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ABSTRACT

Remote monitoring and evaluation of pulmonary diseases via tele-
medicine are important to disease diagnosis and management, but
current telemedicine solutions have limited capability of objec-
tively examining the airway’s internal physiological conditions
that are crucial to pulmonary disease evaluation. Existing solu-
tions based on smartphone sensing are also limited to externally
monitoring breath rates, respiratory events, or lung function. In
this paper, we present PTEase, a new system design that addresses
these limitations and uses commodity smartphones to examine
the airway’s internal physiological conditions. PTEase uses active
acoustic sensing to measure the internal changes of lower airway
caliber, and then leverages machine learning to analyze the sensory
data for pulmonary disease evaluation. We implemented PTEase
as a smartphone app, and verified its measurement error in lab-
controlled settings as <10%. Clinical studies further showed that
PTEase reaches 75% accuracy on disease prediction and 11%-15%
errors in estimating lung function indices. Given that such accu-
racy is comparable with that in clinical practice using spirometry,
PTEase can be reliably used as an assistive telemedicine tool for
disease evaluation and monitoring.
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1 INTRODUCTION

Pulmonary diseases, such as asthma and chronic obstructive pul-
monary disease (COPD), were the fourth cause of death in the US
before the COVID-19 pandemic [33] and are hence a major public
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Figure 1: Overview of PTEase design

health issue [3]. Diagnosis and management of these diseases are
often based on subjective symptom reports by patients, but patients
usually fail to recognize early small symptoms or slow decline in
lung function with chronic diseases, especially when being out
of clinic [4, 6, 18]. This poor perception leads to acute exacerba-
tions resulting in emergency department visits and hospitalizations
[9, 39]. Evaluating pulmonary diseases remotely but objectively via
telemedicine, hence, is crucial to disease management, both acutely
and in the long term.

Telemedicine has enormous potential to improve pulmonary dis-
ease evaluation and symptom control [11, 15]. These advantages are
particularly important in the COVID-19 pandemic, with pulmonary
patients unable or unwilling to attend clinic visits or use shared
equipment. However, current telemedicine has mostly been lim-
ited to video calls that still rely on subjective symptom self-report
[31], with limited or no capability of objectively examining airway
conditions.
To address this deficiency, current sensing techniques either

attach force sensors [24], ultrasound sensors [43, 50] or induc-
tive bands [8, 46] onto the human body, or use expensive systems
such as infrared cameras [2, 29], depth cameras [59] or RF systems
[25, 30, 37, 60]. However, their requirement for extra hardware
results in limited usability in long-term telemedicine. Using smart-
phones for sensing can address this limitation, but most existing so-
lutions are limited to monitoring breath rates or respiratory events
(e.g., apnea) [35, 36], which are not directly related to pulmonary
disease evaluation. Other techniques measure lung function exter-
nally by passively overhearing the breathing sounds [21, 28, 34] or
actively measuring chest mobility [51], but they cannot examine
the airway’s alternations of internal physiological conditions, such
as airway obstruction and restriction caused by inflammation and
mucus hypersecretion [14, 17], which are crucial to pulmonary
disease evaluation.
In this paper, we aim to bridge the above gap between clinical

needs and current sensing techniques, by presenting PTEase, a new
system design that transforms a commodity smartphone into a
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pulmonary telemedicine examination device. As shown in Figure 1,
PTEase uses active acoustic sensing to measure the internal changes
of lower airway caliber that reflect alternations of airway conditions,
and then leverages machine learning (ML) to analyze the airway
measurements for pulmonary disease evaluation. PTEase’s sensing
approach transmits acoustic signals from smartphone speakers
into the airway via a 3D-printed disposable passage, and analyzes
the received signal reflected from airway lumen by extending the
traditional acoustic reflection technique (ART), to calculate the
cross-sectional area (CSA) of each airway segment. PTEase’s data
analysis approach uses a multi-task learning model, which provides
both disease prediction and estimation of lung function.
The major challenge in ensuring accurate airway measurement

is that the reflected acoustic signal from the airway could be re-
flected again in the passage and cause extra echoes. These echoes
are difficult to be removed and the smartphone’s received acoustic
signal is hence a mixture of the airway’s reflected signal and the
passage’s echoes. PTEase addresses this challenge using three steps
of calibrations with low operational costs. We first collect the di-
rectly transmitted signal from smartphone speaker to microphone
without any reflection, and then use this signal to derive the trans-
fer function between the airway’s reflected signal and echoes, from
which the echoes can be unmixed from the received signal.

In practical telemedicine settings, the accuracy of calibrations
could be affected by various system and human factors. To address
the impact of system factors, PTEase develops a quantitative metric
to evaluate the quality of each airway measurement, and uses such
quality evaluation to decide the best calibration data being used.
We also designed an ergonomic mouthpiece and the corresponding
examination protocols to minimize the impact of human factors,
such as unintentional tongue movements and breathing sounds.
Analyzing airway measurements for pulmonary disease evalu-

ation, on the other hand, could be affected by the high variability
in airway measurements, which weakens the correlation between
these measurements and disease symptoms and make it difficult for
ML models to correctly learn such correlation. A common approach
to reducing the learning difficulty is to incorporate the correspond-
ing domain knowledge into ML model design. When training the
MLmodel in PTEase, we first use self-supervised learning to extract
distinctive features from airway measurements. Then, we use the

users’ spirometry data from their health records1 as the domain
knowledge about users’ lung function to supervise the training and
enhance the training feedback.

To our best knowledge, PTEase is the first system that uses com-
modity smartphones to directly measure the human airway’s inter-
nal physiological conditions, compared to existing works that are
mostly limited to indirect measurements of heartbeat [48], breath-
ing rate [21, 62] or lung function [28, 51] from external observa-
tions. PTEase hence provides an important telemedicine tool to
assist clinical decisions in pulmonary disease management. Key
characteristics of PTEase are as follows:

• PTEase is accurate. When being evaluated in lab-controlled
settings, its measurement error is always lower than 10%.

• PTEase is effortless and can be conveniently used out of
clinic whenever needed. Being different from traditional PFT

1In clinical practice, spirometry data is essential for pulmonary disease management,
and are hence always available in pulmonary patients’ electronic health records (EHR)
[5, 22].

methods such as spirometry, PTEase does not require any
forced maneuvers or difficult protocols, and can be used
during normal breaths.

• PTEase is adaptive. It can precisely remove the impacts from
various system and human factors, and can hence be widely
applied to different smartphone models and environmental
settings.

• PTEase is lightweight. It does not require any extra comput-
ing hardware, and only consumes <20% of the smartphone’s
battery life with 1-hour usage.

By collaboratingwith clinical pulmonologists and biostatisticians
at the Children’s Hospital of Pittsburgh, we conducted a clinical
study of 12 months over 182 patients with a wide variety of dif-
ferent ages, genders, races, body conditions, and diseases. With

the hospital’s IRB approval2, 495 valid airway measurements are
collected. The results of our clinical study are as follows:

• PTEase achieves an average accuracy of 75%when predicting
the patient’s disease status. This accuracy is comparable to
that of spirometry for diagnosing asthma [49] and CF [26].

• PTEase restrains the error of estimating lung function indices
within 15%, which is also comparable to current spirometers
being used in clinic [44].

• PTEase achieves high accuracy of airway measurements
over different patient subgroups, divided by age, gender, and
disease. It is hence widely applicable to a large population
of patients.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background knowledge about pul-
monary diseases and the current clinical methods being used in
pulmonary disease evaluation. Then, we motivate our design of
PTEase by highlighting the limitations of these existing methods
and the difficulty of directly replicating these methods on commod-
ity smartphones.

Figure 2: Airway conditions in pulmonary diseases. A) nor-

mal; B) asthma; C) cystic fibrosis

2.1 Pathology of Pulmonary Diseases

As shown in Figure 2, alterations of the airway’s internal physiolog-
ical conditions are a fundamental part of many pulmonary diseases,
and can be reflected by the corresponding changes in airway caliber.
In asthma, airway inflammation causes swelling and acute bron-
choconstriction, leading to narrowing that causes symptoms and
exacerbations. Severe asthma can lead to airway remodeling and
more permanent narrowing. COPD is partly caused by progressive
inflammatory damage to airways and alveoli (the tiny air sacs in
the lungs that perform gas exchange), leading to airway obstruction
and decreased lung recoil, both affecting lung function. In cystic
fibrosis (CF), abnormally thick and sticky mucus clogs the airways

2University of Pittsburgh IRB approval No. STUDY20040181-01.
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and allows bacteria to grow, leading to chronic inflammation and
recurrent infections. As a result, in PTEase we measure the changes
in airway caliber as the indicator of pulmonary disease conditions.

2.2 Pulmonary Function Tests

Current pulmonary disease evaluations are mostly based on pul-
monary function tests (PFTs) [12]. Spirometry, as the most com-
monly used PFT, uses forced breathing efforts to measure breath
volumes and velocities under maximum exhalation, and produce
lung function indices including 1) forced vital capacity (FVC), 2)
forced expiratory volume in 1 second (FEV1), and 3) the ratio of
FEV1 to FVC (FEV1/FVC). Since lung function greatly varies among
individuals, clinicians categorize subjects into subgroups according
to their demographics (e.g., age, gender, race, etc.), and convert
the raw values of spirometry indices into percentiles in each sub-
group [42]. Typically, significantly low percentiles (<70%) are the
key indicators of pulmonary diseases.
However, forced maneuvers in spirometry make it difficult to

be used in telemedicine without professional coaching [16, 20],
and spirometers in-home use are known to be highly inaccurate
[38, 41]. In PTEase, we instead aim to provide effortless airway
examination methods that do not require any forced maneuvers or
difficult protocols.

2.3 Acoustic Methods for Airway Examination

Some techniques have been developed to replace the forced ma-
neuvers in spirometry, by actively transmitting acoustic waves to
probe the internal conditions of the airway. Forced oscillation tech-
nique (FOT) [40] and impulse oscillometry (IOS) [13] use pressure
waves to measure the airway’s overall resistance and impedance,
but cannot provide detailed information about the conditions of
different airway segments.

Figure 3: Calculating airway CSA in an ART system

The acoustic reflection technique (ART) [23] addresses this lim-
itation by measuring the cross-sectional areas (CSA) at different
airway positions. As shown in Figure 3, the transmitted acous-
tic signal pulses are assumed to propagate in the airway as 1-D
plane waves, which will only be reflected on the boundary between
airway segments with different CSAs. Then, the CSA of the k-th
airway segment (Ak ) is iteratively calculated using the Ware-Aki
(WA) algorithm [55] as Ak+1/Ak = (1 − rk )/(1 + rk ), where rk
indicates the ratio between reflected and incident signals at the
boundary. In practice, theWA algorithm first calculates the airway’s
impulse response (IR) from deconvolution between the transmit-
ted and received signals. Then, given the Z-transform of impulse

response (h(t)) as H (z) =
∑∞
k=1

Hkz
−k , rk can be calculated from

H1,H2, · · · ,Hk .
It is, however, challenging to replicate the ART system design to

commodity smartphones. As shown in Figure 4(a), an ART system
uses a connecting tube to direct the acoustic signal into the airway,
but the reflected signal from airway could be reflected again by
the sound source and create infinite echoes in the tube, referred as

OBJECTSPEAKER

MIC

CONNECTING TUBE

Transmitted 
signal

Airway’s 
reflected signalSource 

reflection
Infinite echoes

TimeOverlaps if L1 is short

L1 L2

Received 
signal

(a) Illustration of source reflection (b) Impact of source reflection

Figure 4: Source reflection in airway measurements

source reflection. These echoes overlap with the airway’s reflected
signal and create extra measurement errors, as shown in Figure 4(b).
A traditional ART system addresses this issue by placing the micro-
phone on the tube wall to be far away from the speaker (>50cm),
to separate the airway’s reflected signal and echoes in time. This
solution, however, is infeasible on smartphones where the place-
ments of bottom speaker and microphone are very close and fixed.
This difficulty motivates us to design new measurement protocols
and signal processing algorithms for accurate CSA measurements
on smartphones.

3 OVERVIEW

As shown in Figure 5, the 3D-printed disposable passage in PTEase
consists of a smartphone adaptor, a connecting tube, and a mouth-
piece. To use PTEase, the user connects the passage to the phone,
places themouthpiece in themouth, handholds the smartphone, and
breaths normally through the passage for a few seconds. No forced
maneuvers (e.g., deep breath and forceful exhalation), difficult pro-
tocols, or extra computing hardware are needed. The PTEase app on
the smartphone transmits a series of acoustic pulses, each of which
lasts 2ms, into the airway. It is hence able to obtain hundreds of
airway measurements within each second, eliminating the impact
of random system noise.

With the received acoustic signal, PTEase uses theWA algorithm
described in Section 2.3 to calculate the airway’s impulse response
and converts it to airway CSA measurement. A prerequisite is that
the acoustic signal propagation in the airway is a 1-D plane wave,
and this assumption holds if the signal wavelength is smaller than
two times of airway diameter: higher-order wave reflections will
only be non-negligible when the transmitted signal’s frequency is
higher than the cut-off frequency [19, 56]. Since the diameters of
most human airway structures, including trachea, pharynx, and
larynx, are smaller than 3cm [7, 52], the maximum frequency of
the transmitted signal is 5.7 kHz, which has a satisfactory gain
on most smartphone models. Although this frequency falls in the
audible bands, signal propagation is confined within the passage
with >35dB attenuation. Hence, using PTEase has negligible impact
on users’ health.
On the other hand, acoustic signal propagation in the airway

could also be affected by the non-rigidity of airway lumen: the
axial variation in airway impedance due to such non-rigidity may
produce extra signal reflection, which can be falsely interpreted
as CSA changes and result in over-estimation of airway CSA [23].
However, since such over-estimation bias equally applies to all sys-
tem use cases, it can be considered as a system offset and can hence
be effectively removed by calculating the relative CSA difference
between different subject groups in practical disease evaluation.
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To achieve objective and precise disease evaluation, our design of
PTEase aims to address the impacts of possible system and human
factors that may affect the accuracy of airway measurement, and
also aims to minimize the user’s discomfort during airway mea-
surements. Afterwards, these measurements are used as input to a
multi-task ML model that evaluates pulmonary disease conditions,
including the probability of disease and lung function indices.

3.1 Addressing System Factors

To address the impact of source reflection described in Section 2.3,
we start with the analytical model of acoustic signal reflection and
propagation in the connecting tube. When the reflected signal is a
linear transformation of the incident signal without frequency shift,
both the airway’s reflection and source reflection are considered as
linear time-invariant (LTI) systems with different transfer functions.
For an input signal x(t) and the corresponding LTI system output
y(t), in the complex frequency domain of Laplace transform, we
have Y (s) = H (s)X (s) where H (s) is the system’s transfer function.
As shown in Figure 6, we denote the transfer function of source
reflection, airway’s reflection, and signal propagation in the tube as
Hs (s), Ho (s) and Hp (s), respectively. Smartphone’s received signal
(Y (s)) can be written as a function of the transmitted signal (X (s)):

Y (s) =X (s) + H2
p (s)Ho (s)X (s)

+ H2
p (s)Ho (s)Hs (s)X (s) + H4

p (s)H
2
o (s)Hs (s)X (s) + · · · ,

where the high-order terms indicate the infinite echoes caused by
source reflection. This can be further generalized as the following
infinite geometric sequence:

Y (s) =
[
X (s) + H2

p (s)Ho (s)X (s)
]
·
∑∞

n=0

[
H2
p (s)Ho (s)Hs (s)

]n

=X (s)
1 + H2

p (s)Ho (s)

1 − H2
p (s)Ho (s)Hs (s)

.
(1)

To calculate the impulse responseho (t) = L−1 {Ho (s)} of airway,
we need to estimateX (s),Hp (s) andHs (s), all of which only relate to
the measurement system (smartphone and passage) rather than the
airway. Hence, our approach to these estimations is three steps of

calibrations that obtain different characteristics of the measurement
system. Details of these calibrations are in Section 4.1.

Figure 7: Accumulation of errors in CSA measurements due

to different system placements

In practical telemedicine, the users need to do calibrations and
airway measurements themselves, by assembling the system com-
ponents (smartphone, adaptor, connecting tube, and mouthpiece) in
different ways. However, these assemblies may cause slightly differ-
ent placements of system components: the adaptor may be sleeved
to different positions, and the connecting tube may be slightly tilted
or bent. Such different placements could lead to mismatching be-
tween calibration and use setups, introducing measurement errors.
In particular, since the WA algorithm iteratively calculates the CSA
of airway segments, measurement error will accumulate in calcu-
lations and be amplified in lower airway segments. To verify this,
we add white Gaussian noise with 40dB SNR to a received signal
collected from an adult healthy male and the results in Figure 7
show that the measurement error in upper airway segments (dis-
tance from mouth is <25cm) is within 20%, but could be amplified
to 100% or higher in lower airway segments.
Addressing this problem requires measuring the tiny difference

between different system placements, which is difficult. Instead,
our solution is to improve the calibration by applying random noise
to the original calibration data and constructing a calibration data
library. In each measurement, we apply all calibration data in the
library to the received signal and select the result with the highest
quality. Details of such selection are in Section 4.2.

3.2 Addressing Human Factors

When PTEase is used in telemedicine by different subject groups
who differ in physiological conditions and behavior patterns, vari-
ous human factors may affect airway measurements and we will
need to minimize their impacts.
Oral movements. First, the outlet of the mouthpiece in PTEase
should be ideally aligned to the subject’s throat, so that acoustic
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signals can be smoothly transmitted into the airway. However, the
mouthpiece may be misaligned due to the user’s unintentional
oral movements, including irregular movements of the tongue and
expansion of the oral cavity during exhalation, and hence incur
extra measurement errors as shown in Figure 8. Our solution is to
develop a new ergonomic mouthpiece design that minimizes these
oral movements andmaximizes comfort. Details of suchmouthpiece
design are in Section 5.1.

Figure 8: Impact of unintentional tongue movements col-

lected from an adult healthy male using PTEase

Breathing sound.When the users breathe through PTEase’s pas-
sage, the breathing airflow goes through the smartphone’s micro-
phone and may hence produce audible sounds that affect airway
measurement accuracy as shown in Figure 9. Tominimize its impact,
we measure the received signal strength between the transmitted
signal pulses at runtime, to detect such breathing sounds and is-
sue a warning to the user via PTEase smartphone app for slower
breaths. No deep breath is required, though. Any remaining breath-
ing sound will be removed by a digital Wiener filter and details of
such removal are in Section 5.2.

Breathing 
sound

Testing 
pulses

Am
pl

itu
de

Time (sec)

Figure 9: Loud breathing sound in a received signal

3.3 Pulmonary Disease Evaluation

With airway CSA measurements, PTEase uses a multi-task learning
model to provide both disease prediction and lung function esti-
mation. The major challenge, as shown in Figure 10, is the high
variability of airway measurements, even on the same subject in
one PTEase use. Such variability is caused by both system noise and
physiological airway movements during measurements. It weak-
ens the correlation between airway measurements and disease
symptoms, and hence makes it difficult for ML models to make
predictions from any single airway measurement.

Instead, our solution is to first construct high-dimensional input
data from multiple CSA measurements, to eliminate the variability.

Figure 10:Multiple airwaymeasurements collected from the

same adult healthy male using PTEase

Then, we first use self-supervised learning to reduce the learning
difficulty by extracting distinctive features, and then incorporate
domain knowledge provided by the user’s spirometry data into
our NN model training. Details of such multi-task learning are in
Section 6.

4 SYSTEM CALIBRATIONS TO ENSURE
ACCURATE MEASUREMENTS

In this section, we provide technical details about the system cali-
brations in PTEase that ensure accurate airway measurements by
eliminating the impact of various system factors.

Long tube

Connecting tube
Open end

Closed endStep 1: Step 2:

Step 3:

Figure 11: Three steps of calibration to remove the impact

of source reflection

4.1 Three-Step Calibrations

As shown in Figure 11, we remove the impact of source reflection
using three steps of calibrations that estimateX (s),Hp (s) andHs (s).
In the first step, we replace the connecting tube with a sufficiently
long tube (e.g., >5m). The smartphone’s microphone will then re-
ceive no reflection signal but only the speaker’s transmitted signal,
ensuring precise estimations of X (s). Note that since X (s) only re-
lates to characteristics of smartphone speaker and microphone, this
step only needs to be done once on each smartphone device.

In the next two steps, we use the normal connecting tube without
the mouthpiece, block the tube outlet by hand (Step 2) and then
release it (Step 3). They give a fully positive reflection (i.e., Ho (s) =
1) and a fully negative reflection (i.e.,Ho (s) = −1) of incident signal,
respectively. Denote the received signal in these two steps as Y1(s)
and Y2(s), we have:

Y1(s) = X (s)
1 + Hp (s)

2

1 − H2
p (s)Hs (s)

,Y2(s) = X (s)
1 − Hp (s)

2

1 + H2
p (s)Hs (s)

. (2)

Therefore, we can get

Hp (s)
2 =

[Y1(s) + Y2(s)]X (s) − 2Y1(s)Y2(s)

[Y1(s) − Y2(s)]X (s)
, (3)

H2
p (s)Hs (s) =

Y1(s) + Y2(s) − 2X (s)

Y1(s) − Y2(s)
, (4)
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Figure 12: The reference airway CSA curve

from where we can compute Hp (s) and Hs (s) from X (s), Y1(s) and
Y2(s).

This procedure of three-step calibration is fully automated, and
the only operation that needs to be manually done by the user is
to plug/unplug the long and standard connecting tubes to/from
the adapter. According to our observations in our clinical study
described in Section 9, such calibration procedure can be easily
operated by children in low ages within one minute. Furthermore,
the first calibration step only needs to be done once for each smart-
phone device, and can hence operated by us before distributing the
smartphones to users. Step 2 and 3 of calibrations are only needed
when the user replaces the smartphone adapter, which could usu-
ally last several uses. As a result, this calibration procedure, as a
whole, brings a negligible amount of extra efforts to users.

Figure 13: Using DTW to align airway measurements

4.2 Selecting the Best Calibration Data

When we apply all data in the calibration data library to the re-
ceived signal, we obtain different airway measurements and select
one with the highest quality. We evaluate the quality of a measure-
ment by comparing it with the reference airway CSA curve used
in clinical ART [27]. As shown in Figure 12, the reference curve
indicates airway physiological structures, including oral cavity,
oropharyngeal junction (Oroph. J.), pharynx, glottis, and trachea.

Ripples caused by 
accumulation of noise, 

not airway structure

Figure 14: Low-quality curves with high scores

However, simple distance-based similarity metrics cannot be
adopted, because of the heterogeneity of airway lengths in different
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Figure 15: Mouthpiece design

user groups. Instead, we use dynamic time warping (DTW) [32] to
stretch different airway measurements and align them to the same
scale. As shown in Figure 13, DTW calculates the best match be-
tween two given sequences with the minimum mean squared error
(MSE), and a similarity score between 0 and 100 can be calculated
from the MSE to indicate the measurement quality.
Solely using such similarity scores to evaluate measurement

quality may not be always reliable in practice. Due to the DTW’s
stretching mechanism, some measurements, as shown in Figure
14, may have high quality scores but still contain large errors. To
address this limitation and ensure reliability, we further use a neural
network (NN) classifier to identify unacceptable airway measure-
ments. The training data is a small amount of CSA measurements
from different individuals and we manually label these data’s qual-
ity as acceptable or unacceptable. Then, we only accept an airway
measurement for disease evaluation if it has high quality score
and passes the NN classifier’s test. The threshold of high quality
score is determined by examining a subset derived from the whole
dataset, to make sure all selected CSA measurements follow the
characteristics illustrated in Figure 12.

5 REMOVING THE IMPACTS OF HUMAN
FACTORS

In this section, we provide technical details about how PTEase
removes the impact of various human factors on the accuracy of
airway measurement.

Reference of 
breathing 

sound

Use Wiener filtering 
to remove

Figure 16: Breathing sound removal

5.1 Mouthpiece Design

Mouthpieces in PTEase are expected to 1) fully seal the oral cavity
to prevent acoustic signal leakage, 2) prevent possible mouthpiece
mobility in the mouth, and 3) minimize unintentional tongue move-
ments. Some simple designs, such as Ver. 1 and Ver. 2 shown in
Figure 15(a), fail to accomplish these objectives. The Ver. 1 design
uses a large oval lip stopper that causes discomfort, and uses a small
tongue depressor that cannot avoid tongue movements. The Ver. 2
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Figure 17: Machine learning for pulmonary disease evaluation

design uses an ellipsoid body for tongue depression, but cannot be
comfortably placed in the mouth.
Instead, we develop a new ergonomic mouthpiece design that

fits the physiological structure of human oral cavity. As shown in
Figure 15(a), our design first includes an incisor stopper on the inlet
to fix its orientation when the user bites. Then, a tongue depressor
at the bottom ensures that the mouthpiece outlet is always oriented
toward the throat, when the user is instructed to press the tongue
up against the depressor as shown in Figure 15(b). In this way,
both ends of the mouthpiece are fixed in the oral cavity, hence
minimizing its possible mobility during airway measurements. To
further minimize the user’s discomfort, we designed mouthpieces
in different scales (100%/90%/75%/50%) to fit patients of different
ages. Our ergonomic mouthpiece design has been validated in our
clinical study to produce minor discomfort.

5.2 Addressing Breathing Sounds

Acoustic sensing in PTEase works best with slow breaths, but does
not require any deep breath or forced breath efforts. If the user
breathes too fast, loud breathing sounds may introduce extra mea-
surement errors. Our solution is to first locate the breathing sound
in the received signal, by comparing the strength of the received sig-
nal with the transmitted signal pulses. Whenever breathing sound
is detected between two transmitted pulses, we use a digital Wiener
filter to remove the breathing sound. As shown in Figure 16, we first
collect a short segment of breathing sound before the transmitted
pulse, as the reference input to the Wiener filter. Then, by assuming
that the signal characteristics of the breathing sound remain un-
changed over time, the Wiener filter uses this reference to remove
the breathing sound after the transmitted pulse, based on minimum
mean square error (MMSE) estimation. Further, this Wiener filter
also helps mitigate the impact of undesired system noise, ensuring
a sufficiently high SNR for precise disease evaluation.

6 MULTI-TASK LEARNING FOR PULMONARY
DISEASE EVALUATION

As shown in Figure 17, to reduce the learning difficulty caused
by high variability of airway measurements, we convert multiple
airway CSA measurements of a subject into a heatmap as high-
dimensional input data. Ourmulti-task learningmodel then consists

of a feature extractor, two regressors that estimate lung function
indices, and a predictor that gives disease predictions.

6.1 Constructing High-Dimensional Input

To construct the heatmap as high-dimensional input data, we con-
sider the multiple CSA measurements at each airway position as a
distribution of discrete samples, and conduct non-parameterized
estimation to convert these samples into a continuous function
that depicts airway dimensions. The heatmap is then produced by
concatenating such estimated functions across the entire airway.
The heatmaps are then used as one-channel images for the ML
model input.

6.2 Training the Feature Extractor

We use a symmetric encoder-decoder architecture to train a con-
volutional auto-encoder as a prerequisite step, and then use the
trained encoder as the feature extractor in later training of the
multi-task learning model. The key challenge of training the fea-
ture extractor is overfitting due to the limited amount of available
input data from human subjects. To address this challenge, we
leverage self-supervised learning to blur the input heatmaps with
random Gaussian noise, and set the learning objective as restoring
the original input heatmap, by using the mean-square error (MSE)
between the restored and original heatmaps as the loss function.
In this way, the encoder automatically learns to the representative
features that are sufficiently informative for the decoder to restore
the original heatmap.

6.3 Training the Lung Function Estimators &
Disease Predictor

To ensure informative training feedback, our basic rationale is that
PTEase’s airway measurement and traditional spirometry provide
two different modalities for measuring pulmonary disease con-
ditions and complement each other. Since spirometry is widely
regarded as the current gold standard in pulmonology, spirometry
measurements are regularly documented and always available in
patients’ health records. Spirometry measurement results, hence,
could serve as pre-known domain knowledge to supervise the train-
ing of our ML model and provide extra training feedback to ensure
training convergence. All the spirometry data used in training were
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collected in patients’ stable conditions rather than their acute exac-
erbation. Since most pulmonary diseases are chronic and patients’
lung functions remain stable in the long term when no acute exacer-
bation happens, we believe that spirometry data in stable conditions
could provide more generic and objective information about the
patients’ lung functions.
As shown in Figure 17, the extracted features are used as the

input to two regressors that predict the user’s FEV1 and FEV1/FVC
percentile, the two most representative lung function indices, re-
spectively. The regressors’ outputs are supervised by the MSE loss
from spirometry data, and are also used as the input to the dis-
ease predictor that estimates the corresponding pulmonary disease
probability. The physician’s clinical diagnosis of disease condition,
which are extracted from the users’ health records and jointly made
from the users’ symptoms, lung functions and bronchodilator tests
[45], are used as the disease labels to compute cross-entropy loss
and supervise the disease predictor’s output. The MSE loss and
cross-entropy loss, then, are aggregated as the training loss.

FEV1 (%) 
regressor Disease 

predictor

FEV1/FVC (%) 
regressor

Feature 
extractor

Disease Prediction

Lung Function 
Estimation

FEV1 (%)
FEV1/FVC (%)

INPUT OUTPUT

Trained ML Models

Figure 18: Inference stage of the ML model

In particular, note that our approach only uses the patients’
spirometry data to supervise the ML model training. As shown
in Figure 18, after the model training completes, we will only use
the airway CSA measurements as the input to the trained disease
predictor and regressors for disease evaluation at runtime. As a
result, PTEase does not require the user to conduct spirometry tests
or provide spirometry measurements when using the telemedicine
system for disease evaluation, and such disease evaluation consists
of two outputs: 1) disease prediction (e.g., yes/no for asthma/CF)
and 2) estimated lung function indices (e.g., FEV1 and FEV1/FVC).

7 IMPLEMENTATION

As shown in Figure 19, we implemented PTEase as an Android app,
which senses the airway, analyzes the received signal, and uploads

data to a remote server3. Before each airway measurement, text
instructions will be displayed on the screen. To conduct a test, the
user only needs to click once on the START button, and the entire
test procedure afterwards will be fully automated. During the test,
the app will instruct the user to inhale or exhale multiple times with
a countdown timer. After each measurement, the app shows the
measurement results and warns the user if loud breathing sounds
were produced. We also made multiple smartphone adaptor designs
for different smartphone models and mouthpieces in different sizes
for different user groups.
We implemented our algorithms of acoustic signal processing

in C and used Android Native Development Kit (NDK) to compile
the source codes into a native Android library, which is then being

3The source codes of our acoustic sensing algorithms, ML models and smartphone
app can be found at: https://github.com/ericyxy98/PTEase. The source code repository
also contains a demo video to help better understand PTEase’s operations, especially
its calibration procedure and smartphone app operations.

Figure 19: PTEase smartphone app UI

invoked by Android’s Java Native Interface (JNI) at runtime. After
a user completes the whole test, the airway CSA measurements
are uploaded to the ML model deployed on a cloud server. In our
implementation of the multi-task learning model, each module is
a 3-layer feedforward network, and the autoencoder contains a
100 × 48 × 48 CNN encoder and a 48 × 48 × 100 CNN decoder. The
ML model is trained using Adam optimizer, with a step size of 0.001
and a batch size of 32.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PTEase’s airway
measurement in lab-controlled settings, with differentmeasurement
targets. First, we concatenate soft PVC tubes with different pre-
known CSAs, as shown in Figure 20(b), and use PTEase to measure
these CSAs. Second, we use anonymized human subjects’ chest
CT scans provided by the Children’s Hospital of Pittsburgh to
make 3D-printed models of the lower airway and upper airway
segments, and then connect them with plastic tubes, as shown in
Figure 20(b), to be the measurement target. The lower airway model
is further printed in three different sizes, i.e., the 100%, 90%, and
80% scale of the airway diameter, to emulate different lower airway
conditions. Third, we also recruit healthy student volunteers to
conduct human tests. Each volunteer is instructed to conduct three
complete PTEase measurements, and the results are evaluated using
the quality metrics described in Section 4.2.

(a) Concatenated plastic tube (b) 3D-printed human airway model

Figure 20: Measurement targets in lab-controlled settings

8.1 Measurement Accuracy

We first examine the measurement accuracy of PTEase on concate-
nated plastic tubes, by running PTEase on a Samsung Galaxy S8
smartphone. Experimental settings with different tube CSAs and
the corresponding measurement results are shown in Figure 21.
PTEase can achieve high measurement accuracy, and the mean
absolute percentage error (MAPE) is 8.13 ± 2.25% among different
combinations of tube CSAs.
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Figure 21: CSA measurements of concatenated plastic tubes

Upper airway Lower airway

Figure 22: CSA measurements of airway models

Second, we evaluate the measurement accuracy of PTEase over
3D-printed human airway models, and evaluation results using a
Samsung Galaxy S8 smartphone are in Figure 22. Since it is hard
to measure the CSA at different airway segments as the ground
truth, we instead evaluate the measurement accuracy at key airway
structures. More specifically, we measure the amplitude of the two
peaks in lower airway that represent the inlet of trachea and the
carina, as well as the distance between these two peaks. As shown in
Table 1, when compared with the measurement of 100% scale model,
measurement results of 90% and 80% scale models precisely reflect
the difference in 3D-printed scales, with an average error of 4.25 ±
2.32%. Note that since airway models are printed in different scales
of airway diameter, percentages in Table 1 are ratios of measured
airway diameters at peak locations, as the square root of CSA.

Scale
(%)

Amplitude of

first peak (cm2)

Amplitude of
second peak

(cm2)

Distance be-
tween two
peaks (cm)

100 5.565 (100%) 9.972 (100%) 8.58 (100%)
90 4.912 (93.95%) 7.373 (85.99%) 8.21 (87.63%)
80 3.803 (82.67%) 5.058 (71.22%) 7.51 (83.72%)

Table 1: Measurement of airway models

8.2 Human Subject Tests

We also tested PTEase on three healthy student volunteers in a
lab-controlled environment and compared the measurement results
to the reference airway CSA curve in Figure 12 to calculate each
measurement’s quality score. As shown in Figure 23, PTEase can

give relatively stable results on the same subject. From those mea-
surements with scores higher than 80 and classified as “acceptable”
by the NN classifier, we can easily identify the key airway struc-
tures from the CSA measurements. Note that not all human tests
are able to generate acceptable airway measurement results with
high quality. In Section 9, we will further evaluate the average qual-
ity score of airway measurements from a larger cohort of patients
recruited in our clinical study.

Subject 1 Subject 2 Subject 3

Test 1

Test 2

Test 3

Figure 23: Airway measurements on human subjects

8.3 Measurement Accuracy on Different
Smartphone Models

The frequency gains of microphone and speaker are heterogeneous
on different smartphone models [53], resulting in different acoustic
signals being transmitted and received. To investigate the impact of
such smartphone hardware heterogeneity, we compare the airway
measurement accuracy on two mainstream smartphone models,
the Samsung Galaxy S8 and the Oneplus 7 Pro. Comparison results
on concatenated plastic tubes are in Figure 24, which shows that
the variation of measurement accuracy across these two smart-
phone models is within 1%. These results verified that PTEase can
effectively tackle smartphone hardware heterogeneity.
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Figure 24: Accuracy with different smartphone models

8.4 The Impact of Signal’s Frequency Bands

In practice, smartphone speakers and microphones usually have im-
balanced gains in different frequency bands [53]. We investigate the
impact of the transmitted signal’s frequency bands on the measure-
ment accuracy, by applying low-pass filters with different cut-off
frequencies on the transmitted signal from a Samsung Galaxy S8
smartphone. Experiment results in Figure 25 show that using a
higher cut-off frequency provides higher resolution in airway mea-
surement, but may also increase the chance of measurement errors.
Since the assumption of 1-D plane wave propagation generally
holds within the frequency band <5.7 kHz as described in Section 3,
we will use 6 kHz as the cut-off frequency in the rest of this paper.

(a) Measurement accuracy
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Figure 25: Impact of different frequency bands

8.5 The Impact of Ambient Noise

When being used in telemedicine settings, PTEase’s airway mea-
surement may be affected by various types of noises from the sur-
rounding environment. In our evaluations, we tested PTEase’s relia-
bility against multiple types of ambient noises, including 1) a quiet
office environment, 2) white noise from a working 3D printer, and
3) vocal sounds from another nearby smartphone playing videos at
the highest volume. Averaged noise levels in these three scenarios
are 31.2dB, 45.7dB, and 55.6dB, respectively, measured using the

SoundMeter smartphone app4 on the same experiment device. Ex-
periment results in Figure 26 show that PTEase can achieve reliable
measurements in both cases. In particular, white noise has negli-
gible impact on PTEase’s airway measurement, and vocal sounds
from video playback only incur 2% extra measurement errors. The
major reason for such reliability is that PTEase transmits and re-
ceives the acoustic signal in a confined passage, which significantly
attenuates the propagation of ambient noise.

8.6 Computing Latency and Energy Efficiency

From our experiment results, calculating airwayCSAmeasurements
from the received acoustic signal on smartphones can always be

4https://play.google.com/store/apps/details?id=com.ktwapps.soundmeter.

Figure 26: Measurement accuracy with ambient noise

completed within 10 seconds. After airway measurements have
been uploaded to the server which takes 2 to 5 seconds depending
on the wireless link condition, the ML model’s inference time is
always within 1 second. As a result, after the user completes an
airway measurement, PTEase can provide results of lung function
estimation and disease prediction within 15-30 seconds.

Figure 27: Power consumption of PTEase

We also evaluate PTEase’s energy efficiency when it continu-
ously transmits high-power acoustic signals for airway measure-
ments. The results in Figure 27 show that, one hour of continuous
PTEase usage consumes 15% to 20% of the smartphone’s battery life,
which is only 2% to 3% higher than the baseline power consumption
(the smartphone stays idle and keeps screen on). However, since in
practice each airway measurement in PTEase only lasts for a few
seconds, PTEase’s power consumption is as negligible in real use.

Category Characteristics Number

Demographics

Tests per subject 3.59 ± 0.87
Age (years) 20.96 ± 15.21
Adults (%) 69(37.91)
Female (%) 92(50.55)

Caucasian (%) 136(74.73)
African-American (%) 47(25.82)

Body conditions
Height (cm) 159.35 ± 16.24
Weight (kg) 66.25 ± 26.92

Disease Condition
Healthy (%) 42(23.08)
Asthma (%) 112(61.54)

Cystic Fibrosis (%) 28(15.38)

Table 2: Human Subjects’ Information

9 CLINICAL STUDY

Based on our accurate airway measurements in lab-controlled set-
tings, we further conduct an observational clinical study to in-
vestigate the measurement accuracy of PTEase in patients with



MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Category FEV1 Error (%) FEV1/FVC Error (%) Test-level Accuracy (%) Subject-level Accuracy (%)

Healthy vs. Asthma 11.50 ± 0.57 15.19 ± 0.38 78.65 ± 2.8 77.78 ± 1.6

Healthy vs. CF 11.12 ± 0.83 15.17 ± 0.66 73.41 ± 4.51 71.32 ± 4.67

Average 11.31 ± 0.70 15.18 ± 0.52 76.03 ± 3.65 74.55 ± 3.14

Table 3: Accuracy of Lung Function Estimation and Disease Prediction

pulmonary diseases. With the IRB approval from the Children’s
Hospital of Pittsburgh, we recruit 182 human subjects in 12 months.
As shown in Table 2, our subjects cover a wide variety of ages, gen-
ders, races, body conditions, and diseases. Each subject is instructed
to select a mouthpiece of the proper size (100%/90%/75%/50%) and
conduct several PTEase tests under the observation of clinicians.
Detailed instructions were provided, including documentation, on-
screen instructions, and demo videos. In each test, the subject is
required to complete three respiratory cycles, and each inhala-
tion/exhalation lasts for 5 seconds. The best exhalation measure-
ment among the three respiratory cycles is then selected for further
data analysis, and invalid data is removed using the method de-
scribed in Sec 4.2.
Among the 182 human subjects, a total number of 495 airway

measurements from 175 subjects are collected and considered valid,
with an effectiveness of 96%. The average quality score of these
measurements is 85. This high quality score indicates that PTEase’s
airway measurement system, including its calibration procedure
and protocol of smartphone use, can be correctly operated by the
study participants including children at low ages.

9.1 Accuracy of Pulmonary Disease Evaluation

Since our clinical study includes human subjects with different dis-
eases (Asthma and CF), we target two separate classification tasks
of disease prediction: 1) distinguish an asthma patient from healthy
subjects, and 2) distinguish a CF patient from healthy subjects. For
each task, we use 5-fold cross-validation to construct training and
testing datasets from our collected clinical data, and use the physi-
cian’s clinical diagnosis of disease condition, which are extracted
from the patients’ health records, as the ground truth labels. The
estimation accuracy of FEV1 and FEV1/FVC is given in the form of
percentage error, and the prediction accuracy is evaluated based on
both levels of individual airway measurement tests and different
subjects. The results are given in Table 3.

Overall, we can achieve an average accuracy of 74.55% for subject-
level disease prediction, which is comparable to the prediction ac-
curacy in clinical practice using spirometry data [26, 49]. The error
for estimating the lung function indices, i.e., FEV1 and FEV1/FVC,
is 11.31% and 15.18%, respectively. This accuracy is within the 10-
18% error range of portable spirometry, which however, requires
extra equipment, forced maneuvers, and professional coaching [44].
Therefore, PTEase can be sufficiently accurate to be used as an
assistive tool for disease evaluation and monitoring.
In particular, the prediction accuracy of asthma is around 6%

higher than that of CF. The reason for such difference is that the
group of asthma patients is 4 times larger than the group of CF pa-
tients, which hence results in significantly higher learning difficulty.
However, our results show that even with such a small amount of
data, we can still achieve higher than 70% prediction accuracy.
We also evaluated the sensitivity and specificity of disease pre-

diction in both classification tasks. The results in Table 4 show that

Category Sensitivity (%) Specificity (%)

Healthy vs. Asthma 82.54 ± 2.42 66.59 ± 5.49

Healthy vs. CF 68.20 ± 5.81 74.17 ± 7.78

Average 75.37 ± 4.12 70.33 ± 6.64

Table 4: Subject-level Sensitivity and Specificity of Disease

Prediction

the sensitivity and specificity of asthma prediction are 82% and 66%,
respectively. These results indicate that PTEase can be used as a
useful screening tool to effectively identify most patients with po-
tential asthma risks, hence suggesting further clinical tests for more
affirmative disease diagnosis. On the other hand, the sensitivity
and specificity of CF prediction are 68% and 74%, respectively. The
main reason of such difference is that the number of CF patients in
our clinical study is much smaller than that of asthma patients, and
further involving more CF patients will be our next step to further
evaluate PTEase’s effectiveness in CF evaluation and prediction.

9.2 Accuracy over Different Patient Subgroups

In practice, patients’ airway conditions and lung functions are
highly correlatedwith age, gender, and the disease they have. Hence,
we evaluate the accuracy of PTEase’s disease evaluation in different
patient subgroups of age, gender, and disease condition. Results
of disease prediction and lung function estimation are shown in
Figure 28 and 29, respectively.
First, in different age groups, we can see that PTEase achieves

lower accuracy in disease prediction among children but higher
accuracy in estimating their lung functions. A possible reason is
that children’s lung functions are highly correlated with their age
and body size. Since PTEase measures the geometric dimensions of
the airway which also has a strong correlation with age and height,
it could help reduce the estimation errors of lung function indices.
Second, in different gender groups, PTEase generally achieves bet-
ter measurement accuracy on females compared to males, possibly
because females are more willing to follow the PTEase app’s instruc-
tions and provide better quality in airway measurements. Finally.
in different disease groups, PTEase achieves the highest prediction
accuracy among asthma patients, because of the imbalance between
datasets of asthma and CF patients.

10 RELATEDWORK

Mobile smart health. PTEase’s sensing approach is related to the
existing smartphone-based sensing systems. Typical spirometer-
like approaches require expensive external sensing hardware that is
attached to the smartphone via cable, WiFi, or Bluetooth [1, 57, 61],
but PTEase does not require any of such extra sensing or com-
puting hardware. Smartphones are also used to monitor heartbeat
and respiratory intervals, by externally measuring chest motion
[48]. Other acoustic sensing approaches use smartphone’s built-in
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Figure 28: Accuracy of disease prediction over different patient subgroups

Figure 29: Accuracy of lung function estimation over different patient subgroups

microphones to passively overhear the breathing sounds and es-
timate the exhalation flow rate to give lung function predictions
[21, 28, 62], but provide limited information about the airway’s
internal physiological conditions. In contrast, our sensing approach
in PTEase provides direct information about the airway’s internal
conditions by measuring the airway CSA, and could hence better
help clinical diagnosis in telemedicine settings.
AI-assisted disease diagnosis. PTEase’s ML model builds on re-
cent advances in using NNs for medical biomarker estimation and
disease prediction. However, most of the existing work [10, 51, 54]
assumes the availability of sufficient clinic data for training and
hence directly uses off-the-shelf NN architectures. Instead, PTEase
considers limited training data in practice and develops specialized
ML models to ensure efficient NN training.

11 DISCUSSIONS & FUTUREWORK

Avoiding passage assembly. As shown in Section 4, errors in air-
way measurements are largely caused by the users’ self-assembly
of the passage and sensing system. One possibility of avoiding such
assembly is to develop a new design of a one-piece disposable pas-
sage that replaces the current combination of smartphone adaptor,
connecting tube, and mouthpiece, but a major challenge is to find
the appropriate flexible materials for 3D printing.
Achieving better sensing accuracy. The accuracy of our current
sensing approach is limited by the variability of CSA measure-
ments, which is mainly caused by error accumulation in the WA
algorithm: small system noise can lead to large variations in airway
measurements. We could mitigate such impact of noise and error
accumulation by inserting NN models into each iteration of CSA
calculation, to predict and compensate the impact of accumulated
noise. Such NN-assisted processing of acoustic signals will be our
future work.
Predicting disease exacerbations. Patients with pulmonary dis-
ease can develop acute exacerbations with severe or fatal outcomes.
The key to timely predicting such exacerbations is that the ML

model should be self-evolving to continuously acquire new knowl-
edge about each subject’s different disease states, and adaptively
incorporate these new contexts to model training. We can leverage
reinforced continual learning to build a personalized ML model
for each subject and continually train each model with up-to-date
airway measurements and disease condition records collected from
the subject. Such personalized knowledge can help the model better
monitor the progress of the disease.
Privacy of personal health data. Users may be concerned about
the privacy of their personal data of airway conditions, if such
data is being transmitted to a remote server for disease evaluation.
In these cases, with the NN models being trained as described in
Section 6, we can opt to implement PTEase to be a completely
offline system, using an on-device ML framework (e.g., TensorFlow
Lite) for model inference on smartphones without transmitting
any data of airway measurements to a remote server. Updates of
NN models, on the other hand, can be conducted via distributed
learning methods such as federated learning [47, 58], to further
avoid privacy leakage from users.

12 CONCLUSION

In this paper, we present PTEase, a new system design that trans-
forms a commodity smartphone into a pulmonary telemedicine
examination device that measures the internal physiological con-
ditions of the human airway. We implemented PTEase as a smart-
phone app, and verified its measurement error in lab-controlled
settings as <10%. Clinical studies further showed that PTEase can
achieve 11% to 15% error in lung function estimation, and 75%
accuracy in predicting pulmonary diseases.
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