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Abstract— Large-scale ubiquitous computing environments re-
quire scalable and robust service discovery to enable “anytime,
anywhere” computing, which is hard to be satisfied in flat
network architecture. In this paper, a multi-hop Cluster-based
Architecture for Service Discovery (CASD) in ubiquitous com-
puting environments is presented. Based on the Neighborhood
Benchmark (NB) which quantifies the connectivity and link sta-
bility of mobile nodes, CASD organizes the network consisting of
heterogeneous mobile computing devices to be multi-hop clusters,
and constructs each cluster to be a local DHT-based p2p network
for distributed storage of service indices. The clusterheads are
connected together to form a virtual backbone, based on which
service discovery messages are disseminated among clusters. It
is shown that CASD can control the communication overhead
of service discovery when the network scale increases, and
that CASD can achieve robust service discovery by maintaining
controllable redundancy of service indices in each cluster. The
scalability and robustness of our approach in various typesof
network settings are shown by intensive simulations.

I. I NTRODUCTION

A service is defined as a self-contained software entity
with a discoverable and invocable interface to provide certain
capability. Services developed and provided on different plat-
forms may have different interface descriptions. Ubiquitous
computing environments enable mobile users from heteroge-
neous network domains to discover services provided by others
and to collaborate with each other, and thus enable “anytime,
anywhere” computing. Due to the highly dynamic nature of
such environments, service discovery in such environments
needs not only to bescalable to discover the desired services
quickly, accurately, and efficiently, but also to berobust against
unpredictable network topology changes.

A service discovery system consists of three components:
service repositories, service providers, and service requesters.
Service repositories store announced service descriptions as
indices, and reply to service requesters with matching service
indices. A service discovery process therefore consists of
the dissemination of service discovery messages [1] and the
matchmaking between the services requested and provided [2].

Due to the service heterogeneity in ubiquitous computing
environments, the services provided will rarely match the
user’s requests perfectly. Instead, an acceptable deviation
between the services provided and requested should be used
in service matchmaking, and there may be multiple matching

services for one request. Since the accurate descriptions of
the matching services cannot be decided in advance, a service
discovery process has to search the entire network for all
the matching services, and the scope of service discovery
is fixed to be “global”. Therefore, to achieve scalable and
robust service discovery, we need a network architecture to
select service repositories appropriately, and to disseminate
every service request efficiently to all the possible repositories
containing matching service indices.

In this paper, we present a multi-hop Cluster-based Archi-
tecture for Service Discovery (CASD) in ubiquitous computing
environments, and we assume that a usable service match-
maker is available. CASD organizes the network to be multi-
hop clusters with better stability and flexibility comparing to
simple one-hop clusters, by exploiting autonomous clusterhead
selection based on the nodes’ Neighborhood Benchmark (NB)
scores. Since the NB quantifies the connectivity and link
stability of mobile nodes, the clusterheads selected are efficient
to be the aggregation points of data flows, and are stable to
avoid frequent clusterhead changes. CASD also ensures that
all the constructed clusters are connected ones by exploit-
ing a handshake process between the cluster members and
clusterheads. Clusterheads are connected together to forma
virtual backbone, through which service discovery messages
are disseminated to clusters.

Each cluster in CASD is constructed to be a local DHT-
based p2p network extending the Content-Addressable Net-
work (CAN) [3], for distributed storage of service indices
with controllable redundancy. We forward every message to
multiple service repositories in each cluster to achieve such
controllable redundancy, and to ensure that all the matching
services are found.

Our approach has the following distinguished features:

• It is able to reduce communication overhead of service
discovery via multi-hop clustering, and thus to be scalable
in large-scale ubiquitous computing environments.

• It maintains controllable redundancy for storing service
indices. Hence, it achieves robust service discovery such
that, in cases of bounded numbers of node failures, the
desired services can still be found successfully.

• It guarantees that a service request can find all the
matching services in the network.
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II. RELATED WORK

Service discovery has been studied assuming the availability
of fixed network infrastructure, static network conditions, and
centralized servers, such as Jini [4] and UPnP [5], which
are not suitable for ubiquitous computing environments with
highly dynamic and heterogeneous nature. P2p networks based
on Distributed Hash Tables (DHT) have been well researched
[3], [8], and are also used for service discovery [9]. In CAN
[3], the network architecture is designed to be a virtuald-
dimensional Cartesian coordinate space on ad-torus. The
virtual space is dynamically partitioned among all the nodes
such that every node possesses its individual zone. The virtual
space is used to store{key, value} pairs such that the unique
key of a data object is deterministically mapped onto a
point, namedP , in the virtual space using a uniform hashing
function. The corresponding data object is stored at the node
that owns the zone within which the pointP lies.

However, a global p2p network cannot achieve scalable and
robust service discovery in large-scale ubiquitous computing
environments. The overlay p2p topology is expensive and
vulnerable to node mobility because it is not related to the
physical network topology, and to deploy a global p2p network
is in low efficiency due to frequent node updates and re-
hashing. In addition, a service request may not be forwarded
to the nodes containing matching service indices because of
the deviation between the services requested and provided and
the rigid content lookup mechanism in regular p2p networks.

Instead, the network needs to be organized hierarchically.
CARD [7] proposes a hybrid service discovery scheme.
However, the nodes in CARD need to maintain too much
information for service discovery, including their vicinity in-
formation and the random-selected contact lists. Cluster-based
routing approaches in MANETs have been well researched
[10], and are also exploited for service discovery. Kozat et
al. [6] suggested a cluster-based network layer support for
service discovery, in which the selected clusterheads form
a backbone to disseminate service discovery messages. This
approach achieves better efficiency and scalability. However,
this work constructs one-hop clusters based on the concept of
connected dominating set (CDS) [11], and select clusterheads
in a random manner. The stability and flexibility of the
clustered network architecture is hence seriously limited. In
contrast, D. Kim et al. [12] first defined ak-hop cluster.
Some extensions [13], [14] have been made to ensure the
connectivity among clusters, but none of them take the quality
of the clusterhead selection into consideration. Some other
works [15], [16] group nodes according to the node mobility
pattern, transmission power and so on, but none of them
guarantee to construct connected clusters, which is a common
problem when constructing multi-hop clusters.

III. N ETWORK MODEL

Ubiquitous computing environments incorporate hetero-
geneous mobile computing devices from multiple network
domains together. We achieve scalable and robust service
discovery in such environments by choosing appropriate ser-
vice repositories, and forwarding service announcements and

requests to the repositories efficiently and reliably. In the
extreme case, a ubiquitous computing environment globally
is a Mobile Ad-hoc Network (MANET), in which all the
mobile computing devices are moving in the application area,
and communicate with each other to construct self-organizing
network topology. Hence, without loss of generality, in the
rest of this paper, we will consider this extreme case for
service discovery, and assume that all the nodes are distributed
uniformly in the network. Practically, the computing devices
may be accumulated in several network domains, in each of
which they are relatively close to each other. However, each
of those domains can be treated as a sub-network separately.

Without loss of generality, we assume that the network
is connected. Since CASD works at the application layer to
directly provide service discovery functionality to users, we
assume that the network is equipped with appropriate routing
and transport layer protocols for packet delivery.

IV. CONSTRUCTION OFMULTI -HOP CLUSTERS

In CASD, the NB score of a nodeNi used to indicate the
qualification of this node to be a clusterhead, is defined as:

NBSi = di/LFi (1)

wheredi is the neighbor1 degree ofNi indicating the connec-
tivity of Ni’s neighborhood, andLFi is the number of link
failures encountered byNi in unit time indicating the link
stability of Ni’s neighborhood.

A. Network Initialization

A network initialization phase is needed after the network
starts, to initialize the NB scores of mobile nodes. The
initialization is done via hello beaconing. The interval ofsuch
hello beaconing isTH = rc/vc, where rc is the average
transmission range of the nodes, andvc is the average moving
speed of mobile nodes in the network. Such interval is hence
positively proportional to the global network connectivity, and
negatively proportional to the network mobility level.

The hello beacons sent by nodeNi are encapsulated as
{IPi, NBSi, Head IPi, HEAD NBSi, hopi, sizei}, where IPi

andNBSi are forNi, andHead IPi andHEAD NBSi are for
the current clusterhead ofNi. hopi indicates the hop count
from Ni to its current clusterhead, with the range[0, R]. sizei

is the size of the cluster to whichNi belongs. Specifically, if
Ni is in the process of clusterhead selection,Head IPi and
HEAD NBSi are for the current temporary clusterhead ofNi.

Every node maintains a neighborhood information table
(NIT). If a neighbor record in the NIT has not been updated
longer than2TH , the corresponding neighbor is considered
unreachable, and one link failure is counted. Nodes count
their numbers of neighbors and link failures before they
send out the hello beacons, and calculate their NB scores in
(1). Specifically,LFi is calculated iteratively in every hello
beaconing round as (2):

LF
(k)
i = (LF

(k−1)
i · (k − 1) · TH + LFnew)/(k · TH) (2)

1If not specified, the term neighbor in this paper is equivalent to 1-hop
neighbor.
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Non-clusterhead node
N0

Intermediate node
Ni

Clusterhead
Nh

N0 sends a clusterhead request to 
Nh,  and waits for the reply

Is Ni’s clusterhead also Nh?

Yes, Ni forwards this request to Nh

No, Ni discards the request.

Nh determines whether it accepts 
the clusterhead request

Request sent from N0 is received by Ni

Yes, Nh replies to N0 to accept 
the request.

No, Nh discards the request.

Ni forwards the reply to N0 iff its 
clusterhead is also Nh

N0 receives the reply from Nh on 
time, handshake is successful.

Handshake timeouts. N0 starts another 
clusterhead selection process.
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Fig. 1. Handshake with clusterheads

wherek is the current hello beaconing round, andLFnew indi-
cates the number of link failures detected in this round. After
the network initialization, hello beaconing will be conducted
continuously in the lifetime of the network to keep updating
the NB scores of mobile nodes.

B. Autonomous clusterhead selection

Every node starts to select its clusterhead simultaneously
and autonomously after the NB scores of all the mobile nodes
have been initialized. The clusterhead selection consistsof R
consecutive rounds, whereR is the cluster radius, and each
selection round is corresponding to a hello beaconing round.
A selection round will not start at a node until it receives all
the corresponding hello beacons from its neighbors.

In a clusterhead selection round, a nodeNi puts all the
clusterheads of its 1-hop neighbors (obtained from its NIT),
and its own temporary clusterhead, into a selection pool. For
a node not having clusterhead yet, the node itself is used as
its temporary clusterhead. Then,Ni selects the node with the
highest NB score in the selection pool to be its temporary
clusterhead. If there are nodes with equal NB scores in the
selection pool, one of them will be selected at random. The
correctness of the clusterhead selection process is provedby
the following theorem and corollary.

Theorem 1: The kth round of clusterhead selection on a
nodeNi will select the node with the highest NB score within
the k-hop neighborhood ofNi.

Proof: We prove this theorem by induction. In the first
round, the size ofNi’s 1-hop neighborhood is equal to the
size of its NIT, hence the maximum selection pool includes
Ni and all ofNi’s 1-hop neighbors. Assume the theorem holds
aftermth round, then in the (m + 1)th round, all the possible
new clusterhead candidates are selected fromNi’s (m+1)-hop
neighbors, because they are selected from them-hop neighbors
of Ni’s 1-hop neighbors.

Based on Theorem 1, we can easily prove the following
Corollary 1:

Corollary 1: Given a clusterC={Ni| i=0, 1, . . . ..n}, if a
nodeNk ∈ C is the clusterhead ofC, then for∀i ∈ [0, n],
i 6= k, NBSk ≥ NBSi.

N5

N7

N1 N3

N2

N8
N6

N4

105

107

82
47

65

58

31

115

N10

87

N9

24

Fig. 2. An example of 2-hop clusters

TABLE I

AN EXAMPLE OF CLUSTERHEAD SELECTION PROCESS

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Round1 N1 N1 N3 N3 N6 N6 N2 N6 N3 N3
Round2 N3 N1 N3 N6 N6 N6 N3 N6 N3 N3

C. Handshake with clusterheads

After the autonomous clusterhead selection, the multi-hop
clusters are constructed by letting all the nodes handshake
with their selected clusterheads. Such handshake process is
described in Fig. 1 by using a case including a nodeN0, its
selected clusterheadNh, and an intermediate nodeNi. In this
process, it is possible thatNh is also requesting for another
node to its clusterhead, or there are some other nodes which
are requestingN0 to be their clusterheads. In such cases, if a
node in its handshake process is requested to be clusterhead
by some other nodes, and the request is accepted, it should
send another message to its selected clusterhead to cancel the
ongoing handshake process, and start to handshake with the
requesters as a new clusterhead.

An example of 2-hop clusters is illustrated in Fig. 2, with
the NB scores shown aside of the nodes. The clusterhead
selection process of this example is shown in Table. I. In this
example, although N1 selects N3 to be its clusterhead, N1
cannot join the cluster of N3 because it is also requested to
the clusterhead of N2. Besides, because every mobile node
only has the knowledge of its 1-hop neighborhood, there will
be possible inconsistency during the clusterhead selection and
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handshake process. In the example above, in the first selection
round, N4 selects N3 as its clusterhead, and notify this to N7
via hello beaconing. In the second round, because the NB
score of N3 is higher than that of N2, N7 also selects N3. At
the same time, N4 hears from N5 about N6 with a higher NB
score, and N4 will change its clusterhead to N6. However, this
change will break the link from N7 to N3, and thus produces
a disconnected cluster.

This problem is solved in the handshake process such that,
a node will only forward the clusterhead requests if it is in
the same cluster. Hence, in this example, N7’s clusterhead
request cannot reach N3 because N4 will not forward it.
N7’s handshake process will timeout and is restarted, while
excluding N3 from the selection pool. In this way, we make
sure that all the constructed clusters are connected ones:

Theorem 2: For any nodeNi in a cluster C with the
clusterheadNh, there exists a path fromNi to Nh, such that
the path only contains nodes inC.

Proof: If Nc is 1-hop neighbor ofNh, the theorem is self-
explanatory. Because only through the nodes which also select
Nh as clusterhead, canNc complete the handshake process
with Nh, Nc must have at least one of its 1-hop neighbors
which is also inC.

D. Construction of local CANs

Every cluster in CASD is also constructed to be a local
CAN for distributed storage of service indices. We extend
local CANs by letting the clusterheads allocate the virtual
coordinate space when nodes join or leave the cluster, and
enabling local CANs to store service indices with controllable
redundancy as described in Section V-B.

The construction of a local CAN is done along with the
handshake process between the cluster members and their
selected clusterheads. In a local CAN, only the clusterhead
knows and maintains the entire virtual space, and each cluster
member only knows its neighbors in the virtual space. Orig-
inally, the clusterhead owns the entire virtual space. Whena
clusterhead receives the joining request from another nodeNj,
it allocates a new zone forNj by splitting the current largest
zone occupied by nodeNs in the local CAN into two halves.
After that, Nj, Ns, and all the CAN neighbors of the two
nodes, will be notified for their updated CAN neighbor lists.
Nj andNs will also be notified with their new CAN zones.

A node can leave its belonging cluster due to node mobility,
or become unavailable when it is out of power. The clusterhead
detects such node unreachability via localized bilateral beacon-
ing described in Section IV-E below, and selects the nodeNt

with the smallest zone in the virtual coordinate space of the
local CAN to take over the zone occupied by the unreachable
nodeNl. After such space reallocation, all the CAN neighbors
of Nl, besidesNt, will be notified with their updated CAN
neighbor lists.Nt will also be notified with its new zone.

Because it is always the largest zone in the local CAN which
is split to add the new joining node, CASD can guarantee that
the zones in the virtual coordinate space of a local CAN are
uniform, such that the deviation of the zones’ sizes in a local
CAN is always bounded:

Theorem 3: At any time, the deviation between the sizes of
the largest and smallest virtual zone in a local CAN will not
exceed1/2k, wherek = ⌈logn

2 ⌉, andn is the current number
of nodes in the local CAN2.

Proof: In the virtual coordinate space, suppose the
smallest zone size isSmin after thenth node is added, then
the zone having been split to add thenth node must has
size 2Smin. Hence, the deviation between the sizes of the
largest and smallest virtual zone must beSmin. Because2k≥n,
Smin ≤ 1/2k.

Actually, the deviation will be1/2k when k = ⌈logn
2 ⌉ 6=

logn
2 . Whenk = logn

2 , the deviation is 0, because the entire
virtual coordinate space is divided evenly inton zones, each
of which has the size1/2k.

E. Cluster maintenance

CASD utilizes localized bilateral beaconing to maintain
the multi-hop clusters. A clusterhead multicasts beaconing
messages periodically at the intervalTcb to all the cluster mem-
bers, whereTcb is set to be the same as the hello beaconing
intervalTH . Every cluster member returns an acknowledgment
to its clusterhead upon receiving the beacon message. Only
the nodes within the same cluster will forward the beaconing
messages and acknowledgments.

If a non-clusterhead node has not received the beacon
message from its current clusterhead for a time period longer
than2Tcb, it considers its current clusterhead unreachable, and
reselects a clusterhead. If the clusterhead has not received
the acknowledgment from a cluster member for a time pe-
riod longer than2Tcb, the clusterhead considers the member
unreachable and deletes the member from its member list.

V. H IERARCHICAL SERVICE DISCOVERY

In CASD, the clusterheads are used to represent their
belonging clusters on the network, and together form a vir-
tual backbone for disseminating service discovery messages.
Through the virtual backbone, service discovery is conducted
among different clusters in a hierarchical way, by choos-
ing appropriate service repositories in the local CANs, and
disseminating service discovery messages to the repositories.
For a service announcement, the receiving repositories store
the service descriptions in the message as indices, and for
a service request, the receiving repositories conducts service
matchmaking and reply to the requester if matching service
indices are found.

The virtual backbone is constructed in an on-demand
manner, i.e., it is constructed and updated along with the
dissemination of service discovery messages in the network,
after the multi-hop clusters are formed.

A. Dissemination of service discovery messages and construc-
tion of virtual backbone

On one hand, within each cluster, service discovery mes-
sages are forwarded, as intra-cluster ones, directly to the

2Suppose that the range of each dimension of the coordinate space is (0,1),
and the total size of the space is 1.
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Fig. 3. Forwarding an inter-cluster service discovery message

hashed destination points in the local CAN. On the other hand,
the messages are also disseminated as inter-cluster ones to
all the clusters through the virtual backbone. CASD marks a
service discovery message to be an inter-cluster one by setting
an INTERCLUSTER flag in it.

Every service discovery message is initially an intra-cluster
one. The originator of the message sends the message to the
destination point in the local CAN according to the local
hashing result. Meanwhile, a copy of the message is also
sent directly to its clusterhead. When the sender’s clusterhead
receives the message, it starts an inter-cluster disseminating
process for this message.

The initialization of the virtual backbone is conducted on
a clusterhead when it is going to send out the first inter-
cluster service discovery message. A clusterheadNa broad-
casts this first message to its neighborhood to discover its
virtual neighbors. The nodes within the same cluster continue
to broadcast the message, and the nodes in a different cluster
directly forward the message to their clusterheadNb. Upon
receiving this message,Nb is aware of the existence of its
virtual neighborNa, andNb will also sends a notification to
Na to announce itself.

On the virtual backbone, a clusterheadNa disseminates
service discovery messages to other clusters through a unique
multicast tree rooted atNa itself. Such a multicast tree is
stored in a distributed manner, in the form of{Nb, Na, S},
which means that, whenNb receives a message fromNa, it
forwards the message to the nodes in setS, which contains
a part of its virtual neighbors. Initially,S includes all the
virtual neighbors ofNb, and Nb forms its multicast tree
by pruning redundant nodes fromS when having received
repetitive service discovery messages.

When an inter-cluster service discovery message enters a
different cluster, it is forwarded to the hashed destination point
in the local CAN, and to the clusterhead. The clusterhead
updates the backbone according to this message, and continues
to multicast the message to other clusters. Such process is
illustrated in Fig. 3.

B. Multiple forwarding destinations in a local CAN

Robust service discovery in CASD is conducted by main-
taining controllable redundancy when storing service indices
in local CANs. In CASD, such redundancy is achieved by
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Fig. 4. Forwarding service announcements to multiple destination for
controllable redundancy

forwarding service announcements to multiple destinations in
each local CAN, and keeping duplicates for each service index.

The number of forwarding destinations for a service an-
nouncement in each local CAN is determined by its redun-
dancy degreedr, which is defined as the proportion of the
forwarding destinations to the total number of nodes.dr

is decided independently in each cluster to be adaptive to
different local network conditions.

When the virtual point mapped from a service announce-
ment falls into a virtual zone, a circular area centered at the
center point of the rectangular virtual zone is determined,and
the service announcement will be forwarded to all the nodes
whose virtual zones overlap with this circular area. The radius
of this circular area, namedR1, is selected appropriately to
provide controllable redundancy degree, as stated in Theorem
4. Such forwarding process is illustrated by an example in Fig.
4, in which a service announcement received by N7 will be
forwarded to N2, N3, N6, N8 and N12.

Theorem 4: The redundancy degreedr in a local CAN has
a lower bound of a function ofR1.

Proof: Without loss of generality, we consider the case
in a 2-dimensional virtual coordinate space. When there aren
nodes in a local CAN, according to Theorem 3, the smallest
zoneSmin in the local CAN will not exceed1/2k, wherek =
⌈logn

2 ⌉. If we have a circular areaC1 with the radiusR1, the
size of such area will beπR2

1. Therefore,dr ≥ πR2
1/Smin ≥

π2kR2
1/n. Sincek ≥ log2 n, we can also havedr ≥ πR2

1.
Service discovery is required to find all the services match-

ing the service request in the network. Because of the deviation
between the services provided and requested, a service request
needs to be forwarded to all the service repositories that
possibly contain the matching service indices. The acceptable
deviation range in service matchmaking can be represented as
the radius, namedR2, of a circular areaC, which centered
at the destination point mapped from the service request. The
forwarding process of a service request consists two steps:

1) The service request is forwarded to all the nodes whose
zones overlap withC. The set of the forwarding desti-
nations is calledS.

2) Each node inS determines its forwarding destinations
for controllable redundancy, as described above. The ser-
vice request will be forwarded to all of such destinations.
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Fig. 5. Forwarding service requests to multiple destinations to ensure that
all the matching services are found

Such two steps are illustrated by an example in Fig. 5. When
a service request with the virtual point is S is received by N8,
it will be forwarded to N3, N4 and N7 in the first step. In the
second step, the destinations are N2 (by N3), N5 (by N4), N6
and N12 (by N7), and N9 and N13 (by N8).

VI. PERFORMANCEEVALUATION

We implemented our CASD based on the wireless exten-
sions of ns-2. We compared CASD with service discovery in
flat network architecture to illustrate the performance, scalabil-
ity and robustness of CASD in different network settings. We
also showed that CASD can be adaptive to various network
applications by adjusting the cluster radius accordingly.

A. Simulation settings

We assume all the nodes use 802.11 MAC mechanisms with
idealized features. All the simulations will be conducted as
long asT=5000secs to eliminate short-time randomness. The
node mobility follows the random-walk mobility model [17],
with the node moving speeds normally distributed in a range
[0, vmax]. The communication ranges of nodes are uniformly
distributed between200m and 300m. Basically, we deploy
50 nodes in a1000 × 1000m2 area, and in the scalability
evaluation the area is changed proportionally to the network
scale. We assume that every node periodically announces a
service and requests for another service. The periods of service
announcements and service requests areT/20.

We compare the performance of CASD with service dis-
covery in flat network architecture. We have extended two
representative ad-hoc routing protocols, AODV [18] and DSR
[19], with service discovery functionality by enabling the
nodes to process service discovery messages. We refer these
two extended protocols as sd-AODV and sd-DSR respectively.
We also evaluate the performance of CASD when local
CANs are not used. In this case, the dissemination of service
discovery messages within a cluster is done by localized
broadcast, and inter-cluster service discovery is only conducted
on clusterheads. We refer the CASD with local CANs as
CASD-1, and the CASD without local CANs as CASD-2.
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B. Performance in different mobility settings

In this section, the network scale is fixed to be 50 nodes,
and we varyvmax from 1m/sec to 20m/sec. 2-hop clusters are
constructed in CASD.

The simulation results are shown in Figs. 6 and 7. Service
discovery in flat network architecture can maintain constant
successful ratio of service discovery above 90% when the
network mobility increases, because in such network architec-
ture, service discovery messages are disseminated by global
flooding, and thus are guaranteed to arrive the entire network.
Fig. 6 shows that CASD can achieve similar successful ratio.
Intra-cluster and inter-cluster beaconing mechanisms ensure
CASD to detect network topology changes on time, and adjust
the network architecture accordingly. Besides, construction of
multi-hop clusters in CASD is done in an autonomous manner,
which localizes the influence of node mobility.

Service discovery in flat network architecture achieves sat-
isfying successful ratio of service discovery at the cost ofthe
overhead increasing dramatically with the increase of network
mobility, which is shown in Fig. 7. Instead, the overhead in
CASD can be controlled to increase slowly with the increase
of network mobility, because of the dissemination of service
discovery messages in a hierarchical manner. Specifically,
Fig. 7 also shows that, using local CANs in CASD will
bring some extra overhead because of the construction and
maintenance of the local CANs. When the network mobility is
high, the proportion of such extra overhead can be up to 20%,
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because the network topology changes and the corresponding
reallocations of local CANs will be very frequent.

C. Scalability evaluation

We evaluated the performance of CASD in different network
scales, in which the number of network nodes varies from 50
too 500, with service discovery in flat network architecture.
Compared to flat network architecture, CASD can achieve
scalable service discovery in ubiquitous computing environ-
ments by eliminating broadcast of service discovery messages
and distributing storage of service index in local CANs. Fig. 8
and Fig. 9 show that, when the network scale increases, CASD
can control the increasing speed of the overhead for service
discovery at a low level, compared to flat network architecture,
in which such overhead is increasing exponentially. Because
every service discovery message in CASD is forwarded to
an arbitrary destination only on one route, larger network
scale will only increase the length of such forwarding routes,
and hence only cause linear increase of the overhead of
service discovery. Such advantage is especially apparent in
high-mobility network settings, as shown in Fig. 9. When the
maximal moving speed of nodes in the network increases to 15
m/sec, the overhead in flat network architecture can increase
up to 6 times as it is in low-mobility settings, but the overhead
in CASD only increase up to 100%.

0 5 10 15 20
0

20

40

60

80

100

S
uc

ce
ss

fu
l R

at
io

 (%
)

Maximal Speed (m/sec)

 CASD-1 without node failures
 CASD-1 with node failures
 CASD-2 without node failures
 CASD-2 with node failures

Fig. 10. Successful ratio in cases with and without node failures
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Fig. 11. Response time in cases with and without node failures

D. Robustness evaluation

We evaluate the robustness of CASD by comparing the
performance of service discovery in cases with and without
node failures in different network mobility settings. In cases
with node failures, each node in the network has a probability
of 50% to be failed for a fixed length of time. In our
simulations, such time is set to 10% of the total simulation
length. Once having been into failure, a node will be a “black
hole” for all the incoming packets, and all of its local records
about the local CAN and virtual backbone are cleaned.

The simulation results are shown in Fig. 10 and Fig. 11. In
CASD with local CANs, because of the redundancy storing
service indices, the user can still find the desired servicesin
an arbitrary cluster, even if some storage is unavailable due
to single points of node failures. Fig. 10 shows that, in cases
with node failures, CASD-1 only suffers 5% degradation in
the successful ratio of service discovery. Meanwhile, since
the number of duplicates for a service index in a cluster is
controlled, the unavailability of some of the duplicates will
only cuase 10% more delay in service discovery.

The importance of local CANs for the robustness of service
discovery is also shown. In the absence of local CANs, all
the information of services outside of a cluster will be stored
on the clusterhead of that cluster. If this clusterhead becomes
unavailable, the performance of CASD will be degraded
seriously. In Fig. 10 and Fig. 11, the successful ratio of service
discovery can be down to 60%, and the response time can be
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Fig. 12. Successful ratio with different cluster radius

0 5 10 15 20
0.0

5.0x103

1.0x104

1.5x104

2.0x104

A
ve

ra
ge

 O
ve

rh
ea

d 
(T

x+
R

x 
m

sg
s)

Maximal Speed (m/sec)

 R=1
 R=2
 R=3

Fig. 13. Average overhead with different cluster radius

50% longer, especially in high-mobility network settings.

E. Selecting different cluster radius

Multi-hop clusters used in CASD enable the user to choose
different cluster radius to satisfy the requirements of different
ubiquitous computing applications. We set the network scale
to 100 nodes, and vary the cluster radius from 1 to 3. The
simulation results under different network mobility settings are
shown in Figs. 12 and 13. Compared to 1-hop clusters, multi-
hop clusters have shown the advantage in all performance
metrics we are using. Multi-hop clusters are more advanced in
high mobility settings, because 1-hop clusters are more volatile
and need to conduct more clusterhead reselection when the
mobility is high. Meanwhile, 3-hop clusters in CASD are
able to provide higher successful ratio and shorter average
response time, but can also lead to larger overhead of service
discovery, because of the maintenance of clusters and the local
CANs. Hence, cluster radius needs to be selected appropriately
according to the network scenario and ubiquitous computing
applications, to achieve better performance. Larger clusters
are suitable when the network is relatively stable, and the
service discovery is required to be highly accurate and timely.
Oppositely, smaller clusters should be used in highly dynamic
and energy-constrained environments.

VII. C ONCLUSION

In this paper, we presented a multi-hop Cluster-based Ar-
chitecture for scalable and robust Service Discovery (CASD)

in ubiquitous computing environments. CASD organizes the
entire network as multi-hop clusters based on the NB scores
of mobile nodes, constructs clusters to be extended CANs
for service repositories, and connects them together to be
a virtual backbone for hierarchical service discovery. Our
simulation results show that, compared to approaches basedon
flat network architecture, CASD is able to provide scalable and
robust service discovery in various types of network scenarios,
and is able to choose different cluster radius according to the
node density and network scale to achieve better performance
in different network applications.
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