPS).
To better demonstrate the advantage of FYE-SR, we also com-
pared it with GPU-only computation and NPU-only com-
putation. Note that GPU-only computation is always at full
precision and hence achieves the best SR image quality, but
also incurs the highest computing latency. NPU-only com-
putation, on the other hand, minimizes the SR computing
latency but also results in the lowest SR image quality.
As shown in Figure 15, despite slight drop in structural

image quality (measured by SSIM) compared to GPU Only,
FYE-SR always approximates the perceptual quality of up-
scaled images to that of GPU Only, and outperforms other
baselines by up to 50%. In particular, FYE-SR performs best
on larger SR models such as ESRGAN that consists of >100
convolutional layers. The samples of upscaled images in Fig-
ure 16 further show that, compared to MobiSR, FYE-SR can
effectively suppress the distortions and visual inconsistency
at detailed objects. This result verifies the effectiveness of our
Model Split Learner in exploring the best split of SR models.

Besides, FYE-SR can always meet the given time constraint
and reduce the SR computing latency by 1.8×-5.6×. Espe-
cially when compared with μLayer and CoDL, FYE-SR can
improve the SR performance by avoiding the large overhead
of synchronization and communication between processors.
Note that the performance difference between FYE-SR and
baselines varies by Tob j . Such difference is small when Tob j
is relaxed but will be significant whenTob j is tight. In Figure
15, when Tob j=66.6ms, FYE-SR reduces the latency by 47.7%
compared to CoDL, but its image quality drop is 3.2%.

GPU Only

NPU Only

MobiSR
Layer

CoDL

FYE-SR
0

10

20

30

40

50

60

70

P
IQ

E

0

0.1

0.2

0.3

0.4

0.5

0.6

L
P

IP
S

PIQE
LPIPS

Figure 17: SR image qualitymeasured by different per-
ceptual metrics, including PIQE↓ and LPIPS↓

Due to the difficulty of aligning with human perception, a
single perceptual quality metric may not capture all aspects
of the images’ perceptual quality. As shown in Figure 17,
when using different perceptual image quality metrics, FYE-
SR can always achieve similarly higher perceptual quality
of upscaled images and hence demonstrates high generality
over different application scenarios.

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

8.2 Performance with Different Tobj
We vary the timing constraint (Tob j) of SR computations and
then compare FYE-SR with baselines. Since the latency of
CoDL and μLayer are fixed and relatively longer as shown
in Figure 15(c), we only compare with the most competi-
tive baseline, i.e., MobiSR. As shown in Figure 18, when the
timing constraint varies, FYE-SR constantly outperforms Mo-
biSR on image quality while achieving on-par SR computing
latency. This is because MobiSR splits the input image across
processors based on pixel variations, which is less accurate
and underestimates inter-pixel consistency.

55.6ms 66.6ms 70ms 80ms 90ms
Tobj

0

20

40

60

80

100

P
IQ

E

MobiSR
FYE-SR

(a) Perceptual image quality (PIQE↓)

55.6ms 66.6ms 70ms 80ms 90ms
Tobj

0

20

40

60

80

100

L
at

en
cy

 (
m

s)

MobiSR
FYE-SR

(b) SR computing latency

Figure 18: SR image quality and computing latency
w.r.t different Tob j using EDSR

In particular, as shown in Figure 19, when Tob j increases,
FYE-SR is able to adaptively adjust the SR model split and
allows more SR computations to be executed on GPU, hence
resulting in extra improvement of upscaled image quality.

5 10 15 20 25 30 35 40 45 50
Layer index

Tobj=55.6ms
Tobj=66.6ms

Tobj=70ms
Tobj=80ms
Tobj=90ms

On GPU
On NPU

Figure 19: Model split on EDSR with different Tob j

8.3 Ablation Study

Figure 20 shows the breakdown of SR computing latency,
with ESRGAN and EDSR models, when Tob j is 250ms and
66.6ms, respectively. In general, more complicated SR model
results in more switches between processors in SR computa-
tions, but even for the complicated ESRGAN model, FYE-SR
can still constrain such switching overhead within 40%. Simi-
larly, with the more complicated ESRGAN model, more GPU
computations are needed to maximize the image quality.

0 50 100 150 200 250 300
Time (ms)

EDSR
Tobj=66.6ms

ESRGAN
Tobj=250ms

NPU computing
GPU computing
quantization

dequantization
data transmission
init/finish

Figure 20: Breakdown of SR computing latency

8.4 Using Different Smartphone Models

To demonstrate FYE-SR’s generality, we compare its perfor-
mance on Google Pixel 6, 7 and 8 smartphones, which have
highly different computing power. For example, e.g., Pixel
7’s Mali-G78 MP20 GPU can do 1.94 TFLOPS but Pixel 6’s
Mali-G710 MP7 can only do 0.7 TFLOPS in FP32. As shown
in Table 7, FYE-SR can satisfy timing constraints and main-
tain high image quality on all device models. With stronger
devices, FYE-SR achieves better quality-latency tradeoff due
to better hardware efficiency, e.g., 2% better PIQE and 6%
lower latency with EDSR on Pixel 8 compared to Pixel 6.

Device SR Model Tob j (ms) PSNR/SSIM/PIQE/time(ms)

Pixel 6 EDSR 66.6 26.43/0.812/56.45/67.3

Pixel 6 ESRGAN 250 27.32/0.813/32.75/250.4

Pixel 7 EDSR 66.6 26.51/0.817/55.34/64.25

Pixel 7 ESRGAN 250 27.32/0.813/32.03/241.7

Pixel 8 EDSR 66.6 26.51/0.817/55.12/63.72

Pixel 8 ESRGAN 250 27.38/0.814/32.24/240.85

Table 7: SR image quality and computing latency w.r.t
different smartphone models

8.5 Performance on Different Datasets

Datasets for SR tasks are typically small (<10,000) compared
to other tasks (e.g., image classification) and contain partial
world knowledge about colors, texture, and object relation-
ships. Such domain difference challenges the FYE-SR’s opti-
mality. Nevertheless, Figure 21 shows that FYE-SR constantly
outperforms other baselines on all three datasets. Compared
to MobiSR, FYE-SR improves SSIM and PIQE by up to 3% and
55% respectively. Besides, like most existing learning-based
methods, the training of Model Split Learner may overfit
the training set. However, we verified that FYE-SR main-
tains high performance when trained on DIV2K and tested
on Flickr2K, and shows minor performance loss between
DIV2K and OST-300.

8.6 Performance with Different SR
Configurations

We vary the SR configurations with different SR ratios and
output image resolutions, and train the SR model split ac-
cordingly. As shown in Figure 22, FYE-SR speeds up SR com-
putations by 3× compared to GPU Only, while significantly
improving the image quality in all configurations. In partic-
ular, FYE-SR can speed up more when SR ratio=2×, because
a lower SR ratio needs less precision and more layers can
hence be computed at NPU.
In these cases, as shown in Figure 23, instead of reducing

the number of layers computed on GPU, FYE-SR demon-
strates adaptability and can retain the number of layers on
GPU but instead reduce the number of switches between pro-
cessors. In this way, it saves the overall computing latency
while minimizing the loss of image quality.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

tra
in:DIV2K

test:D
IV2K

tra
in:Flickr2k

test:F
lickr2k

tra
in:OST-300

test:O
ST-300

tra
in:DIV2K

test:F
lickr2k

tra
in:DIV2K

test:O
ST-300

0.6

0.7

0.8

0.9

1
S

S
IM

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(a) Structural image quality (SSIM↑)

tra
in:DIV2K

test:D
IV2K

tra
in:Flickr2k

test:F
lickr2k

tra
in:OST-300

test:O
ST-300

tra
in:DIV2K

test:F
lickr2k

tra
in:DIV2K

test:O
ST-300

20

30

40

50

60

70

80

P
IQ

E

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(b) Perceptual image quality (PIQE↓)

tra
in:DIV2K

test:D
IV2K

tra
in:Flickr2k

test:F
lickr2k

tra
in:OST-300

test:O
ST-300

tra
in:DIV2K

test:F
lickr2k

tra
in:DIV2K

test:O
ST-300

0

100

200

300

400

500

600

700

800

L
at

en
cy

 (
m

s)

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(c) SR computing latency

Figure 21: SR image quality and computing latency using ESRGAN model on different datasets with Tob j=250ms
and 4× 720×480 output

4x, 720x480 2x, 720x480 4x, 640x360
0

0.2

0.4

0.6

0.8

1

S
S

IM

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(a) Structural image quality (SSIM↑)

4x, 720x480 2x, 720x480 4x, 640x360
0

20

40

60

80

100

P
IQ

E

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(b) Perceptual image quality (PIQE↓)

4x, 720x480 2x, 720x480 4x, 640x360
0

100

200

300

400

500

600

700

800

L
at

en
cy

 (
m

s)

GPU Only
NPU Only
MobiSR

Layer
CoDL
FYE-SR

(c) SR computing latency

Figure 22: SR image quality and computing latency using ESRGAN model on DIV2K dataset and different SR
configurations on a Pixel 6 smartphone. Tob j=250ms

20 40 60 80 100 120 140 160
Layer index

4x, 720x480

2x, 720x480

4x, 640x360 On GPU
On NPU

Figure 23: Model split on ESRGAN with different SR
configurations

8.7 Power Consumption

FYE-SR is power-efficient because it dispatches the majority
of SR computations for NPU execution, which by design
consumes less power. To test FYE-SR’s power consumption,
we keep the SR program running in the foreground on smart-
phones and set the screen brightness to 50%. The device has
WiFi connection but no cellular connection. As shown in Fig-
ure 24, the battery drainage after 1-hr use is <20%, enabling
multiple hours of continuous SR computations.

10 20 30 40 50 60
Time (min)

80

85

90

95

100

B
at

te
ry

 (
%

)

Pixel 6
Pixel 7
Pixel 8

Figure 24: Power consumption on different devices

In addition, we also measured the per-frame energy us-
age on different smartphone SoCs, including Snapdragon
M865, Snapdragon M888 and Google Pixel 6. Such per-frame
energy usage is measured on an average basis from the bat-
tery usage of continus SR inference over 53,484 frames. As
shown in Table 8, FYE-SR consumes less energy per frame
compared to MobiSR. Its energy usage is slightly higher than
NAWQ-SR [69] which only uses energy-efficient NPU for
SR computations, but note that NAWQ-SR requires NPUs to
support mixed-precision computations that are not available
on most smartphone models.

Device Method Per-frame energy usage (J)

SDM888 MobiSR [37] 0.910

SDM865 MobiSR [37] 0.386

SDM888 MobiSR [37] 0.292

SDM865 NAWQ-SR [69] 0.114

SDM888 NAWQ-SR [69] 0.073

Pixel 6 FYE-SR 0.216

Table 8: Per-frame energy usage comparison across
different SR methods

9 RELATEDWORK

Computationally efficient image SR. FYE-SR is related
to the existing work on computationally efficient image SR.
Most existing AI work focuses on developing more light-
weight SR models with methods such as compressed convo-
lutional filter [12, 62] and skip connections [77]. However,
on mobile devices with limited computing power, even such

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

lightweight models cannot achieve high FPS, due to large
feature maps in NN inference. Aggressively compressing the
SR model (e.g., binarized model [44]) can improve speed but
significantly impair the image quality.
To further speed up SR, system efforts weremade to distrib-

ute SR computations to heterogeneous processors on mobile
devices [36, 37, 69], but suffer from visual inconsistency in
upscaled images. Later work [42] mitigates such visual in-
consistency via fine-grained partitioning of NN features, but
incurs large communication overhead between processors.
In contrast, our design of FYE-SR aims to fully utilize the
computing power of heterogeneous processors but minimize
the loss of perceptual quality of upscaled images.
EfficientNNcomputationswithheterogeneous proces-
sors. Our design of FYE-SR is inspired by the existing work
that utilizes heterogeneous on-device processors for efficient
NN computations. Early work focuses on reducing the over-
all energy consumption but cannot speed up [32]. Later work
speeds up NN inference [25, 26] and training [76] via con-
current execution of different NN substructures on different
processors, but ignores the possible accuracy loss caused by
AI accelerators with low arithmetic precision.
Recentwork also utilized the capabilities ofmixed-precision

computation on mobile processors for SR computations [69],
such that SR computations are split for different arithmetic
precisions based on the corresponding difficulty of computa-
tion and impact on image quality. These methods, neverthe-
less, only utilize one physical processor and are orthogonal
to FYE-SR, which involves more system factors for switching
between different processors, including the switching delay,
data format conversion and data transfer delay.
Neural architecture search. Our design of Model Split
Learner in FYE-SR is related to the existing work in neural
architecture search (NAS) [57]. Existing NASmethods search
for the optimal model structures that satisfy performance
objectives (e.g., accuracy, latency, and memory cost), but the
searched models are limited to single-processor execution
with fixed precision. In contrast, our design in FYE-SR seeks
for the optimal split of SR model to best balance between SR
computations with different arithmetic precisions.

10 DISCUSSIONS

Online adaptation of SR model split. In our current de-
sign of FYE-SR, we train the Model Split Learner offline and
use the learnedmodel split online, and our experiment results
in Section 8.5 show that such learned model split performs
well over different testing datasets. It may be necessary to
adjust the model split if the SR timing constraint changes on-
line, and we can adopt the existing incremental learning [7]
and approximate learning [63] for such online adaptation.
Generality to other NN structures. Our evaluations in
this paper mainly involve CNN-based SR models, but our
design of FYE-SR can be generally applied to other NNmodel

structures. For example, recent diffusion [54] and diffusion
transformer [53] models can also be used to upscale and en-
hance the image quality. To apply FYE-SR, we can convert the
diffusion model to a sequential model by unrolling through
time [75]. The involvement of α in model split learning will
also adapt to the parameter sharing in the unrolled model.
Integrating advanced quantization methods. The per-
formance of FYE-SR can be further improved if the quan-
tized portion of SR model running on AI accelerators can
be more accurate. To improve such accuracy, advanced post-
quantization techniques [68] and quantization-aware train-
ing [48] can be integrated into Model Split Learner, to jointly
optimize the model split and model parameters. Automatic
hyper-parameter tuning methods [20] can also assist in de-
ciding the best weights to balance different loss terms.
Adapting tomixed-precisionprocessors. FYE-SR focuses
on fully utilizing the computing power of heterogeneous mo-
bile processors (GPU and NPU) that operate different arith-
metic precisions. Some recent methods, such as NAWQ-SR
[69], instead exploit the capability of mixed-precision com-
putation at the single NPU. Hence, although both FYE-SR
and NAWQ-SR split the SR model to fit different computa-
tion requirements, they adopt different splitting methods
due to the difference in targeted computing hardware. On
devices with mixed-precision NPUs available, FYE-SR and
NAWQ-SR can complement each other, such that FYE-SR
splits computations between GPU and NPU, and NAWQ-SR
further splits computations on NPU at a finer granularity.
Extending to video SR. Our design of FYE-SR can be gen-
erally applied to speed up video SR on mobile devices, by
focusing on temporal fluency across consecutive frames and
incorporating video quality metrics [16] into the loss. In
addition, the NNs for video SR usually contain additional
branches to process temporal information [60] and hence
complicate the modeling of end-to-end SR computing latency.
We will further study such modeling in our future work.

11 CONCLUSION

In this paper, we present FYE-SR, a new image SR technique
that maximizes the perceptual quality of upscaled images on
mobile devices. The basic approach of FYE-SR is to split the
SR model and dispatch different NN layers to heterogeneous
processors, and decide the optimalmodel split with an end-to-
end learning approach. Experiment results show that FYE-SR
can significantly enhance the perceptual image quality while
satisfying the timing constraint of SR computations.

ACKNOWLEDGMENTS

We thank the anonymous shepherd and reviewers for their
comments and feedback. This work was supported in part by
National Science Foundation (NSF) under grant number IIS-
2205360, CCF-2217003, CCF-2215042, and National Institutes
of Health (NIH) under grant number R01HL170368.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

REFERENCES
[1] Eirikur Agustsson and Radu Timofte. 2017. Ntire 2017 challenge on

single image super-resolution: Dataset and study. In Proceedings of the

IEEE conference on computer vision and pattern recognition workshops.

126–135.

[2] Shun-ichi Amari. 1993. Backpropagation and stochastic gradient de-

scent method. Neurocomputing 5, 4-5 (1993), 185–196.

[3] Saeed Anwar, Salman Khan, and Nick Barnes. 2020. A Deep Journey

into Super-Resolution: A Survey. ACM Comput. Surv. 53, 3, Article 60

(may 2020), 34 pages. https://doi.org/10.1145/3390462

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Es-

timating or propagating gradients through stochastic neurons for

conditional computation. arXiv preprint arXiv:1308.3432 (2013).

[5] Jon Louis Bentley. 1975. Multidimensional binary search trees used

for associative searching. Commun. ACM 18, 9 (1975), 509–517.

[6] Yochai Blau and Tomer Michaeli. 2018. The perception-distortion

tradeoff. In Proceedings of the IEEE conference on computer vision and

pattern recognition. 6228–6237. https://doi.org/10.1109/cvpr.2018.0065

2

[7] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia

Schmid, and Karteek Alahari. 2018. End-to-end incremental learning.

In Proceedings of the European conference on computer vision (ECCV).

233–248.

[8] Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong.

2023. Activating more pixels in image super-resolution transformer. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 22367–22377.

[9] Gunhee Cho, Yusuke Shinyama, Jin Nakazato, Kazuki Maruta, and

Kei Sakaguchi. 2022. Object recognition network using contin-

uous roadside cameras. In 2022 IEEE 95th Vehicular Technology

Conference:(VTC2022-Spring). IEEE, 1–5. https://doi.org/10.1109/VT

C2022-Spring54318.2022.9860677

[10] Saptarsi Das, Arnab Roy, Kiran Kolar Chandrasekharan, Ankur Desh-

wal, and Sehwan Lee. 2020. A systolic dataflow based accelerator for

CNNs. In 2020 IEEE International Symposium on Circuits and Systems

(ISCAS). IEEE, 1–5. https://doi.org/10.1109/ISCAS45731.2020.9180403

[11] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015.

Image super-resolution using deep convolutional networks. IEEE

transactions on pattern analysis and machine intelligence 38, 2 (2015),

295–307.

[12] Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerat-

ing the super-resolution convolutional neural network. In Computer

Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-

lands, October 11-14, 2016, Proceedings, Part II 14. Springer, Springer

International Publishing, 391–407.

[13] Tingxing Tim Dong, Hao Yan, Mayank Parasar, and Raun Krisch. 2022.

Rendersr: A lightweight super-resolution model for mobile gaming

upscaling. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 3087–3095. https://doi.org/cvprw563

47.2022.00348

[14] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W

Mahoney, and Kurt Keutzer. 2020. Hawq-v2: Hessian aware trace-

weighted quantization of neural networks. Advances in neural infor-

mation processing systems 33 (2020), 18518–18529.

[15] Claude E Duchon. 1979. Lanczos filtering in one and two dimensions.

Journal of Applied Meteorology and Climatology 18, 8 (1979), 1016–

1022.

[16] Qiang Fan, Wang Luo, Yuan Xia, Guozhi Li, and Daojing He. 2019.

Metrics and methods of video quality assessment: a brief review. Mul-

timedia Tools and Applications 78 (2019), 31019–31033.

[17] Sina Farsiu, Dirk Robinson, Michael Elad, and Peyman Milanfar. 2004.

Advances and challenges in super-resolution. International Journal of

Imaging Systems and Technology 14, 2 (2004), 47–57. https://doi.org/

10.1002/ima.20007

[18] AMD GPUOpen. 2021. AMD FidelityFX Super Resolution 1 (FSR 1).

https://gpuopen.com/fidelityfx-superresolution/

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.

[20] A Ali Heydari, Craig A Thompson, and Asif Mehmood. 2019. Softadapt:

Techniques for adaptive loss weighting of neural networks with multi-

part loss functions. arXiv preprint arXiv:1912.12355 (2019).

[21] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs.

SSIM. In 2010 20th international conference on pattern recognition. IEEE,

2366–2369.

[22] Kuan-Yu Huang. 2020. esrgan-tf2. https://github.com/peteryuX/esrg

an-tf2.

[23] Andrey Ignatov, Andres Romero, Heewon Kim, and Radu Timofte. 2021.

Real-Time Video Super-Resolution on Smartphones With Deep Learn-

ing, Mobile AI 2021 Challenge: Report. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Work-

shops. 2535–2544.

[24] Andrey Ignatov, Radu Timofte, Maurizio Denna, and Abdel Younes.

2021. Real-time quantized image super-resolution on mobile npus,

mobile ai 2021 challenge: Report. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition. 2525–2534.

[25] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon,

Changjin Jeong, Youngki Lee, and Byung-Gon Chun. 2022. Band:

coordinated multi-dnn inference on heterogeneous mobile processors.

In Proceedings of the 20th Annual International Conference on Mobile

Systems, Applications and Services. 235–247.

[26] Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren,

and Yaoxue Zhang. 2022. CoDL: Efficient CPU-GPU Co-Execution for

Deep Learning Inference on Mobile Devices. In Proceedings of the 20th

Annual International Conference on Mobile Systems, Applications and

Services (MobiSys ’22). Association for Computing Machinery, New

York, NY, USA, 209–221. https://doi.org/10.1145/3498361.3538932

[27] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, et al. 2017. In-datacenter performance analysis of a

tensor processing unit. In Proceedings of the 44th annual international

symposium on computer architecture. 1–12.

[28] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jang-

woo Kim. 2019. µLayer: Low Latency On-Device Inference Using

Cooperative Single-Layer Acceleration and Processor-Friendly Quan-

tization. In Proceedings of the Fourteenth EuroSys Conference 2019 (Eu-

roSys ’19). Association for Computing Machinery, New York, NY, USA,

Article 45, 15 pages. https://doi.org/10.1145/3302424.3303950

[29] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).

[30] Martin Krasser. 2022. Single Image Super-Resolution with EDSR,

WDSR and SRGAN. https://github.com/krasserm/super-resolution.

[31] Koushik Sivarama Krishnan and Karthik Sivarama Krishnan. 2021.

SwiftSRGAN-Rethinking Super-Resolution for Efficient and Real-time

Inference. In 2021 International Conference on Intelligent Cybernetics

Technology & Applications (ICICyTA). IEEE, 46–51. https://doi.org/10

.1109/ICICyTA53712.2021.9689188

[32] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-

livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A

software accelerator for low-power deep learning inference on mobile

devices. In 2016 15th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN). IEEE, 1–12.

[33] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew

Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-

hannes Totz, Zehan Wang, et al. 2017. Photo-realistic single image

Perceptual-Centric Image Super-Resolution ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

super-resolution using a generative adversarial network. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition.

4681–4690.

[34] Chulhee Lee, Seongyoun Woo, and Sangwook Baek. 2019. Bitrate and

transmission resolution determination based on perceptual video qual-

ity. In 2019 10th International Conference on Information, Intelligence,

Systems and Applications (IISA). IEEE, 1–6. https://doi.org/10.1109/II

SA.2019.8900685

[35] Jounghoo Lee, Jinwoo Choi, Jaeyeon Kim, Jinho Lee, and Youngsok

Kim. 2021. Dataflow mirroring: Architectural support for highly effi-

cient fine-grained spatial multitasking on systolic-array npus. In 2021

58th ACM/IEEE Design Automation Conference (DAC). IEEE, 247–252.

https://doi.org/10.1109/DAC18074.2021.9586312

[36] Juhyoung Lee, Jinsu Lee, and Hoi-Jun Yoo. 2020. SRNPU: An energy-

efficient CNN-based super-resolution processor with tile-based selec-

tive super-resolution in mobile devices. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems 10, 3 (2020), 320–334.

[37] Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhat-

tacharya, and Nicholas D. Lane. 2019. MobiSR: Efficient On-Device

Super-Resolution through Heterogeneous Mobile Processors. In The

25th Annual International Conference on Mobile Computing and Net-

working (MobiCom ’19). Association for Computing Machinery, New

York, NY, USA, Article 54, 16 pages. https://doi.org/10.1145/3300061.

3345455

[38] Huixia Li, Chenqian Yan, Shaohui Lin, Xiawu Zheng, Baochang Zhang,

Fan Yang, and Rongrong Ji. 2020. Pams: Quantized super-resolution

via parameterized max scale. In Computer Vision–ECCV 2020: 16th

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,

Part XXV 16. Springer, 564–580.

[39] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and

Radu Timofte. 2021. Swinir: Image restoration using swin transformer.

In Proceedings of the IEEE/CVF international conference on computer

vision. 1833–1844.

[40] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung

Mu Lee. 2017. Enhanced deep residual networks for single image

super-resolution. In Proceedings of the IEEE conference on computer

vision and pattern recognition workshops. 136–144. https://doi.org/10.1

109/cvprw.2017.151

[41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-

ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Mi-

crosoft coco: Common objects in context. In Computer Vision–ECCV

2014: 13th European Conference, Zurich, Switzerland, September 6-12,

2014, Proceedings, Part V 13. Springer, 740–755.

[42] Xin Liu, Yuang Li, Josh Fromm, Yuntao Wang, Ziheng Jiang, Alex

Mariakakis, and Shwetak Patel. 2021. Splitsr: An end-to-end approach

to super-resolution on mobile devices. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 1 (2021),

1–20.

[43] Zhisheng Lu, Juncheng Li, Hong Liu, Chaoyan Huang, Linlin Zhang,

and Tieyong Zeng. 2022. Transformer for single image super-

resolution. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 457–466.

[44] Yinglan Ma, Hongyu Xiong, Zhe Hu, and Lizhuang Ma. 2019. Efficient

super resolution using binarized neural network. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition

workshops. 0–0.

[45] Evan M Masutani, Naeim Bahrami, and Albert Hsiao. 2020. Deep

learning single-frame and multiframe super-resolution for cardiac

MRI. Radiology 295, 3 (2020), 552–561.

[46] Kaisa Miettinen. 1999. Nonlinear multiobjective optimization. Vol. 12.

Springer Science & Business Media.

[47] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. 2012. Making

a “completely blind” image quality analyzer. IEEE Signal processing

letters 20, 3 (2012), 209–212. https://doi.org/10.1109/LSP.2012.2227726

[48] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen

Blankevoort. 2022. Overcoming oscillations in quantization-aware

training. In International Conference on Machine Learning. PMLR,

16318–16330.

[49] Young H Oh, Seonghak Kim, Yunho Jin, Sam Son, Jonghyun Bae, Jong-

sung Lee, Yeonhong Park, Dong Uk Kim, Tae Jun Ham, and Jae W

Lee. 2021. Layerweaver: Maximizing resource utilization of neural

processing units via layer-wise scheduling. In 2021 IEEE International

Symposium on High-Performance Computer Architecture (HPCA). IEEE,

584–597. https://doi.org/10.1109/HPCA51647.2021.00056

[50] Jean-François Pambrun and Rita Noumeir. 2015. Limitations of the

SSIM quality metric in the context of diagnostic imaging. In 2015 IEEE

international conference on image processing (ICIP). IEEE, 2960–2963.

[51] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Weighted-

entropy-based quantization for deep neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition.

5456–5464.

[52] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. 2003. Super-

resolution image reconstruction: a technical overview. IEEE Signal

Processing Magazine 20, 3 (2003), 21–36. https://doi.org/10.1109/MSP.

2003.1203207

[53] William Peebles and Saining Xie. 2023. Scalable diffusion models with

transformers. In Proceedings of the IEEE/CVF International Conference

on Computer Vision. 4195–4205.

[54] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim

Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. 2023. Sdxl:

Improving latent diffusion models for high-resolution image synthesis.

arXiv preprint arXiv:2307.01952 (2023).

[55] Haotong Qin, Yulun Zhang, Yifu Ding, Xianglong Liu, Martin Danell-

jan, Fisher Yu, et al. 2024. QuantSR: Accurate Low-bit Quantization

for Efficient Image Super-Resolution. Advances in Neural Information

Processing Systems 36 (2024).

[56] Qualcomm. 2021. Qualcomm Neural Processing SDK. https://develo

per.qualcomm.com/software/qualcomm-neural-processing-sdk

[57] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li,

Xiaojiang Chen, and Xin Wang. 2021. A comprehensive survey of

neural architecture search: Challenges and solutions. ACM Computing

Surveys (CSUR) 54, 4 (2021), 1–34.

[58] Google Research. 2021. Improved On-Device ML on Pixel 6, with

Neural Architecture Search. https://blog.research.google/2021/11/i

mproved-on-device-ml-on-pixel-6-with.html

[59] Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael Hirsch. 2017. En-

hancenet: Single image super-resolution through automated texture

synthesis. In Proceedings of the IEEE international conference on com-

puter vision. 4491–4500. https://doi.org/10.1109/iccv.2017.481

[60] Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018.

Frame-recurrent video super-resolution. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 6626–6634.

[61] H Sheikh. 2005. LIVE image quality assessment database release 2.

http://live.ece.utexas.edu/research/quality (2005).

[62] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P

Aitken, Rob Bishop, Daniel Rueckert, and ZehanWang. 2016. Real-time

single image and video super-resolution using an efficient sub-pixel

convolutional neural network. In Proceedings of the IEEE conference on

computer vision and pattern recognition. 1874–1883.

[63] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. 2017.

meprop: Sparsified back propagation for accelerated deep learningwith

reduced overfitting. In International Conference on Machine Learning.

PMLR, 3299–3308.

[64] Tianxiang Tan and Guohong Cao. 2021. Efficient execution of deep

neural networks on mobile devices with npu. In Proceedings of the 20th

International Conference on Information Processing in Sensor Networks

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao

(Co-Located with CPS-IoT Week 2021). 283–298.

[65] Tianxiang Tan and Guohong Cao. 2022. Deep learning on mobile

devices through neural processing units and edge computing. In IEEE

INFOCOM 2022-IEEE Conference on Computer Communications. IEEE,

1209–1218. https://doi.org/10.1109/INFOCOM48880.2022.9796929

[66] Chengzhou Tang, Yuqiang Yang, Bing Zeng, Ping Tan, and Shuaicheng

Liu. 2022. Learning to Zoom Inside Camera Imaging Pipeline. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 17552–17561. https://doi.org/10.1109/CVPR52688.2022.0

1703

[67] Radu Timofte, Shuhang Gu, Jiqing Wu, and Luc Van Gool. 2018. Ntire

2018 challenge on single image super-resolution: Methods and results.

In Proceedings of the IEEE conference on computer vision and pattern

recognition workshops. 852–863.

[68] Zhijun Tu, Jie Hu, Hanting Chen, and Yunhe Wang. 2023. Toward

Accurate Post-Training Quantization for Image Super Resolution. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 5856–5865.

[69] Stylianos I Venieris, Mario Almeida, Royson Lee, and Nicholas D Lane.

2023. NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-

Device Super-Resolution. IEEE Transactions on Mobile Computing

(2023). https://doi.org/10.1109/TMC.2023.3255822

[70] N Venkatanath, D Praneeth, Maruthi Chandrasekhar Bh, Sumohana S

Channappayya, and Swarup S Medasani. 2015. Blind image quality

evaluation using perception based features. In 2015 twenty first national

conference on communications (NCC). IEEE, 1–6. https://doi.org/10.1

109/NCC.2015.7084843

[71] Xuezhi Wang, Guanyu Gao, Xiaohu Wu, Yan Lyu, and Weiwei Wu.

2022. Dynamic DNN model selection and inference off loading for

video analytics with edge-cloud collaboration. In Proceedings of the

32nd Workshop on Network and Operating Systems Support for Digital

Audio and Video (NOSSDAV ’22). Association for ComputingMachinery,

New York, NY, USA, 64–70. https://doi.org/10.1145/3534088.3534352

[72] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2018. Re-

covering realistic texture in image super-resolution by deep spatial

feature transform. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 606–615.

[73] XintaoWang, Ke Yu, ShixiangWu, Jinjin Gu, Yihao Liu, Chao Dong, Yu

Qiao, and Chen Change Loy. 2018. Esrgan: Enhanced super-resolution

generative adversarial networks. In Proceedings of the European con-

ference on computer vision (ECCV) workshops. 0–0.

[74] Zhihao Wang, Jian Chen, and Steven CH Hoi. 2020. Deep learning

for image super-resolution: A survey. IEEE transactions on pattern

analysis and machine intelligence 43, 10 (2020), 3365–3387. https:

//doi.org/10.1109/TPAMI.2020.2982166

[75] Paul J Werbos. 1990. Backpropagation through time: what it does and

how to do it. Proc. IEEE 78, 10 (1990), 1550–1560.

[76] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang Wang, Yun Ma,

Kang Huang, Gang Huang, Xin Jin, and Xuanzhe Liu. 2022. Mand-

heling: Mixed-precision on-device dnn training with dsp offloading.

In Proceedings of the 28th Annual International Conference on Mobile

Computing And Networking. 214–227.

[77] Jin Yamanaka, Shigesumi Kuwashima, and Takio Kurita. 2017. Fast

and accurate image super resolution by deep CNN with skip connec-

tion and network in network. In Neural Information Processing: 24th

International Conference, ICONIP 2017, Guangzhou, China, November

14-18, 2017, Proceedings, Part II 24. Springer, 217–225.

[78] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and

Dongsu Han. 2020. NEMO: Enabling Neural-Enhanced Video Stream-

ing on Commodity Mobile Devices. In Proceedings of the 26th Annual

International Conference on Mobile Computing and Networking (Mobi-

Com ’20). Association for Computing Machinery, New York, NY, USA,

Article 28, 14 pages. https://doi.org/10.1145/3372224.3419185

[79] Juheon Yi, Seongwon Kim, Joongheon Kim, and Sunghyun Choi. 2020.

Supremo: Cloud-assisted low-latency super-resolution in mobile de-

vices. IEEE Transactions on Mobile Computing 21, 5 (2020), 1847–1860.

https://doi.org/10.1109/TMC.2020.3025300

[80] Kaihao Zhang, Dongxu Li, Wenhan Luo, Wenqi Ren, Bjorn Stenger,

Wei Liu, Hongdong Li, and Yang Ming-Hsuan. 2021. Benchmarking

Ultra-High-Definition Image Super-resolution. In Proceedings of the

IEEE/CVF International Conference on Computer Vision.

[81] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver

Wang. 2018. The unreasonable effectiveness of deep features as a

perceptual metric. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 586–595. https://doi.org/10.1109/cvpr.2

018.00068

[82] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao. 2019. Ranksr-

gan: Generative adversarial networks with ranker for image super-

resolution. In Proceedings of the IEEE/CVF International Conference on

Computer Vision. 3096–3105. https://doi.org/10.1109/iccv.2019.00319

[83] Yinjie Zhang, Yuanxing Zhang, Yi Wu, Yu Tao, Kaigui Bian, Pan Zhou,

Lingyang Song, and Hu Tuo. 2020. Improving quality of experience

by adaptive video streaming with super-resolution. In IEEE INFOCOM

2020-IEEE Conference on Computer Communications. IEEE, 1957–1966.

https://doi.org/10.1109/INFOCOM41043.2020.9155384

