Instructor: William J. Federspiel, Ph.D.
Secretary: Nicole M. Johnson (johnsonnm2@upmc.edu, 3-9624)
Office:
1243 BEH and 215
McGowan (
Office
Phone: 412-383-9499
(3-9499 internal)
Email: federspielwj@upmc.edu
Office
Hours: W 2-5, H 9-12 all in
BEH. Other times by appointment
Lecture:
H 4:00-7:35 1221 Benedum Hall (FMLC)
Fundamentals
of Transport Processes is a graduate level engineering course designed to review
the governing relations of momentum, heat, and mass transfer in continua at an
advanced level for students who have already been exposed to transport at the
undergraduate level. Principal concepts will be illustrated through their
application to classical and practical paradigms in transport phenomena.
Students will learn useful analytical methods for studying and solving steady
state and unsteady state (transient) transport problems with and without fluid
convection. The computer analysis tool, Matlab®, will be used to help compute
and visualize solutions to problems as a means for exploring the underlying
physical phenomena to help illustrate principal concepts. A powerful yet
easy-to-use finite element tool, Femlab®, which interfaces directly with
Matlab®, will be also be used to simulate steady state and transient transport
in a variety of problems, including those where analytical solutions are
difficult or impossible or in which lengthy mathematical analyses might obscure
the physical phenomena being addressed.
The study of transport phenomena follows logically
that of thermodynamics. While thermodynamics looks at systems in equilibrium,
transport phenomena looks at systems departing from equilibrium and seeks to
quantify the flow or movement of specific system properties (e.g. thermal
energy, species concentration) that arises from the disequilibrium and that “wants”
to bring the system back towards equilibrium. The principal means of analyzing transport
in this course will be through the application of microscopic or
differential balances of species mass, thermal energy (heat), and
momentum. This first part of the course will focus on thermal energy and
species mass transport in the absence of fluid convection, generally referred
to as conductive and diffusive transport. The second part of the course will
focus on momentum transport and fluid motion (convection), and on how
convection affects conductive and diffusive transport. Throughout both parts of
the course, example problems are used extensively to help illustrate key
transport principles using chemical engineering and bioengineering applications.
Undergraduate course in Fluid Mechanics and Transport
Phenomena.
Desire to be challenged.
Required
Text:
Supplemental
Texts:
The
lecture material will cover most but not all of what you will be required to
learn. You will be responsible for learning all the material covered in
lecture, plus some material not covered in lecture but specifically identified
from the homework assignments.
Your
participation in this course will include the following:
Class
Participation/Attendance is mandatory and consists of both individual and team based
efforts. In the latter, students will work through team based learning
activities where example problems are analyzed, solved, and explored
graphically/visually using Matlab and Femlab.
Homework
Assignments
will be posted on the web on Saturday and will indicate the required sections
of the text for reading and selected problems that the students can work on to
test their knowledge of the material being covered. Final answers to the
problems will also be posted but not the detailed solutions. Any questions
students have regarding the solutions to the problems should be addressed
during the office hours for the week of the assignment or that immediately
following. Homework will be due in the main ChE office by Friday at 5 pm on the
week assigned. Homework will be graded S/U for effort.
Research Project will be scheduled later in the course. Students will work in teams to identify a research paper describing experiments involving some aspect of transport phenomena in chemical or biomedical engineering applications. Students will develop a transport model relative to the process described in the paper and will use Femlab® simulations to provide additional insight into the process described in the paper and the results generated in the paper.
Your
grade will be determined based on the following distribution:
Class Participation/Homework Effort 10%
Exam 1 15%
Exam 2 15%
Exam 3 15%
Exam 4 15%
Highest Exam +5%
Research Project Report 25%
Homework Problem Sets:
Problem sets will not be accepted late under
any circumstances after the due date without explicit email approval from the
instructor. Missed homework receives a U.
Exams:
Missed exams can be made up in cases of
extreme circumstances, e.g. illness requiring medical care, death in family, or
travel related to University or work activities (for part-time students).
Requests for make-up exams must consist of a) a typed one-page letter
explaining the reason for missing the exam, and b) relevant corroborating
documentation (e.g. a doctor’s note). If
you know you will miss an exam, arrangements must be made at least one week in
advance and the exam will be taken prior to the other students. If the missed
exam is unanticipated, the request for a make-up exam must be in my hands (not
my mailbox) within a three-day period after the scheduled exam day.
Behavioral Issues:
Late arrivals can be disruptive so
please make every attempt to arrive on-time. Consistent offenders will be asked
to will be asked to leave the class.
|
Jan. 6 |
General
property balances. Convective and diffusive flux. Conservation equation for thermal energy.
Fourier’s Law. Introduction to Femlab |
|
Jan. 13 |
Steady-state
unidirectional conduction. Introduction to Femlab |
|
Jan.
20 |
Conservation equation for chemical species. Fick’s
Law. Mass transfer boundary conditions. Steady-state unidirectional diffusion |
|
Jan.
27 |
Steady-state
unidirectional diffusion |
|
|
Exam
1 |
|
Feb. 3 |
Transient and
diffusion and conduction |
|
Feb.
10 |
Transient
and diffusion and conduction |
|
Feb.
17 |
Multidimensional
diffusion and conduction |
|
Feb.
24 |
Conservation equation for momentum. Momentum
diffusion and viscous stress. Navier-Stokes equations. Steady-state duct flows. |
|
|
Exam
2 |
|
Mar.
3 |
Low
Reynolds hydrodynamics |
|
Mar.
10 |
Spring
Break |
|
Mar.
17 |
Potential
and boundary layer flows |
|
|
Exam
3 |
|
Mar.
24 |
Transient
flow processes |
|
Mar.
31 |
Convective
heat and mass transfer |
|
Apr.
7 |
Convective
heat and mass transfer |
|
|
Exam
4 |
|
Apr.
14 |
Research
project presentations |
|
Apr.
21 |
Research
project presentations |
Other
Important Dates:
January
18 (Friday): Last day to drop class without tuition charge.
March
16 (Wednesday): Last day to withdraw from class with R grade.
April
24 (Saturday): Spring Term ends.